
Distributed Sequential Algorithms for Regional Source Localization I ,II

Sandra H. Dandach1 Francesco Bullo

aCenter for Control Dynamical Systems and Computation, University of California, Santa Barbara, CA 93106, USA

Abstract

We study the problem of source localization as a multiple hypothesis testing, where each hypothesis corresponds to the
event that the source belongs to a particular region. We use sequential hypothesis tests based on posterior computations
to solve for the correct hypothesis. Measurements corrupted with noise are used to calculate conditional posteriors.
We prove that the regional localization problem has geometric properties that allow correct detection almost surely in
the limit of infinite measurements. We present the Sense, Transmit & Test algorithm that allows sequential sensing,
communication and testing and we analyze the accuracy of this distributed algorithm and show that the test ends in a
finite time. We also present numerical results illustrating properties of the suggested algorithm.
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1. Introduction

1.1. Problem description and motivation
Applications where source localization is of great con-

cern, vary between finding the source of oil spills in the
ocean, determining cellular locations, detecting an earth-
quake’s epicenter, locating an acoustic source, or simply
finding an intruder in a protected environment. For most
of these applications, it is sufficient to find a region that
contains the source rather than pinpointing the exact source
position, which relies most of the time on approximations.

In this work we consider the following problem: A
source at an unknown location in a bounded region Q
transmits a power signal. N sensors receive noisy and
decayed versions of the signal, they can communicate and
exchange measurements. The environment Q is divided
into M regions Wα, where α ∈ {1, . . . ,M}. The objective
of the sensors is to find which region contains the source.

We pose the problem as a multiple hypothesis testing
problem, where hypothesis Hα is true if the source lies in
the region Wα. We assume no prior knowledge about the
location of the source and therefore model the source loca-
tion as a uniformly distributed random variable over the
environment Q, any prior information about the source lo-
cation can be incorporated in the location density function.
We adopt the log-normal fading model for the propagation
of the received signal power. The noise added to the log
of the power is Gaussian with zero mean and a known
variance σ2.

IThis work has been supported in part by AFOSR MURI FA9550-
07-1-0528 and NSF Award CNS-0834446.

IIA preliminary version of this work entitled “Algorithms for re-
gional localization” was presented at the 2009 American Control
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1.2. Literature review
In the classical source localization problem, a number

of sensors collaborate to locate the exact position of a
source. The relation between the position of a source and
the received signal strength (RSS) is described in (Rap-
poport, 1996; Proakis and Salehi, 2001; Sayed et al., 2005;
Chen et al., 2002). Several authors treat localization as
a nonconvex optimization problem (Hero III and Blatt,
2005; Rabbat and Nowak, 2004a). Gradient descent al-
gorithms and weighted least squares approximations can
be used to solve the maximum likelihood estimation prob-
lems but such algorithms tend to get stuck at local opti-
mas (Rabbat and Nowak, 2004b; Mao et al., 2007). Meng
et al. (2008) approximate the nonlinear nonconvex opti-
mization problem by a linear and convex problem. Hero
III and Blatt (2005) use a method of projection onto con-
vex sets. A necessary and sufficient condition for the con-
vergence of this algorithm is that the source lies inside the
convex hull of the sensors. Properly placing the sensors
assumes knowledge of the position of the source.

Designing distributed algorithms is in general a prob-
lem specific task, and many researchers from various com-
munities have looked at this problem. We refer the reader
to (Nedic and Ozdaglar, 2009; Lynch, 1997; Boyd et al.,
2006) and references therein for more details about this
topic.

The multiple hypothesis problems are considerably more
difficult than the binary problem and optimality of the pro-
posed algorithms is usually hard to prove. Some tests that
have some asymptotic optimality properties were devel-
oped in the literature, but these tests tend to be very com-
plex (Savin, 1984; Baum and Veeravalli, 1994; Armitage,
1950). Alternatively ad hoc tests based on repeated pair-
wise applications of optimal sequential hypothesis tests (Wald,
1945) were developed but these tests have little optimality
results, e.g., see Eisenberg (1991).
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1.3. Contributions
The contributions of this paper are three-folds.
First, we formulate the source localization problem in a

novel multi-hypothesis testing setting. We analyze proper-
ties of the Maximum A Posteriori (MAP) algorithm that
requires the computation of a finite number of integrals
which is to be compared to the need to solve a non-linear,
non-convex problem in the classical source localization prob-
lem. We provide a proof of almost sure convergence of the
MAP solution asymptotically in the limit of a large num-
ber of measurements, a step that tends to be missing in
all of the work presented earlier in the source localization
literature.

Second, inspired by the proof of convergence of the
MAP solution, we propose and implement a distributed
sequential regional localization algorithm: Sense, Trans-
mit & Test. This algorithm allows for sequential sensing,
transmission and testing at each processor. We allow each
processor to have one or multiple regions of responsibility
and relate the probability of error for each processor in the
case of multiple regions to the probability of error in the
case of a single region. We also show that the test ends in
a finite time under mild conditions on the sensor locations.

Third, we illustrate the results of the Sense, Transmit
& Test and show how the expected decision time for a
network increases with the required accuracy and noise.
We also provide numerical results illustrating how it is
possible to increase the level of localization accuracy at
the expense of the expected decision time for the network
for a fixed decision accuracy.

1.4. Paper organization
The paper proceeds as follows: we formulate the prob-

lem as a multi-hypotheses testing problem in Section 2.
We present a distributed algorithm to solve the problem
in Section 3. We present in Section 4 numerical results
showing the performance of the algorithm as various pa-
rameters are changed. We conclude in Section 5.

2. Source localization as multi-hypothesis testing

We start this section by introducing the model and the
problem definition.

2.1. Model and problem definition
Consider a compact connected environment Q ⊂ R2.

Suppose that there are N sensors placed at positions qi ∈
Q with i ∈ {1, . . . , N}, and that the source located at
an unknown location s ∈ Q transmits a signal whose
power undergoes lognormal shadowing summarized as fol-
lows. The average power loss for an arbitrary Transmitter-
Receiver separation is expressed as a function of distance
by using a path loss exponent ρ > 2. For reasons to be
explained shortly, we work with a slight modification of
the traditionally used model. The adopted model for the
received power at a sensor i is Pi = Pd0

d0+‖qi−s‖ρ , where ρ

indicates the rate at which the power loss increases with

distance. The nominal distance d0 is chosen so that the
received power in the vicinity of the source is almost equal
to the transmitted power P at the source. Note that while
this model gets rid of the singularity at the source, it con-
verges to the same behavior as the classical model used in
communication literature Pi = P

‖qi−s‖ρ , when the distance
‖qi − s‖ is large. Here P is the power received at a unit
distance from the source. The received power becomes

lnPi = ln(Pd0)− ln(d0 + ‖qi − s‖ρ) + ni, (1)

where ni is the noise associated with sensor i, and all ni

are independent and identically distributed (i.i.d) Gaus-
sian random variables with zero mean and known variance
σ2. The joint probability density function of the received
power Pr = [P1, . . . , PN ]T , conditioned on the source lo-
cation y ∈ Q is

p(P1, . . . , PN |y) =
1

(2πσ2)N/2

× exp
(
−

∑N
i=1

(
lnPi − ln( Pd0

d0+‖qi−y‖ρ )
)2

2σ2

)
. (2)

Problem 2.1 (MAP point localization problem) Com-
pute the position that maximizes the conditional density of
the joint observations, that is compute

y∗ = argmax
y∈Q

p(P1, . . . , PN |y)P(y).

Problem 2.1 is a nonlinear nonconvex optimization prob-
lem. Attempts to solve this problem, usually revert to
relaxing the problem or approximating its solution with-
out providing a convergence analysis. In this paper we
look for a regional localization, so the conditioning on the
exact position y in (2) is replaced by a conditioning on the
source being in a region Wi. The environment Q with area
A is divided into M regions {W1, . . . ,WM} with positive
areas {A1, . . . , AM}. The hypothesis Hα is true if and only
if s ∈ Wα.

Problem 2.2 (MAP regional localization problem)
Compute the hypothesis Hα that maximizes the posterior
of the joint observations, that is, compute

α∗ = argmax
α∈{1,...,M}

p(P1, . . . , PN |Hα)P(Hα). (3)

2.2. Regional posterior density
Assuming no prior knowledge about the location of the

source, the density describing s ∈ Q is

p(s) =

{
1/A, if s ∈ Q,

0, otherwise.

Definition 2.3 (Repeated measurements) The ith sen-
sor takes k repeated i.i.d. noisy measurements and com-
putes the average of the logarithms of the measurements

lnPi(k) =
k∑

t=1

lnPi(l)
k

. (4)
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In the infinite measurement case, we write

lnPi = lim
k→∞

k∑
t=1

lnPi(t)
k

.

and the variance limk→∞ σ2(k) = 0.

Proposition 2.4 (Expressions for posteriors) In the
case of k repeated measurements, the regional posterior for
sensor i about region Wα is

p(Pi(k)|Hα)P(Hα) =
1
A

∫
Wα

1
(2πσ2(k))1/2

× exp
(
−

(
lnPi(k)− ln( Pd0

d0+||qi−y||ρ )
)2

2σ2(k)

)
dy,

and the joint regional posterior for sensors {1, . . . , N} about
region Wα is

p(P1(k), . . . ,PN (k)|Hα)P(Hα) =
1
A

∫
Wα

dy

N∏
l=1

1
(2πσ2(k))1/2

exp
(
−

(
lnPl(k)− ln( Pd0

d0+||ql−y||ρ )
)2

2σ2(k)

)
.

Proof: Call z = lnPi(k). We compute

p(z|Hα) =
d

dz

P(Z ≤ z,Hα)
P(Hα)

= A
d

dz

∫ z

−∞
∫

Wα
p(z|y)p(y)dydz

Aα

= A
d

dz

∫ z

−∞
∫

Wα

(
p(z|y)/A)dydz

Aα
=

∫
Wα

p(z|y)dy

Aα
.

Since z = lnPi(k) =
∑k

t=1
ln Pi(t)

k , the conditional proba-
bility is

p(z|y) =
1

(2πσ2(k))1/2

× exp
(
−

(
lnPi(k)− ln( Pd0

d0+||qi−y||ρ )
)2

2σ2(k)

)
dy.

The regional posterior is

p(Pi(k)|Hα)P(Hα) =

∫
Wα

1
(2πσ2(k))1/2

Aα

× exp
(
−

(
lnPi(k)− ln( Pd0

d0+||qi−y||ρ )
)2

2σ2(k)

)
dy × Aα

A

=

∫
Wα

1
(2πσ2(k))1/2 · exp

(
−

“
lnPi(k)−ln(

P d0
d0+||qi−y||ρ )

”2

2σ2(k)

)
dy

A
.

Equations for the joint regional posterior follow by inde-
pendence of measurements.

2.3. Asymptotic properties of regional source localization
We show here some properties of the MAP algorithm

when applied to regional source localization for a gen-
eral number of sensors and regions. We start by pre-
senting a property of non-collinear sensors when applied
to source localization using measurements undergoing log-
normal shadowing.

Lemma 2.5 (Three non-collinear sensors) For d0 >
0 and ρ > 0, given a source s ∈ R2 and three non-collinear
sensors q1, q2 and q3 ∈ R2, the only solution for the equa-

tion
∑3

i=1

(
ln d0+‖z−qi‖ρ

d0+‖s−qi‖ρ

)2

= 0 is z = s.

Proof: In fact, it is easy to check that the sum is
zero at z = s. Uniqueness of this solution is verified by
noting that the sum of the square terms is zero only if all
the summands are zero. Let q = (x, y) and qi = (qi1, qi2).
The solution z = s is unique if and only if the following
system has a unique solution:[

−2(q11 − q21) −2(q12 − q22)
−2(q11 − q31) −2(q12 − q32)

] [
x
y

]
=

[
k1

k2

]
, (5)

where k1 and k2 are known values determined by the mea-
surements and the positions of the sensors. The system
presented in Equation (5) has a unique solution if and
only if the system is consistent and the determinant of the
matrix is non zero, i.e., the three points are non-collinear.

As usual, assume that N sensors are at positions qi, i ∈
{1, . . . , N} and that the environment is partitioned into
closed regions. For a region Wα, define the two scalar
quantities

Uα = max
y∈Wα

i∈{1,...,N}

∣∣∣∣ln d0 + ‖y − qi‖ρ

d0 + ‖s− qi‖ρ

∣∣∣∣ , (6)

Lα = min
y∈Wα

N∑
i=1

(
ln

d0 + ‖y − qi‖ρ

d0 + ‖s− qi‖ρ

)2

. (7)

Both quantities are well posed because they are the max-
imum and minimum value of a continuous function over a
compact domain. Additionally, Uα is strictly positive for
all source locations s ∈ Q and Lα is strictly positive for all
source locations s ∈ Q \Wα. The latter statement follows
from Lemma 2.5 and from the fact that the distance from
s to Wα is strictly positive for all s 6∈ Wα. Define

ηα =

√
U2

α +
Lα

2N
− Uα > 0, (8)

for all s 6∈ Wα. We state the following result on the mag-
nitude of sums of powers.

Lemma 2.6 (On the posterior of a wrong hypothe-
sis) Consider Lα, Uα and ηα as defined in (6), (7) and (8).
Assume the source s is outside Wα and the noise ni sat-
isfies |ni| ≤ ηα for all i ∈ {1, . . . , N} and α ∈ {1, . . . ,M}.
The following statements hold:
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1. the joint measurement is lower bounded as

min
y∈Wα

N∑
i=1

(
ln

d0 + ‖y − qi‖ρ

d0 + ‖s− qi‖ρ
+ ni

)2

≥ 1
2
Lα, and

2. the posterior probability for the wrong hypothesis α
is upper bounded as

p(P1, . . . , PN |Hα)P(Hα) ≤
Aα exp

(
−Lα/4σ2

)
A(2πσ2)N/2

.

Proof: To prove the first statement, consider the
expansion

(
ln

d0 + ‖y − qi‖ρ

d0 + ‖s− qi‖ρ
+ ni

)2

=
(

ln
d0 + ‖y − qi‖ρ

d0 + ‖s− qi‖ρ

)2

+ 2
(

ln
d0 + ‖y − qi‖ρ

d0 + ‖s− qi‖ρ

)
ni +

N∑
i=1

n2
i .

By computing lower bounds for each term and substituting
the definition of ηα, obtain

min
y∈Wα

N∑
i=1

(
ln

d0 + ‖y − qi‖ρ

d0 + ‖s− qi‖ρ
+ni

)2

≥ Lα−2NUαηα−Nη2
α

= Lα + 2NU2
α − 2NUα

√
U2

α +
Lα

2N
−N

(
U2

α +
Lα

2N

)
−NU2

α + 2NUα

√
U2

α +
Lα

2N
=

1
2
Lα.

The second statement follows directly from the first state-
ment because of the equality

lnPi − ln
Pd0

d0 + ‖y − qi‖ρ
= ln

d0 + ‖y − qi‖ρ

d0 + ‖s− qi‖ρ
+ ni,

and because of the fact that the surface integral of a func-
tion f is upper bounded by the surface integral of the
maximum value of f .
We are now ready for the convergence theorem. We intro-
duce the standard function Q : R → R>0 by

Q(x) =
1√
2π

∫ +∞

x

exp(−y2/2)dy.

Theorem 2.7 (Elimination of wrong hypothesis) Con-
sider sensors at positions q1, . . . , qN . Let σ be the noise
variance. If the source s /∈ Wα, then

P
[
p(P1, . . . , PN |Hα)P(Hα) ≤ εα(σ)

]
≥ µα(σ),

where

εα(σ) =
Aα exp(−Lα/4σ2)

A(2πσ2)N/2
, µα(σ) = (1− 2Q(ηα/σ))N .

Furthermore, in the k repeated measurement case, if at
least 3 sensors are non-collinear, then limk→∞ εα(σk) =
0+ and limk→∞ µα(σk) = 1−.

Proof: From Lemma 2.6, we compute

P
[
p(P1, . . . , PN |Hα)P(Hα) ≤ εα(σ)

]
≥ P

[
[n1, . . . , nN ]T ∈ [−ηα, ηα]N

]
=

N∏
i=1

(
1
2
− P[ni > ηα] +

1
2
− P[ni < −ηα]

)
=

(
1− 2Q(ηα/σ)

)N
.

The first inequality follows from the fact that Lemma 2.6
holds whenever all |ni| ≤ ηα. The proofs of the two limits
of limk→∞ εα(σk) and limk→∞ µα(σk) are immediate when
there are at least 3 non-collinear sensors. Indeed, if there
are at least 3 non-collinear sensors and if s /∈ Wα, then
Lemma 2.5 applies and one can show Lα > 0 and ηα > 0.

This theorem states that, as σ → 0+, the joint regional
posterior p(P1, . . . , PN |Hα)P(Hα) takes an arbitrarily small
value with a probability that goes arbitrarily close to 1
when Hα is not the correct hypothesis. This is so as
Q(x) → 0 as x → ∞. To complement the Theorem 2.7,
we prove below that for the correct hypothesis, the prob-
ability density is lower bounded by a positive term w.p.1.

Theorem 2.8 (Strict positivity of correct hypothe-
sis) Consider sensors at positions q1, . . . , qN . Let σ be the
noise variance. If the source s ∈ Wα, then

P [p(P1, . . . , PN |Hα)P(Hα) ≥ Ψ(σ)] ≥ Ω(σ),

where

Ψ(σ) = p(P1, . . . , PN )−
∑

α=1,...,M
α6=α

Aα exp(−Lα/4σ2)
A(2πσ2)N/2

,

Ω(σ) =
∏

α=1,...,M
α6=α

µα(σ) =
∏

α=1,...,M
α6=α

(1− 2Q(ηα/σ))N .

Furthermore, in the k repeated measurement case, if at
least 3 sensors are non-collinear, then limk→∞ Ψ(σk) =
p(P1, . . . , PN ) > 0 and limk→∞ Ω(σk) = 1−.

Proof: The proof of this theorem follows directly
from Theorem 2.7 and from the total probability theorem.
Call z = [P1, . . . , PN ]T . We know from the total probabil-
ity theorem that

p(z) =
M∑

α=1

p(z|Hα)P(Hα) = p(z|Hα)P(Hα)

+
∑

α=1,...,M
α6=α

p(z|Hα)P(Hα)

and, in turn, that

p(z|Hα)P(Hα) = p(z)−
∑

α=1,...,M
α6=α

p(z|Hα)P(Hα).
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From Theorem 2.7

P

p(z|Hα)P(Hα) ≥ p(z)−
∑

α=1,...,M
α6=α

εα(σ)


≥

∏
α=1,...,M

α6=α

P
[
p(z|Hα)P(Hα) ≤ εα(σ)

]
≥

∏
α=1,...,M

α6=α

µα(σ)

As limk→∞ σk = 0+, limk→∞ Ψ(σk) = p(z) and
limk→∞ Ω(σk) = 1−.
Theorem 2.8 complements Theorem 2.7 in that is shows
that as limk→∞ σk = 0+, the largest regional posterior is
the one associated with the correct hypothesis.

Remark 2.9 (Almost sure convergence of MAP) Us-
ing a MAP algorithm to solve the problem of regional lo-
calization, is assured to provide a correct answer, almost
surely, in the limit of infinite measurements. This follows
directly from Theorem 2.8 and Theorem 2.7.

3. Distributed sequential regional localization

In this section we assume that each sensor is a processor
that can perform computational tasks as well as commu-
nicate to other processors according to a specified commu-
nication graph. Each processor takes measurements and
computes a conditional posterior that it communicates to
all its neighbors and then makes a decision if a desired
accuracy is reached. A group of regions is associated with
each processor. The processor will need to provide a de-
cision about which of these regions if any contains the
source. We call such a group, the regions of responsibility
of the processor. We do not assume any constraints on the
assignment of regions of responsibilities. We present the
algorithm in Subsection 3.1 and describe its properties in
Subsection 3.2.

3.1. Distributed algorithm based on sequential sensing, com-
munication and hypothesis testing

We present below a distributed algorithm where each
processor decides whether or not its region of responsi-
bility contains the source. The algorithm as presented,
dictates until when a processor needs to continue to take
measurements, as well as the information that needs to be
communicated.

For each processor i ∈ {1, . . . , N}, the set of neighbors
Ni consists of the processor itself along with the proces-
sors that can communicate with it. The ith processor is
responsible for a set Ri of Mi regions. We denote these
Mi regions by Wα for α ∈ Ri. The processor collects the
measurements from its neighboring processors, and calcu-
lates two posteriors for all regions Wα, α ∈ Ri. The first
posterior corresponds to the hypothesis that the source is
in Wα, the second posterior corresponds to the hypoth-
esis that the source is outside Wα. Once the processor

reaches a pre-defined level of confidence, it provides a de-
cision about whether or not Wα contains the source. The
ith processor stops running its test when it reaches a de-
cision about all Wα, α ∈ Ri. The processor then sets its
decision to either yes, the source is in Wα, or no, no source
is in ∪α∈Ri

Wα. Each processor continues to sense and
transmit its measurements until all its neighbors j ∈ Ni

have reached a decision. We give here a formal description
of the algorithm.

Algorithm : Sense, Transmit & Test

algorithm tolerance: 0 < ε � 1
2

network processors: i ∈ {1, . . . , N}
regions: Wα, α ∈ {1, . . . , M}
state of processor i contains:
a-dcsni ∈ {yes source ∈ Wα, no source ∈ ∪α Wα, unknown},
for all j ∈ Ni : qj , a-stopj ∈ {false, true},
for all α ∈ Ri : Wα, r-stopα ∈ {false, true},

r-dcsnα ∈ {yes, no, unknown}

Processor i with set of neighborsNi executes:

1: transmit qi to j ∈ Ni

2: set k := 0 , a-stopi := false and a-dcsni := unknown

3: set r-stopα := false and r-dcsnα := unknown for α ∈ Ri

4: While ∃ j ∈ Ni with a-stopj == false do
5: update k := k + 1 and take measurement Pi(k)

6: compute lnPi(k) =
Pk

t=1
lnPi(t)

k

7: transmit lnPi(k) to j ∈ Ni

8: store lnPNi(k) = {lnPi(k)}∪{lnPj(k) for all j ∈ Ni}
9: For all α ∈ Ri with r-stopα == false do

10: If p(PNi(k)|s ∈ Wα)P(s ∈ Wα) > (1− ε) p(PNi(k))
11: dcsnα := yes, r-stopα := true, a-dcsni := true

12: If p(PNi(k)|s /∈ Wα)P(/∈ Wα) > (1− ε) p(PNi(k))
13: r-dcsnα := no and r-stopα := true

14: End For
15: If r-stopα == true for all α ∈ Ri

16: a-stopi := true

17: If a-dcsni == unknown

18: a-dcsni := no

19: transmit a-stopi to all j ∈ Ni

20: return a-dcsni

21: End While

3.2. Properties of Sense, Transmit & Test
We present below properties involving the accuracy and

decision time of the Sense, Transmit & Test algorithm.

Theorem 3.1 (Accuracy and decision time for Sense,
Transmit & Test algorithm) Assume that only one source
exists in the environment Q, that each processor has at least
2 neighboring processors with which it forms a non-collinear
triplet, and that each processor is assigned Mi regions. Given
an accuracy ε ∈ (0, 1

2
), the Sense, Transmit & Test algorithm

enjoys the following two properties:

1. the algorithm ends in a finite time, and

2. each processor i has a probability of error no larger than
2Miε if 2 ≤ Mi ≤ 1 + 1

ε
, and no larger than ε if Mi = 1.

Proof: It is well known (Wald, 1945; Varshney, 1996) that
given two hypothesis H1 and H0 with known posteriors, P (H1)
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and P (H0), a hypothesis test that ensures that the decision un-
der hypotheses H0 and H1 is correct with a probability greater
than τ0 and τ1 respectively is the following:

1. Calculate p(PNi(k)|H1)P(H1),p(PNi(k)|H0)P(H0)

2. if
p(PNi

(k)|H1)P(H1)

p(PNi
(k)|H0)P(H0)

≥ τ1
1−τ1

decide in favor of H1,

3. if
p(PNi

(k)|H1)P(H1)

p(PNi
(k)|H0)P(H0)

≤ 1−τ0
τ0

, decide in favor of H1,

4. othewise repeat measurements and go to 1.

We show below that the Sense, Transmit & Test algorithm
satisfies the description above. Applying the total probability
theorem we get

p(PNi |s /∈ Wα)P(s /∈ Wα)

= p(PNi |y ∈ Q)P(s ∈ Q)− p(PNi |s ∈ Wα)P(s ∈ Wα)

= p(PNi)− p(PNi |s ∈ Wα)P(s ∈ Wα). (9)

Call (H1 := s ∈ Wα) and (H0 := s /∈ Wα). If we set τ0 = τ1 =
(1− ε), and the thresholds to accept a hypothesis H1, to be

p(PNi(k)|H1)P(H1) ≥ τ1p(PNi),

and the thresholds to reject a hypothesis to be

p(PNi(k)|H0)P(H0) ≥ τ0p(PNi),

then using Eq. (9), one can show that

p(PNi(k)|H1)P(H1) ≥ τ1 p(PNi)

⇒ p(PNi(k)|H0)P(H0) ≤ (1− τ1)p(PNi)

⇒ p(PNi(k)|H1)P(H1)

p(PNi(k)|H0)P(H0)
≥ τ1

1− τ1
. (10)

Similarly, assuming H0 is correct, one can show that

p(PNi(k)|H0)P(H0) ≥ τ0 p(PNi)

⇒ p(PNi(k)|H1)P(H1)

p(PNi(k)|H0)P(H0)
≤ 1− τ0

τ0
. (11)

Assuming H1 is correct, the probability of correct decision for
the ith processor is no smaller than τ1, for each of the regions
Wα, α ∈ Ni. Similar result hold assuming H0 is correct.

The maximum numbers of errors that a processor can make
in a decision is two: a mis-detection and a false-alarm for Wα

where α ∈ Ri. Alternatively all the other combinations of
choices result in at most one error, since the ith processor can
declare at most one hypothesis Hα to be correct for all α ∈ Ri.

The scenarios where the decision of the processor is erro-
neous are presented below:

1. If one of the regions Wα satisfies p(PNi(k)|H1)P(H1) ≥
τ1p(PNi), then for all β ∈ Ri \ α, the following holds
(from the complete probability theorem)

p(PNi(k)|s ∈ Wβ)P(s ∈ Wβ) < (1− τ1)p(PNi)

⇒p(PNi(k)|s /∈ Wβ)P(s /∈ Wβ) ≥ τ1 p(PNi) = τ0p(PNi).
(12)

From Eqs. (11) and (12) it follows that the source can
be detected in at most one region Wα. It follows that at
most one false alarm can happen, which might or might
not be accompanied with one mis-detection.

2. If none of the regions of responsibilities of the processor
contain the source, then the processor can make at most
one mistake by having at most one false alarm.

To write a formal proof, we introduce pf and pm to be the
probability of false alarm and mis-detection. Where pf cor-
responds to choosing yes while the correct decision is no and
mis-detection corresponds to choose no when the correct de-
cision is yes for any region Wα. Here that pf = pm = ε. A
processor makes an error if it wrongly decides yes/no on Wα

for any α ∈ Ri. Following the analysis above, the probability
of error for the ith processor is:

Pe <

 
Mi

1

!„
pmP (s /∈ ∪α∈Ri Wα)

+ (pf +

 
Mi − 1

1

!
pfpm)P (s ∈ ∪α∈Ri Wα)

«
≤ 2Miε,

if ε(Mi − 1) ≤ 1. If the processor has only one region of re-
sponsibility, it is straightforward to see that the processor has
a probability of error no larger than ε.

We show now that the test ends after a finite number of
measurements. For a region Wα, processor needs to decide
whether the source is in Wα (H1) or outside it (H0).

Without loss of generality, assume that H1 is correct for a
region Wα. We know from Theorem 2.7 that

lim
k→∞

p(PNi(k)|H0)P(H0) = 0+,

almost surely. We also know from Theorem 2.8 that

lim
k→∞

p(PNi(k)|H1)P(H1) = p(PNi(k)) > 0,

almost surely. This has the following implication

lim
k→∞

p(PNi(k)|H1)P(H1)

p(PNi(k))
= 1,

which implies that for all ε > 0, there exists 0 < K < ∞, s.t.

|p(PNi(K)|H1)P(H1)− p(PNi(K))

p(PNi(K))
| < ε

⇐⇒ − p(PNi(K)|H1)P(H1) + p(PNi(K)) < ε p(PNi(K))

⇐⇒ p(PNi(K)|H1)P(H1) > (1− ε) p(PNi(K)).

So for any 1
2

< τ < 1, there exists, almost surely, K < ∞, s.t.

p(PNi(k)|H1)P(H1) > τ p(PNi(k)),

here τ = 1− ε, where 0 < ε < 1
2
.

Similarly one can prove that if H0 is correct, then there
exists, almost surely, K < ∞, such that

p(PNi(k)|H0)P(H0) > τ p(PNi(k)).

To complete the proof, we cover the cases where the algo-
rithm makes a wrong decision. This is possible if the thresh-
olds corresponding to a wrong decision are crossed at a time
K1 < K < ∞.

This completes the proof that the Sense, Transmit & Test
algorithm has a finite decision time.

4. Numerical results

We present in this section three sets of simulations. The
first two sets illustrate some properties of the Sense, Transmit
& Test algorithm, while the third presents a modification of
the algorithm that introduces an interesting extension of the
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work. In the first simulations, there are as many regions as
there are sensors, i.e., N = M = 10. We start by presenting in
Figure 1 a sample of the results obtained by the Sense, Trans-
mit & Test algorithm. The figure shows the positions of the
processors (equipped with sensors) as well as the partition of
Q. As partition we adopt the Voronoi partition generated by
the processors positions; each processor is responsible for its
corresponding Voronoi region. As stated in the caption, after
113 observations all decisions have been made and the source
has been correctly localized.

Figure 1: This picture illustrates an evolution of the output of the
Sense, Transmit & Test algorithm. At each instant a region is col-
ored in white, light gray or dark gray, indicating unknown, yes or no
respectively. The output of the distributed algorithm is shown at
times 0, 1, 3, 4, 6, 8, 11, 113 respectively. In this run we ε = 0.01 and
σ = 0.5 with N = M = 10.

We then present in Figure 2 a plot that shows how the ex-
pected number of observations needed to reach a decision varies
with the accuracy ε in the algorithm. Clearly, the probability
of correct detection increases for decreasing values of ε.
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Figure 2: This plot shows the expected time it takes a network of
10 processors implementing the Sense, Transmit & Test algorithm
to reach a decision for a noise standard of deviation σ = 0.1 when
the probability of error ε varies. We show the logarithm of the de-
cision time. Note that the network decision time seems to grow
exponentially with the desired accuracy as is standard in sequential
hypothesis testing. The network is assumed to have reached a deci-
sion when all processors have decided. The expected decision time
is calculated over 1000 runs.

In Figure 3 we show how the expected number of obser-
vations needed to reach a decision increases with the standard
deviation of the noise.

Next, we report the second sets of simulations, where we
have differing numbers of regions and sensors. Specifically, we
have N = 4 sensors and M = 16 regions. Figure 4 illustrates
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Figure 3: This plot shows the expected time it takes a network of 10
processors implementing the Sense, Transmit & Test algorithm to
reach a decision with a probability of error no larger than ε = 0.01
as the noise standard of deviation σ varies. The network is assumed
to have reached a decision when all processors have decided. The
expected decision time is calculated over 100 runs.

the evolution of the Sense, Transmit & Test algorithm in this
case. The overall accuracy for each processor is 0.9. This is
achieved by setting ε = 0.1/8.

Figure 4: This picture illustrates an evolution of the Sense, Trans-
mit & Test algorithm. At each instant a region is colored in
white, light gray or dark gray, indicating unknown, yes or no respec-
tively. The output of the distributed algorithm is shown at times
1, 4, 6, 7, 13, 131, 142, 202 respectively. In this run we set ε = 0.1/8
and σ = 0.5 and N = 4 and M = 16.

In this third set of simulations, we show the output of a
modified, multi-resolution version of the Sense, Transmit &
Test algorithm. This multi-resolution version runs over multi-
ple stages, at each stage the environment under consideration
is divided in two regions. Observations are taken at each stage
until one of the two regions is rejected with an accuracy of 1−ε.
The rejected region is removed from the environment, and the
remaining region is again divided in two regions. Observations
are transferred from one stage to another and re-used to reach
a decision about the more fine environment division. A sample
output of the modified algorithm is shown in Figure 5. In or-
der to reach the same precision in localization as that shown in
Figure 4, we divide the regions 4 times. Note that the original
Sense, Transmit & Test algorithm reached its decision after
an average of 290 observations whereas the multi-resolution
algorithm did so after an average of 100 observations. We cal-
culated these values from 1000 Monte-Carlo runs, that is with
an error of ±3% to show a similar probability of error with
the same level of fineness. We leave a rigorous analysis of the
multi-resolution algorithm to future work.
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Figure 5: This picture illustrates an evolution of the modified version
of the Sense, Transmit & Test algorithm. The output is shown at
times 7, 11, 71, 72 respectively. The rejected regions are shown in
dark grey and the ones accepted at each stage are shown in light
grey. In this run we set ε = 0.1 and σ = 0.5 and N = 4 and M = 2
at each set of tests.

We conclude with a general remark. The Sense, Transmit &
Test algorithm presented in this work might at first glance look
similar to sequential multiple hypothesis testing algorithms by
elimination such as the one presented in (Bauer, 1989). A closer
comparison of the two algorithms shows that while in this work
at most 2M tests are run at each sample, the hypothesis test by
sequential elimination requires a number of tests of the order
2M as it proceeds by a pairwise comparison over all hypothesis.
Nonetheless, it is worth mentioning that while the sequential
elimination algorithm leads to a decision as soon as all but one
hypothesis is eliminated, we wait here until the last hypothesis
reaches the required certainty level. This can be seen in Fig-
ure 1 where all but one hypothesis were canceled at the 11th
observation, yet the algorithm did not end until the 113th ob-
servation when the last processor reached its required accuracy.
The geometric aspects and the properties associated with the
regional localization problem, made it possible to propose the
simpler, yet less general, Sense, Transmit & Test algorithm.

5. Conclusion

In this work, we looked at the problem of source localiza-
tion in a multiple hypothesis testing setting. We based our
formulation on the geometric properties of the MAP algorithm
when applied to regional localization. We proved that when
measurements are available from three or more non-collinear
sensors, MAP based algorithms choose the correct region al-
most surely in the limit of infinite measurements. We then
presented a sequential distributed algorithm where each pro-
cessor senses, transmits and tests to provide a decision. We
analyzed the algorithm and provided a measure of its accuracy
and showed that it ends in a finite time. We concluded the
paper by numerically illustrating the algorithm’s performance.

There are two direct extensions for this work that we are
considering. The first is using an adaptive hierarchical methods
based on quadtrees (de Berg et al., 2000) to increase the level
of details in the choice of regions. The regions could be finely
divided as fewer candidate regions are left, an example of such
adaptation is shown at the end of the manuscript. It would be
interesting to study the trade off between the accuracy and the
decision time as a function of the fine-gridding of the regions.

The second is allowing the algorithm to stop as soon as a
processor decides that its region contains the source. As pre-
sented in this manuscript, the algorithm has a proven accuracy
performance based on the assumption that all processors reach
their decisions independently of each other, and although we
assume only one source, a processor will continue applying the
Sense, Transmit & Test algorithm until it decides that its re-
gion does not contain the source even if the source was detected
by one of the other processors. It will be interesting to see what

happens to the accuracy if an individual can broadcast a yes to
everyone in the group, allowing them to stop. Alternatively, as
we showed in Figure 1, it is possible that only one hypothesis
is left by elimination. It will also be interesting to analyze, if
possible, the accuracy of an algorithm that makes use of such
scenarios when they occur.
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