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Kron Reduction of Graphs with Applications to
Electrical Networks

Florian Dörfler Francesco Bullo

Abstract—Consider a weighted undirected graph and its corre-
sponding Laplacian matrix, possibly augmented with additional
diagonal elements corresponding to self-loops. The Kron reduc-
tion of this graph is again a graph whose Laplacian matrix is ob-
tained by the Schur complement of the original Laplacian matrix
with respect to a specified subset of nodes. The Kron reduction
process is ubiquitous in classic circuit theory and in related
disciplines such as electrical impedance tomography, smart grid
monitoring, transient stability assessment, and analysis of power
electronics. Kron reduction is also relevant in other physical
domains, in computational applications, and in the reduction
of Markov chains. Related concepts have also been studied as
purely theoretic problems in the literature on linear algebra.
In this paper we analyze the Kron reduction process from the
viewpoint of algebraic graph theory. Specifically, we provide
a comprehensive and detailed graph-theoretic analysis of Kron
reduction encompassing topological, algebraic, spectral, resistive,
and sensitivity analyses. Throughout our theoretic elaborations
we especially emphasize the practical applicability of our results
to various problem setups arising in engineering, computation,
and linear algebra. Our analysis of Kron reduction leads to novel
insights both on the mathematical and the physical side.

Index Terms—Kron reduction, equivalent circuit, algebraic
graph theory, Ward equivalent, network-reduced model

I. INTRODUCTION

Consider an undirected, connected, and weighted graph with
n nodes and adjacency matrix A ∈ Rn×n. The corresponding
loopy Laplacian matrix is the matrix Q ∈ Rn×n with off-
diagonal elements Qij = −Aij and diagonal elements Qii =
Aii +

∑n
j=1Aij . Consider now a simple algebraic operation,

namely the Schur complement of the loopy Laplacian matrix Q
with respect to a subset of nodes. As it turns out, the resulting
lower dimensional matrix Qred is again a well-defined loopy
Laplacian matrix, and a graph can be naturally associated to it.

This paper investigates this Schur complementation from
the viewpoint of algebraic graph theory. In particular we seek
answers to the following questions. How are the spectrum and
the algebraic properties of Q and Qred related? How about the
corresponding graph topologies and the effective resistances?
What is the effect of a perturbation in the original graph on
the reduced graph, its loopy Laplacian Qred, its spectrum, and
its effective resistance? Finally, why is this graph reduction
process of practical importance and in which application
areas? These are some of the questions that motivate this paper.

Electrical networks and the Kron reduction. To illustrate
the physical dimension of the problem setup introduced above,
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we consider the circuit naturally associated to the adjacency
matrix A. Consider a connected electrical network with n
nodes, current injections I ∈ Rn×1, nodal voltages V ∈ Rn×1,
branch conductances Aij ≥ 0, and shunt conductances Aii ≥
0 connecting node i to the ground. The resulting current-
balance equations are I = QV , where the conductance matrix
Q ∈ Rn×n is the loopy Laplacian. In circuit theory and
related disciplines it is desirable to obtain a lower dimensional
electrically-equivalent network from the viewpoint of certain
boundary nodes α ( {1, . . . , n}, |α| ≥ 2. If β = {1, . . . , n}\α
denotes the interior nodes, then, after appropriately labeling
the nodes, the current-balance equations can be partitioned as

[
Iα
Iβ

]
=

[
Qαα Qαβ
Qβα Qββ

] [
Vα
Vβ

]
. (1)

Gaussian elimination of the interior voltages Vβ in equations
(1) gives an electrically-equivalent reduced network with the
nodes α obeying the reduced current-balance equations

Iα +QacIβ = QredVα , (2)

where the reduced conductance matrix Qred ∈ R|α|×|α| is
given by the Schur complement of Q with respect to the
interior nodes β, that is, Qred = Qαα−QαβQ−1ββQβα, and the
accompanying matrix Qac = −QαβQ−1ββ ∈ R|α|×(n−|α|) maps
internal currents to boundary currents in the reduced network.

This reduction of an electrical network via a Schur comple-
ment of the associated conductance matrix is known as Kron
reduction due to the seminal work of Gabriel Kron [1]. In case
of a star-like network without interior current injections and
shunt conductances, the Kron reduction of a network reduces
to the (generalized) star-triangle transformation [2], [3].

Literature review. The Kron reduction of networks is
ubiquitous in circuit theory and related applications in order
to obtain lower dimensional electrically-equivalent circuits. It
appears for instance in the behavior, synthesis, and analysis of
resistive circuits [4]–[6], particularly in the context of large-
scale integration chips [7], [8]. When applied to the impedance
matrix of a circuit rather than the admittance matrix, Kron
reduction is also referred to as the “shortage operator” [9],
[10]. Kron reduction is a standard tool in the power systems
community to obtain so-called “network-reduced” or “Ward-
equivalent” models for power flow studies [11], [12], to
reduce differential-algebraic power network models to purely
dynamic models [13]–[16], and it is crucial for reduced order
modeling, analysis, and efficient simulation of induction mo-
tors [17] and power electronics [18], [19]. A recent application
of Kron reduction is monitoring in smart power grids [20]
via synchronized phasor measurement units. Kron reduction
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is also known in the literature on electrical impedance tomog-
raphy, where Qred is referred to as the “Dirichlet-to-Neumann
map” [21]–[23]. More generally, the Schur complement of
a matrix and its associated graph is known in the context
of Gaussian elimination of sparse matrices [24]–[26] and its
application to Laplacian matrices can be found, for example,
in sparse multi-grid solvers [27] and in finite-element analysis
[17]. It serves as popular application example in linear algebra
[28]–[31], a similar concept is employed in the cyclic reduc-
tion [32] or the stochastic complement [33] of Markov chains,
and a related concept is the Perron complement [34], [35] of
a matrix and its associated graph with applications in data
mining [36]. Finally, Kron reduction is also crucial in model
reduction of water supply networks [37] and in the context of
the Yang-Baxter equation and its applications in knot theory,
high-energy physics, and statistical mechanics [38].

This brief literature review shows that Kron reduction is
both a practically important and theoretically fascinating prob-
lem occurring in numerous applications. Each of the aforemen-
tioned communities has different approaches and insights into
Kron reduction. Engineers understand the physical dimension
of Kron reduction very well, the computation community
investigates the sparsity pattern of the Kron-reduced matrix,
and the linear algebra community is interested in eigenvalue
problems. Surprisingly, across different scientific communities
little is known about the graph-theoretic properties of the
Kron reduction process. Yet the graph-theoretic analysis of
Kron reduction provides novel and deep insights both on the
mathematical and the physical side of the considered problem.

Contributions. In this paper we provide a detailed and
comprehensive graph-theoretic analysis of the Kron reduction
process. Our general graph-theoretic framework and analysis
of Kron reduction encompasses various theoretical problem
setups as well as practical applications in a unified language.

Essentially, Kron reduction of a connected graph, possibly
with self-loops, is a Schur complement of corresponding loopy
Laplacian matrix with respect to a subset of nodes. We relate
the topological, the algebraic, and the spectral properties of the
resulting Kron-reduced Laplacian matrix to those of the non-
reduced Laplacian matrix. Furthermore, we relate the effective
resistances in the original graph to the elements and effective
resistances induced by the Kron-reduced Laplacian. Thereby,
we complement and extend various results in the literature
on the effective resistance of a graph [10], [39]–[42]. In
our analysis, we carefully analyze the effects of self-loops,
which typically model loads and dissipation. We also present
a sensitivity analysis of the algebraic, spectral, and resistive
properties of the Kron-reduced matrix with respect to per-
turbations in the non-reduced network topology. Finally, our
analysis of Kron reduction complements the literature in linear
algebra [28]–[31], and we construct an explicit relationship to
analogous results on the Perron complement side [33]–[36]
such that our results apply also to Markov chain reductions.
Throughout the paper, we will remark whenever certain basic
lemmas are known or partially known to some community.

In our analysis we do not aim at deriving only mathematical
elegant results but also useful tools for practical applications.
Our general graph-theoretic framework encompasses the appli-

cations of Kron reduction in circuit theory [4]–[8], electrical
impedance tomography [21]–[23], sensitivity in power flow
studies [11], [12], monitoring in smart grids [20], transient sta-
bility assessment in power grids [13]–[16], and the stochastic
reduction of Markov chains [29], [33]–[36]. Furthermore, we
demonstrate how each of these applications benefits from the
graph-theoretic viewpoint and analysis of the Kron reduction.
We believe that our general analysis is a first step towards more
detailed results in specific applications of Kron reduction.

Paper organization. The remainder of this section intro-
duces some notation recalls some preliminaries in matrix anal-
ysis and algebraic graph theory. Section II presents the general
framework of Kron reduction and reviews various application
areas. Section III presents the graph-theoretic analysis of the
Kron reduction process. Finally, Section IV concludes the
paper and suggests some future research directions.

Preliminaries and Notation. Given a finite set Q, let |Q| be
its cardinality, and define for n ∈ N the set In = {1, . . . , n}.

Vectors and matrices: Let 1p×q and 0p×q be the p × q
dimensional matrices of unit and zero entries, and let In
be the n-dimensional identity matrix. For vectors, we adopt
the shorthands 1p = 1p×1 and 0p = 0p×1 and define ei
to be vector of zeros of appropriate dimension with entry
1 at position i. For a real-valued 1d-array {xi}ni=1, we let
diag({xi}ni=1) ∈ Rn×n be the associated diagonal matrix.

Given a real-valued 2d-array {Aij} with i, j ∈ In, let
A ∈ Rn×n denote the associated matrix and AT the trans-
posed matrix. We use the following standard notation for
submatrices [43]: for two non-empty index sets α, β ⊆ In
let A[α, β] denote the submatrix of A obtained by the rows
indexed by α and the columns indexed by β and define the
shorthands A[α, β) = A[α, In \ β], A(α, β] = A[In \ α, β],
and A(α, β) = A[In \ α, In \ β]. We adopt the shorthand
A[{i}, {j}] = A[i, j] = Aij for i, j ∈ In, and for x ∈ Rn
the notation x[α, {1}] = x[α] and x(α, {1}) = x(α). For
illustration, equation (1) can be written unambiguously as

[
I[α]
I(α)

]
=

[
Q[α, α] Q[α, α)
Q(α, α] Q(α, α)

] [
V [α]
V (α)

]
.

If A(α, α) is nonsingular, then the Schur complement of A
with respect to the block A(α, α) (or equivalently the indices
α) is the |α| × |α| dimensional matrix A/A(α, α) defined by

A/A(α, α) , A[α, α]−A[α, α)A(α, α)−1A(α, α] .

If A is Hermitian, then we implicitly assume that its eigen-
values are arranged in increasing order: λ1(A)≤ . . .≤λn(A).
The reader is referred to [44] for a review of matrix analysis.

Algebraic graph theory: Consider the undirected, connected,
and weighted graph G = (In, E , A) with node set In and
edge set E ⊆ In × In induced by a symmetric, nonnegative,
and irreducible adjacency matrix A ∈ Rn×n. A non-zero
off-diagonal element Aij > 0 corresponds to a weighted
edge {i, j} ∈ E , and a non-zero diagonal elements Aii > 0
corresponds to a weighted self-loop {i, i} ∈ E . We define the
corresponding degree matrix by D , diag

(
{∑n

j=1Aij}ni=1

)
.

The Laplacian matrix is the symmetric matrix defined by
L,D −A. Note that self-loops, even though apparent in the
adjacency matrix A, do not appear in the Laplacian matrix L.
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For these reasons and motivated by the conductance matrix in
circuit theory, we define the loopy Laplacian matrix Q(A) =
Q , L+ diag({Aii}ni=1) ∈ Rn×n. Note that adjacency matrix
A can be recovered from the loopy Laplacian Q as A = −Q+
diag({∑n

j=1,j 6=iQij}ni=1), and thus Q uniquely induces the
graph G. We refer to Q as strictly loopy (respectively loop-
less) Laplacian, if the graph induced by Q features at least
one (respectively no) positively-weighted self-loop.

For a connected graph ker(L) = span(1n), and all n − 1
remaining non-zero eigenvalues of L are strictly positive.
Specifically, the second-smallest eigenvalue λ2(L) is a spectral
connectivity measure called the algebraic connectivity. Recall
that irreducibility of either A, L, or Q is equivalent to
connectivity of G, which is again equivalent to λ2(L) > 0.
We refer to [45] for further details on algebraic graph theory.

The effective resistance Rij between two nodes i, j ∈ In
of an undirected connected graph with loopy Laplacian Q is

Rij , (ei − ej)TQ†(ei − ej) = Q†ii +Q†jj − 2Q†ij , (3)

where Q† is the Moore-Penrose pseudo inverse of Q. Since Q†

is symmetric (follows from the singular value decomposition),
the matrix of effective resistances R is again a symmetric
matrix with zero diagonal elements Rii = 0. The effective
resistance Rij can be thought of as a graph-theoretic metric,
and it is mostly analyzed for a loop-less and uniformly
weighted graph with Q ≡ L. We do not restrict ourselves to
this case here. We refer the reader to [10], [16], [39]–[42] for
various applications and properties of the effective resistance
as well as interesting results relating R, L, Q, L†, and Q−1.

Remark I.1 (Physical interpretation) If the graph is under-
stood as a resistive circuit with conductance matrix Q, the
effective resistance Rij corresponds to the potential difference
between the nodes i and j when a unit current is injected in i
and extracted in j. In this case, the current-balance equations
are ei−ej = QV . The effective resistance Rij , defined as the
potential difference Rij = (ei − ej)TV , can be obtained via
the impedance matrix Q† as Rij = (ei − ej)TQ†(ei − ej).�

II. PROBLEM SETUP, BASIC RESULTS, AND APPLICATIONS

A. The Kron Reduction Process

Consider an undirected, connected, and weighted graph
G = (In, E , A) and its associated symmetric and irreducible
matrices: the adjacency matrix A ∈ Rn×n, Laplacian matrix
L(A), and loopy Laplacian matrix Q(A). Furthermore, let
α ( In be a proper subset of nodes with |α| ≥ 2. We define
the (|α| × |α|) dimensional Kron-reduced matrix Qred by

Qred , Q/Q(α, α) . (4)

In the following, we refer to the nodes α and In \α as bound-
ary nodes and interior nodes, respectively. The following
lemma establishes the existence of the Kron-reduced matrix
Qred as well as some structural closure properties.

Lemma II.1 (Structural Properties of Kron Reduction) Let
Q ∈ Rn×n be a symmetric irreducible loopy Laplacian and let
α be a proper subset of In with |α| ≥ 2. The following state-
ments hold for the Kron-reduced matrix Qred = Q/Q(α, α):

1) Existence: The Kron-reduced matrix Qred is well defined.
2) Closure properties: If Q is a symmetric loopy, strictly

loopy, or loop-less Laplacian matrix, respectively, then
Qred is a symmetric loopy, strictly loopy, or loop-less
Laplacian matrix, respectively.

3) Accompanying matrix: The accompanying matrix
Qac , −Q[α, α)Q(α, α)−1 ∈ R|α|×(n−|α|) is non-
negative. If the subgraph among the interior nodes
is connected and each boundary node is adjacent to
at least one interior node, then Qac is positive. If
additionally, Q ≡ L is a loop-less Laplacian, then
Qac = Lac , −L[α, α)L(α, α)−1 is column stochastic.

An interesting consequence of Lemma II.1 is that Qred, as
a loopy Laplacian matrix, induces again an undirected and
weighted graph. Hence, Kron reduction, originally defined as
an algebraic operation in equation (4), can be equivalently
interpreted as a graph-reduction process, or as physical re-
duction of the associated circuit. This interplay between linear
algebra, graph theory, and physics is illustrated in Figure 1.
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Fig. 1. Illustration of an electrical network with 4 boundary nodes ��,
8 interior nodes •◦ , and unit-valued branch and shunt conductances. The
associated loopy Laplacian Q and the graph G are equivalent representations.
Kron reduction of the interior nodes •◦ results in a reduced network among
the boundary nodes �� with the Kron-reduced matrix Qred and graph Gred.

In the following we denote the reduced graph induced
by Qred as Gred, and define the corresponding reduced
adjacency, degree, and loop-less Laplacian matrices by
Ared , −Qred + diag({∑n

j=1,j 6=iQred[i, j]}i∈α), Dred ,
diag

(
{∑n

j=1Ared[ij]}ni=1

)
, and Lred , Dred−Ared. We remark

that Lemma II.1 is partially also noted in [4], [5], [13], [27],
[28], [30], and we present a self-contained proof here.

Proof of Lemma II.1. First, consider the case when the
graph among the interior nodes is connected, or equivalently
Q(α, α) is irreducible. By definition, Q is (weakly) diagonally
dominant since Qii =

∑n
j=1,j 6=i |Qij | + Aii for all i ∈ In.

Due to the irreducibility of Q the strict inequality Qii >∑n
j=1,j 6=i,j 6∈α |Qij |+Aii holds at least for one i ∈ In \ α. It

follows that Q(α, α) is also irreducible, diagonally dominant,
and has at least one row with strictly positive row sum.
Hence, Q(α, α) is invertible [44, Corollary 6.2.27]. If the
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graph among the interior nodes consists of multiple connected
components, then, after appropriately labeling the interior
nodes, the matrix Q(α, α) is block-diagonal with irreducible
diagonal blocks corresponding to the connected components.
The previous arguments applied to each diagonal block yield
that Q(α, α) is nonsingular, and statement 1) follows.

Statement 2) is a consequence of the closure properties
of the Schur complement [43, Chapter 4], which includes
the classes of symmetric, positive definite, and M -matrices.
Since Q is a symmetric M -matrix, we conclude that Qred =
Q/Q(α, α) is also a symmetric M -matrix. Hence, Qred is a
symmetric loopy Laplacian. This fact together with the closure
of positive definite matrices reveals that the class of symmetric
strictly loopy Laplacians is closed under Kron reduction. To
prove the closure of symmetric loop-less Laplacians, assume
without loss of generality that α = I|α|, and consider the fol-
lowing equality for the row sums of the loop-less LaplacianQ:

[
Q[α, α] Q[α, α)
Q(α, α] Q(α, α)

] [
1|α|

1n−|α|

]
=

[
0|α|
0|α|

]
. (5)

Elimination of the second block of equations in (5) results
in 0|α| = Qred1|α|, which shows that Qred is a loop-less
Laplacian and concludes the proof of statement 2).

The second block of equations in (5) can be rewritten as
1n−|α| = QTac1|α|. Hence, Qac is a column stochastic matrix
in the loop-less case. In general, Qac = −Q[α, α)Q(α, α)−1

is nonnegative, since −Q[α, α) and the inverse of the M -
matrix Q(α, α) are both nonnegative. If additionally each
boundary node is connected to at least one interior node and
the graph among the interior nodes is connected, then each row
of −Q[α, α) has at least one positive entry. Moreover, since
Q(α, α) is an irreducible non-singular M -matrix, Q(α, α)−1

is positive [28, Theorem 5.12]. The latter two facts guarantee
positivity of Qac and complete the proof of statement 3).

As mentioned in Section I, the Kron reduction has various
applications, and its general purpose is to construct low dimen-
sional “equivalent” matrices, graphs, or circuits. In the follow-
ing we describe different examples arising in Markov chains,
circuit theory, impedance tomography, power flow studies,
transient stability assessment, and smart grid monitoring.

B. Stochastic Complements and Markov Chain Reduction

A concept related to Kron reduction is the reduction of
nonnegative, irreducible, and row stochastic matrices via the
Perron complement [29], [34], [35]. The latter concept finds
application in Markov chain reduction [33] and in data mining
[36], where it is termed stochastic complement. Here we relate
the Schur complement of a Laplacian with the stochastic
complement of the corresponding Markov chain transition
matrix. Hence, our results pertaining to Kron reduction can
be analogously stated for the stochastic complement. For
instance, the topological properties are identical, and the
spectral, algebraic, and resistive properties can be easily and
naturally related via the degree matrix of the boundary nodes.

Given a loop-less graph induced by a symmetric, non-
negative, and irreducible adjacency matrix A ∈ Rn×n with
corresponding degree matrix D, we define the corresponding
transition matrix by P , D−1A. The transition matrix

P induces the state transition map x+ = Px of a finite-
state Markov chain, it is nonnegative, irreducible, and row
stochastic, that is, P1n = 1n. Generally, P is not symmetric.
By the definitions of D, L = D − A, and P = D−1A,
we have that L = D(In − P ). For α ∈ [2, n− 1], the
Kron-reduced Laplacian is given by the Schur complement
Lred = L/L(α, α) = Dred − Ared, and we define the reduced
transition matrix Pstc by the stochastic complement [33]

Pstc , P [α, α] + P [α, α)(Iα − P (α, α))−1P (α, α] .

The reduced transition matrix Pstc has various interesting
properties. For instance, analogously to Lemma II.1, Pstc
is again nonnegative, irreducible, and row-stochastic [33,
Theorem 2.3]. We refer to [29], [33]–[35] for further de-
tails. Finally, we define the pseudo-reduced adjacency matrix
Astc , A[α, α]+A[α, α)(D(α, α)−A(α, α))−1A(α, α]. Then,
based on the fundamental relation between Schur and Perron
complements shown in [33]–[36], we can state the following
lemma relating Kron reduction and the stochastic complement.

Lemma II.2 (Kron Reduction and Stochastic Complemen-
tation) Consider a loop-less graph induced by a symmetric,
nonnegative, and irreducible adjacency matrix A ∈ Rn×n with
degree matrix D, Laplacian L = D−A, and transition matrix
P = D−1A. Let α be a proper subset of In with |α| ≥ 2, and
consider the Kron-reduced Laplacian Lred = L/L(α, α) =
Dred−Ared, the reduced transition matrix Pstc, and the pseudo-
reduced adjacency matrix Astc. The following identities hold:

Pstc =D[α, α]−1Astc , (6)
Lred =Dred −Ared =D[α, α]−Astc =D[α, α](Iα − Pstc). (7)

Identity (6) gives an intuitive relation of the reduced transi-
tion matrix, the degree matrix D[α, α], and the pseudo-reduced
adjacency matrix Astc among the boundary nodes. Identity (7)
implies that Ared[i, j] = Astc[i, j] = Pstc[i, j]·Di for all distinct
i, j ∈ α, that is, the matrics Ared and Astc induce the same re-
duced graph besides self-loops. The diagonal elements satisfy
Ared[i, i] = 0 and Astc[i, i] = Di − Dred[i, i] = Pstc[i, i] · Di.
In case that the original graph features self-loops, then the
identities stated later in Theorem III.6 allow to directly relate
the Kron-reduced strictly loopy Laplacian Qred and identity (7).

Proof of Lemma II.2. To prove identity (6), recall that P =
D−1A, and consider the following set of equalities

Pstc =D[α, α]−1(A[α, α] +A[α, α)

× ((Iα −D(α, α)−1A(α, α))−1D(α, α)−1A(α, α]

=D[α, α]−1(A[α, α] +A[α, α)

× ((D(α, α)−A(α, α))−1A(α, α] = D[α, α]−1Astc ,

where we used (Iα − V −1U)−1 = (V − U)−1V (for a
nonsingular (α× α)-matrix V ), see [46, Equation (13)].

To prove identity (7) consider the following set of equalities,

Lred = L[α, α]− L[α, α)L(α, α)−1L(α, α]

=(D[α, α]−A[α, α])−A[α, α)(D(α, α)−A(α, α))−1A(α, α]

= D[α, α]−Astc = D[α, α]−D[α, α]Pstc ,

where we used identity (6) in the last inequality.
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C. Kron Reduction in Large-Scale Integration Chips

In large-scale integration chips, it is of interest to reduce
the complexity of large-scale circuits by replacing them with
equivalent lower dimensional circuits with the same terminals
(boundary nodes) [7], [8]. The circuit reduction problem also
stimulated a matrix-theoretic and behavioral analysis from
the viewpoint of boundary nodes [4]–[6], [13]. For resistive
networks, Kron reduction leads to such an equivalent reduced
circuit. A particular reduction goal in [7] is to reduce the fill-
in of the Kron-reduced matrix Qred for computation of the
effective resistance. The proper choice of the boundary nodes
has a tremendous effect on the sparsity of the Kron-reduced
matrix and saves numerical effort in subsequent computations,
see Figure 2. Reduction of the fill-in is also a pervasive
objective in the computational applications [24]–[27].
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Fig. 5. Two reduced conductance matrices of the same network with 59
terminals. The matrix on the left results when eliminating all internal nodes;
on the right, all but five internal nodes are eliminated. The matrix on the
right has fewer nonzeros, and only five more rows, than the first matrix,
and hence the corresponding network is smaller: 721 versus 1711 resistors.
By selecting specific internal nodes (five in this case) to be preserved in
the reduced network, fill-in during elimination of the other internal nodes is
limited considerably. The difference becomes even bigger as the number of
terminals increases.

the reduced network), and since this can be computed before
doing the actual elimination we always include a check on
this. If it is decided to eliminate all internal nodes, the reduced
conductance matrix Gk can be computed efficiently using the
Cholesky factorization G22 = LLT

Gk = G11 − QQT

where Q = L−1GT
12.

In many cases, however, elimination of all internal nodes
leads to a dramatic increase in the number of resistors
and is hence not advisable. On the other hand, we know
that the sparse circuit matrices allow for sparse Cholesky
factorizations, provided clever reordering strategies such as
approximate minimum degree [8] are used. Our algorithm for
reducing large networks heavily relies on reordering of rows
and columns to minimize fill-in. Before going into all the
details in the following sections, we briefly describe the key
idea behind our approach.

The idea is best explained by referring to Fig. 5. Here two
reduced conductance matrices of the same network are shown.
The matrix on the left results when eliminating all internal
nodes; on the right all but five internal nodes are eliminated. It
is clear that the matrix on the right contains a few more internal
nodes, but considerably fewer resistors, thanks to the fact that
these specific internal nodes are not eliminated. In other words,
since these nodes are connected to many of the remaining
nodes (after the elimination of other internal nodes; in the
original network they are connected to only a few other nodes),
eliminating these nodes would cause fill-in in a large part of
the matrix. Hence, at the costs of an additional unknown, we
gain on sparsity. The question is now how to find these specific
internal nodes, that cause the most fill-in, in an efficient way. In
the following sections, we will explain how graph algorithms
and matrix reordering algorithms can be used to answer this
question.

The idea of reduction by node elimination is not new, see,
for instance, [18]–[23]. We present a specialized method for
resistor networks and by making use of fill-in reducing matrix
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reordering algorithms it can be applied to very large-scale
networks.

C. reduceR: Effective Reduction of Resistor Networks

The new approach, called reduceR, that we will describe
next, combines well-established techniques for sparse matrices
with graph algorithms. As will become clear, this approach
has several advantages: the running times do not depend on
the number of terminals and are linear (at most quadratic for
advanced reduction) in the number of states, both the number
of states and number of elements are decreased dramatically,
the reduced networks are exact (i.e., no approximations are
made), and the approach can be implemented with robust
existing software libraries. An outline of the algorithm is
described in Fig. 6. We use a divide-and-conquer approach
to reduce large networks: first the network is partitioned in
smaller parts that can be reduced individually (steps 1–14). In
the second and last phase (steps 15–17), the partially reduced
network is reduced even further by a global approach. In the
following sections, we will describe each of the steps in more
detail. Finally, we would like to stress that although in this
paper we describe and apply the approach for resistor only
networks, it can be applied to RC and RCLk networks as well.
The key observation, as will become clear in the following,
is that internal nodes are identified that partition the network
in disconnected parts that are easier to reduce. We give more
details for reduction of general networks in Section V-E.
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Fig. 5. Two reduced conductance matrices of the same network with 59
terminals. The matrix on the left results when eliminating all internal nodes;
on the right, all but five internal nodes are eliminated. The matrix on the
right has fewer nonzeros, and only five more rows, than the first matrix,
and hence the corresponding network is smaller: 721 versus 1711 resistors.
By selecting specific internal nodes (five in this case) to be preserved in
the reduced network, fill-in during elimination of the other internal nodes is
limited considerably. The difference becomes even bigger as the number of
terminals increases.

the reduced network), and since this can be computed before
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this. If it is decided to eliminate all internal nodes, the reduced
conductance matrix Gk can be computed efficiently using the
Cholesky factorization G22 = LLT

Gk = G11 − QQT

where Q = L−1GT
12.
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nodes, but considerably fewer resistors, thanks to the fact that
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since these nodes are connected to many of the remaining
nodes (after the elimination of other internal nodes; in the
original network they are connected to only a few other nodes),
eliminating these nodes would cause fill-in in a large part of
the matrix. Hence, at the costs of an additional unknown, we
gain on sparsity. The question is now how to find these specific
internal nodes, that cause the most fill-in, in an efficient way. In
the following sections, we will explain how graph algorithms
and matrix reordering algorithms can be used to answer this
question.

The idea of reduction by node elimination is not new, see,
for instance, [18]–[23]. We present a specialized method for
resistor networks and by making use of fill-in reducing matrix
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reordering algorithms it can be applied to very large-scale
networks.

C. reduceR: Effective Reduction of Resistor Networks

The new approach, called reduceR, that we will describe
next, combines well-established techniques for sparse matrices
with graph algorithms. As will become clear, this approach
has several advantages: the running times do not depend on
the number of terminals and are linear (at most quadratic for
advanced reduction) in the number of states, both the number
of states and number of elements are decreased dramatically,
the reduced networks are exact (i.e., no approximations are
made), and the approach can be implemented with robust
existing software libraries. An outline of the algorithm is
described in Fig. 6. We use a divide-and-conquer approach
to reduce large networks: first the network is partitioned in
smaller parts that can be reduced individually (steps 1–14). In
the second and last phase (steps 15–17), the partially reduced
network is reduced even further by a global approach. In the
following sections, we will describe each of the steps in more
detail. Finally, we would like to stress that although in this
paper we describe and apply the approach for resistor only
networks, it can be applied to RC and RCLk networks as well.
The key observation, as will become clear in the following,
is that internal nodes are identified that partition the network
in disconnected parts that are easier to reduce. We give more
details for reduction of general networks in Section V-E.

a) b) c)

Fig. 2. a) Illustration of an integration chip with a symmetric top-level
network connecting the interior nodes with the terminals. The Kron reduction
of all interior nodes of a network with 59 terminals results in a Kron-reduced
matrix of dimension 592 with 592 = 3481 non-zero entries. If all but five
specifically chosen interior nodes are eliminated, then the Kron-reduced matrix
is of dimension 642 but has only 1506 non-zero entries. The corresponding
sparsity patterns are shown in subfigures b) and c), which are taken from [7].

In [7] it is argued that reduction of a connected compo-
nent of Q results in a dense component in Qred and the
effective resistance among boundary nodes is invariant under
Kron reduction. We remark that these arguments are based
on numerical observations and physical intuition. This paper
puts the statements of [7] on solid mathematical ground.
We prove invariance of the effective resistance under Kron
reduction and rigorously show under which conditions a sparse
topology becomes dense or even complete. Moreover, our
setup encompasses shunt loads and currents drawn from the
interior network, thereby generalizing results in [4]–[6], [13].

D. Electrical Impedance Tomography

In electrical impedance tomography the goal is to determine
the conductivity inside a compact spatial domain Ω ⊂ R2 from
simultaneous measurements of currents and voltages at the
boundary of Ω, that is, from measurement of the Dirichlet-to-
Neumann map. Electrical impedance tomography finds appli-
cations in geophysics and medical imaging. A natural approach
is a discretization of the spatial domain to a resistor network
with conductance matrix Q. As seen in equations (2) with
Iβ = 0n×1, when a unit potential is imposed at boundary
node j and a zero potential at all other boundary nodes, the
current measured at boundary node i gives the reduced transfer
conductance Qred[i, j]. Other methods iteratively construct the
reduced impedance matrix Q†red from measurements of the
effective resistance R [23]. The goal is then to invert the Kron
reduction and recover the original network Q from the reduced

Q

Ω

Qred

Fig. 3. In electric impedance tomography the conductivity of the spatial
domain Ω is estimated by measuring the Kron-reduced matrix Qred at the
boundary nodes ��. From these measurements the conductance matrix Q is
re-constructed and serves as a spatial discretization of Ω.

network Qred, as illustrated in Figure 3. This is feasible only
for highly symmetric networks [21]–[23], but generally it is
not possible to infer structural properties from Qred to Q.

This paper provides non-iterative identities relating the
effective resistance matrix R and the Kron-reduced impedance
matrix Q†red as well as explicit identities relating R and Qred
for uniform networks. Furthermore, our analysis allows to
partially invert the Kron reduction by estimating the spectrum
of Q or its effective resistance from the spectrum or resistance
of Qred. Finally, our framework allows also for dissipation of
energy in the spatial domain via loads in the resistor network.

E. Sensitivity of Reduced Power Flow
Large-scale power transmission networks can be modeled as

circuits, with generators and load buses as nodes, see Figure
4. Each transmission line {i, j} is weighted by a (typically
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Fig. 9. The New England test system [10], [11]. The system includes
10 synchronous generators and 39 buses. Most of the buses have constant
active and reactive power loads. Coupled swing dynamics of 10 generators
are studied in the case that a line-to-ground fault occurs at point F near bus
16.

test system can be represented by

δ̇i = ωi,
Hi

πfs
ω̇i = −Diωi + Pmi − GiiE

2
i −

10∑

j=1,j !=i

EiEj ·

· {Gij cos(δi − δj) + Bij sin(δi − δj)},





(11)

where i = 2, . . . , 10. δi is the rotor angle of generator i with
respect to bus 1, and ωi the rotor speed deviation of generator
i relative to system angular frequency (2πfs = 2π × 60Hz).
δ1 is constant for the above assumption. The parameters
fs, Hi, Pmi, Di, Ei, Gii, Gij , and Bij are in per unit
system except for Hi and Di in second, and for fs in Helz.
The mechanical input power Pmi to generator i and the
magnitude Ei of internal voltage in generator i are assumed
to be constant for transient stability studies [1], [2]. Hi is
the inertia constant of generator i, Di its damping coefficient,
and they are constant. Gii is the internal conductance, and
Gij + jBij the transfer impedance between generators i
and j; They are the parameters which change with network
topology changes. Note that electrical loads in the test system
are modeled as passive impedance [11].

B. Numerical Experiment

Coupled swing dynamics of 10 generators in the
test system are simulated. Ei and the initial condition
(δi(0),ωi(0) = 0) for generator i are fixed through power
flow calculation. Hi is fixed at the original values in [11].
Pmi and constant power loads are assumed to be 50% at their
ratings [22]. The damping Di is 0.005 s for all generators.
Gii, Gij , and Bij are also based on the original line data
in [11] and the power flow calculation. It is assumed that
the test system is in a steady operating condition at t = 0 s,
that a line-to-ground fault occurs at point F near bus 16 at
t = 1 s−20/(60Hz), and that line 16–17 trips at t = 1 s. The
fault duration is 20 cycles of a 60-Hz sine wave. The fault
is simulated by adding a small impedance (10−7j) between
bus 16 and ground. Fig. 10 shows coupled swings of rotor
angle δi in the test system. The figure indicates that all rotor
angles start to grow coherently at about 8 s. The coherent
growing is global instability.

C. Remarks

It was confirmed that the system (11) in the New Eng-
land test system shows global instability. A few comments
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Fig. 10. Coupled swing of phase angle δi in New England test system.
The fault duration is 20 cycles of a 60-Hz sine wave. The result is obtained
by numerical integration of eqs. (11).

are provided to discuss whether the instability in Fig. 10
occurs in the corresponding real power system. First, the
classical model with constant voltage behind impedance is
used for first swing criterion of transient stability [1]. This is
because second and multi swings may be affected by voltage
fluctuations, damping effects, controllers such as AVR, PSS,
and governor. Second, the fault durations, which we fixed at
20 cycles, are normally less than 10 cycles. Last, the load
condition used above is different from the original one in
[11]. We cannot hence argue that global instability occurs in
the real system. Analysis, however, does show a possibility
of global instability in real power systems.

IV. TOWARDS A CONTROL FOR GLOBAL SWING

INSTABILITY

Global instability is related to the undesirable phenomenon
that should be avoided by control. We introduce a key
mechanism for the control problem and discuss control
strategies for preventing or avoiding the instability.

A. Internal Resonance as Another Mechanism

Inspired by [12], we here describe the global instability
with dynamical systems theory close to internal resonance
[23], [24]. Consider collective dynamics in the system (5).
For the system (5) with small parameters pm and b, the set
{(δ,ω) ∈ S1 × R | ω = 0} of states in the phase plane is
called resonant surface [23], and its neighborhood resonant
band. The phase plane is decomposed into the two parts:
resonant band and high-energy zone outside of it. Here the
initial conditions of local and mode disturbances in Sec. II
indeed exist inside the resonant band. The collective motion
before the onset of coherent growing is trapped near the
resonant band. On the other hand, after the coherent growing,
it escapes from the resonant band as shown in Figs. 3(b),
4(b), 5, and 8(b) and (c). The trapped motion is almost
integrable and is regarded as a captured state in resonance
[23]. At a moment, the integrable motion may be interrupted
by small kicks that happen during the resonant band. That is,
the so-called release from resonance [23] happens, and the
collective motion crosses the homoclinic orbit in Figs. 3(b),
4(b), 5, and 8(b) and (c), and hence it goes away from
the resonant band. It is therefore said that global instability
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Fig. 4. Single line diagram of the New England Power Grid [14], an
equivalent schematic representation with generators �� and buses •◦ , and the
corresponding Kron-reduced network

inductive) admittance Aij = Aji ∈ C. Whereas generator i
injects a current Ii ∈ C, the load at a bus j draws a current
Ij ∈ C and features a shunt admittance Ajj ∈ C. Hence,
the power network obeys the current-balance equations I =
QV , where the nodal admittance matrix Q ∈ Cn×n is the
loopy Laplacian induced by the admittances Aij . Depending
on the application, the current balance equations are sometimes
converted to the power flow equations S = V ◦(QV )∗, where ◦
is the Hadamard product, ∗ denotes the conjugate transposed,
and S = V ◦ I∗ is the vector of power injections.

A critical task in power network operation is monitoring
and control of the power flow. The determining equationsS=
V ◦ (QV )∗ are too complicated to admit an analytic solution
and often too onerous for a computational approach [11], [12].
If a set of nodes α is identified for sensing or control purposes,
then all remaining nodes can be eliminated via Kron reduction
leading to the reduced current-balance equations (2). The cor-
responding reduced power flow is obtained as Sred = V [α] ◦
(QredV [α])∗, where Sred = V [α] ◦ I[α]∗ + V [α] ◦ (QacI(α))∗.

For the lossless case when Q is purely imaginary, this
paper provides insightful and explicit results showing how
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perturbations in weights or topology of Q affect the reduced
transfer admittance matrix Qred. We also show the effect
of shunt and current loads on the reduced network. For
instance, a positive shunt load Qii > 0 in the non-reduced
network weakens the mutual transfer admittances Qred[i, j] in
the reduced network and increases the reduced loads Qred[i, i].

F. Monitoring of DC Power Flow in Smart Grid

The linearized DC power flow equations are P = Bθ, where
P = <(S) ∈ Rn are the real power injections, θ ∈ Rn are
the voltage phase angles, and B = −=(Q) ∈ Rn×n is the
susceptance matrix. Consider the problem of monitoring an
area Ω of a smart power grid equipped with synchronized
phasor measurement units at the buses α = {α1, α2} bordering
Ω [20]. Kron reduction of the DC power flow with respect to
the interior nodes In \ α yields the reduced DC power flow
P [α] + BacP (α) = Bredθ[α], where Bred and Bac are defined
analogously to Qred and Qac. From here various scalar stress
measures over the area Ω can be defined [20]. Let σ ∈ R|α|
be the indicator vector for the boundary buses α1, that is,
σi = 1 if i ∈ α1 and zero otherwise. The cutset power flow
over the area Ω is Pcut = σTP [α] + σTBacP (α), the cutset
susceptance is bcut = σTBredσ, and the corresponding cutset
angle is θcut =Pcut/bcut. Hence, the area Ω is reduced to two
nodes {1, 2} exchanging the power flow Pcut with angle θcut
over the susceptance bcut, see Figure 5. These scalar quantities

α1 α1

α2

1

2

P [α] P [α] + BacP (α) Pcut

bcutP (α) BredΩ

α2

Fig. 5. Reduction of the area Ω with boundary buses �� to a single line
equivalent {1, 2} describing the electrical characteristics between the set of
boundary buses α1 and the set of boundary buses α2.

indicate the stress within the area Ω. For instance, a large
cutset angle θcut could be a blackout risk precursor. Of special
interest are how load changes, line outages, or loss of nodes
within Ω or on its boundary α affect the cutset angle θcut.

This paper provides a comprehensive and detailed analysis
of how changes in topology and weighting of the network
affect the Kron-reduced matrix Bred. These results include the
self-loops in the graph (modeling shunt loads) and can be
easily translated to the cutset angle θcut to show its sensitivity
with respect to perturbations in the network.

G. Transient Stability Assessment in Power Networks

Transient stability is the ability of a power network to remain
in synchronism when subjected to large disturbances such as
faults of system components or severe fluctuations in genera-
tion or load. If the power transmission is lossless with purely
imaginary admittance matrix Q and the loads are modeled as
constant current injections and shunt admittances, the network
can be reduced to the generators nodes via Kron reduction. In

this case, Qred is also purely imaginary, and the dynamics of
generator i are given by the swing equations [14]–[16]

Miθ̈i = −Diθ̇i+Pi−
∑|α|

j=1
Pij sin(θi−θj), i ∈ In , (8)

where (θi, θ̇i) are the generator rotor angle and speed, Mi > 0
and Di > 0 are the inertia and damping constant, the coupling
weight Pij = |Vi||Vj |=(Qred[i, j]) > 0 is the maximum power
transfer between generators i and j, and the effective power
input Pi = Pm,i + <(Vi

∑n−|α|
j=1 Q∗ac[i, j]I

∗
|α|+j)) results from

the mechanical power input Pm,i and the current loads I|α|+j .
In [47], we derived sufficient conditions under which the

reduced model (8) synchronizes, that is, all frequency differ-
ences θ̇i(t)− θ̇j(t) converge to zero. For notational simplicity,
we assume uniform damping here, that is, Di = D for all
i ∈ α. Then two sufficient conditions for synchronization are

|α|min
i6=j
{Pij} > max

i,j∈I|α|
{Pi − Pj} , (9)

λ2(L(Pij)) >
(∑|α|

i,j=1, i<j
(Pi − Pj)2

)1/2
. (10)

The right-hand sides of conditions (9)-(10) measure the non-
uniformity in effective power inputs Pi, and the left-hand
sides reflect the connectivity in the reduced network: the
term |α|mini 6=j{Pij} lower-bounds mini

∑|α|
j=1 Pij , the worst

coupling of one generator to the network, and λ2(L(Pij))
is the algebraic connectivity of the coupling. In summary,
conditions (9)-(10) read as “the reduced network connectivity
has to dominate the non-uniformity in effective power inputs.”

For uniformly lower-bounded voltage magnitudes at all
generators |Vi| ≥ V > 0 the analysis of this paper will reveal
that the spectral condition (9) in the reduced network can be
converted to the spectral synchronization condition

λ2(L) >
(∑|α|

i,j=1, i<j
(Pi − Pj)2

)1/2 1

V 2
+ max
i∈In
{Ared[i, i]} ,

(11)
where L is the Laplacian of the original lossless power net-
work (weighted by =(−Aij)) and Ared[i, i] is the ith shunt load
in the reduced network. Similarly, if the effective resistance
among all generators takes the uniform value R and the
effective resistance between the generators and the ground
is uniform as well, then the results of this paper render the
element-wise condition (10) in the reduced network to a re-
sistive synchronization condition in the non-reduced network:

1

R
> max
i,j∈I|α|

{Pi − Pj}
1

2V 2
+ max
i∈In
{Ared[i, i]} . (12)

Conditions (11)-(12) state that the network connectivity has to
overcome the non-uniformity in effective power inputs and the
dissipation by the loads, such that the network synchronizes.

III. KRON REDUCTION OF GRAPHS

This section analyzes the algebraic, topological, spectral,
and sensitivity properties, as well as the effective resistance
of the Kron-reduced matrix Qred and its associated graph.
Throughout this section we assume that Q ∈ Rn×n is a
symmetric and irreducible loopy Laplacian matrix (corre-
sponding to an undirected, connected, and weighted graph with
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n nodes), and we let α be a proper subset of In with |α| ≥ 2.
For notational simplicity and without loss of generality, we
assume that the n nodes are labeled such that α = I|α|.

A. The Augmented Laplacian and Iterative Kron Reduction

The concepts presented in this subsection will be central to
the subsequent developments both for illustration and analysis.

The role of the self-loops induced by a strictly loopy
Laplacian Q ∈ Rn×n can be better understood by introducing
the additional grounded node with index n+1. Then the strictly
loopy Laplacian Q is the principal n× n block embedded in
the (n+1)×(n+1) dimensional augmented Laplacian matrix

Q̂ ,

[
Q −diag({Aii}ni=1)1n

−1Tndiag({Aii}ni=1)
∑n
i=1Aii

]
, (13)

where A ∈ Rn×n is the adjacency matrix corresponding to Q.
The augmented Laplacian Q̂ is the Laplacian of the augmented
graph Ĝ with node set V̂ = {In, n + 1} and edge set Ê =
{E , Eaugment}. Here a node i ∈ In is connected to the grounded
node n + 1 via a weighted edge {i, n + 1} ∈ Eaugment if and
only if Aii > 0, see Figure 6 for an illustration.
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Fig. 6. Illustration of the graph G associated with the circuit from Figure 1
and the corresponding augmented graph Ĝ with additional grounded node �♦.

Lemma III.1 (Properties of the augmented Laplacian)
Consider the symmetric and irreducible strictly loopy Lapla-
cian Q ∈ Rn×n and the corresponding augmented Laplacian
matrix Q̂ ∈ R(n+1)×(n+1). The following statements hold:

1) Algebraic properties: Q̂ is an irreducible and symmet-
ric loop-less Laplacian matrix.

2) Spectral properties: The eigenvalues of Q and Q̂
interlace each other, that is, 0 = λ1(Q̂) < λ1(Q) ≤
λ2(Q̂) ≤ λ2(Q) ≤ · · · ≤ λn(Q̂) ≤ λn(Q) ≤ λn+1(Q̂).

3) Kron reduction: Consider the strictly loopy Laplacian
Qred and the loop-less Laplacian Q̂red , Q̂/Q̂({α, n +
1},{α, n + 1}), both obtained by Kron reduction of the
interior nodes In \α. The following diagram commutes:

Q

Qred Q̂red

Q̂
augment

augment

Kron reduction
of In \ α

Kron reduction
of In \ α

In equivalent words, Q̂red is the augmented Laplacian
associated to Qred, that is, Q̂red takes the form

[
Qred −diag({Ared[i, i]}i∈α)1|α|

−1T|α|diag({Ared[i, i]}i∈α)
∑n
i=1Ared[i, i]

]
. (14)

Properties 2) and 3) of Lemma III.1 intuitively illustrate the
effect of self-loops on the spectrum of Q and its Kron-reduced
matrix. Specifically, the elegant relationship 3) implies that the
Kron reduction can be equivalently applied to the strictly loopy
network G or to the augmented loop-less network Ĝ.

Proof of Lemma III.1. Property 1) follows trivially from
the construction of the augmented Laplacian Q̂. Property 2)
is a direct application of the interlacing theorem for bordered
matrices [44, Theorem 4.3.8], where 0 = λ1(Q̂) < λ1(Q)
since Q̂ is an irreducible loop-less Laplacian and Q is non-
singular. In property 3), the upper left block of the matrix on
the right-hand side of identity (14) follows by writing out the
Schur complement of a matrix partitioned in 3× 3 blocks, as
in the proof of the Quotient Formula [43, Theorem 1.4]. The
remaining blocks follow immediately since Kron reduction of
the loop-less Laplacian Q̂red yields again a loop-less Laplacian
by Lemma II.1. This completes the proof of property 3).

Gaussian elimination of interior voltages from the current-
balance equations I = QV can either be performed via Kron
reduction in a single step, as in equation (2), or in multiple
steps, each interior node ` ∈ {1, . . . , n − |α|} at a time. The
following concept addresses exactly this point.

Definition III.2 (Iterative Kron reduction) Iterative Kron
reduction associates to a symmetric irreducible loopy Lapla-
cian matrix Q ∈ Rn×n and indices {1, . . . , |α|}, a sequence of
matrices Q` ∈ R(n−`)×(n−`), ` ∈ {1, . . . , n−|α|}, defined by

Q` = Q`−1/Q`−1k`k`
, (15)

where Q0 = Q and k` = n+1−`, that is, Q`−1k`k`
is the lowest

diagonal entry of Q`−1.

If the sequence (15) is well-defined, then each Q` is a loopy
Laplacian matrix inducing a graph by Lemma II.1. Before
going further into the details of iterative Kron reduction,
we illustrate the unweighted graph corresponding to Q` (the
sparsity pattern of the corresponding adjacency matrix) in
Figure 7. When no self-loops are present, then the topological
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Fig. 7. Sparsity pattern (or topolgical evolution) corresponding to the iterative
Kron reduction (15) of a graph with 3 boundary nodes �� and 7 interior nodes•◦ . The dashed red lines indicate the newly added edges in a reduction step.

iteration illustrated in Figure 7 is also known under the name
vertex elimination in the sparse matrix community [26].

The following observations can be made from Figure 7: (1)
The connectivity is maintained. (2) At the `th reduction step a
new edge between two nodes appears if and only if both were
connected to k` before the reduction, and (3) all other edges
persist. (4) Likewise, a new self-loop appears at a node i 6= k`
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if and only if i was connected to k` and k` featured a self-loop
before the reduction. Theorem III.4 in the next subsection will
turn these observations into rigorous theorems.

In components, Q` is defined by the celebrated Kron reduc-
tion formula illustrating the step-wise Gaussian elimination:

Q`ij = Q`−1ij −
Q`−1ik`

Q`−1jk`

Q`−1k`k`

, i, j ∈ {1, . . . , n− `} . (16)

For a well-defined sequence {Q`}n−|α|`=1 , we let A` and L` be
the corresponding adjacency and loop-less Laplacian matrix
of the `th reduction step. The following lemma states some
important properties of iterative Kron reduction. In particular,
the iterative Kron reduction is well-posed, it ultimately results
in the Kron-reduced matrix, and the weights of the self-loops
are non-decreasing due to non-decreasing diagonal dominance.

Lemma III.3 (Properties of iterative Kron reduction) Con-
sider the matrix sequence {Q`}n−|α|`=1 defined via iterative Kron
reduction in equation (15). The following statements hold:

1) Well-posedness: Each matrix Q`, ` ∈ {1, . . . , n− |α|},
is well defined, and the classes of loopy, strictly loopy,
and loop-less Laplacian matrices are closed throughout
the iterative Kron reduction.

2) Quotient property: The Kron-reduced matrix Qred =
Q/Q(α, α) can be obtained by iterative reduction of all
interior nodes k` ∈ In \ α, that is, Qred ≡ Qn−|α|.
Equivalently, the following diagram commutes:

Q = Q0

Kron reduction of In \ α

Qred = Qn−|α|

iterative Kron reduction

Q1
Q2 Qn−|α|+1. . .

3) Diagonal dominance: For i ∈ {1, . . . , n − `} the ith
row sum of Q`,

∑n−`
j=1 Q

`
ij = A`ii , is given by

A`ii =





A`−1ii , if A`−1k`k`
= 0 ,

A`−1ii +A`−1ik`

(
1− L`−1

k`k`

L`−1
k`k`

+A`−1
k`k`

)
, if A`−1k`k`

> 0 .

Proof: Statement 2) is simply the Quotient Formula [43,
Theorem 1.4] stating that Schur complements (or Gaussian
elimination for that matter) can be taken iteratively or in a
single step. Furthermore, the Quotient Formula states that all
intermediate Schur complements Q` exist. This fact together
with the closure properties in Lemma II.1 proves statement 1).

For notational simplicity and without loss of generality, we
prove statement 3) for ` = 1 and k1 = n. Note that A0 = A,
L0 = L, Q0 = Q, and consider the ith row sum of Q1 given by
n−1∑

j=1

Q1
ij =

n−1∑

j=1

(
Qij−

QinQjn
Qnn

)
=

n−1∑

j=1

(
Qij−

AinAjn
Lnn +Ann

)

= Aii +Ain −
Ain

Lnn +Ann
Lnn , (17)

where we used equality (16), the identities Q = L +
diag({Aii}ni=1),

∑n−1
j=1 Qij = Aii + Ain, and

∑n−1
j=1 Ajn =

Lnn. Since Ann ≥ 0 (due to property 1) nonnegative row sums
follow also in the general case), we are left with evaluating
identity (17) for the two cases presented in statement 3).

B. Topological, Spectral, and Algebraic Properties

In this subsection we begin our characterization of the prop-
erties of Kron reduction. We start by discussing how the graph
topology of G changes under the Kron reduction process.

Theorem III.4 (Topological Properties of Kron Reduction)
Let G, Gred, and Ĝ be the undirected weighted graphs asso-
ciated to Q, Qred = Q/Q(α, α), and the augmented loopy
Laplacian Q̂, respectively. The following statements hold:

1) Edges: Two nodes i, j ∈ α are connected by an edge
in Gred if and only if there is a path from i to j in G
whose nodes all belong to {i, j} ∪ (In \ α).

2) Self-loops: A node i ∈ α features a self-loop in Gred if
and only if there is a path from i to the grounded node
n+1 in Ĝ whose nodes all belong to {i, n+1}∪(In\α).
Equivalently, a node i ∈ α features a self-loop in Gred
if and only if i features a self-loop in G or there is a
path from i to a loopy interior node j ∈ In \ α whose
nodes all belong to {i, j} ∪ (In \ α).

3) Reduction of connected components: If the interior
nodes β ⊆ In \α form a connected subgraph of G, then
the boundary nodes ᾱ ⊆ α adjacent to β in G form a
clique in Gred. Moreover, if one node in β features a
self-loop in G, then all boundary nodes adjacent to β
in G feature self-loops in Gred.

The topological evolution of the graph corresponding to
the iterative Kron reduction (16) is illustrated in Figure 7.
Statement 1) of Theorem III.4 can be observed in each
reduction step, statement 2) is nicely visible in the third step,
and statement 3) is visible in the final step of the reduction in
Figure 7 as well as in Figures 1 and 4. We remark that Theorem
III.4 is also partially stated in [13], [26], [28], [31]. Given our
prior results on iterative Kron reduction and the augmented
Laplacian matrix, the following proof is rather straightforward.

Proof of Theorem III.4. To prove statement 1), we initially
focus on the reduction of a single interior node k via the one-
step iterative Kron reduction (16). Due to the closure of loopy
Laplacian matrices under iterative Kron reduction, see Lemma
III.3, we restrict the discussion to the non-positive off-diagonal
elements of Q1 , Q/Qkk inducing the mutual edges in the
graph. Any non-zero and thus strictly negative element Qij is
rendered to a strictly negative element Q1

ij since the first term
on the right-hand side of equation (16) is strictly negative and
the second term is non-positive. Therefore, all edges in the
graph induced by Qij persist in the graph induced by Q1

ij .
According to the iterative Kron reduction formula (16), a zero
element Qij = 0 is converted into a strictly negative element
Q1
ij < 0 if and only if both nodes i and j are adjacent to k.

Consequently, a reduction of node k leads to a complete graph
among all nodes that were adjacent to k.

Recall from Lemma III.3 that the one-step reduction of
all interior nodes is equivalent to iterative reduction of each
interior node. Hence, the arguments of the previous paragraph
can be applied iteratively, which proves statement 1).

Statement 2) pertains to the diagonal elements. In the
strictly loopy case, it follows simply by applying the previous
arguments to the augmented Laplacian Q̂ defined in (13).
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Alternatively, an element-wise analysis of A1
ii together with

statement 3) of Lemma III.3 lead to the same conclusion. In
the loop-less case, there will be no self-loops arising in the
Kron iterative reduction by statement 1) of Lemma III.3.

Finally, statement 3) of Theorem III.4 follows by applying
statements 1) and 2) to the connected component β.

By Theorem III.4, the topological connectivity among the
boundary nodes becomes only denser under Kron reduction.
Hence, the algebraic connectivity λ2(L) – a spectral connec-
tivity measure – should increase accordingly. Indeed, for the
graph in Figure 7 (with initially unit weights) we have λ2(L)=
0.30≤ λ2(Lred) = 0.45. Physical intuition suggests that loads
in a circuit weaken the influence of nodes on another. Thus,
self-loops should weaken the reduced algebraic connectivity
λ2(Lred) accordingly. We can confirm these intuitions.

Theorem III.5 (Spectral Properties of Kron Reduction)
The following statements hold for the spectrum of the Kron-
reduced matrix Qred = Q/Q(α, α):

1) Spectral interlacing: For any r ∈ I|α| it holds that

λr(Q) ≤ λr(Qred) ≤ λr(Q[α, α]) ≤ λr+n−|α|(Q) . (18)

In particular, in the loop-less case, it follows for the
algebraic connectivity that 0 < λ2(L) ≤ λ2(Lred).

2) Effect of self-loops: For any r ∈ I|α| it holds that

λr(Lred) + max
i∈α
{Ared[i, i]} ≥ λr(L) + min

i∈In
{Aii} , (19)

λr(Lred)+ min
i∈I|α|

{Ared[i, i]}≤λr+n−|α|(L)+max
i∈In
{Aii}. (20)

To illustrate the effect of self-loops, consider the graph
in Figure 1 with zero-valued self-loops satisfying λ2(L) =
0.39 ≤ λ2(Lred) = 0.69. In the strictly loopy case inequalities
(19)-(20) imply that self-loops weaken the algebraic connec-
tivity tremendously.: the same graph (in Figure 1) with unit-
valued self-loops satisfies λ2(L) = 0.39 ≥ λ2(Lred) = 0.29.

Proof of Theorem III.5. To prove statement 1), recall
the spectral interlacing property [29, Theorem 3.1] for the
spectrum of a Hermitian matrix A ∈ Rn×n and its Schur
complement A/A[β, β] (provided that A[β, β] is nonsingular):

λr(A) ≤ λr(A/A[β, β]) ≤ λr(A(β, β)) ≤ λr+|β|(A) , (21)

where r ∈ In−|β|. Since Q is a loopy Laplacian matrix and
hence positive semidefinite, the interlacing property (21) can
be applied with β = In \ α and results in the bounds (18).

To prove statement 2), recall Weyl’s inequality [44, Theorem
4.3.1] for the spectrum of the sum of two Hermitian matrices
A,B ∈ Rn×n. Namely, for any k ∈ In it holds that

λk(A) + λ1(B) ≤ λk(A+B) ≤ λk(A) + λn(B) . (22)

Consider now the following set of spectral (in)equalities:

λr(Lred) = λr(Qred − diag({Ared[i, i]}i∈α))

≥ λr(Qred)−maxi∈α{Ared[i, i]}
≥ λr(Q)−maxi∈α{Ared[i, i]}
= λr(L+ diag({Aii}ni=1))−maxi∈α{Ared[i, i]}
≥ λr(L) + mini∈In{Aii} −maxi∈α{Ared[i, i]} ,

where we subsequently made use of the identity Lred =
Qred − diag({Ared[i, i]}i∈α), Weyl’s inequality (22), the fact
λ1(−diag({Ared[i, i]}i∈α)) = −maxi∈α{Ared[i, i]}, the spec-
tral interlacing property (21), the identity Q = L +
diag({Aii}ni=1), and again Weyl’s inequality (22) with
λ1(diag({Aii}ni=1)) = mini∈In{Aii}. This proves the spectral
bound (19). The spectral bound (20) follows analogously.

In the following, we investigate some algebraic properties of
Kron reduction. In particular, the following theorem quantifies
the topological properties in Theorem III.4, it quantifies the re-
duced self-loops occurring in Theorem III.5, and it shows that
both edge and self-loop weights among the boundary nodes
are non-decreasing, as seen in Figure 1. Furthermore, the
following result shows the closure of the class of undirected
connected graphs under Kron reduction, and it reveals some
more subtle properties concerning the effect of self-loops.

Theorem III.6 (Algebraic Properties of Kron Reduction)
Consider the Kron-reduced matrix Qred and the accompa-
nying matrices Qac = −Q[α, α)Q(α, α)−1 and Lac =
−L[α, α)L(α, α)−1. The following statements hold:

1) Closure of irreducibility: Qred is irreducible if and only
if Q is irreducible.

2) Monotonic increase of weights: For all i, j ∈ α it
holds that Ared[i, j] ≥ Aij . Equivalently, it holds that
Qred[i, j] ≤ Qij for all i, j ∈ α.

3) Effect of self-loops I: Define ∆i , Aii ≥ 0, for i ∈ In,
so that loopy and loop-less Laplacians Q and L are
related by Q = L + diag({∆i}i∈In). Then the Kron-
reduced matrix takes the form

Qred = L/L(α, α) + diag({∆i}i∈α) + S , (23)

where S=Lac(In−|α|+diag({∆i}i∈In\α)L(α, α)−1)−1

× diag({∆i}i∈In\α)LTac is a symmetric nonnegative
|α| × |α| matrix. Furthermore, the reduced self-loops
satisfy Ared[i, i]=∆i+

∑n−|α|
j=1 Qac[i, j]∆|α|+j for i ∈ α.

4) Effect of self-loops II: If the subgraph among the
interior nodes In \α is connected, each boundary node
α is connected to at least one interior node, and at least
one of the interior nodes has a positively weighted self-
loop, then S and Qac are both positive matrices.

Statements 1) and 2) are not surprising given our knowl-
edge from Theorems III.4 and III.5. Statement 3) reveals an
interesting fact that can be nicely illustrated by considering the
reduction of a single interior node k with a self-loop ∆k ≥ 0.
In this case, the matrix S in identity (23) specializes to the
symmetric and nonnegative matrix S = ck · L(k, k]L[k, k) ∈
R(n−1)×(n−1), where ck = ∆k/(Lkk(Lkk+∆k)) ≥ 0. Hence,
the reduction of node k decreases the mutual coupling {i, j}
in Q/Qkk by the amount ck · Aik Ajk > 0 and increases
each self-loop i in Q/Qkk by the corresponding amount
ck ·Aik Aik > 0. This argument can also be applied iteratively.
In statement 4) the reduction of a connected set of interior
nodes implies that a single positive self-loop in the interior
network will affect the entire reduced network by decreasing
all mutual weights and increasing all self-loops weights.

For the proof of Theorem III.6, we recall the Sherman-
Morrison identities for the inverse of the sum of two matrices.
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Lemma III.7 (Sherman-Morrison Formula, [46]). Let
A,B ∈ Cn×n. If A and A+B are nonsingular, then

(A+B)−1 = A−1 −A−1(I +BA−1)−1BA−1 . (24)

If additionally B = ∆ · uvT for ∆ ∈ R and u, v ∈ Rn, then

(A+ ∆ · uvT )−1 = A−1 −∆ · A−1uvTA−1

1 + ∆ · vTA−1u . (25)

Proof of Theorem III.6. First we prove the sufficiency part
of statement 1). Let Q be irreducible. In the loop-less case,
the spectral inequality (18) in Theorem III.5 implies non-
decreasing algebraic connectivity λ2(Lred) ≥ λ2(L) > 0 and
thus irreducibility of Lred. In the strictly loopy case, note that
the Kron-reduced graph features the same edges (excluding
self-loops) as in the loop-less case, by Theorem III.4. Thus,
connectivity and irreducibility follow, which proves the suffi-
ciency part of statement 1). The necessity part of statement 1)
follows directly from statement 1) of Theorem III.4.

The element-wise bound Qred[i, j] ≤ Qij for i, j ∈ α
follows directly from [48, Lemma 1], where this bound is
stated for the reduction of one node. By Lemma III.3, a one-
step reduction is equivalent to iterative one-dimensional re-
ductions. Hence, [48, Lemma 1] can be applied iteratively and
yields Qred[i, j] ≤ Qij . For the negative off-diagonal elements
i 6= j, this bound is readily converted to Ared[i, j] ≥ Aij .
The same bound follows for the diagonal elements since
diagonal dominance is non-decreasing under Kron reduction,
see Lemma III.3. This completes the proof of statement 2).

Identity (23) in statement 3) follows by expanding the Kron-
reduced matrix Qred and by applying the matrix identity (24)
with A = L(α, α) and B = diag({∆i}i∈In\α) as

Qred = Q/Q(α, α) = diag({∆i}i∈α)+L[α, α]

− L[α, α)
(
L(α, α) + diag({∆i}i∈In\α)

)−1
L(α, α]

= L/L(α, α) + diag({∆i}i∈α) + S ,

where S is defined statement 3). This proves identity (23).
By Lemma III.3, the Schur complement Q/Q(α, α) is

equivalent to iterative one-dimensional reduction of all interior
nodes In \ α, and the matrix Q` = Q`−1/Q`−1k`k`

at the `th
reduction step is again a loopy Laplacian. If we abbreviate
the self-loops at the `th reduction step by ∆`

i , A
`
ii, then Q`

can be reformulated according to identity (23) as

Q`= Q`−1/Q`−1k`k`
= L`−1/L`−1k`k`

+diag({∆`
i}n−`i=1 )+S`, (26)

where S` is the symmetric and nonnegative matrix S` = c` ·
L`−1(k`, k`]L

`−1[k`, k`) = c`·A`−1(k`, k`]A
`−1[k`, k`) is and

c` = ∆`
k/(Lk`k`(Lk`k` + ∆`

k`
)) ≥ 0. Iterative application of

this argument implies that S is symmetric and nonnegative.
To obtain an explicit expression for the reduced self-loops,

re-consider the identity (5) defining the self-loops of L. In the
general loopy case identity (5) reads as Q1n = ∆. Block-
Gaussian elimination of the interior nodes yields Qred1|α| =
∆[α] + Qac∆(α). Hence, the ith row sum of Qred satisfies
Ared[i, i] =

∑|α|
j=1Qred[i, j] = ∆i +

∑n−|α|
j=1 Qac[i, j]∆|α|+j .

Under the assumptions of statement 4), the positivity of
Qac follows from Lemma II.1. To prove positivity of S, note
that iterative reduction of all but one interior node yields

one remaining interior node kn−|α|+1 , h. According to
equality (26), reduction of this last loopy node gives the
matrix Sh = ch · Ah(h, h]Ah[h, h). Under the assumptions
of statement 4), Theorem III.4 implies that h features a self-
loop and is connected to all boundary nodes. It follows that
ch > 0 and Ahih > 0 for all i ∈ I|α|+1. Therefore, Sh is a
positive matrix, and the same can be concluded for S.

C. Kron Reduction and Effective Resistance

The physical intuition behind the Kron reduction and the
effective resistance in Remark I.1 suggests that the trans-
fer conductances Qred[i, j] are related to the corresponding
effective conductances 1/Rij . The following theorem gives
the exact relation between the Kron-reduced matrix Qred, the
effective resistance matrix R, and the augmented Laplacian Q̂.

Theorem III.8 (Resistive Properties of Kron Reduction)
Consider the Kron-reduced matrix Qred = Q/Q(α, α), the
effective resistance matrix R defined in (3), and the augmented
Laplacian Q̂ defined in (13). The following statements hold:

1) Invariance under Kron reduction: The effective re-
sistance Rij between any two boundary nodes is equal
when computed from Q or Qred, that is, for any i, j ∈ α

Rij = (ei−ej)TQ†(ei−ej) ≡ (ei−ej)TQ†red(ei−ej). (27)

2) Invariance under augmentation: If Q is a strictly loopy
Laplacian, then the effective resistance Rij between any
two nodes i, j ∈ In is equal when computed from Q or
Q̂, that is, for any i, j ∈ In

Rij = (ei−ej)TQ−1(ei−ej) ≡ (ei−ej)T Q̂†(ei−ej). (28)

In other words, statements 1) and 2) imply that, if Q is a
strictly loopy Laplacian, then the following diagram commutes:

Q

Qred Q̂red

Q̂
augment

augment

Kron reduction
of In \ α

Kron reduction
of In \ α

Rij

i, j ∈ α

3) Effect of self-loops: If Q is a strictly loopy Laplacian
and R̄ij , (ei − ej)

TL†(ei − ej), i, j ∈ In, is the
effective resistance computed from the corresponding
loop-less Laplacian L, then Rij ≤ R̄ij for all i, j ∈ In.

Theorem III.8 is illustrated in Figure 8. Identity (27) states
that the effective resistances between the boundary nodes are
invariant under Kron reduction of the interior nodes. Spoken
in terms of circuit theory, the effective resistance between the
terminals α can be obtained from either the impedance matrix
Q† or the transfer impedance matrix Q†red. Identity (28) gives a
resistive interpretation of the self-loops: the effective resistance
among the nodes in a strictly loopy graph G is equivalent to
the effective resistance among the corresponding nodes in the
augmented loop-less graph Ĝ. According to statement 3), the
self-loops do not increase the effective resistance, which is in
accordance with the physical interpretation in Remark I.1.
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Fig. 8. Illustration of Theorem III.8: According to statement 1), the effective
resistance R13 between the boundary nodes �� is equal when computed in the
graph G1 or in the Kron-reduced graph G1,red. According to statement 2), the
effective resistance R13 is equal when computed in the strictly loopy graph
G2 (respectively G3) or in the augmented loop-less graph Ĝ2 (respectively
Ĝ3) with grounded node �♦. According to statement 3), the effective resistance
R13 in the strictly loopy graphs G2 and G3 is not larger than in the loop-less
graph G1 (with equality for {G1, G2} and strict inequality for {G1, G3}).

For the proof of Theorem III.8 we establish some identities
relating R and L via regularizations of the pseudo inverse.

Lemma III.9 (Laplacian and Effective Resistance Identi-
ties) Let L ∈ Rn×n be a symmetric irreducible loop-less
Laplacian matrix. Then for any δ 6= 0 it holds that

(L+ (δ/n)1n×n)
−1

= L† + (1/δn)1n×n . (29)

Consider for i, j ∈ In the effective resistance defined by Rij =
(ei − ej)TL†(ei − ej). For δ 6= 0 it holds that

Rij ≡ (ei−ej)T (L+(δ/n)1n×n)−1(ei−ej), i, j ∈ In. (30)

If n ≥ 3, then, by taking node n as reference, it holds that

Rij ≡ (ei − ej)TL(n, n)−1(ei − ej) , i, j ∈ In−1 . (31)

Proof: Since 1n×n1n×n = n · 1n×n and LL† = L†L =
In − (1/n) · 1n×n (by definition of L† via the singular value
decomposition, see also [39, Lemma 3]), identity (29) can be
verified since (L+ (δ/n)1n×n) ·

(
L† + (1/δn)1n×n

)
= In.

The identity (30) follows then by multiplying equation (29)
from the left by (ei − ej)T and from the right by (ei − ej).

To prove identity (31), let L̄ , L(n, n). It follows from [42,
Appendix B, eq. (17)] that L̄−1ij =L†ij−L†in−L†jn−L†nn. The
identity (31) can then be verified by direct computation.

Proof of Theorem III.8. We begin by proving statement
1) in the strictly loopy case when Q is nonsingular (due
to irreducible diagonal dominance [44, Corollary 6.2.27]).
Note that we are interested in the effective resistances only
among the nodes α, that is, the |α| × |α| block of Q−1.
The celebrated Schur complement formula [43, Theorem 1.2]
gives the |α| × |α| block of Q−1 as (Q/Q(α, α))−1 = Q−1red .
Consequently, for i, j ∈ α the defining equation (3) for
the effective resistance Rij is simply rendered to Rij =
(ei−ej)TQ−1red (ei−ej), which proves the claimed identity (27).

In the loop-less case when Q ≡ L is singular, a similar line
of arguments holds on the image of L. Let δ > 0 and consider
the modified and non-singular Laplacian L̃ , L+(δ/n)1n×n.
Due to identity (29) we have that L̃−1 = L† + (1/δn)1n×n.
We can then rewrite identity (30) in expanded form as

Rij = (ei − ej)T (L† + (1/δn)1n×n)(ei − ej)
= (ei − ej)T L̃−1(ei − ej) .

(32)

As before, the |α| × |α| block of L̃−1 is (L̃/L̃(α, α))−1.
Consequently, for i, j ∈ α the identity (32) is rendered to

Rij = (ei − ej)T (L̃/L̃(α, α))−1(ei − ej) . (33)

Since (ei−ej)T1n×n(ei−ej) = 0, the right-hand side of (32),
or equivalently (33), is independent of δ since the matrices are
evaluated on the subspace orthogonal to 1n, the nullspace of
L̃ as δ ↓ 0. Thus, on the image of L the limit of the right-hand
side of (33) exists as δ ↓ 0. By definition, L† acts as regular
inverse on the image of L, and equation (33) is rendered to

Rij=(ei−ej)T (L/L(α, α))†(ei−ej)=(ei−ej)TL†red(ei−ej),
which proves the claimed identity (27) in the loop-less case.

To prove statement 2), note that the strictly loopy Laplacian
Q is invertible. Hence, the defining equation (3) for the
resistance features a regular inverse. The matrix Q can also be
seen as the principal n×n block of the augmented Laplacian
Q̂, that is, Q = Q̂(n + 1, n + 1). The identity (28) follows
then directly from identity (31) (with n replaced by n+ 1).

To prove statement 3), we appeal to Rayleigh’s celebrated
monotonicity law and short/cut principle [41]. Since the Lapla-
cian L induces the same graph as Q̂ with node n+1 removed,
the monotonicity law states that the effective resistance R̄ij
in the graph induced by L is not smaller than the effective
resistance Rij in the graph induced by Q̂. The latter again
equals the effective resistance in the graph induced by Q
due to identity (28). Equivalently, for i, j ∈ In it holds that
R̄ij = (ei − ej)

TL†(ei − ej) ≥ (ei − ej)
T Q̂†(ei − ej) =

(ei− ej)TQ−1(ei− ej) = Rij , which proves statement 3).
Theorem III.8 allows to compute the effective resistance

matrix R from the transfer impedance matrix Q†red. We are
now interested in a converse result to construct Q†red from
R. Iterative methods constructing Q†red from R can be found
in [23]. However, it is also possible to recover the (pseudo)
inverses of the loopy Laplacian Q, the augmented Laplacian Q̂,
or the corresponding Kron-reduced Laplacians directly fromR.

Lemma III.10 (Impedance and Effective Resistance Iden-
tities) Let Q ∈ Rn×n be a symmetric irreducible loopy
Laplacian matrix. Consider the following three cases:

1) Loop-less case: Let R ∈ Rn×n be the effective resis-
tance matrix. Then for i, j ∈ In it holds that

Q†ij=−1

2

(
Rij −

1

n

n∑

k=1

(Rik +Rjk) +
1

n2

n∑

k,`=1

Rk`

)
. (34)

2) Strictly loopy case: Consider the grounded node n+1,
the corresponding augmented Laplacian matrix Q̂ ∈
R(n+1)×(n+1) defined in (13), and the corresponding
matrix of effective resistances R ∈ R(n+1)×(n+1) de-
fined in (3). Then the following two identities hold:

Q̂†ij =− 1

2

(
Rij −

1

n+ 1

n+1∑

k=1

(Rik +Rjk)

+
1

(n+ 1)2

n+1∑

k,`=1

Rk`

)
, i, j ∈ In+1 , (35)

Q−1ij =
1

2

(
Ri,n+1 +Rj,n+1 −Rij

)
, i, j ∈ In . (36)

3) Kron reduced case: The identities (34), (35), and (36)
also hold when Q†, Q̂†, and Q−1 on the left-hand sides
are replaced by Q†red, Q̂†red, and Q−1red , respectively, and
n on the right-hand sides is replaced by |α|.
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Proof: Identity (34) is stated in [40, Theorem 4.8] for the
weighted case and in [49, Theorem 7] for the unweighted case.
According to statement 2) of Theorem III.8, the resistance
is invariant under augmentation. Hence, identity (34) applied
to the augmented Laplacian Q̂ yields identity (35). Identity
(36) follows directly from [40, Theorem 4.9]. According to
Theorem III.8, the effective resistance is invariant under Kron
reduction. Thus, the effective resistance corresponding to Qred
is simply R[α, α]. Hence, the formulas (34), (35), and (36)
can be applied to the Kron-reduced matrix as stated in 3).

By Theorem III.8 and Lemma III.10, the effective resistance
matrix R in the original non-reduced network can be computed
from the (pseudo) inverse of the Kron-reduced Laplacian Qred,
and vice versa. In some applications, it is desirable to know
an explicit algebraic relationship between R and Qred without
the (pseudo) inverse. However, such an explicit relationship
between can be found only if closed-form solutions of Q†red,
Q−1red , or Q̂†red are known. These are generally not available.
Generally, it is also infeasible to relate bounds on R to
bounds on Qred since element-wise bounding of inverses of
interval matrices is known to be NP-hard [50]. Fortunately,
closed forms of Q†red, Q−1red or Q̂†red can be derived in an ideal
electric network, with uniform effective resistances among the
boundary nodes as well as between the boundary nodes and
the ground. In fact, this ideal case is equivalent to uniform
transfer conductances (weights) in the Kron-reduced network.

Theorem III.11 (Equivalence of Uniformity in Effective
Resistance and Kron Reduction) Consider the Kron-reduced
Laplacian Qred = Q/Q(α, α) and the corresponding adja-
cency matrix Ared. Consider the following two cases:

Loop-less case: Let R ∈ Rn×n be the matrix of effective
resistances. Then the following two statements are equivalent:

1) The effective resistances among the boundary nodes α
are uniform, that is, there is r > 0 such that Rij = r
for all distinct i, j ∈ α; and

2) The weighting of the edges in the Kron-reduced network
is uniform, i.e., there is a > 0 such that Ared[i, j] = a >
0 for all distinct i, j ∈ α.

If both statements 1) and 2) are true, then it holds that r= 2
|α|a .

Strictly loopy case: Consider additionally the grounded
node n+1 and the augmented Laplacian matrices Q̂ and Q̂red
defined in (13) and (14), respectively. Let R ∈ R(n+1)×(n+1)

be the matrix of effective resistances in the augmented net-
work. Then the following two statements are equivalent:

3) The effective resistances both among the boundary nodes
α and between all boundary nodes α and the grounded
node n + 1 are uniform, that is, there is r > 0 and
g > 0 such that Rij = r for all distinct i, j ∈ α and
Ri,n+1 = g for all i ∈ α; and

4) The weighting of the edges and the self-loops in the
Kron-reduced network is uniform, that is, there are a >
0 and b > 0 such that Ared[i, j] = a > 0 and Ared[i, i] =
b > 0 for all distinct i, j ∈ α.

If both statements 3) and 4) are true, then it holds that r =
2

|α|a+b and g = a+b
b(a|α|+b) .

Remark III.12 (Engineered networks and uniform graph
topologies) The uniformity assumption in statements 1) and
3) corresponds to an ideal network, where all boundary nodes
are electrically uniformly distributed with respect to each other
and with respect to the shunt loads. In the applications of
electrical impedance tomography and smart grid monitoring,
this assumption can be met by choosing the boundary nodes
corresponding to sensor locations. In the transient stability
problem, the generators corresponding to boundary nodes are
distributed over the power grid ideally in such a way that the
loads can be effectively and uniformly sustained . Hence, the
uniformity assumptions are ideally met in man-made networks.

Independently of engineered networks, uniform resistances
occur for various graph topologies, even when weights as
additional degrees of freedom are neglected. In the trivial case,
|α| = 2, Theorem III.11 reduces to [10, Corollary 4.41] and
the resistance among the boundary nodes is clearly uniform.
Second, if the boundary nodes are 1-connected leaves of a
highly symmetric graph among the interior nodes, such as a
star, a complete graph, or a combination of these two, then the
resistance among the boundary nodes is uniform. Third, the
effective resistance in large random geometric graphs, small
word networks, and lattices and their fuzzes becomes uniform
among sufficiently distant nodes, see [16] for further details.�

To prove Theorem III.11, we need the following identities.

Lemma III.13 (Inverses of Uniform Laplacian Matrices)
Let a > 0 and b ≥ 0 and consider the loopy Laplacian matrix
Q , a

(
nIn−1n×n

)
+bIn corresponding to a complete graph

with n nodes, uniform positive edge weights a > 0 between
any two distinct nodes, and nonnegative and uniform self-loops
b ≥ 0 attached to every node. The following statements hold:

1) For zero self-loops b = 0, Q† is the loop-less Laplacian

Q† =
1

n2a2
·Q =

1

n2a
·
(
nIn − 1n×n) .

2) For positive self-loops b > 0, Q−1 is the positive matrix

Q−1 = − a

b(an+ b)

(
nIn − 1n×n

)
+

1

b
In .

3) Consider the augmented Laplacian Q̂ given by

Q̂ =

[
a
(
nIn − 1n

)
+ bIn −b1n

−b1Tn n · b

]
.

Then Q̂† is given by the (augmented) loop-less Laplacian

Q̂† =

[
c
(
nIn − 1n

)
+ dIn −d1n

−d1Tn n · d

]
,

where d = 1
b(n+1)2 and c = d · (n+2)b−a

an+b .

Proof: The identities can be verified by direct computa-
tion. Since Q and Q† (respectively Q̂ and Q̂†) satisfy the Pen-
rose equations [44], the loop-less Laplacian Q† (respectively
Q̂†) is the unique pseudo inverse, which proves statements 1)
and 3). Statement 2) follows since QQ−1 =Q−1Q=In.

We now have all three ingredients to prove Theorem III.11:
the invariance formulas (27)-(28) for the effective resistance
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stated in Theorem III.8, the relations between effective resis-
tance and the Kron-reduced impedance matrix in statement 3)
of Lemma III.10, and the Laplacian identities in Lemma III.13.
Given these formulas, the proof of Theorem III.14 reduces to
mere computation. For the sake of brevity, it will be omitted.

D. Sensitivity of Kron Reduction to Perturbations

In the final subsection of our analysis of Kron reduction
we discuss the sensitivity of the Kron-reduced matrix Qred to
perturbations in the original matrix Q. A number of interesting
perturbations can be modeled by adding symmetric matrix
W ∈ Rn×n and considering the perturbed loopy Laplacian
Q̃ = Q+W , where Q is the nominal loopy Laplacian matrix.

The case when W is diagonal is fully discussed in Theorem
III.6. A perturbation of the form when W [α, α] is a non-zero
matrix and all other entries of W are zero can model the
emergence, loss, or change of a self-loop or an edge among
boundary nodes. Such a perturbation acts additively on Qred as

Q̃red , Q̃/Q̃(α, α) = Qred +W [α, α] . (37)

If the perturbation affects the interior nodes, then W (α, α) is a
non-zero matrix. Inspired by [12], [13], we put more structure
on the perturbation matrix W and consider symmetric rank
one perturbations of the form W = ∆ · (ei − ej)(ei − ej)T ,
where ∆ ∈ R. Such a perturbation changes the weight of the
edge {i, j} from Aij to Aij + ∆ and also can model the loss
or emergence of the edge {i, j}. Since a perturbation among
the boundary nodes is fully captured by (37), we consider now
perturbations of the edge between the ith and jth interior node.

Theorem III.14 (Perturbation of the Interior Network)
Consider the Kron-reduced matrix Qred = Q/Q(α, α), the ac-
companying matrix Qac =−Q[α, α)Q(α, α)−1, and a symmet-
ric rank one perturbation. W , ∆ · (ei+|α|− ej+|α|)(ei+|α|−
ej+|α|)T for distinct i, j ∈ In−|α| and such that the perturbed
matrix Q̃ , Q+W remains an irreducible loopy Laplacian.
The following statements hold:

1) Algebraic perturbation: Qred undergoes the rank one
perturbation Q̃/Q̃(α, α) = Q̃red given by

Q̃red , Qred +
Qac(ei − ej)∆(ei − ej)TQTac

1 + ∆ ·Rint[i, j]
, (38)

where Rint[i, j] , (ei − ej)TQ(α, α)−1(ei − ej) ≥ 0.
2) Resistive perturbation: Let R and R̃ be the matrices

of effective resistances corresponding to Q and Q̃,
respectively. For any k, ` ∈ In it holds that

R̃k`=Rk`−
∆ · ‖(ek − e`)TQ†(ei+|α| − ej+|α|)‖22

1 + ∆ ·Ri+|α|,|j+α|
. (39)

If ∆ > 0 (respectively ∆ < 0) then it holds that R̃k` ≤
Rk` (respectively R̃k` ≥ Rk`).

The term Rint[i, j] in (38) is the effective resistance between
the perturbed nodes in the interior network. Likewise, the
physical interpretation of the term Qac(ei− ej)∆(ei− ej)T =
QacW (α, α) is well-known in network theory. The perturba-
tion W has the same effect on the equations I = (Q+W )V

as the current injection Ĩ = −WV , that is, the perturbation of
the interior edge {i, j} by a value ∆ is equivalent to injecting
the current ∆ · (Vi+|α|−Vj+|α|) into the jth interior node and
extracting it from the ith interior node. In the reduced network
equations (2) the current injection Ĩ translates to the current
injection QacĨ(α) = −Qac(ei − ej)∆(ei − ej)TV (α) into the
boundary nodes. Finally, the additive term in identity (39)
resembles the sensitivity factor in network theory [12], [20].
From Remark I.1, notice that (ek−e`)TQ†(ei+|α|−ej+|α|) is
the potential drop between nodes k and ` if a unit current is
injected in the ith interior node and extracted at the jth interior
node. As before, the current flowing along the perturbed edge
is redistributed in the network according to identity (39).

Various spectral bounds can be derived from identity (38).
For instance, for ∆ < 0, Weyl’s inequalities (22) give

λr(Qred) ≥ λr(Q̃red) ≥ λr(Qred) +
∆ · ‖Qac(ei − ej)‖22

1 + ∆ ·Rint[i, j]
,

where r ∈ I|α|. These bounds can be further related to Q and
Q̃ via the interlacing inequalities (18) or [44, Theorem 4.3.4].

Proof of Theorem III.14. Since the perturbed matrix Q̃ =
Q + W is a symmetric and irreducible loopy Laplacian, the
reduced matrix Q̃red = Q̃/Q̃(α, α) exists by Lemma II.1. By
the matrix identity (25), the Schur complement Q̃red given by

Q̃red =
(
Q+W

)
/
(
Q(α, α) + ∆(ei − ej)T (ei − ej)

)

further simplifies to identity (38) in statement 1). For the proof
of statement 2), we initially consider the strictly loopy case.
Here, Q̃−1 = (Q+W )−1 can be obtained from identity (25) as

Q̃−1 =Q−1−∆ ·Q−1(ei+|α| − ej+|α|)T(ei+|α| − ej+|α|)Q−1
1 + ∆(ei+|α| − ej+|α|)TQ−1(ei+|α| − ej+|α|)

.

A multiplication of Q̃−1 from the left by (ek−e`)T and from
the right by (ek−e`) yields then identity (39). In the loop-less
case when Q is singular, the same arguments can be applied
on the image of Q by considering the non-singular matrix
Q + (δ/n)1n×n for δ 6= 0 and identity (30). This results in
the more general identity (39). The second part of statement
2) follows again from Rayleigh’s monotonicity law [41].

IV. CONCLUSIONS

We studied the Kron reduction process from the viewpoint
of algebraic graph theory. Our analysis is motivated by various
applications spanning from classic circuit theory over electrical
impedance tomography to power network applications and
Markov chains. Prompted by these applications, we presented
a detailed and comprehensive graph-theoretic analysis of Kron
reduction. In particular, we carried out a thorough topological,
algebraic, spectral, resistive, and sensitivity analysis of the
Kron-reduced matrix. This analysis led to novel results in alge-
braic graph theory and new physical insights in the application
domains of Kron reduction. We believe our results can be
directly employed in the application areas of Kron reduction.

Of course, the results contained in this paper can and need
to be further refined to meet the specific problems in each
particular application area. Our analysis also demands answers
to further general questions, such as the extension of this work
to directed graphs or complex-valued weights occurring in all
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disciplines of circuit theory [8], [11], [12], [14]. Finally, it
would be of interest to analyze the effects of Kron reduction on
centrality measures, clustering coefficients, and more general
graph-theoretic metrics than the effective resistance.
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