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Abstract

Identifying attacks is key to ensure security in cyber-physical systems. In this note we remark upon the computational complexity
of the attack identification problem by showing how conventional approximation techniques may fail to identify attacks. Then,
we propose decentralized and distributed monitors for attack identification with performance guarantees and low computational
complexity. The proposed monitors rely on the geometric framework proposed in [1], yet require only local knowledge of the system
dynamics and parameters. We exploit a divide-and-conquer approach, where first the system is partitioned into disjoint regions,
then corrupted regions are identified via distributed computation, and finally corrupted components are isolated within regions.
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1. Introduction

Cyber-physical systems are the core of many technological
domains, including health care and biomedicine, telecommu-
nications, and energy management. Due to their importance,
cyber-physical systems are not only prone to sensor and actu-
ator failures as legacy control systems, but also to intentional
attacks against control and communications modules. Attacks
can have major consequences, ranging from significant eco-
nomic losses to instabilities and services disruption [2, 3, 4].

Detection and identification of attacks is key to design ef-
fective security mechanisms. Fundamental limitations in the
detectability and identifiability of attacks have recently been
characterized for different system dynamics, attack models, and
monitoring systems. For instance, in [1, 5, 6, 7, 8] it is shown
how attackers with access to sufficiently many system resources
can always avoid detection and identification, as well as at-
tackers with more limited resources and full knowledge of the
system dynamics and state. Conversely, if the monitoring re-
sources and information outbalance the attack capabilities, the
attack locations and strategy can be promptly reconstructed.
Moreover, while detecting attacks is computationally easy in
both centralized and distributed settings [1, 9], identifying the
attack location and strategy is computationally hard [1].

Despite its importance, few solution have been proposed for
the identification of attacks. A complete, yet computationally
intensive, solution to the attack identification problem is de-
scribed in [1] by using unknown-input observers and geometric
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control techniques [10]. Convex relaxation techniques are em-
ployed in [11] to derive an efficient (yet incomplete and with-
out guarantees) identification algorithm for the case of attacks
against the system measurements. Finally, [12] shows that cer-
tain instances of the identification problem can in fact be solved
efficiently. In this work we derive decentralized and distributed
identification monitors with performance guarantees.

The main contributions of this note are as follows. First, we
remark on the complexity of the attack identification problem
and show how common convex relaxation techniques may fail
to identify attacks (Section 2). Our examples highlight that,
in large-scale systems, different output and state attacks may
achieve the same cost in relaxed optimization problems, thereby
impeding their correct identification. The inherent computa-
tional complexity and shortcoming of relaxation methods mo-
tivate our second contribution: we present a fully decentralized
and low-complexity identification method and characterize its
performance (Section 3.2). Our decentralized method relies
on geographically distributed control centers, which have local
knowledge of the system parameters. We show that the perfor-
mance of our decentralized identification method depends only
on the system structure and parameters, and not on the strategy
of attack. Hence, our decentralized method also provides guide-
lines for the design of secure cyber-physical systems. Third, we
propose a distributed identification method based on the divide-
and-conquer principle (Section 3.3). Analogously to our decen-
tralized method, our distributed algorithm requires only local
model information and communication, and it achieves guaran-
teed identification of a class of attacks. Our distributed method
overcomes the performance of its decentralized counterpart, at
the expense of a more involved algorithmic structure. Finally,
as a minor contribution, we present a state estimation algorithm
for descriptor systems with unknown inputs (Appendix A).
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2. The centralized attack identification problem

In this section we present our setup for the attack identifi-
cation problem, and we recall some results and fundamental
limitations of centralized identification methods.

2.1. Centralized setup and notation

We represent a cyber-physical system under attack with the
continuous-time, linear, and time-invariant descriptor system 1

Eẋ(t) = Ax(t) + Bu(t),
y(t) = Cx(t) + Du(t),

(1)

where x : R≥0 → Rn, y : R≥0 → Rp, E ∈ Rn×n, A ∈ Rn×n,
B ∈ Rn×m, C ∈ Rp×n, and D ∈ Rp×m. The matrix E is possibly
singular, and the inputs Bu : R≥0 → Rn and Du : R≥0 → Rp

are unknown signals describing disturbances affecting the plant.
Besides reflecting the genuine failure of systems components,
these unknown inputs model the effect of attacks against cyber
and physical components. We assume that each state and output
variable can be independently compromised. Accordingly, we
partition the input matrices and attack signals as B = [I 0], D =

[0 I], and u = [uT
x , uT

y ]T, where ux and uy are referred to as state
attack and output attack, respectively. As shown in [1], many
interesting cyber-physical systems and attacks can be modeled
by the descriptor system (1) subject to unknown inputs.

The attack signal depends upon the attack strategy. In partic-
ular, if the attack set (or attacked variables) is K ⊆ {1, . . . , n+p},
with |K| = k, then only the entries of u indexed by K are nonzero
over time, that is, for each i ∈ K, there exists a time t such that
ui(t) , 0, and u j(t) = 0 for all j < K and at all times. To under-
line this sparsity relation, we sometimes use uK to denote the
attack signal, that is the subvector of u indexed by K. Analo-
gously, the pair (BK ,DK), where BK and DK are the submatrices
of B and D with columns in K, are referred to as the attack sig-
nature. Hence, Bu = BKuK , and Du = DKuK .

We make the following assumptions on system (1):

(A1) the pair (E, A) is regular, that is, the determinant |sE − A|
is nonzero for almost all values s ∈ C;

(A2) the initial condition x(0) ∈ Rn is consistent, that is,
(Ax(0) + Bu(0)) ∈ Im(E); and

(A3) the input u is smooth.

Assumption (A1) ensures the existence of a unique solution x(t)
to (1). Assumptions (A2) and (A3) guarantee smoothness of the
state trajectory and the measurements; see [13, Lemma 2.5]. If
assumptions (A2) and (A3) are dropped, then there are incon-
sistent initial conditions and impulsive inputs by which a pow-
erful attacker can avoid detection [1]. Finally, we assume that
the cardinality k of the attack set, or an upper bound, is known.

1The results stated in this paper for continuous-time descriptor systems hold
also for discrete-time descriptor systems and nonsingular systems. Moreover,
due to linearity of (1), known inputs do not affect our results and are not in-
cluded in the model.

2.2. Identifiability of cyber-physical attacks
Informally, an attack K is unidentifiable if it cannot be distin-

guished (from knowledge of the measurements and the system
parameters) from another attack R corrupting equally many or
fewer variables. Here, we confine ourselves to comparing the
attack set K with other attack sets R with |R| ≤ |K| since suffi-
ciently large attack sets can always be designed to be unidenti-
fiable, for instance, by corrupting sufficiently many sensors.

More formally, let y(x0, u, t) be the output sequence gener-
ated from the initial state x0 under the attack signal u. We adopt
the following definition of identifiability of attacks [1]:

Definition 1. (Identifiability of cyber-physical attacks) For
the descriptor system (1) with initial state x0, the attack
(BKuK ,DKuK) is unidentifiable if and only if y(x0, uK , t) =

y(x1, uR, t) for some initial state x1 ∈ Rn, for some attack
(BRuR,DRuR) with |R| ≤ |K| and R , K, and for all t ∈ R≥0.

In [1, Theorem 3.4], we provided the following equivalent
system-theoretic characterization of identifiability:

Theorem 2.1. (Algebraic test for identifiability of cyber-
physical attacks) For the descriptor system (1) and an attack
set K, the following statements are equivalent:

(i) the attack set K is unidentifiable; and
(ii) there is an attack set R, with |R| ≤ |K| and R , K, s ∈ C,

gK ∈ C|K|, gR ∈ C|R|, and x ∈ Cn, with x , 0, such that

(sE − A)x −
[
BK BR

] [gK

gR

]
= 0,

Cx +
[
DK DR

] [gK

gR

]
= 0.

(2)

Condition (2) shows that existence of unidentifiable attack
sets of cardinality k is equivalent to the existence of invariant
zeros for the system (E, A, BK̄ ,C,DK̄) with |K̄| ≤ 2k. We refer
to [10, 14] for a review invariant zeros of descriptor systems.

2.3. Centralized identification: complexity and pitfalls
The attack identification problem is concerned with identify-

ing the attack set K from measurements y and knowledge of the
system parameters (E, A,C). The identification problem can be
reformulated as the following cardinality minimization prob-
lem [1, Lemma 4.4]: given a descriptor system with matrices
E, A ∈ Rn×n, measurement matrix C ∈ Rp×n, and measurement
signal y : R≥0 → Rp, find the minimum cardinality input sig-
nals vx : R≥0 → Rn and vy : R≥0 → Rp and an initial condition
ξ0 ∈ Rn that explain the measurements y, that is,

min
vx, vy, ξ0

‖vx‖L0 + ‖vy‖L0

subject to Eξ̇(t) = Aξ(t) + vx(t),
y(t) = Cξ(t) + vy(t),
ξ(0) = ξ0 ∈ Rn .

(3)

Here we use the shorthands supp(x)= {i ∈ {1, . . . , n} : xi,0} for
the number of non-zero entries of a vector x ∈ Rn and ‖v‖L0 =

| ∪t∈R≥0 supp(v(t))| for a vector-valued signal v : R≥0 → Rn.
The optimization problem (3) is generally combinatorial and

belongs to the class of NP-hard problems [1, Corollary 4.5].
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Figure 1: A regular consensus system (A, B,C), where the state variable 3 is
corrupted by the attacker, and the state variables 2, 4, and 7 are directly mea-
sured. Due to the sparsity pattern of (A, B,C) any attack of cardinality one is
generically detectable and identifiable; see [1, 16] for further details.

Lemma 2.2. (Complexity of the attack identification problem)
Consider the descriptor system (1) with identifiable attack set
K. The attack identification problem given the system matrices
E, A, C, and the measurements y is NP-hard.

As a consequence of this inherent complexity, the identifi-
cation of the attack set K requires a combinatorial procedure,
since, a priori, K is one of the

(
n+p
|K|

)
possible attack sets. In

[1, Section 4.D], the authors provided a solution based on the
implementation of

(
n+p
|K|

)
residual filters [10] each determining

whether a predefined set coincides with the attack set. The so-
lution in [1] is complete, but does not scale to large attack sets.

In the case of discrete-time and regular systems subject to
output attacks, the attack identification problem can be solved
efficiently if the monitoring system has access to a substantial
amount of resources. The particular assumption is that the pair
(A,C) remains observable after removing any set of 2 |K| rows
of C (that is, any set of 2 |K| sensors) [12, Propositions 3.2
and 3.3]. If this strong observability assumption is not met,
or in case of state attacks on (regular or singular) systems, the
problem remains computationally hard. In this case, a natural
approach is to apply convex relaxation approaches to the op-
timization problem (3). Cardinality minimization problems of
the form minv∈Rn supp(y−Av) can often be efficiently solved via
the the `1 regularization minv∈Rn ‖y−Av‖`1 [15]. This procedure
can be adapted to problem (3) after converting it into an al-
gebraic problem, for instance by taking subsequent derivatives
of the output y, or by discretizing the continuous-time system
(1) and recording several measurements. As shown in [11], for
discrete-time systems the `1 regularization performs reasonably
well in the presence of output attacks. However, in the pres-
ence of state attacks such an `1 relaxation may perform poorly.
In the following, we develop an intuition explaining why this
approach may fail, particularly in large-scale systems.

Example 1. (Ineffectiveness of regularization methods for
sufficiently distant attacks) Consider a consensus system with
underlying network graph (reflecting the sparsity pattern of A)
illustrated in Fig. 1. In our model (1), the system matrices are
taken as E = I and, for 0 < ε � 1, A is the negative Laplacian

A =


−0.8 0.1 0 0.2 0.5 0 0 0
0.1 −0.4−ε ε 0 0 0.3 0 0
0 3ε −9ε 0 0 0 6ε 0

0.1 0 ε −0.5−ε 0 0 0 0.4
0.1 0 0 0 −0.6 0.2 0 0.3
0 0.4 0 0 0.1 −0.6 0.1 0
0 0 3ε 0 0 0.4 −0.6−3ε 0.2
0 0 0 0.3 0.2 0 0.2 −0.7

 .

Time

uR,3

uR,2

uR,1

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.05

0.1

0.15

0.2

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.05

0.1

0.15

0.2

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.1

0.2

0.3

0.4

Student Version of MATLAB

Figure 2: In Fig. 2 we plot the attack mode uR for the attack set R = {2, 4, 7}
to generate the same output as the attack set K = {3} with attack mode uK = 1.
Although |R| > |K|, we have that |uR,i(t)| < |uK (t)|/3 for i ∈ {1, 2, 3}.

Let the measurement matrix C and the attack signature BK be

C =

[
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0

]
, BT

K = [ 0 0 1 0 0 0 0 0 ] ,

and define the transfer matrix GK(s) = C(sI − A)−1BK . It can
be verified that the state attack K = {3} is identifiable.

Consider also the state attack R = {2, 4, 7} with signature

BT
R =

[
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0

]
= C,

and define the transfer matrix GR(s) = C(sI − A)−1BR. Let
UK(s) and UR(s) be the Laplace transforms of uK(t) and uR(t),
respectively. Notice that GR(s) is right-invertible [10]. Thus,

Y(s) = GK(s)UK(s) = GR(s)
(
G−1

R (s)GK(s)UK(s)
)
.

In other words, the measurements Y(s) generated by the attack
UK(s) can equivalently be generated by the attack

UR(s) = G−1
R (s)GK(s)UK(s).

Notice that 3 = ‖uR‖L0 > ‖uK‖L0 = 1, that is, the attack set K
achieves a lower cost than R in the optimization problem (3).

Consider now the numerical realization ε = 0.0001, x(0) =

0, and uK(t) = 1 for all t ∈ R≥0. The corresponding attack
signal uR = [uR,1 uR,2 uR,3] is shown in Fig. 2. Observe that

‖uK(t)‖`p > ‖uR(t)‖`p

holds point-wise in time for all integers p ≥ 1. We also have

‖uK(t)‖Lq/`p > ‖uR(t)‖Lp/`q

for any integers p, q ≥ 1 and with the Lq/`p signal norm

‖uK(t)‖Lq/`p =

(∫ ∞

0
‖uK‖

q
pdτ

)1/q

.

Hence, the attack set R achieves a lower cost than K for any
version of the optimization problem (3) penalizing a `p cost
point-wise in time or a Lq/`p cost over a time interval. On
the other hand, we have ‖uR‖L0 > ‖uK‖L0 . We conclude that, in
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general, the identification problem cannot be solved by a point-
wise `p or Lq/`p regularization for any p, q ≥ 1. Finally, we
remark that for any choice of network parameters, a value of ε
can be found such that a point-wise `p or a Lq/`p regulariza-
tion procedure fails at identifying the attack set. �

We emphasize that Example 1 is not of pathological nature,
but large-scale stable systems often exhibit this behavior inde-
pendently of the system parameters for attacks which are “suf-
ficiently distant” from the sensors. This can be easily seen in
regular discrete-time systems, where a state attack with attack
set K affects the output via the matrix CAr−1BK , where r is the
relative degree of (A, BK ,C). Notice that if A is Schur stable
then limk→∞ Ak = 0, and CAr−1BK converges to the zero matrix
for increasing relative degree. In this case, an attack closer to
the sensors may achieve a lower Lq/`p cost than an attack far
from sensors independently of the cardinality of the attack set.
In short, the ε-connections in Example 1 can be thought of as
the effect of a large relative degree in large-scale systems.

We conclude that centralized attack identification procedures
are generally not tractable due to their inherent combinatorial
complexity. Special cases that are tractable using efficient and
provably correct procedures require restrictive observability as-
sumptions. Finally, naive convex relaxation approaches often
fail in large-scale systems with sufficiently distant state attacks.

3. The distributed attack identification problem

The obstacles and pitfalls in the centralized attack identifica-
tion problem motivate our study of divide-and-conquer meth-
ods. In this section, we design distributed attack identification
algorithms with performance guarantees, requiring low compu-
tational cost and local knowledge of the system parameters.

3.1. Distributed setup and notation
Let G = (V,E) be the undirected graph associated with the

pair (E, A), where the vertex set V = {1, . . . , n} corresponds
to the system states, and the set of edges E = {(i, j) : ei j ,
0 or ai j , 0 or e ji , 0 or a ji , 0} is induced by the sparsity
pattern of E and A; see also [1, Section IV]. Assume that V
is partitioned into N disjoint subsets as V = V1 ∪ · · · ∪ VN ,
with |Vi| = ni, and let Gi = (Vi,Ei) be the i-th subgraph of G
with vertices Vi and edges Ei = E ∩ (Vi × Vi). According to
this partition, and possibly after relabeling the states, the system
matrix A in (1) can be written as

A =


A1 · · · A1N
...

...
...

AN1 · · · AN

 = AD + AC ,

where Ai ∈ Rni×ni , Ai j ∈ Rni×n j , AD is block-diagonal, and
AC = A − AD. Notice that, if AD = blkdiag(A1, . . . , AN), then
AD represents the isolated subsystems and AC describes the in-
terconnection structure among the subsystems. Additionally, if
the original system is sparse, then several blocks in AC vanish.

We make the following assumptions on the subsystem de-
composition:

(A4) the matrices E and C are block-diagonal, that is E =

blkdiag(E1, . . . , EN) and C = blkdiag(C1, . . . ,CN), where
Ei ∈ Rni×ni and Ci ∈ Rpi×ni ,

(A5) each pair (Ei, Ai) is regular, and each triple (Ei, Ai,Ci) is
observable.

LetNi = { j ∈ {1, . . . ,N}\{i} : ‖Ai j‖ , 0 or ‖A ji‖ , 0} be the
neighbors of subsystem i, and let Nk

i be the set of neighbors at
distance k from i, with subsystem i excluded. Each subsystem
Gi has a a control center with the following capabilities:

(A6) the i-th control center knows the matrices Ei, Ai, Ci, as
well as the neighboring matrices Ai j, j ∈ Ni; and

(A7) the i-th control center can transmit an estimate of its state
to the j-th control center if j ∈ Ni.

Given the above structure, the descriptor system (1) can be
written as the interconnection of N subsystems of the form

Ei ẋi(t) = Aixi(t) +
∑
j∈Ni

Ai jx j(t) + BKi uKi (t),

yi(t) = Cixi(t) + DKi uKi (t), i ∈ {1, . . . ,N},
(4)

Here Ki = (K ∩Vi)∪Kp
i is the attack set in region Gi, and Kp

i is
the set of corrupted measurements in region Gi. Clearly, if the
inter-subsystem signals Ai jx j are known or directly measured,
then the regional attack identification problem within each sub-
system reduces to the centralized problem. In the following, we
will not make this assumption since it is restrictive and implic-
itly precludes the case that the the inter-subsystem signals Ai jx j

themselves are corrupted by an attacker.

3.2. Fully decoupled attack identification
As a first low-complexity identification method we consider

the fully decoupled case (no cooperation among control cen-
ters). In the spirit of fully decentralized state estimation [17],
the neighboring states x j affecting xi are treated as unknown
inputs fi to the i-th subsystem, and equation (4) becomes

Ei ẋi(t) = Aixi(t) + Bb
i fi(t) + BKi uKi (t),

yi(t) = Cixi(t) + DKi uKi (t), i ∈ {1, . . . ,N},
(5)

where Bb
i = [Ai1 · · · Ai,i−1 Ai,i+1 · · · AiN]. We refer to (5) as to

the i-th decoupled system, and we let Vb
i ⊆ Vi be the set of

boundary nodes of (5), that is, the nodes j ∈ Vi with A jk , 0
for some k ∈ {1, . . . , n}\Vi. Due to partitioning, control centers
perform attack identification only on local subsystems.

To explicitly identify the attack set Ki we construct a residual
generator that is insensitive to the inputs Bb

i fi and BKi uKi . Fol-
lowing our work [1], we resort to a geometric control approach
[10] and construct a residual filter of the form

Eiẇi(t) = (Ai + LiCi)wi(t) − Lyi(t),
ri(t) = Mwi(t) − Hyi(t),

(6)

where Li is the injection matrix associated with the conditioned
invariant subspace generated by [Bb

i BKi ] and such that (Ei, Ai +

LiCi) is Hurwitz. The matrices M and H in (6) are chosen so
that the inputs Bb

i fi + BKi uKi do not affect the residual ri. In
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summary, ri is not identically zero if and only if the inputs to
(6) are linearly independent from Bb

i fi + BKi uKi . We refer to [1]
for a detailed construction and discussion of this type of filter.

To uniquely identify the attack set Ki affecting region Gi,
each control center needs to construct one residual filter of the
form (6) for each attack set of cardinality |Ki|. Thus, compared
to the centralized case requiring one residual filter for each at-
tack set of size |K| =

∑N
i=1 |Ki|, the computational complexity of

the attack identification problem is tremendously reduced. On
the other hand, some fundamental limitations arise by naively
treating the neighboring signals as unknown inputs.

Theorem 3.1. (Fully decoupled attack identification) For the
partitioned descriptor system (5) and an attack set K, the fol-
lowing statements are equivalent:

(i) the attack set K in (5) is unidentifiable by the fully decou-
pled identification algorithm (6); and

(ii) for some region i ∈ {1, . . . ,N} with Ki , ∅, there exists an
attack set Ri, with |Ri| ≤ |Ki| and Ri , Ki, so that the system
(E, A, [Bb

i BKi BRi ],C, [DKi DRi ]) has invariant zeros.

Proof. Let yi(xi,0, uKi , fi, t) denote the output of system (5) at
time t, with initial value xi,0, attack input uKi , and boundary in-
put fi. Notice that the attack set Ki is undistinguishable from
Ri if and only if y(xi,0, uKi , fi, t) = y(xi,1, uRi , hi, t) at all times t,
for some initial conditions xi,0 and xi,1, attack inputs uKi and
uRi , and boundary inputs fi and hi. From Theorem 2.1 and
due to linearity of the system, Ki is unidentifiable if and only
if y(xi,0 − xi,1, uKi − uRi , fi − hi, t) = 0 at all times. The claimed
statement follows from the definition of invariant zeros [10] and
the fact that the identification algorithm via the residual filter (6)
is complete [1].

By comparing Theorems 2.1 and 3.1 we conclude that the
i-th control center cannot distinguish between an unknown in-
put from a safe subsystem, an unknown input from a corrupted
subsystem, and a boundary attack with the same input direction.

Corollary 3.2 (Limitation of decoupled algorithm). The fol-
lowing statements hold for the partitioned descriptor system (5)
with the fully decoupled identification algorithm (6):

(L1) any (boundary) attack set Ki ⊆ Vb
i is not identifiable by

the i-th control center (in fact Ki is not detectable2), and
(L2) any (external) attack set K \ Ki is not identifiable by the

i-th control center (in fact Ki is not detectable).

3.3. Cooperative attack identification
In this section we improve upon the fully decoupled method

presented in Subsection 3.2 and propose an identification
method based on a divide-and-conquer procedure with coop-
eration. Our cooperative identification method is informally
described as follows. First, control centers independently es-
timate the state of their local region subject to unknown inputs
from the neighboring regions. Because of the presence of un-
known inputs, the estimation computed by a control center is

2An attack is detectable if it can be distinguished from the zero attack [1].

correct modulo some uncertainty subspace. Control centers ex-
change their estimate and the corresponding uncertainty sub-
spaces. Second, control centers check the compatibility be-
tween their estimate and those received from the neighboring
regions. Third, if the received estimates are not compatible
with local estimates, then the system is recognized under attack.
Finally, control centers implement a local attack identification
procedure by leveraging local system parameters and estimates,
and estimates received from their neighbors.

We next detail our cooperative identification method.
(S1: local state estimation) Each control center estimates the
state of its own region by means of an unknown-input observer
for the i-th subsystem subject to the unknown input Bb

i fi. We
refer the reader to [10] for a detailed review of unknown-input
observers, and to Appendix A for a constructive procedure.

Assume that the state xi can be reconstructed modulo some
subspace Fi.3 Let Fi = Basis(Fi) be the uncertainty matrix, and
partition the state accordingly as

xi = x̂i + x̃i, (7)

where x̂i(t) ⊥ Fi is the portion of the state that can be estimated
by the i-th control center in the presence of the unknown input
Bb

i fi, and x̃i(t) ∈ Fi. Let zi(t) be the estimate at time t of x̂i.
Notice that, if the i-th region is not corrupted, then zi(t) = x̂i(t),
whereas it may be zi(t) , x̂i(t) when Ki , ∅.
(S2: communication) Control centers transmit their estimate x̂i

and uncertainty matrix Fi to every neighboring control center.
(S3: residual generation) Observe that

Ai jx j = Ai j x̂ j + Ai j x̃ j,

where x̂ j and x̃ j are defined as in (7). After carrying out step
(S1), since the matrices Ai j are known to the i-th control center
due to Assumption (A6), only the inputs Ai j x̃ j are unknown to
the i-th control center, while the inputs Ai j x̂ j are known to the
i-th center due to communication. Let

Bb
i Fi = [Ai1F1 · · · Ai,i−1Fi−1 Ai,i+1Fi+1 · · · AiN FN],

and rewrite the signal Bb
i x̃ as Bb

i x̃ = Bb
i Fi fi, for some unknown

signal fi. Then the dynamics of the i-th subsystem read as

Ei ẋi(t) = Aixi(t) + Bb
i x̂(t) + Bb

i Fi fi(t) + BKi uKi (t),

where x̂ is the vector of x̂i for all i ∈ {1, . . . ,N}.
Next, we construct a residual generator akin to (6) that is in-

sensitive to the input Bb
i Fi fi and makes use of the state estimates

z transmitted to control center i by its neighbors:

Eiẇi(t) = (Ai + LiCi)wi(t) − Ly(t) + Bb
i z(t),

ri(t) = Mwi(t) − Hy(t).
(8)

Here Li is the injection matrix associated with the conditioned
invariant subspace generated by Bb

i Fi and such that (Ei, Ai +

3For nonsingular systems without feedthrough matrix, Fi is as small as the
largest (Ai, Bb

i )-controlled invariant subspace contained in Ker(Ci) [10].
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Algorithm 1: Cooperative attack identification
Input : Matrices Ei, Ai, Ai, j for j ∈ Ni;
Require : Conditions (i), (ii), and (iii) in Theorem 3.3;
Output : Attack set Ki;

1 Compute the uncertainty subspace Fi = Im(Fi);
2 Transmit Fi to control centers Ni;

while True do
3 Estimate state x̂i (state x modulo Fi);
4 Transmit x̂i to Ni, and receive x̂ j from Ni;
5 Compute residual ri as in (8);
6 Transmit ri to Ni, and receive r j from Ni;

if ri , 0 or r j , 0 for all j ∈ Ni then
7 Identify Ki in local subsystem;
8 return Ki

LiCi) is Hurwitz. The matrices M and H in (8) are chosen so
that the input Bb

i Fi fi does not affect the residual ri [1].
(S4: cooperative attack identification) Neighboring control
centers exchange the zero/nonzero status of the previously com-
puted residuals, identify corrupted regions, and independently
identify attacks in each attacked region. Our cooperative iden-
tification procedure for the i-th control center is summarized in
Algorithm 1. We make the following technical assumptions:

(A8) corrupted regions have one neighbor at distance 2, that is,
|N2

i | ≥ 1 for all regions i with Ki , 0, and
(A9) corrupted regions are separated by 3 non-corrupted re-

gions, that is, K j = ∅ for all j ∈ N3
i and i with Ki , 0.

Assumption (A8) requires a sufficiently large number of clus-
ters, while assumption (A9) restricts the effectiveness of our
procedure to geographically localized attacks. The next theo-
rem characterizes the effectiveness of our cooperative identifi-
cation procedure.

Theorem 3.3. (Cooperative attack identification) For the par-
titioned system (4), the attack set K is identifiable by the coop-
erative identification algorithm if the following conditions hold:

(i) every system (Ei, Ai, Bb
i ,Ci) has no invariant zeros, and

(ii) every the system (Ei, Ai, [Bb
i Fi BKi BRi ],Ci, [DKi DRi ]) has

no invariant zeros for every attack set Ri with |Ri| ≤ |Ki|.

In Theorem 3.3, conditions (i) with assumptions (A8) and
(A9) ensure regional identifiability, that is, the possibility to
identify corrupted regions from local measurements and com-
munication with neighboring regions. Condition (ii) ensures
local identifiability, that is, attack identifiability within each
corrupted region from local measurements and communication
with neighboring regions. We defer the proof to Appendix B.

We conclude this section with the following observations.
First, the cooperative identification procedure is implemented
only on the corrupted regions (line 7 in Algorithm 1). Thus,
the combinatorial complexity of our distributed identification
procedure is

∑`
i=1

(
ni+pi
|Ki |

)
, where ` is the number of corrupted re-

gions. Hence, the distributed identification procedure greatly
reduces the combinatorial complexity of the centralized proce-
dure presented in [1] that requires the implementation of

(
n+p
|K|

)
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Figure 3: This figure shows a network composed of three subsystems. A control
center is assigned to each subsystem. Each control center knows the dynamics
of its local subsystem. The state of the blue nodes {2, 5, 7, 12, 13, 15} is contin-
uously measured by the corresponding control center, and the state of the red
node {3} is corrupted by an attacker. The decoupled identification procedure
presented in Subsection 3.2 fails at detecting the attack. Instead, our coopera-
tive identification procedure identifies the corrupted agent.

filters. Second, the conditions in Theorem 3.3 for cooperative
identification improve upon those in Theorem 3.1 for fully de-
coupled identification; see Section 4 for an example. Third, our
cooperative identification procedure is effective when attacks
are localized in some regions, and regions under attack are suf-
ficiently far from each other. Under these assumptions, our co-
operative identification overcomes the limitations described in
Example 1, because it does not rely on the magnitude of the
measurements, and has provable performance guarantees.

4. Illustrative example

We now present an example showing that, contrary to the
limitations of the naive fully decoupled approach (see Corol-
lary 3.2), boundary attacks Ki ⊆ Vb

i can be identified by our
cooperative attack identification method.

Consider the sensor network in Fig. 3, where the state of
the blue nodes {2, 5, 7, 12, 13, 15, 19, 22, 23} is measured and
the state of the red node {3} is corrupted by an attacker. As-
sume that the network evolves according to nonsingular, lin-
ear, time-invariant dynamics. Assume further that the net-
work has been partitioned into the three areas V1 = {1, . . . , 8},
V2 = {9, . . . , 16}, and V3 = {17, . . . , 24}. Since {3, 4} are the
boundary nodes for the first area, the attack set K = 3 is not
identifiable (in fact it is not detectable) via the fully decoupled
procedure in Section 3.2; see Corollary 3.2. It can be verified
that the conditions in Theorem 3.3 are verified for generic net-
work parameters [1, Section III.B], and that in fact the attack
can be identified via our cooperative identification procedure.
We conclude that our cooperative identification algorithm out-
performs the decoupled identification algorithm in Section 3.2.

5. Conclusion

The problem of identifying attacks in cyber-physical systems
requires a substantial computational effort. This paper shows
that standard relaxation techniques may fail to identify state at-
tacks in cyber-physical systems, and proposes two distributed
algorithms with performance guarantees for attack identifica-
tion by a set of geographically deployed control centers. The

6



algorithms require local measurements, local knowledge of the
system, and communication with neighboring control centers.
This paper provides initial results on the distributed attack iden-
tification problem, highlights its challenges and limitations, and
foster the adoption of geometric control techniques for the so-
lution of distributed control and estimation problems.

Appendix A. State estimation with unknown-input

In this section we present an algebraic technique to recon-
struct the state of a descriptor system. Our method builds upon
the results presented in [18]. Consider the descriptor model (1)
written in the semi-explicit form (see [1, Section IV.C])

ẋ1(t) = A11x1(t) + A12x2(t) + B1u(t) ,
0 = A21x1(t) + A22x2(t) + B2u(t) ,

y(t) = C1x1(t) + C2x2(t) + Du(t) .
(A.1)

We aim at characterizing the largest subspace of the state space
of (A.1) that can be reconstructed through the measurements y.
Consider the associated nonsingular system

˙̃x1(t) = A11 x̃1(t) + B1ũ(t) + A12 x̃2(t), (A.2)

ỹ(t) =

[
ỹ1(t)
ỹ2(t)

]
=

[
A21
C1

]
x̃1(t) +

[
A22 B2
C2 D

] [
x̃2(t)
ũ(t)

]
.

Recall from [10, Chapter 4] that the state of the system (A.2)
can be reconstructed modulo its largest controlled invariant sub-
spaceV∗1 contained in the null space of the output matrix.

Lemma Appendix A.1. (Reconstruction of the state x1(t)) Let
V∗1 be the largest controlled invariant subspace of the system
(A.2). The state x1 of the system (A.1) can be reconstructed
only moduloV∗1 through the measurements y.

Proof. We start by showing that for every x1(0) ∈ V∗1 there
exist x2 and u such that y is identically zero. Due to linearity
of (A.1), we conclude that the projection of x1 ontoV∗1 cannot
be reconstructed. Notice that for every x̃1(0), x̃2, and ũ yielding
ỹ1 = 0 at all times, the state trajectory [x̃1 x̃2] is a solution
to (A.1) with input u = ũ and output y = ỹ2. Since for every
x̃1(0) ∈ V∗1 there exists x̃2 and ũ such that ỹ is identically zero,
every state x1(0) ∈ V∗1 cannot be reconstructed.

To conclude the proof, let x1(0) be orthogonal toV∗1, and let
x1(t), x2(t), and y(t) be the solution to (A.1) subject to the input
u(t). Notice that x̃1(t) = x1(t), ỹ1(t) = 0, and ỹ2(t) = y(t) is the
solution to (A.2) with inputs x̃2(t) = x2(t) and ũ(t) = u(t). In
other words, x̃1 is a feasible state trajectory of (A.2) with inputs
x̃2 and ũ, and output ỹ. By definition of V∗1, the state x̃1(0) ⊥
V∗1 can be reconstructed from the measurements ỹ [10].

In the previous lemma we show that the state x1(t) of (A.1)
can be reconstructed modulo V∗1. We now show that the state
x2(t) can generally not be completely reconstructed.

Lemma Appendix A.2. (Reconstruction of the state x2(t))
Let V∗1 = Im(V1) be the largest controlled invariant subspace
of the system (A.2). The state x2 of the system (A.1) can be
reconstructed only moduloV∗2 = A−1

22 Im([A21V1 B2]).

Proof. Let x1 = x̄1 + x̂1, where x̄1 ∈ V
∗
1 and x̂1 is orthogonal to

V∗1. From Lemma Appendix A.1, the signal x̂1 can be entirely
reconstructed via y. Notice that

0 = A21x1(t) + A22x2(t) + B2u(t),
= A21V1v1(t) + A21 x̂1(t) + A22x2(t) + B2u(t),

where V1 is a basis of V∗1 and x̄1 = V1v1. Let W
be such that Ker(W) = Im([A21V1 B2]). Then, 0 =

WA21 x̂1(t) + WA22x2(t), and hence x2(t) = x̄2(t) + x̂2(t),
where x̂2(t) = (WA22)†WA21 x̂1(t), and x̄2(t) ∈ Ker(WA22) =

A−1
22 Im([A21V1 B2]). The statement follows.

We remark that our characterization ofV∗1 andV∗2 is equiva-
lent to the definition of weakly unobservable subspace in [13],
and of maximal output-nulling subspace in [19]. Hence, we
proposed an optimal state estimator for our distributed attack
identification procedure, and the matrix Vi in (S1: local state
estimation) can be computed as in [13, 19]. Additionally, a
reconstruction of x1 modulo V∗1 and x2 modulo V∗2 can be
obtained through standard algebraic techniques [10]. Finally,
the presented lemmas extend the results in [18] by characteriz-
ing the subspaces of the state space that can be reconstructed
with an algebraic method by processing the measurements y
and their derivatives.

Appendix B. Proof of Theorem 3.3

Before proving Theorem 3.3, we state some preliminary re-
sults. For the filter (8), define the error ei = wi− xi and note that

Eiėi(t) = (Ai + LiCi)ei(t) + Bb
i (z(t) − x̂(t)) − BKi uKi (t)

− Bb
i Fi fi(t), (B.1)

ri(t) = Mei(t),

where x̂ is the vector of all x̂i, and zi is the estimate of x̂i by the
j-th control center, and z is the vector of all zi. We next show
two fundamental properties of the residual ri.

Lemma Appendix B.1. (Residual of isolated non-corrupted
regions) If Ki = ∅ and K j = ∅ for all j ∈ Ni, then ri is identi-
cally zero.

Proof. Consider a region j with K j = ∅. Notice that the state
estimation z j satisfies z j = x̂ j. Because Ki = ∅, from (B.1) we
conclude that the residual ri is driven only by the input Bb

i Fi fi.
Since the residual generator (8) is constructed so that ri is in-
sensitive to the signature (Bb

i Fi, 0), the statement follows.

Lemma Appendix B.2. (Residual of isolated corrupted re-
gions) For the partitioned system (4), let Ki , ∅. If

(i) K j = ∅ for all j ∈ N2
i ,

(ii) every system (E j, A j, Bb
j ,C j) has no invariant zeros for all

j ∈ Ni, and
(iii) the system (Ei, Ai, [Bb

i Fi BKi BRi ],Ci, [DKi DRi ]) has no
invariant zeros for every attack set Ri , Ki with |Ri| ≤ |Ki|,

then

7



(i) ri(t) , 0 at some time t ∈ R≥0, and
(ii) either r j(t) = 0 for all j ∈ Ni at all times t ∈ R≥0, or

r j(t) , 0 for all j ∈ Ni at some times t ∈ R≥0.

Proof. The estimation computed by a control center is correct
if its area is not under attack. In other words, since K j = ∅

for all j ∈ Ni, it follows Bb
i x̂ = Bb

i z in (B.1). Because
(Ei, Ai, [Bb

i Fi BKi ],Ci, [DKi DRi ]) has no invariant zeros, the at-
tack set Ki is locally identifiable via local measurements and
transmitted estimates, and statement (i) follows; see also [1].

To show the second statement, observe that only two cases
are possible: either x̂i = zi, or x̂i , zi, where x̂i is defined in (7),
and zi is the estimate of x̂i computed by the i-th control center.
For instance, if Im(BKi ) ⊆ Im(Bb

i ), that is, the attack set Ki lies
on the boundary of the i-th area, then x̂i(t) = zi(t).

In the first case, x̂i = zi, all residuals r j, j ∈ Ni, are identically
zero. In fact, since K` = ∅ for all ` ∈ N2

i , it follows that x̂p = zp

for all p ∈ N j and j ∈ Ni, so that the j-th residual filter (B.1)
evolves as an autonomous system, and r j is identically zero.

Consider now the second case: x̂i , zi. Notice that Bb
j F j f j +

Bb
j (x̂−z) ∈ Im(Bb

j ). Since (E j, A j, Bb
j ,C j) has no invariant zeros,

every residual r j, with j ∈ Ni, cannot be identically zero.

We are now ready to prove Theorem 3.3.

Proof. Consider the i-th region, and let Ki , ∅. Due to condi-
tions (i) and (ii) in Theorem 3.3, assumptions (A8) and (A9),
and Lemma Appendix B.2 we conclude that:

(C1) the residual ri is not identically zero, and
(C2) either r j(t) = 0 for all j ∈ Ni at all times t ∈ R≥0, or

r j(t) , 0 for all j ∈ Ni at some times t ∈ R≥0.

Consider the region p ∈ N2
i \ Ni. Due to assumption (A9)

and Lemma Appendix B.1 we conclude that:

(C3) rp is identically zero.

Consider the region j ∈ Ni. Due assumption (A8) and the
facts (C1) and (C3), we conclude that:

(C4) there exists j1, j2 ∈ N j such that r j1 is identically zero,
while r j2 is not identically zero (take j1 = p and j2 = i.).

Corrupted regions are uniquely identified as the regions sat-
isfying (C1) and (C2). See Figure B.4 for an example. Finally,
due to condition (ii) in Theorem 3.3 each set Ki is locally iden-
tifiable (see also Theorem 2.1), and the statement follows.
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