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Abstract. The celebrated Kuramoto model captures various synchronization phenomena in
biological and man-made dynamical systems of coupled oscillators. It is well-known that there exists
a critical coupling strength among the oscillators at which a phase transition from incoherency to
synchronization occurs. This paper features four contributions. First, we characterize and distinguish
the different notions of synchronization used throughout the literature and formally introduce the
concept of phase cohesiveness as an analysis tool and performance index for synchronization. Second,
we review the vast literature providing necessary, sufficient, implicit, and explicit estimates of the
critical coupling strength in the finite and infinite-dimensional case and for both first-order and
second-order Kuramoto models. Third, we present the first explicit necessary and sufficient condition
on the critical coupling strength to achieve synchronization in the finite-dimensional Kuramoto model
for an arbitrary distribution of the natural frequencies. The multiplicative gap in the synchronization
condition yields a practical stability result determining the admissible initial and the guaranteed
ultimate phase cohesiveness as well as the guaranteed asymptotic magnitude of the order parameter.
As supplementary results, we provide a statistical comparison of our synchronization condition with
other conditions proposed in the literature, and we show that our results also hold for switching and
smoothly time-varying natural frequencies. Fourth and finally, we extend our analysis to multi-rate
Kuramoto models consisting of second-order Kuramoto oscillators with inertia and viscous damping
together with first-order Kuramoto oscillators with multiple time constants. We prove that such a
heterogeneous network is locally topologically conjugate to a first-order Kuramoto model with scaled
natural frequencies. Finally, we present necessary and sufficient conditions for almost global phase
synchronization and local frequency synchronization in the multi-rate Kuramoto model. Interestingly,
our provably correct synchronization conditions do not depend on the inertiae which contradicts prior
observations on the role of inertial effects in synchronization of second-order Kuramoto oscillators.
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1. Introduction. A classic and celebrated model for the synchronization of cou-
pled oscillators is due to Yoshiki Kuramoto [35]. The Kuramoto model considers n ≥ 2
coupled oscillators each represented by a phase variable θi ∈ T1, the 1-tours, and a
natural frequency ωi ∈ R. The system of coupled oscillators obeys the dynamics

θ̇i = ωi −
K

n

n∑
j=1

sin(θi − θj) , i ∈ {1, . . . , n} , (1.1)

where K > 0 is the coupling strength among the oscillators.
The Kuramoto model (1.1) finds application in various biological synchroniza-

tion phenomena, and we refer the reader to the excellent reviews [48, 2] for various
references. Recent technological applications of the Kuramoto model include motion
coordination of particles [47], synchronization in coupled Josephson junctions [55],
transient stability analysis of power networks [21], and deep brain stimulation [51].

The Critical Coupling Strength. Yoshiki Kuramoto himself analyzed the
model (1.1) based on the order parameter reiψ = 1

n

∑n
j=1 e

iθj , which corresponds the
centroid of all oscillators when represented as points on the unit circle in C1. The
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magnitude of the order parameter can be understood as a measure of synchronization.
If the angles θi(t) of all oscillators are identical, then r = 1, and if all oscillators are
spaced equally on the unit circle (splay state), then r = 0. With the help of the order
parameter, the Kuramoto model (1.1) can be written in the insightful form

θ̇i = ωi −Kr sin(θi − ψ) , i ∈ {1, . . . , n} . (1.2)

Equation (1.2) gives the intuition that the oscillators synchronize by coupling to a
mean field represented by the order parameter reiψ. Intuitively, for small coupling
strength K each oscillator rotates with its natural frequency ωi, whereas for large
coupling strength K all angles θi(t) will be entrained by the mean field reiψ and the
oscillators synchronize. The threshold from incoherency to synchronization occurs
for some critical coupling Kcritical. This phase transition has been the source of
numerous research papers starting with Kuramoto’s own insightful and ingenuous
analysis [35, 36]. For instance, since r ≤ 1, no solution of (1.2) of the form θ̇i(t) =
θ̇j(t) can exist if K < |ωi − ωj |/2. Hence, K ≥ |ωi − ωj |/2 provides a necessary
synchronization condition and a lower bound forKcritical. Various necessary, sufficient,
implicit, and explicit estimates of the critical coupling strength Kcritical for both the
on-set as well as the ultimate stage of synchronization have been derived in the vast
literature on the Kuramoto model [35, 48, 2, 47, 21, 36, 24, 39, 52, 15, 31, 17, 46, 20, 53,
41, 3, 37, 10, 42, 54, 44, 8, 26, 28]. To date , only explicit and sufficient (or necessary)
bounds are known for the critical coupling strength Kcritical in the Kuramoto model
(1.1), and implicit formulae are available to compute the exact value of Kcritical.

The Multi-Rate Kuramoto Model. As second relevant coupled-oscillator
model, consider m ≥ 0 second-order Kuramoto oscillators with inertia and viscous
damping and n − m ≥ 0 first-order Kuramoto oscillators with multiple time con-
stants. The multi-rate Kuramoto model evolving on Tn × Rm then reads as

Miθ̈i +Diθ̇i = ωi −
K

n

n∑
i=1

sin(θi − θj) , i ∈ {1, . . . ,m} ,

Diθ̇i = ωi −
K

n

n∑
i=1

sin(θi − θj) , i ∈ {m+ 1, . . . , n} ,
(1.3)

where Mi > 0, Di > 0, and ωi ∈ R for i ∈ {1, . . . , n} and K > 0. Note that we allow
for m ∈ {0, n} such that the model (1.3) is of purely first or second order, respectively.

The multi-rate Kuramoto model (1.3) finds explicit application in the classic
structure-preserving power network model proposed in [7]. For m = n, the model
(1.3) is a purely second-order system of coupled, damped, and driven pendula, which
has been used, for example, to model synchronization in a population of fireflies [25],
in coupled Josephson junctions [55], and in network-reduced power system models [12].

For m = n, unit damping Di = 1, and uniform inertia Mi = M > 0, the
second-order Kuramoto system (1.3) has been extensively studied in the literature
[14, 50, 49, 30, 29, 1, 2]. The cited results on the inertial effects on synchronization
are controversial and report that synchronization is either enhanced or inhibited by
sufficiently large (or also sufficiently small) inertia M . For the general multi-rate
Kuramoto model (1.3) no exact synchronization conditions are known.

1.1. Contributions. The contributions of this paper are four-fold. First, we
characterize, distinguish, and relate different concepts of synchronization and their
analysis methods, which are studied and employed in the networked control, physics,
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and dynamical systems communities. In particular, we review the concepts of phase
synchronization and frequency synchronization, and introduce the notion of phase
cohesiveness. In essence, a solution to the Kuramoto model (1.1) is phase cohesive if
all angles are bounded within a (possibly rotating) arc of fixed length. The notion of
phase cohesiveness provides a powerful analysis tool for synchronization and can be
understood as a performance index for synchronization similar to the order parameter.

As second contribution, we review the extensive literature on the Kuramoto
model, and present various necessary, sufficient, implicit, and explicit estimates of
the critical coupling strength for the finite and infinite-dimensional Kuramoto model
in a unified language [35, 48, 2, 47, 21, 36, 24, 39, 52, 15, 31, 17, 46, 20, 53, 41, 3, 37,
10, 42, 44, 54, 8, 26, 28]. Aside from the comparison of the different estimates of the
critical coupling strength, the second purpose of this review is the comparison of the
different analysis techniques. Furthermore, we briefly survey the controversial results
[14, 50, 49, 30, 29, 1, 2] on the role of inertia in second-order Kuramoto models.

As third contribution of this paper, we provide an explicit necessary and suffi-
cient condition on the critical coupling strength to achieve exponential synchroniza-
tion in the finite-dimensional Kuramoto model for an arbitrary distribution of the
natural frequencies ωi, see Theorem 4.1. In particular, synchronization occurs for
K > Kcritical = ωmax − ωmin, where ωmax and ωmin are the maximum and minimum
natural frequency, respectively. The multiplicative gap Kcritical/K determines the
admissible initial and the guaranteed ultimate level of phase cohesiveness as well as
the guaranteed asymptotic magnitude r of the order parameter. In particular, the
ultimate level of phase cohesiveness can be made arbitrary small by increasing the mul-
tiplicative gap Kcritical/K. This result resembles the concept of practical stability in
dynamics and control ifK andKcritical are understood as a synchronization-enhancing
gain and as a measure for the desynchronizing non-uniformity among the oscillators.
Additionally, our main result includes estimates on the exponential synchronization
rate for phase and frequency synchronization. We further provide two supplementary
results on our synchronization condition. In statistical studies, we compare our con-
dition to other necessary and explicit or implicit and exact conditions proposed in
the literature. Finally, we show that our analysis and the resulting synchronization
conditions also hold for switching and smoothly time-varying natural frequencies.

As fourth and final contribution, we extend our main result on the classic Ku-
ramoto model (1.1) to the multi-rate Kuramoto model (1.3). We prove a general
result that relates the equilibria and local stability properties of forced gradient-like
systems to those of dissipative Hamiltonian systems together with gradient-like dy-
namics and external forcing, see Theorem 5.1. As special case, we are able to show
that the multi-rate Kuramoto model is locally topologically conjugate to a first-order
Kuramoto model with scaled natural frequencies, see Theorem 5.3. Finally, we present
necessary and sufficient conditions for almost global stability of phase synchronization
and local stability of frequency synchronization in the multi-rate Kuramoto model,
see Theorem 5.5. Interestingly, the inertial coefficients Mi do not affect the syn-
chronization conditions and the asymptotic synchronization frequency. Moreover, the
location and local stability properties of all equilibria are independent of the inertial
coefficients Mi, and so are all local bifurcations and the asymptotic magnitude of the
order parameter. Rather, these quantities depend on the viscous damping parame-
ters Di and the natural frequencies ωi. Of course, the inertial terms still affect the
transient synchronization behavior which lies outside the scope of our analysis. These
interesting and provably correct findings contradict prior observations on the role of
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inertia inhibiting or enhancing synchronization in second-order Kuramoto models.
The remainder of this paper is organized as follows. Section 2 reviews different

concepts of synchronization and provides a motivating example. Section 3 reviews
the literature on the critical coupling strength in the Kuramoto model. Section 4
presents a novel, tight, and explicit bound on the critical coupling as well as various
related properties, performance estimates, statistical studies, and extensions to time-
varying natural frequencies. Section 5 extends some of these results to the multi-rate
Kuramoto model. Finally, Section 6 concludes the paper.

Notation. The torus is the set T1 = ]−π,+π], where −π and +π are associated
with each other, an angle is a point θ ∈ T1, and an arc is a connected subset of T1.
The product set Tn is the n-dimensional torus. With slight abuse of notation, let
|θ1 − θ2| denote the geodesic distance between two angles θ1 ∈ T1 and θ2 ∈ T1. For
γ ∈ [0, π], let ∆(γ) ⊂ Tn be the set of angle arrays (θ1, . . . , θn) with the property that
there exists an arc of length γ containing all θ1, . . . , θn in its interior. Thus, an angle
array θ ∈ ∆(γ) satisfies maxi,j∈{1,...,n} |θi−θj | < γ. For γ ∈ [0, π], we also define ∆̄(γ)
to be the union of the phase-synchronized set {θ ∈ Tn | θi = θj , i, j ∈ {1, . . . , n}} and
the closure of the open set ∆(γ). Hence, θ ∈ ∆̄(γ) satisfies maxi,j∈{1,...,n} |θi−θj | ≤ γ;
the case θ ∈ ∆̄(0) corresponds simply to θ taking value in the phase-synchronized set.

Given an n-tuple (x1, . . . , xn), let x ∈ Rn be the associated vector, let diag(xi) ∈
Rn be the associated diagonal matrix, and let xmax and xmin be the maximum and
minimum elements. The inertia of a matrix A ∈ Rn×n are given by the triple
{νs, νc, νu}, where νs (respectively νu) denotes the number of stable (respectively
unstable) eigenvalues of A in the open left (respectively right) complex half plane,
and νc denotes the number of center eigenvalues with zero real part. The notation
blkdiag(A1, . . . , An) denotes the block-diagonal matrix with matrix blocks A1, . . . , An.
Finally, let In be the n-dimensional identity matrix, and let 1p×q and 0p×q denote
the p× q dimensional matrix with unit entries and zero entries, respectively.

2. Phase Synchronization, Phase Cohesiveness, and Frequency En-
trainment. Different levels of synchronization are typically distinguished for the
Kuramoto model (1.1). The case when all angles θi(t) converge exponentially to a
common angle θ∞ ∈ T1 as t→∞ is referred to as exponential phase synchronization
and can only occur if all natural frequencies are identical. If the natural frequencies
are non-identical, then each pairwise distance |θi(t) − θj(t)| can converge to a con-
stant value, but this value is not necessarily zero. The following concept of phase
cohesiveness addresses exactly this point. A solution θ : R≥0 → Tn to the Kuramoto
model (1.1) is phase cohesive if there exists a length γ ∈ [0, π[ such that θ(t) ∈ ∆̄(γ)
for all t ≥ 0, i.e., at each time t there exists an arc of length γ containing all angles
θi(t). A solution θ : R≥0 → Tn achieves exponential frequency synchronization if
all frequencies θ̇i(t) converge exponentially fast to a common frequency θ̇∞ ∈ R as
t→∞. Finally, a solution θ : R≥0 → Tn achieves exponential synchronization if it is
phase cohesive and it achieves exponential frequency synchronization.

If a solution θ(t) achieves exponential frequency synchronization, all phases asymp-
totically become constant in a rotating coordinate frame with frequency θ̇∞, or equiv-
alently, all phase distances |θi(t)− θj(t)| asymptotically become constant. Hence, the
terminology phase locking is sometimes also used in the literature to define a solution
θ : R≥0 → Tn that satisfies θ̇i(t) = θ̇∞ for all i ∈ {1, . . . , n} and for all t ≥ 0 [41, 52, 26]
or θi(t)− θj(t) = constant for all i, j ∈ {1, . . . , n} and for all t ≥ 0 [3, 24, 9, 53, 54].
Other commonly used terms in the vast synchronization literature include full, ex-
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act, or perfect synchronization for phase synchronization1 and frequency locking, fre-
quency entrainment, or partial synchronization for frequency synchronization.

In the networked control community, boundedness of angular distances and con-
sensus arguments are typically combined to establish frequency synchronization [15,
31, 46, 21, 26, 28]. Our latter analysis in Section 4 makes this approach explicit by
distinguishing between phase cohesiveness and frequency synchronization. Note that
phase cohesiveness can also be understood as a performance measure for synchroniza-
tion and phase synchronization is simply the extreme case of phase cohesiveness with
limt→∞ θ(t) ∈ ∆̄(0). Indeed, if the magnitude r of the order parameter is understood
as an average performance index for synchronization, then phase cohesiveness can
be understood as a worst-case performance index. The following lemma relates the
magnitude of the order parameter to a guaranteed level of phase cohesiveness.

Lemma 2.1 (Phase cohesiveness and order parameter). Consider an array
of n ≥ 2 angles θ = (θ1, . . . , θn) ∈ Tn and compute the magnitude of the order
parameter r(θ) = 1

n |
∑n
j=1 e

iθj |. The following statements hold:
1) if θ ∈ ∆̄(γ) for some γ ∈ [0, π], then r(θ) ∈ [cos(γ/2), 1]; and
2) if r(θ) ∈ [0, 1] and θ ∈ ∆̄(π), then θ ∈ ∆̄(γ) for some γ ∈ [2 arccos(r(θ)), π].

Proof. As customary, we abbreviate r(θ) with r in what follows. The order
parameter reiψ is the centroid of all phasors eiθj corresponding to the phases θj when
represented as points on the unit circle in C1. Hence, for θ ∈ ∆̄(γ), γ ∈ [0, π], it
follows that r is contained in the convex hull of the arc of length γ, as illustrated
in Figure 2.1. Let γ ∈ [0, π] be fixed and let θ ∈ ∆̄(γ). It follows from elementary

rmin rmax

γ

γ

Fig. 2.1. Schematic illustration of an arc of length γ ∈ [0, π], its convex hull (shaded), and the
location • of the corresponding order parameter reiψ with minimum magnitude rmin.

geometric arguments that cos(γ/2) = rmin ≤ r ≤ rmax = 1, which proves statement
1). Conversely, if r is fixed and θ ∈ ∆̄(π), then the centroid reiψ is always contained
within the convex hull of the semi-circle ∆̄(π) (centered at ψ). The smallest arc whose
convex hull contains the centroid reiψ is the arc of length γ = 2 arccos(r) (centered
at ψ), as illustrated in Figure 2.1. This proves statement 2).

In the physics and dynamical systems community exponential synchronization is
usually analyzed in relative coordinates. For instance, since the average frequency
1
n

∑n
i=1 θ̇i(t) = 1

n

∑n
i=1 ωi , ωavg is constant, the Kuramoto model (1.1) is sometimes

[53, 41] analyzed with respect to a rotating frame in the coordinates ξi = θi − ωavgt
(mod 2π), i ∈ {1, . . . , n}, corresponding to a deviation from the average angle. The
existence of an exponentially stable one-dimensional (due to translational invariance)
equilibrium manifold in ξ-coordinates then implies local stability of phase-locked so-
lutions and exponential synchronization. Alternatively, the translational invariance
can be removed by formulating the Kuramoto model (1.1) in grounded coordinates

1Note that [2] understands phase locking synonymous to phase synchronization as defined above.
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δi = θi− θn, for i ∈ {1, . . . , n− 1} [21, 3]. We refer to [21, Lemma IV.1] for a geomet-
rically rigorous characterization of the grounded δ-coordinates and the relation of ex-
ponential stability in δ-coordinates and exponential synchronization in θ-coordinates.

The following example of two oscillators illustrates the notion of phase cohesive-
ness, applies graphical synchronization analysis techniques, and points out various
important geometric subtleties occurring on the compact state space T2.

Example 2.2 (Two oscillators). Consider n = 2 oscillators with ω2 > ω1. We
restrict our attention to angles contained in an open half-circle: for angles θ1, θ2 with
|θ2 − θ1| < π, we define the angular difference θ2 − θ1 to be the number in ]−π, π[
with magnitude equal to the geodesic distance |θ2 − θ1| and with positive sign iff the
counter-clockwise path length from θ1 to θ2 on T1 is smaller than the clockwise path
length. With this definition the two-dimensional Kuramoto dynamics (θ̇1, θ̇2) can be
reduced to the scalar difference dynamics θ̇2− θ̇1. After scaling time as t 7→ t(ω2−ω1)
and introducing κ = K/(ω2 − ω1) the difference dynamics are

d

d t
(θ2 − θ1) = fκ(θ2 − θ1) := 1− κ sin(θ2 − θ1) . (2.1)

The scalar dynamics (2.1) can be analyzed graphically by plotting the vector field
fκ(θ2 − θ1) over the difference variable θ2 − θ1, as in Figure 2.2(a). Figure 2.2(a) dis-
plays a saddle-node bifurcation at κ = 1. For κ < 1 no equilibrium of (2.1) exists, and
for κ > 1 an asymptotically stable equilibrium θstable = arcsin(κ−1) ∈ ]0, π/2[ together
with a saddle point θsaddle = arcsin(κ−1) ∈ ]π/2, π[ exists. For θ(0) ∈ ∆(|θsaddle|) all
trajectories converge exponentially to θstable, that is, the oscillators synchronize expo-
nentially. Additionally, the oscillators are phase cohesive iff θ(0) ∈ ∆̄(|θsaddle|), where
all trajectories remain bounded. For θ(0) 6∈ ∆̄(|θsaddle|) the difference θ2(t) − θ1(t)
will increase beyond π, and by definition will change its sign since the oscillators
change orientation. Ultimately, θ2(t) − θ1(t) converges to the equilibrium θstable in
the branch where θ2− θ1 < 0. In the configuration space T2 this implies that the dis-
tance |θ2(t)− θ1(t)| increases to its maximum value π and shrinks again, that is, the
oscillators are not phase cohesive and revolve once around the circle before converging
to the equilibrium manifold. Since sin(θstable) = sin(θsaddle) = κ−1, strongly coupled
oscillators with κ � 1 practically achieve phase synchronization from every initial
condition in an open semi-circle. In the critical case, κ = 1, the saddle point at π/2
is globally attractive but not stable: for θ2(0)− θ1(0)=π/2 + ε (with ε>0 sufficiently
small), the oscillators are not phase cohesive and revolve around the circle before con-
verging to the saddle equilibrium manifold in T2, as illustrated in Figure 2.2(b). Thus,
the saddle equilibrium manifold is both attractor and separatrix which corresponds to
a double zero eigenvalue with two dimensional Jordan block in the linearized case.

In conclusion, the simple but already rich 2-dimensional case shows that two os-
cillators are phase cohesive and synchronize if and only if K > Kcriticial , ω2−ω1, and
the ratio κ−1 = Kcriticial/K < 1 determines the ultimate phase cohesiveness as well
as the set of admissible initial conditions. In other words, practical phase synchro-
nization is achieved for K � Kcriticial, and phase cohesiveness occurs only for initial
angles θ(0) ∈ ∆̄(γ), γ = arcsin(Kcriticial/K) ∈ ]π/2, π[. This set of admissible initial
conditions ∆̄(γ) can be enlarged to an open semi-circle by increasing K/Kcriticial. Fi-
nally, synchronization is lost in a saddle-node bifurcation2 at K = Kcriticial. In Section
4 we will generalize all outcomes of this simple analysis to the case of n oscillators.�

2For Kuramoto models of dimension n ≥ 3, this loss of synchrony via a saddle-node bifurcation
is only the starting point of a series of bifurcation occurring if K is further decreased, see [38].
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(a) Vector field (2.1) for θ2 − θ1 > 0 (b) Trajectory θ(t) for κ = 1

Fig. 2.2. Plot of the vector field (2.1) for various values of κ and a trajectory θ(t) ∈ T2 for the
critical case κ = 1, where the dashed line is the equilibrium manifold and � and • correspond to
θ(0) and limt→∞ θ(t). The non-smoothness of the vector field f(θ2− θ1) at the boundaries {0, π} is
an artifact of the non-smoothness of the geodesic distance on the state space T2

3. A Review of Bounds for the Critical Coupling Strength. If all natural
frequencies are identical, that is, ωi ≡ ω for all i ∈ {1, . . . , n}, a transformation to
a rotating frame leads to ω ≡ 0. In this case, the analysis of the Kuramoto model
(1.1) is particularly simple and almost global phase synchronization can be derived
by various methods. A sample of different analysis schemes (by far not complete) in-
cludes the contraction property [37], quadratic Lyapunov functions [31], linearization
[42], or order parameter and potential function arguments [47]. Almost global phase
synchronization can also be obtained for non-complete coupling topologies [44, 42, 10].

In the following, we review various analysis methods and the resulting bounds on
the critical coupling strength for the case of non-identical frequencies.

3.1. The Infinite Dimensional Kuramoto Model. In the physics and dy-
namical systems communities the Kuramoto model (1.1) is typically studied in the
continuum limit as the number of oscillators tends to infinity and the natural frequen-
cies obey an integrable distribution function g : R → R≥0. In this case, the Kuramoto
model is rendered to a first order continuity equation or a second order Fokker-Planck
equation when stochasticity is included. For a symmetric, continuous, and unimodal
distribution g(ω) centered above zero, Kuramoto showed in an insightful and ingen-
uous analysis [35, 36] that the incoherent state (i.e., a uniform distribution of the os-
cillators on the unit circle) supercritically bifurcates for the critical coupling strength

Kcritical =
2

πg(0)
. (3.1)

The bound (3.1) for the on-set of synchronization has also been derived by other
authors, see [48, 2] for further references. In [24] Ermentrout considered symmetric
distributions g(ω) with bounded domain ωi ∈ [−ωmax, ωmax], and studied the existence
of phase-locked solutions. The condition for the coupling threshold Kcritical necessary
for the existence of phase-locked solution reads in our notation as [24, Proposition 2]

ωmax

Kcritical
= max
p∈R,p≥1

{
1
p2

∫ 1

−1

√
p2 − ω2g(ω) dω

}
. (3.2)

Ermentrout further showed that formula (3.2) yields Kcritical ≥ 2ωmax for symmetric
distributions and Kcritical ≥ 4ωmax/π whenever g is non-increasing in [0, ωmax]. Both
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of these bounds are tight for a bipolar (i.e., a bimodal double-delta) distribution and
a uniform distribution [24, Corollary 2], [52, Sections 3 & 4]. Similar results for the
bipolar distribution are also obtained in [2], and in [39] the critical coupling for a
bimodal Lorentzian distribution is analyzed. For various other references analyzing
the continuum limit of the Kuramoto model we refer the reader to [48, 2].

3.2. Necessary or Sufficient Bounds in the Finite Dimensional Ku-
ramoto Model. In the finite dimensional case, we assume that the natural frequen-
cies are supported on a compact interval ωi ∈ [ωmax, ωmin] ⊂ R for all i ∈ {1, . . . , n}.
This assumption can be made without loss of generality since the critical coupling
Kcritical is not finite for unbounded natural frequencies ωi [53, Theorem 1]. In [15, 31]
a necessary condition for the existence of synchronized solutions states the critical
coupling in terms of the width of the interval [ωmax, ωmin] as

K >
n(ωmax − ωmin)

2(n− 1)
. (3.3)

Obviously, in the limit as n→∞, this bound reduces (ωmax − ωmin)/2, the simple
bound derived in the introduction of this paper. A looser but still insightful necessary
condition is K ≥ 2σ, where σ is the variance of the ωi [52], [53, Corollary 2]. For
bipolar distributions ωi ∈ {ωmin, ωmax}, necessary explicit conditions similar to (3.3)
can be derived for non-complete and highly symmetric coupling topologies [8].

Besides the necessary conditions, various bounds sufficient for synchronization
have been derived including estimates of the region of attraction. Typically, these
sufficient bounds are derived via incremental stability arguments and are of the form

K > Kcritical = ‖V ω‖p · f(n, γ) , (3.4)

where ‖·‖p is the p-norm and V is a matrix (of yet unspecified row dimension) mea-
suring the non-uniformity among the ωi. For instance, V = In − (1/n)1n×n gives
the deviation from the average natural frequency, V ω = ω − ωavg1n×1. Finally, the
function f : N× [0, π/2[→ [1,∞[ captures the dependence of Kcritical on the number of
oscillators n and the scalar γ determining a bound on the admissible pairwise phase
differences, which is, for instance, of the form ‖(. . . , θi(t)− θj(t), . . . )‖p ≤ γ.

Two-norm bounds, i.e., p = 2 in condition (3.4), have been derived using quadratic
Lyapunov functions in [15, proof of Theorem 4.2] and [21, Theorem V.9], where
the matrix V ∈ Rn(n−1)/2×n is the incidence matrix such that V ω is the vector
of n(n−1)/2 pairwise differences ωi−ωj . A sinusoidal Lyapunov function [26, Propo-
sition 1] leads to a two-norm bound with V = In − (1/n)1n×n. Similar two-norm
bounds have been obtained by contraction mapping [31, Theorem 2] and by contrac-
tion analysis [17, Theorem 8], where V ∈ Rn−1×n is an orthonormal projector on the
subspace orthogonal to 1n×1. For all cited references the region of attraction is given
by the n(n − 1)/2 initial phase differences in two-norm or ∞-norm balls satisfying
‖V θ(0)‖2,∞ < π. Unfortunately, none of these bounds scales independently of n since
‖V ω‖22 is a sum of at least n− 1 terms in all cited references and f(n, γ) in condition
(3.4) is either an increasing [31] or a constant function of n [21, 15, 17, 26].

A scaling of condition (3.4) independently of n has been achieved only when
considering the width ωmax−ωmin = ‖(. . . , ωi − ωj , . . . )‖∞, that is, for V ω being the
vector of all n(n− 1)/2 pairwise frequency differences and p = ∞ in condition (3.4).
A quadratic Lyapunov function leads to f(n, γ) = n/(2 sin(γ)) [15, proof of Theorem
4.1], a contraction argument leads to f(n, γ) = n/((n− 2) sin(γ)) [46, Lemma 9], and
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a geometric argument leads to the scale-free bound f(γ) = 1/(2 sin(γ/2) cos(γ)) [20,
proof of Proposition 1]. In [28, Theorem 3.3] and in our earlier work [21, Theorem V.3],
the simple and scale-free bound f(γ) = 1/ sin(γ) has been derived by analyticity and
contraction arguments. In our notation, the region of attraction for synchronization
is in all cited references [15, 46, 20, 28, 21] given as θ(0) ∈ ∆̄(γ) for γ ∈ [0, π/2[.

3.3. Implicit and Exact Bounds in the Finite Dimensional Kuramoto
Model. Three recent articles [53, 41, 3] independently derived a set of implicit consis-
tency equations for the exact critical coupling strength Kcritical for which phase-locked
solutions exist. Verwoerd and Mason provided the following implicit formulae to com-
pute Kcritical [53, Theorem 3]:

Kcritical = nu∗/
∑n

i=1

√
1− (Ωi/u∗)2 , (3.5)

where Ωi = ωi − 1
n

∑n
j=1 ωj and u∗ ∈ [‖Ω‖∞ , 2 ‖Ω‖∞] is the unique solution to

2
∑n

i=1

√
1− (Ωi/u∗)2 =

∑n

i=1
1/

√
1− (Ωi/u∗)2 . (3.6)

Verwoerd and Mason also extended their results to bipartite graphs [54] but did not
carry out a stability analysis. The formulae (3.5)-(3.6) can be reduced exactly to
the implicit self-consistency equation derived by Mirollo and Strogatz in [41] and by
Aeyels and Rogge in [3], where additionally a local stability analysis is carried out.
The stability analysis [41, 3] in the n-dimensional case shows the same saddle-node
bifurcation as the two-dimensional Example 2.2: for K < Kcritical there exist no
phase-locked solutions, for K > Kcritical there exist stable phase-locked solutions, and
for K = Kcritical the Jacobians of phase-locked solutions equilibria have a double zero
eigenvalue with two-dimensional Jordan block, as illustrated in Example 2.2.

At this point, it is worth to mention that the equilibrium and potential landscape
of more complicated variations of the Kuramoto model has been explored in the
theoretical particle physics community [40] and in power networks studies [6].

In conclusion, in the finite dimensional case various necessary or sufficient explicit
bounds on the coupling strength Kcritical are known as well as implicit formulas to
compute Kcritical which is provably a threshold for local stability.

3.4. The Critical Coupling Strength for Second-Order Kuramoto Os-
cillators. For m = n, Di = 1, and Mi = M > 0 the multi-rate Kuramoto model
(1.3) simplifies to a second-order system of coupled oscillators with uniform inertia
and unit damping. Such homogeneous second-order Kuramoto models have received
some attention in the recent literature [14, 50, 49, 30, 29, 1, 2].

In [14] two sufficient synchronization conditions are derived via second-order
Gronwall’s inequalities resulting in a bound of the form (3.4) with p = ∞ together
with conditions on sufficiently small inertia or sufficiently large inertia [14, Theorems
5.1 and 5.2]. In [14, Theorem 4.1 and 4.2] phase synchronization was also found to
depend on the inertia, whereas phase synchronization was found to be independent
of the inertia in the corresponding continuum limit model [2, 1]. References [49, 50]
observe a discontinuous first-order phase transition (where the incoherent state looses
its stability), which is independent of the distribution of the natural frequencies when
the inertia M is sufficiently large. This result is also confirmed in [2, 1]. In [30] a
second-order Kuramoto model with time delays is analyzed, and a correlation between
the inertia and the asymptotic synchronization frequency and asymptotic magnitude
of the order parameter magnitude is observed. In [29, 1, 2] it is reported that inertia
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suppress synchronization for an externally driven or noisy second-order Kuramoto
model, and [2, 1] explicitly show that the critical coupling Kcritical increases with the
inertia M for a Lorentzian or a bipolar distribution of the natural frequencies.

The cited results [14, 50, 49, 30, 29, 1, 2] on the inertial effects on synchronization
appear conflicting. Possible reasons for this controversy include that the cited articles
consider slightly different scenarios (time delays, noise, external forcing), the cited re-
sults are only sufficient, the analyses are based on the infinite-dimensional continuum-
limit approximation of the finite-dimensional model (1.3), and some results stem from
insightful but partially incomplete numerical observations and physical intuition.

4. Necessary and Sufficient Conditions on the Critical Coupling. From
the point of analyzing or designing a sufficiently strong coupling in the Kuramoto-
type applications [48, 2, 47, 55, 21, 51], the exact formulae (3.5)-(3.6) to compute the
critical coupling have three drawbacks. First, they are implicit and thus not suited
for performance or robustness estimates in case of additional coupling strength, e.g.,
which level of ultimate phase cohesiveness or which magnitude of the order parameter
can be achieved for K = c · Kcritical with a certain c > 1. Second, the corresponding
region of attraction of a phase-locked equilibrium for a given K > Kcritical is unknown.
Third and finally, the particular natural frequencies ωi (or their distributions) are
typically time-varying, uncertain, or even unknown in the applications [48, 2, 47, 55,
21, 51]. In this case, the exact Kcritical needs to be dynamically estimated and re-
computed over time, or a conservatively strong couplingK�Kcritical has to be chosen.

The following theorem states an explicit bound on the coupling strength together
with performance estimates, convergence rates, and a guaranteed semi-global region of
attraction for synchronization. Besides improving all other bounds known to the au-
thors, our bound is tight and thus necessary and sufficient when considering arbitrary
distributions of the natural frequencies supported on a compact interval.

Theorem 4.1. (Explicit, necessary, and sufficient synchronization con-
dition) Consider the Kuramoto model (1.1) with natural frequencies (ω1, . . . , ωn) and
coupling strength K. The following three statements are equivalent:

(i) the coupling strength K is larger than the maximum non-uniformity among
the natural frequencies, i.e.,

K > Kcritical , ωmax − ωmin ; (4.1)

(ii) there exists an arc length γmax ∈ ]π/2, π] such that the Kuramoto model (1.1)
synchronizes exponentially for all possible distributions of the natural frequen-
cies supported on [ωmin, ωmax] and for all initial phases θ(0) ∈ ∆(γmax); and

(iii) there exists an arc length γmin ∈ [0, π/2[ such that the Kuramoto model (1.1)
has a locally exponentially stable synchronized trajectory in ∆̄(γmin) for all
possible distributions of the natural frequencies supported on [ωmin, ωmax].

If the three equivalent cases (i), (ii), and (iii) hold, then the ratio Kcritical/K and
the arc lengths γmin ∈ [0, π/2[ and γmax ∈ ]π/2, π] are related uniquely via sin(γmin) =
sin(γmax) = Kcritical/K, and the following statements hold:

1) phase cohesiveness: the set ∆̄(γ) is positively invariant for every γ ∈
[γmin, γmax], and each trajectory starting in ∆(γmax) approaches asymptoti-
cally ∆̄(γmin);

2) order parameter: the asymptotic value of the magnitude of the order pa-
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rameter denoted by r∞ , limt→∞
1
n |

∑n
j=1 e

iθj(t)|is bounded as

1 ≥ r∞ ≥ cos
(γmin

2

)
=

√
1 +

√
1− (Kcritical/K)2

2
;

3) frequency synchronization: the asymptotic synchronization frequency is
the average frequency ωavg = 1

n

∑n
i=1 ωi, and, given phase cohesiveness in

∆̄(γ) for some fixed γ < π/2, the exponential synchronization rate is no
worse than λfs = K cos(γ); and

4) phase synchronization: if ωi = s ∈ R for all i ∈ {1, . . . , n}, then for
every θ(0) ∈ ∆̄(γ), γ ∈ [0, π[, the phases synchronize exponentially to the
average phase θavg(t) := 1

n

∑n
i=1 θ(0) + s · t (mod 2π) and the exponential

synchronization rate is no worse than λps = K sinc(γ).
To compare the bound (4.1) to the bounds presented in Section 3, we note from

the proof of Theorem 4.1 that our bound (4.1) can be equivalently stated as K >
(ωmax−ωmin)/ sin(γ) and thus improves the sufficient bounds [15, 31, 17, 46, 20, 26].
In the simple case n = 2 analyzed in Example 2.2, the bound (4.1) is obviously exact
and also equals the necessary bound (3.3). Furthermore, Theorem 4.1 fully generalizes
the observations in Example 2.2 to the n-dimensional case. In the infinite-dimensional
case the bound (4.1) is tight with respect to the necessary bound for a bipolar distri-
bution ωi ∈ {ωmin, ωmax} derived in [2, 24, 52]. Note that condition (4.1) guarantees
synchronization for arbitrary distributions of ωi supported in [ωmin, ωmax], which can
possibly be uncertain, time-varying (addressed in detail in Subsection 4.2), or even
unknown. Additionally, Theorem 4.1 also guarantees a larger region of attraction
θ(0) ∈ ∆(γmax) for synchronization than [15, 31, 17, 46, 20, 26, 21, 28].

Besides the necessary and sufficient bound (4.1), Theorem 4.1 gives guaranteed
exponential convergence rates for frequency and phase synchronization, and it estab-
lishes a practical stability result in the sense that the multiplicative gap Kcritical/K in
the bound (4.1) determines the admissible initial and the guaranteed ultimate phase
cohesiveness as well as the guaranteed asymptotic magnitude r of the order parameter.
In view of this result, the convergence properties of the Kuramoto model (1.1) are best
described by the control-theoretical terminology “practical phase synchronization.”

Finally, we remark that statement 4) follows directly and without further analysis
from the proof of phase cohesiveness and frequency synchronization. Of course, when
phase synchronization is analyzed separately, a stronger result with almost global
region of attraction can be derived, see [42, Corollary 6.11] and [47, Theorem 1].

The proof of Theorem 4.1 relies on a contraction argument in combination with
a consensus analysis to show that (i) implies (ii) and thus also 1) - 4) for all natural
frequencies supported on [ωmin, ωmax]. In order to prove the implication (ii) =⇒
(i), we show that the bound (4.1) is tight: if (i) is not satisfied, then exponential
synchronization cannot occur for a bipolar distribution of the natural frequencies.
Finally, the equivalence (i), (ii) ⇔ (iii) follows from the definition of exponential
synchronization and by basic arguments from ordinary differential equations

Proof. Sufficiency (i) =⇒ (ii): We start by proving the positive invariance
of ∆̄(γ), that is, phase cohesiveness in ∆̄(γ) for some γ ∈ [0, π]. Recall the geodesic
distance on the torus T1 and define the non-smooth functionV : Tn → [0, π],

V (ψ) = max{|ψi − ψj | | i, j ∈ {1, . . . , n}}.

The arc containing all initial phases has two boundary points: a counterclockwise
maximum and a counterclockwise minimum. If we let Imax(ψ) (respectively Imin(ψ))
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denote the set indices of the angles ψ1, . . . , ψn that are equal to the counterclockwise
maximum (respectively the counterclockwise minimum), then we may write

V (ψ) = |ψm′ − ψ`′ |, for all m′ ∈ Imax(ψ) and `′ ∈ Imin(ψ).

By assumption, the angles θi(t) belong to the set ∆̄(γ) at time t = 0. We aim to
show that they remain so for all subsequent times t > 0. Note that θ(t) ∈ ∆̄(γ) if and
only if V (θ(t)) ≤ γ ≤ π. Therefore, ∆̄(γ) is positively invariant if and only if V (θ(t))
does not increase at any time t such that V (θ(t)) = γ. The upper Dini derivative of
V (θ(t)) along the dynamical system (1.1) is given by [37, Lemma 2.2]

D+V (θ(t)) = lim
h↓0

sup
V (θ(t+ h))− V (θ(t))

h
= θ̇m(t)− θ̇`(t) ,

where m ∈ Imax(θ(t)) and ` ∈ Imin(θ(t)) are indices with the properties that θ̇m(t) =
max{θ̇m′(t) | m′ ∈ Imax(θ(t))} and θ̇`(t) = min{θ̇`′(t) | `′ ∈ Imin(θ(t))}. Written out
in components D+V (θ(t)) takes the form

D+V (θ(t)) = ωm − ω` −
K

n

n∑
i=1

(
sin(θm(t)− θi(t)) + sin(θi(t)− θ`(t))

)
.

Note that the index i in the upper sum can be evaluated for i ∈ {1, . . . , n}, and
for i = m and i = ` one of the two sinusoidal terms is zero and the other one
achieves its maximum value in ∆̄(γ). In the following we apply classic trigonometric
arguments from the Kuramoto literature [15, 46, 20]. The trigonometric identity
sin(x) + sin(y) = 2 sin(x+y2 ) cos(x−y2 ) leads to

D+V (θ(t)) = ωm − ω` −
K

n

n∑
i=1

(
2 sin

(
θm(t)− θ`(t)

2

)
× cos

(
θm(t)− θi(t)

2
− θi(t)− θ`(t)

2

))
. (4.2)

The equality V (θ(t)) = γ implies that, measuring distances counterclockwise and
modulo additional terms equal to multiples of 2π, we have θm(t) − θ`(t) = γ, 0 ≤
θm(t)− θi(t)≤γ, and 0≤θi(t)− θ`(t)≤γ. Therefore, D+V (θ(t)) simplifies to

D+V (θ(t)) ≤ ωm − ω` −
K

n

n∑
i=1

(
2 sin

(γ
2

)
cos

(γ
2

))
.

Reversing the identity from above as 2 sin(x) cos(y) = sin(x− y) + sin(x+ y) yields

D+V (θ(t)) ≤ ωm − ω` −
K

n

n∑
i=1

sin(γ) = ωm − ω` −K sin(γ) .

It follows that the length of the arc formed by the angles is non-increasing in ∆̄(γ) if
for any pair {m, `} it holds that K sin(γ) ≥ ωm − ω`, which is true if and only if

K sin(γ) ≥ Kcritical , (4.3)

where Kcritical is as stated in equation (4.1). For γ ∈ [0, π] the left-hand side of (4.3) is
a concave function of γ that achieves its maximum at γ∗ = π/2. Therefore, there exists
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an open set of arc lengths γ ∈ [0, π] satisfying equation (4.3) if and only if equation
(4.3) is true with the strict equality sign at γ∗ = π/2, which corresponds to equation
(4.1) in the statement of Theorem 4.1. Additionally, if these two equivalent statements
are true, then there exists a unique γmin ∈ [0, π/2[ and a γmax ∈ ]π/2, π] that satisfy
equation (4.3) with the equality sign, namely sin(γmin) = sin(γmax) = Kcritical/K.
For every γ ∈ [γmin, γmax] it follows that the arc-length V (θ(t)) is non-increasing, and
it is strictly decreasing for γ ∈ ]γmin, γmax[. Among other things, this shows that
statement (i) implies statement 1).

The frequency dynamics of the Kuramoto model (1.1) can be obtained by differ-
entiating the Kuramoto model (1.1) as

d

d t
θ̇i =

∑n

j=1
aij(t) (θ̇j − θ̇i) , (4.4)

where aij(t) = (K/n) cos(θi(t)− θj(t)). In the case that K > Kcritical, we just proved
that for every θ(0) ∈ ∆(γmax) and for all γ ∈ ]γmin, γmax] there exists a finite time
T ≥ 0 such that θ(t) ∈ ∆̄(γ) for all t ≥ T , and consequently, the terms aij(t) are
strictly positive for all t ≥ T . Notice also that system (4.4) evolves on the tangent
space of Tn, that is, the Euclidean space Rn. Now fix γ ∈ ]γmin, π/2[ and let T ≥ 0
such that aij(t) > 0 for all t ≥ T , and note that the frequency dynamics (4.4) can be
analyzed as the linear time-varying consensus system

d

d t
θ̇ = −L(t) θ̇ ,

where L(t) = diag(
∑n
j 6=i aij(t)) − A(t)) is a symmetric, fully populated, and time-

varying Laplacian matrix corresponding to the graph induced by A(t). For each time
instant t ≥ T , the weights aij(t) are strictly positive, bounded, and continuous
functions of time. Consequently, for each t ≥ T the graph corresponding to L(t)
is always complete and connected. Thus, for each t ≥ 0 the unique eigenvector
corresponding to the zero eigenvalue is 1n×1 and 1Tn×1

d
d t θ̇ = 0. It follows that∑n

i=1 θ̇i(t) =
∑n
i=1 ωi = n · ωavg is a conserved quantity. Consider the disagreement

vector δ̇ = θ̇−ωavg1n×1, as an error coordinate satisfying 1Tn×1δ̇ = 0, that is, δ̇ lives in
the disagreement eigenspace of dimension n− 1 with normal vector 1n×1. Since ωavg

is constant and ker(L(t))≡span(1n×1), the dynamics (4.4) read in δ̇-coordinates as

d

d t
δ̇ = −L(t) δ̇ . (4.5)

Consider the disagreement function δ̇ 7→ ‖δ̇‖2 = δ̇T δ̇ and its derivative along the
disagreement dynamics (4.5) which is d

d t ‖δ̇‖
2 = −2 δ̇TL(t)δ̇. By the Courant-Fischer

Theorem, the time derivative of the disagreement function can be upper-bounded
(point-wise in time) by the second-smallest eigenvalue of the Laplacian L(t), i.e.,
the algebraic connectivity λ2(L(t)), as d

d t ‖δ̇‖
2 ≤ −2λ2(L(t))‖δ̇‖2. The algebraic

connectivity λ2(L(t)) can be lower-bounded as λ2(L(t)) ≥ Kmini,j∈{1,...,n}{cos(θi −
θj)| θ ∈ ∆̄(γ)} ≥ K cos(γ) = λfs . Thus, the derivative of the disagreement function
is bounded as d

d t ‖δ̇‖
2 ≤ −2λfs‖δ̇‖2. The Bellman-Gronwall Lemma [32, Lemma A.1]

yields that the disagreement vector δ(t) satisfies ‖δ̇(t)‖ ≤ ‖δ̇(0)‖e−λfst for all t ≥ T .
This proves statement 3) and concludes the proof of the sufficiency (i) =⇒ (ii).

Necessity (ii) =⇒ (i): To show that the critical coupling in condition (4.1)
is also necessary for synchronization, it suffices to construct a counter example for
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which K ≤ Kcritical and the oscillators do not achieve exponential synchronization
even though all ωi ∈ [ωmin, ωmax] and θ(0) ∈ ∆(γ) for every γ ∈ ]π/2, π]. A basic
instability mechanism under which synchronization breaks down is caused by a bipolar
distribution of the natural frequencies, as shown in Example 2.2.

Let the index set {1, . . . , n} be partitioned by the two non-empty sets I1 and I2.
Let ωi = ωmin for i ∈ I1 and ωi = ωmax for i ∈ I2, and assume that at some time
t ≥ 0 it holds that θi(t) =−γ/2 for i ∈ I1 and θi(t) = +γ/2 for i ∈ I2 and for some
γ ∈ [0, π[. By construction, at time t all oscillators are contained in an arc of length
γ ∈ [0, π[. Assume now that K <Kcritical and the oscillators synchronize. Consider
the evolution of the arc length V (θ(t)) given as in (4.2) by

D+V (θ(t)) = ωm − ω` −
K

n

∑
i∈I1

(
2 sin

(
θm(t)− θ`(t)

2

)
× cos

(
θm(t)− θi(t)

2
− θi(t)− θ`(t)

2

))
− K

n

∑
i∈I2

(
2 sin

(
θm(t)− θ`(t)

2

)
cos

(
θm(t)− θi(t)

2
− θi(t)− θ`(t)

2

))
,

where the summation is split according to the partition of {1, . . . , n} into I1 and I2.
By construction, we have that ` ∈ I1, m ∈ I2, ω` = ωmin, ωm = ωmax, θi(t) = θ`(t) =
−γ/2 for i ∈ I1, and θi(t) = θm(t) = +γ/2 for i ∈ I2. Thus, D+V (θ(t)) simplifies to

D+V (θ(t)) = ωmax−ωmin−
K

n

∑
i∈I1

(
2 sin

(γ
2

)
cos

(γ
2

))
−K
n

∑
i∈I2

(
2 sin

(γ
2

)
cos

(γ
2

))
.

Again, we reverse the trigonometric identity via 2 sin(x) cos(y) = sin(x−y)+sin(x+y),
unite both sums, and arrive at

D+V (θ(t)) = ωmax − ωmin −K sin(γ) . (4.6)

Clearly, for K < Kcritical the arc length V (θ(t)) = γ is increasing for any arbitrary
γ ∈ [0, π]. Thus, the phases are not bounded in ∆̄(γ). This contradicts the assumption
that the oscillators synchronize for K < Kcritical from every initial condition θ(0) ∈
∆̄(γ). Thus, Kcritical provides the exact threshold. For K = Kcritical, we know from
[41, 3] that phase-locked equilibria have a zero eigenvalue with a two-dimensional
Jacobian block, and thus synchronization cannot occur. This instability via a two-
dimensional Jordan block is also visible in (4.6) since D+V (θ(t)) is increasing for
θ(t) ∈ ∆(γ), γ ∈ ]π/2, π] until all oscillators change orientation, just as in Example
2.2. This concludes the proof of the necessity (ii) =⇒ (i).

Sufficiency (i),(ii) =⇒ (iii): Assume that (i) and (ii) hold and exponen-
tial synchronization occurs. When formulating the Kuramoto model (1.1) in a ro-
tating frame with frequency ωavg, statement 3) implies exponential convergence of
the frequencies θ̇i(t) to zero. Hence, for all θ(0) ∈ ∆(γmax) every phase θi(t) con-
verges exponentially to a constant limit phase given by θi,sync , limt→∞ θi(t) =
θi(0) +

∫∞
0
θ̇i(τ) dτ , which corresponds to an equilibrium of the Kuramoto model

(1.1) formulated in a rotating frame. Furthermore, statement 1) implies that these
equilibria (θ1,sync, . . . , θn,sync) are contained in ∆̄(γmin). Finally, recall from equation
(4.4) that the Jacobian J(θsync) of the Kuramoto model (1.1) is given by the Laplacian
matrix with weights aij(θsync) = (K/n) cos(θi,sync− θj,sync). For any θsync ∈ ∆̄(γmin),
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the weights aij(θsync) are strictly positive and the Laplacian matrix J(θsync) has n−1
stable eigenvalues and one zero eigenvalue with eigenspace 1n×1 corresponding to the
translational invariance of the angular variable. Hence, if conditions (i) and (ii) hold,
then there exists a locally exponentially stable synchronized solution θsync ∈ ∆̄(γmin).

Necessity (iii) =⇒ (i),(ii): Conversely, assume that condition (i) does not
hold, that is, K ≤ Kcritical = ωmax − ωmin. We prove the necessity of (iii) again by
invoking a bipolar distribution of the natural frequencies. In this case, it is known that
for K = Kcritical = ωmax−ωmin there exists a unique equilibrium (in a rotating frame
with frequency ωavg), and for K < Kcritical there exists no equilibrium [52, Section 4].
In the latter case, synchronization cannot occur. In the former case, the equilibrium
configuration corresponds to the phases arranged in two clusters (sorted according
to the bipolar distribution) which are exactly π/2 apart [52, Section 4]. Finally,
note that such an equilibrium configuration is unstable, as shown by equation (4.6).
We remark that the same conclusions can alternatively be drawn from the implicit
equations (3.5)-(3.6) for the critical coupling. This proves the necessity (iii)⇒ (i),(ii).

By statement 1), the oscillators are ultimately phase cohesive in ∆̄(γmin). It fol-
lows from Lemma 2.1 that the asymptotic magnitude r of the order parameter satisfies
1 ≥ r ≥ cos(γmin/2). The trigonometric identity cos(γmin/2) =

√
(1 + cos(γmin))/2

together with a Pythagorean identity yields then the bound in statement 2).
In case that all natural frequencies are identical, that is, ωi = s for all i ∈

{1, . . . , n}, statement 1) implies that γmin = 0 and γmax ↑ π. In short, the phases
synchronize for every θ(0) ∈ ∆(π). The coordinate transformation θ 7→ θ+ s · t yields
the dynamics θ̇i = −

∑n
j=1 bij(t)(θi − θj), where bij(t) = (K/n) sinc(θi(t) − θj(t)) is

strictly positive for all t ≥ 0 due to the positive invariance statement 1). Statement
4) can then be proved along the lines of statement 3).

4.1. Statistical studies. Theorem 4.1 places a hard bound on the critical cou-
pling strength Kcritical for all distributions of ωi supported on the compact interval
[ωmin, ωmax]. This set of admissible distributions includes the worst-case bipolar dis-
tribution ωi ∈ {ωmin, ωmax} used in the proof of Theorem 4.1. For a particular
distribution g(ω) supported on [ωmin, ωmax] the bound (4.1) is only sufficient and pos-
sibly a factor 2 larger than the necessary bound (3.3). The exact critical coupling
for g(ω) lies somewhere in between and can be obtained by solving the implicit equa-
tions (3.5)-(3.6). Notice that the continuum limit conditions in Subsection 3.1 predict
that Kcritical achieves its smallest value for a uniform distribution g(ω) = 1/2.

Since the bound (4.1) on Kcritical was shown to be exact for the worst-case bipolar
distribution, the following example illustrates the other extreme case of a uniform
distribution g(ω) = 1/2 supported for ωi ∈ [−1, 1]. Figure 4.1 reports numerical
findings on the critical coupling strength for n ∈ [2, 300] oscillators in a semi-log plot,
where the coupling gains for each n are averaged over 1000 simulations.

First, note that the three displayed bounds are equivalent for n = 2 oscillators.
As the number of oscillators increases, the sufficient bound (4.1) clearly converges to
ωmax − ωmin = 2, the width of the distribution g(ω), and the necessary bound (3.3)
accordingly to half of the width. The exact bound (3.5)-(3.6) quickly converges to
4(ωmax−ωmin)/(2π) = 4/π in agreement with the results (3.1) and (3.2) predicted in
the case of a continuum of oscillators. It can be observed that the exact bound (3.5)-
(3.6) is closer to the sufficient and tight bound (4.1) for a small number of oscillators,
i.e., when there are few outliers increasing the width ωmax − ωmin. For large n, the
sample size of ωi increases and thus also the number of outliers. In this case, the
exact bound (3.5)-(3.6) is closer to the necessary bound (3.3).
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Fig. 4.1. Analysis of the necessary and explicit bound (3.3) (♦), the exact and implicit bound
(3.5)-(3.6) (◦), and the sufficient, tight, and explicit bound (4.1) (�)

4.2. Extension to time-varying natural frequencies. One motivation to
prefer the explicit and tight bound (4.1) over the implicit and exact bound (3.5)-(3.6)
are time-varying natural frequencies ωi(t) bounded in [ωmax, ωmin]. We distinguish
the two cases of switching and slowly and smoothly time-varying natural frequencies,
and we note that Theorem 4.1 and its proof can be easily extended to these cases.

4.2.1. Piece-wise constant ωi(t). Consider a sequence of time instances {tk}k∈N
such that t0 = 0 and tk+1 > tk for all k ∈ N. Assume that the natural frequencies
ωi(t) are constant and bounded in [ωmax, ωmin] within each interval t ∈ [tk, tk+1[. At
time-point tk+1 the natural frequencies may be discontinuous and switch. Note that
the synchronization frequency and the corresponding phase-locked equilibria (on a
rotating frame) will change with every switching instant.

In this case, between any two switching instants, t ∈ [tk, tk+1[, our analysis still
holds and Theorem 4.1 can be applied without any modification. For all time t ≥ 0
and for all θ ∈ ∆(γ), γ ∈ ]γmin, γmax], the arc length V (θ(t)) is strictly and uniformly
decreasing for any switching sequence {tk}k∈N, i.e, it is a so-called common Lyapunov
function. As an outcome, the ultimate phase cohesiveness in ∆̄(γmin) will always
be reached asymptotically despite the switching natural frequencies. Furthermore, if
there exists a uniform dwell time ε > 0 such that tk+1− tk ≥ ε for all k ∈ N, then the
derived synchronization rate λfs admits an estimate on limt↑tk+1 ‖θ̇(t)−ωavg(t)1n×1‖2,
that is, how close the oscillators come to frequency synchronization within each in-
terval [tk, tk+1[. Figure 4.2 illustrates all of these conclusions in a simulation.

In comparison, the analysis schemes [53, 3, 41] have to re-compute the exact
implicit bound (3.5)-(3.6) after every switching instant, since they explicitly make use
of the values of ωi and the corresponding equilibria. Obviously, the analysis schemes
[53, 3, 41] fail entirely in the case of time-varying frequencies analyzed in the following.

4.2.2. Slowly and smoothly varying ωi(t). For smooth functions ωi(t) bounded
in [ωmax, ωmin], the proof of phase cohesiveness can be adapted without major modi-
fications. However, the Kuramoto frequency dynamics (4.4) are rendered to

d

d t
θ̇i = ω̇i(t) +

∑n

j=1
aij(t) (θ̇j − θ̇i) , (4.7)
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Fig. 4.2. Simulation of a network of n = 10 Kuramoto oscillators satisfying K/Kcritical = 1.1,
where the natural frequencies ω1(t) and ωn(t) (displayed in red dashed lines) are switching between
constant values in [ωmin, ωmax] = [0, 1]. The simulation illustrates the phase cohesiveness of the
angles θ(t) in ∆̄(γmin), the exponential convergence of the frequencies θ̇(t) towards ωavg(t) between
consecutive switching instances, as well as the monotonicity of V (θ(t)) in ∆̄(γ) for γ ∈ [γmin, γmax].

where aij(t) = (K/n) cos(θi(t) − θj(t)) as before. The forced frequency dynamics
(4.7) can be analyzed on the subspace orthogonal to 1n×1 by considering the time-
varying disagreement vector δ̇(t) , θ̇(t) − ωavg(t)1n×1, as an error coordinate satis-
fying 1Tn×1δ̇(t) = 0. The frequency dynamics (4.7) read then in δ̇-coordinates as

d

d t
δ̇ = Ω̇(t)− L(t) δ̇ , (4.8)

where Ω̇(t) , ω̇(t)− ω̇avg(t)1n×1. On the subspace orthogonal to 1n×1 the dynamics
(4.8) are exponentially stable for Ω̇(t) ≡ 0, and a time-varying equilibrium frequency
can be uniquely obtained as δ̇(t) = L†(t)Ω̇(t), where L† is the Moore-Penrose inverse
of L. In this case, the standard theory of slowly varying systems [32, Chapter 9.6] can
be applied for a slowly varying Ω̇(t) satisfying ‖Ω̈(t)‖∞ ≤ ε for ε sufficiently small.

In summary, if each ωi(t) is a smooth, bounded in [ωmax, ωmin], and the relative ac-
celeration ‖Ω̈(t)‖∞ = ‖ω̈(t)−ω̈avg(t)1n×1‖∞ ≤ ε is sufficiently small, then there exists
T ≥ 0 and k = k(ε) > 0 such that the frequencies satisfy ‖δ̇(t)−L†(t)Ω̇(t)‖∞ ≤ k for
all t ≥ T . Moreover, if Ω̈(t) → 0 as t → ∞, then δ̇(t) → L†(t)Ω̇(t) as t → ∞. In
particular, ε and k depend on the phase cohesiveness in ∆̄(γ), see [32, Theorem 9.3]
for details. Figure 4.3 illustrates these conclusions with a simulation of n = 10 oscil-
lators. The authors of [26, 19] come to a similar conclusion when analyzing the effects
of time-varying frequencies via input-to-state stability arguments or in simulations.

5. Synchronization of Multi-Rate Kuramoto Models. In this section we
extend the results in Theorem 4.1 to the multi-rate Kuramoto model (1.3). For the
special case of second-order oscillators (m = n) with unit dampingDi = 1 and uniform
inertia Mi = M > 0, the literature [14, 50, 49, 30, 29, 1, 2] on the inertial effects on
synchronization is controversial. Here we will rigorously prove that the inertial terms
do not affect the location and local stability properties of equilibria of the multi-rate
Kuramoto model (1.3). In particular, the necessary and sufficient synchronization
conditions as well as the synchronization frequency are independent of the inertiae Mi;
they rather depend on the terms Di mimicking viscous damping and time constants.

5.1. A One-Parameter Family of Dynamical Systems and its Proper-
ties. In this subsection we will link the multi-rate Kuramoto model (1.3) and the first-
order Kuramoto model (1.1) through a parametrized system. Consider for n1, n2 ≥ 0
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Fig. 4.3. Simulation of a network of n = 10 Kuramoto oscillators satisfying K/Kcritical = 1.1,
where the natural frequencies ωi : R≥0 → [ωmin, ωmax] = [0, 1] are smooth, bounded, and distinct
sinusoidal functions. Ultimately, each natural frequency ωi(t) converges to ωi + sin(πt) with ωi ∈
[0, 1], and thus the relative acceleration Ω̈(t) = ω̈(t)− ω̈avg(t)1n×1 converges to zero. The simulation
illustrates the phase cohesiveness of the angles θ(t) in ∆̄(γmin), and the ultimate boundedness of
the frequency variations (disagreement vector) δ̇(t) = θ̇(t) − ωavg(t)1n×1 and their convergence to
zero. The simulation further confirms the monotonicity of V (θ(t)) in ∆̄(γ) for γ ∈ [γmin, γmax].
Ultimately, V (θ(t)) converges to a constant value (strictly below γmin) as the frequencies converge.

and λ ∈ [0, 1] the one-parameter family Hλ of dynamical systems combining dissipa-
tive Hamiltonian and gradient-like dynamics together with external forcing as

Hλ :

D1ẋ1 = F1 −∇1H(x) ,[
In2 0
0 M

] [
ẋ2

ẋ3

]
=

[
λD−1

2 F2

(1− λ)F2

]
+(

(1− λ)
[

0 In2

−In2 0

]
−

[
λD−1

2 0
0 D2

]) [
∇2H(x)
∇3H(x)

]
,

(5.1)

where x = (x1, x2, x3) ∈ X1 ×X2 × Rn2 = X is the state, and the sets X1 and X2 are
smooth manifolds of dimensions n1 and n2, respectively. The matrices D1 ∈ Rn1×n1 ,
D2 ∈ Rn2×n2 and M ∈ Rn2×n2 are positive definite, 0 are zero matrices of appropriate
dimension3, F1 ∈ Rn1 and F2 ∈ Rn2 are constant forcing terms, and H : X → R is
a smooth potential function with partial derivatives ∇iH(x) = ∂H(x)/∂xi, gradient
vector ∇H(x) = (∂H(x)/∂x)T ∈ R(n1+2n2)×1, and the Hessian matrix ∇2H(x) ∈
R(n1+2n2)×(n1+2n2).

The parameterized system (5.1) continuously interpolates, as a function of λ ∈
[0, 1], between gradient-like and mixed dissipative Hamiltonian/gradient-like dynam-
ics. For λ = 1, the system (5.1) reduces to gradient-like dynamics with forcing term
F=[FT1 , F

T
2 ,0]T and time constant (or system metric) D=blkdiag(D1, D2, D

−1
2 M) as

H1 : Dẋ = F−∇H(x) . (5.2)

For λ = 0, the dynamics (5.1) reduce to gradient-like dynamics for x1 and dissipative
Hamiltonian (or Newtonian) dynamics for (x2, x3) written as

H0 :
D1ẋ1 = F1 −∇1H(x) ,[

In2 0
0 M

][
ẋ2

ẋ3

]
=

[
0
F2

]
+

([
0 In2

−In2 0

]
−

[
0 0
0 D2

]) [
∇2H(x)
∇3H(x)

]
.

(5.3)

3We did not index the zero matrices 0 according to their dimension to avoid notational clutter.
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It turns out that, independently of λ ∈ [0, 1], all parameterized systems of the form
(5.1) have the same equilibria with the same local stability properties determined by
potential function H(x). The following theorem summarizes these facts.

Theorem 5.1 (Properties of the Hλ family). Consider the one-parameter
family Hλ, λ ∈ [0, 1], of dynamical systems (5.1) with arbitrary positive definite ma-
trices D1, D2, and M . The following statements hold:

1. Equilibria: For all λ ∈ [0, 1] the equilibria of Hλ are given by the set E ,
{x ∈ X : ∇H(x) = F}; and

2. Local stability: For any equilibrium x∗ ∈ E and for all λ ∈ [0, 1], the
inertia of the Jacobian of Hλ is given by the inertia of −∇2H(x∗) and the
corresponding center-eigenspace is given by the nullspace of ∇2H(x∗).

Statements 1) and 2) assert that normal hyperbolicity of the critical points of
H(x) can be directly related to local exponential (set) stability for any λ∈ [0, 1]. This
implies that all vector fields Hλ, λ ∈ [0, 1], are locally topologically conjugate [43] near
a hyperbolic equilibrium point x∗ ∈ E . In particular, near x∗ ∈ E , trajectories of
the gradient vector field (5.2) can be continuously deformed to match trajectories of
the Hamiltonian vector field (5.3) while preserving parameterization of time. This
topological conjugacy holds also for hyperbolic equilibrium trajectories [18, Theorem
6] considered in synchronization. The similarity between second-order Hamiltonian
systems and the corresponding first-order gradient flows is well-known in mechanical
control systems [33, 34], in dynamic optimization [4, 5, 27], and in transient stability
studies for power networks [13, 12, 16], but we are not aware of any result as general as
Theorem 5.1. In [13, 12, 16], statements 1) and 2) are proved under the more stringent
assumptions that Hλ has a finite number of isolated and hyperbolic equilibria.

remark 5.2 (Extensions on Euclidean state spaces). If the dynamical sys-
tem Hλ is analyzed on the Euclidean space Rn1+2n2 , then it can be verified that
the modified potential function H̃ : Rn1+2n2 → R, H̃(x) = −FT1 x1 − FT2 x2 +
H(x1, x2,M

1/2x3) is non-increasing along any forward-complete solution x : R≥0 →
Rn1+2n2 and for all λ ∈ [0, 1]. Furthermore, if the sublevel set Ωc = {x ∈ X :
H̃(x) ≤ c} is compact, then every solution initiating in Ωc is bounded and forward-
complete, and by the invariance principle [32, Theorem 4.4] it converges to the set
E ∩ Ωc, independently of λ ∈ [0, 1]. These statements can be refined under further
structural assumptions on the potential function H̃(x), and various other minimizing
properties can be deduced, see [4, 5, 27]. Additionally, if H̃(x) constitutes an energy
function, if all equilibria are hyperbolic, and if a one-parameter transversality condi-
tion is satisfied, then the separatrices of system (5.1) can be characterized accurately
[13, 12, 16]. For zero forcing F = 0, these convergence statements also hold on the
possibly non-Euclidean space X , and for non-zero forcing they hold locally on X . �

Proof. To prove statement 1), we reformulate the parameterized dynamics (5.1) as ẋ1

ẋ2

Mẋ3

 =

D−1
1 0 0
0 λD−1

2 −(1− λ)In2

0 (1− λ)In2 D2


︸ ︷︷ ︸

,Wλ

F1 −∇1H(x)
F2 −∇2H(x)
−∇3H(x)


︸ ︷︷ ︸

=F−∇H(x)

.

It follows from the Schur determinant formula [56] that det(Wλ) = det(D−1
1 )(λ +

(1− λ)2) is positive for all λ ∈ [0, 1]. Hence, Wλ is nonsingular for all λ ∈ [0, 1], and
the equilibria of (5.1) are given by the set E = {x ∈ X : ∇H(x) = F}. To prove
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statement 2) we analyze the Jacobian of Hλ at an equilibrium x∗ ∈ E given by

Jλ(x∗) =

 D−1
1 0 0
0 λD−1

2 (λ− 1)M−1

0 (1− λ)M−1 M−1D2M
−1


︸ ︷︷ ︸

,Sλ

[
−In1+n2 0

0 −M

]
∇2H(x∗)︸ ︷︷ ︸

,S(x∗)

. (5.4)

Again, we obtain det(Sλ) = det(D−1
1 ) det(D−1

2 ) det(M−1D2M
−1)(λ+(1−λ)2). Thus,

Sλ is nonsingular for λ ∈ [0, 1], and the nullspace of Jλ(x∗) is given by ker∇2H(x∗)
(independently of λ ∈ [0, 1]). To show that the stability properties of the equilibrium
x∗ ∈ E are independent of λ ∈ [0, 1], we prove that the inertia of the Jacobian Jλ(x∗)
depends only on S(x∗) and not on λ ∈ [0, 1]. For the invariance of the inertia we
appeal to the main inertia theorem for positive semi-definite matrices [11, Theorem
5]. Note that Jλ(x∗) and Jλ(x∗)T have the same eigenvalues. Let A , Jλ(x∗)T and
P , S(x∗), and consider the matrix Q defined via the Lyapunov equality as

Q ,
1
2

(
AP + PAT

)
= P

D−1
1 0 0
0 λD−1

2 0
0 0 M−1D2M

−1

P .
Note that Q is positive semidefinite for λ ≥ 0, and for λ 6= 0 the nullspaces of Q and
P coincide, i.e., kerQ = kerP . Hence, for λ ∈ ]0, 1] the assumptions of [11, Theorem
5] are satisfied, and it follows that the non-zero inertia of A = Jλ(x∗)T (restricted
to image of A) corresponds to the non-zero inertia of P . Hence, the non-zero inertia
of Jλ(x∗) is independent of λ ∈ ]0, 1], and possible zero eigenvalues correspond to
kerJλ(x∗) = ker∇2H(x∗). To handle the case λ = 0 we invoke continuity arguments.
Since the eigenvalues of Jλ(x∗) are continuous functions of the matrix elements, the
inertia of J0(x∗) is the same as the inertia of Jλ(x∗) for λ > 0 sufficiently small. Since
the inertia of Jλ(x∗), λ ∈ ]0, 1], equals the inertia of P (which is independent of λ), it
follows that the inertia of Jλ(x∗) equal the inertia of P for all λ ∈ [0, 1].

Finally, since blkdiag(In1+n2 ,M) is positive definite, Sylvester’s inertia theorem
[11] asserts that the inertia of P = blkdiag(In1+n2 ,M)(−∇2H(x∗)) equals the inertia
of −∇2H(x∗). In conclusion, the inertia and the nullspace of Jλ(x∗) equal the inertia
of −∇2H(x∗) and ker∇2H(x∗). This completes the proof of Theorem 5.1.

5.2. Equivalence of Local Synchronization Conditions. As a consequence
of Theorem 5.1, we can link synchronization in the multi-rate Kuramoto model (1.3)
and in the regular Kuramoto model (1.1). Since Theorem 5.1 is valid only for equilib-
ria, we convert synchronization to stability of an equilibrium manifold by changing co-
ordinates to a rotating frame. The explicit synchronization frequency ωsync ∈ R of the
multi-rate Kuramoto model (1.3) is obtained by summing over all equations (1.3) as∑m

i=1
Miθ̈i +

∑n

i=1
Diθ̇i =

∑n

i=1
ωi . (5.5)

In the frequency-synchronized case when all θ̈i = 0 and θ̇i = ωsync, equation (5.5) sim-
plifies to

∑n
i=1Diωsync =

∑n
i=1 ωi. We conclude that the synchronization frequency of

the multi-rate Kuramoto model is given by ωsync ,
∑n
i=1 ωi/

∑n
i=1Di. Accordingly,

define the first-order multi-rate Kuramoto model by dropping the inertia term as

Diθ̇i = ωi −
K

n

∑n

j=1
sin(θi − θj) , i ∈ {1, . . . , n} , (5.6)
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and the globally exponentially stable frequency dynamics as

d

dt
θ̇i = −M−1

i Di

(
θ̇i − ωsync

)
, i ∈ {1, . . . ,m} , (5.7)

where Mi, Di, ωi, and K take the same values as the corresponding parameters for
the multi-rate Kuramoto model (1.3). It can be verified that the multi-rate Kuramoto
model (1.3) and its first-order variant (5.6) have the same synchronization frequency.

Finally, let ω̃i , ωi −Diωsync and define the scaled Kuramoto model by

θ̇i = ω̃i −
K

n

∑n

j=1
sin(θi − θj) , i ∈ {1, . . . , n} , (5.8)

and its associated scaled frequency dynamics by

d

dt
θ̇i = −M−1

i Di θ̇i , i ∈ {1, . . . ,m} . (5.9)

The scaled model (5.8)-(5.9) corresponds to the dynamics (5.6)-(5.7) formulated in a
rotating frame with frequency ωsync and after normalizing all time constantsDi in (5.6).

Notice that the multi-rate Kuramoto model (1.3), its first-order variant (5.6)
together with frequency dynamics (5.7) (formulated in a rotating frame with frequency
ωsync), and the scaled Kuramoto model (5.8) together with scaled frequency dynamics
(5.9) are instances of the parameterized system (5.1) with the forcing terms ωi and
the potential H : Tn×Rm → R, H(θ, θ̇) = 1

2 θ̇
T θ̇− K

n

∑n
i,j=1 cos(θi−θj) defined up to

a constant value. In the sequel, we seek to apply Theorem 5.1 to these three models.
For a rigorous reasoning, we define a two-parameter family of functions φr,s :

R≥0 → T of the form φr,s(t) , r + s · t (mod 2π), where r ∈ T and s ∈ R. Consider
for (r1, . . . , rn) ∈ ∆̄(γ), γ ∈ [0, π[ the composite function

Φγ,s : R≥0 → Tn , Φγ,s(t) ,
(
φr1,s(t), . . . , φrn,s(t)

)
(5.10)

mimicking synchronized trajectories of the three Kuramoto models (1.3), (5.6), and
(5.8). We now have all ingredients to state the following result on synchronization.

Theorem 5.3. (Synchronization Equivalence) Consider the multi-rate Ku-
ramoto model (1.3), its first-order variant (5.6), and the scaled Kuramoto model (5.8)
with ω̃i = ωi−Di ωsync, where ωsync =

∑n
k=1 ωk/

∑n
k=1Dk. The following statements

are equivalent for any γ ∈ [0, π[, t ≥ 0, and any function Φγ,ωsync(t) defined in (5.10):
(i) (Φγ,ωsync(t), ωsync1m×1) parametrizes a locally exponentially stable synchro-

nized trajectory (θ(t), θ̇(t)) of the multi-rate Kuramoto model (1.3);
(ii) Φγ,ωsync(t) parametrizes a locally exponentially stable synchronized trajectory

θ(t) of the first-order multi-rate Kuramoto model (5.6); and
(iii) Φγ,0(t) parametrizes a locally exponentially stable synchronized equilibrium

trajectory θ(t) of the scaled Kuramoto model (5.8).
If the equivalent statements (i), (ii), and (iii) are true, then, locally near their respective
synchronization manifolds, the multi-rate Kuramoto model (1.3), its first-order vari-
ant (5.6) together with the frequency dynamics (5.7), and the scaled Kuramoto model
(5.8) together with the scaled frequency dynamics (5.9) are topologically conjugate.

For purely second-order Kuramoto oscillators (1.3) (with n = m), Theorem 5.1
and Theorem 5.3 essentially state that the locations and stability properties of the
foci of second-order Kuramoto oscillators (with damped oscillatory dynamics) are
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Fig. 5.1. Phase space plot of a network of n = 4 second-order Kuramoto oscillators (1.3) with
n = m (left plot) and the corresponding first-order scaled Kuramoto oscillators (5.8) together with
the scaled frequency dynamics (5.9) (right plot). The natural frequencies ωi, damping terms Di,
and coupling strength K are such that ωsync = 0 and K/Kcritical = 1.1. From the same initial
configuration θ(0) (denoted by �) both first and second-order oscillators converge exponentially to
the same nearby phase-locked equilibria (denoted by •) as predicted by Theorems 5.1 and 5.3.

equivalent to those of the nodes of the scaled Kuramoto model (5.8) and the scaled
frequency dynamics (5.9) (with overdamped dynamics), as illustrated in Figure 5.1.

Proof. By Definition, a synchronized trajectory of the multi-rate Kuramoto model
(1.3) is of the form (θ(t), θ̇(t)) ∈ (Φγ,ωsync(t), ωsync1m×1) for γ ∈ [0, π[ and t ≥ 0. In
a rotating frame with frequency ωsync, the multi-rate Kuramoto model (1.3) reads as

Mθ̈i +Diθ̇i = ω̃i −
K

n

∑n

j=1
sin(θi − θj) , i ∈ {1, . . . ,m} ,

Diθ̇i = ω̃i −
K

n

∑n

j=1
sin(θi − θj) , i ∈ {m+ 1, . . . , n} .

(5.11)

Hence, an exponentially synchronized trajectory of (5.11) is an equilibrium solu-
tion determined up to a translational invariance in S1 and satisfies (θ(t), θ̇(t)) ∈
(Φγ,0(t),0m×1). Hence, the exponentially-synchronized orbit (Φγ,0(t),0m×1), under-
stood as a geometric object in Tn × Rm, constitutes a one-dimensional equilibrium
manifold of the multi-rate Kuramoto model (5.11). After factoring out the trans-
lational invariance of the angular variable θ, the exponentially-synchronized orbit
(Φγ,0(t),0m×1) corresponds to an isolated equilibrium of (5.11) in the quotient space
Tn\S1×Rm. Since an isolated equilibrium of a smooth nonlinear system with bounded
and Lipschitz Jacobian is exponentially stable if and only if the Jacobian is a Hurwitz
matrix [32, Theorem 4.15], the locally exponentially stable orbit (Φγ,0(t),0m×1) must
be hyperbolic in the quotient space Tn \ S1 × Rm. Therefore, the equilibrium trajec-
tory (Φγ,0(t),0m×1) is exponentially stable in Tn ×Rm if and only if the Jacobian of
(5.11) evaluated along (Φγ,0(t),0m×1), has n+m− 1 stable eigenvalues and one zero
eigenvalue corresponding to the translational invariance in S1.

By an analogous reasoning we reach the same conclusion for the first-order multi-
rate Kuramoto model (5.6) (formulated in a rotating frame with frequency ωsync)
and for the scaled Kuramoto model (5.8): the exponentially-synchronized trajectory
Φγ,0(t) ∈ Tn is exponentially stable if and only if the Jacobian of (5.8) evaluated
along Φγ,0(t) has n − 1 stable eigenvalues and one zero eigenvalue. Finally, recall
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that the multi-rate Kuramoto model (5.11), its first-order variant (5.6) together with
frequency dynamics (5.7) (in a rotating frame), and the scaled Kuramoto model (5.8)
together with scaled frequency dynamics (5.9) are all instances of the parameterized
system (5.1). Therefore, by Theorem 5.1, the corresponding Jacobians have the same
inertia and local exponential stability of one system implies local exponential stability
of the other system. This concludes the proof of the equivalences (i) ⇔ (ii) ⇔ (iii).

We now prove the final conjugacy statement. By the generalized Hartman-
Grobman theorem [18, Theorem 6], the trajectories of the three vector fields (5.11),
(5.6)-(5.7) (formulated in a rotating frame), and (5.8)-(5.9) are locally topologically
conjugate to the flow generated by their respective linearized vector fields (locally
near (Φγ,0(t),0m×1)). Since the three vector fields (5.11), (5.6)-(5.7), and (5.8)-(5.9)
are hyperbolic with respect to (Φγ,0(t),0m×1) and their respective Jacobians have the
same hyperbolic inertia (besides the common one-dimensional center eigenspace cor-
responding to (Φγ,0(t),0m×1)), the corresponding three linearized dynamics are topo-
logically conjugate [43, Theorem 7.1]. In summary, the trajectories generated by the
three vector fields (5.11), (5.6)-(5.7) (formulated in a rotating frame), and (5.8)-(5.9)
are locally topologically conjugate near the equilibrium manifold (Φγ,0(t),0m×1).

remark 5.4 (Alternative ways from first to second-order Kuramoto
models). Alternative methods to relate stability properties from the first-order Ku-
ramoto model (1.1) to the multi-rate model (1.3) include second-order Gronwall’s
inequalities [14], strict Lyapunov functions for mechanical systems [33, 34], and sin-
gular perturbation analysis [21]. It should be noted that the approaches [14, 33, 34]
are limited to purely second-order systems, the second-order Gronwall inequality ap-
proach [14] has been carried out only for uniform inertia Mi = M and unit damping
Di = 1, and the Lyapunov approach [33, 34] is limited to potential-based Lyapunov
functions and seems not extendable to our contraction-based Lyapunov function used
in the proof of Theorem 4.1. Finally, the singular perturbation approach [21] requires
a sufficiently small inertia over damping ratio ε , maxi∈{1,...,m}{Mi/Di}.

As compared with these alternative methods, Theorem 5.3 applies to the multi-
rate Kuramoto model (1.3) with mixed first and second-order dynamics, for all values
of Mi > 0 and Di > 0, and without additional assumptions. Finally, it is instructive
to note that the first-order multi-rate Kuramoto dynamics (5.6) and the frequency dy-
namics (5.7) (in the time-scale t/ε) correspond to the reduced slow system and the fast
boundary layer model in the singular perturbation approach [21, Theorem IV.2]. �

5.3. Synchronization in the Multi-Rate Kuramoto Model. Theorems 5.1
and 5.3 together with Theorem 4.1 on the first-order Kuramoto model (1.1) allow us to
state our final conditions on synchronization in the multi-rate Kuramoto model (1.3).

Theorem 5.5. (Exponential Synchronization in the Multi-Rate Ku-
ramoto Model) Consider the set of multi-rate Kuramoto models (1.3) for all n ≥ 2,
for all m ∈ {0, 1, . . . , n}, for all positive inertiae Mj > 0, j ∈ {1, . . . ,m}, and for
Di > 0 and ωi ∈ R. Let ω̃i = ωi −Di ωsync, where ωsync =

∑n
k=1 ωk/

∑n
k=1Dk.

Exponential synchronization: The following two statements are equivalent:
(i) the coupling strength K is larger than the maximum non-uniformity among

the scaled natural frequencies, i.e., K > Kcritical , ω̃max − ω̃min; and
(ii) there exists an arc length γmin ∈ [0, π/2[ such that each multi-rate Kuramoto

model (1.3) satisfying ω̃i = ωi − Di ωsync ∈ [ω̃max, ω̃min], i ∈ {1, . . . , n},
has a locally exponentially stable synchronized solution with synchronization
frequency ωsync and is phase cohesive in ∆̄(γmin).
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Moreover, in either of the two equivalent cases (i) and (ii), the ratio Kcritical/K and
the arc length γmin ∈ [0, π/2[ are related uniquely via Kcritical/K = sin(γmin).

Phase synchronization: The following two statements are equivalent:
(iii) there exists a constant s̄ ∈ R such that ωi = Dis̄ for all i ∈ {1, . . . , n}; and
(iv) there exists an almost globally exponentially stable phase-synchronized solu-

tion with constant synchronization frequency ω̄sync ∈ R.
Moreover, in either of the two equivalent cases (iii) and (iv), the constant s̄ and the
synchronization frequency ω̄sync are related uniquely via s̄ ≡ ω̄sync, and the asymptotic
synchronization phase is given by

∑n
i=1Diθi(0)/

∑n
i=1Di + ω̄sync t (mod 2π).

The following remarks concerning Theorem 5.5 are in order. First, notice that
Theorem 5.5 is in perfect agreement with the results derived in [29] for the case of two
second-order Kuramoto oscillators. Second, Theorem 5.5 shows that phase synchro-
nization is independent of the inertial coefficients Mi, thereby improving the sufficient
conditions presented in [14, Theorems 4.1 and 4.2] and confirming the results in [2, 1]
derived for the infinite-dimensional case. Furthermore, phase synchronization occurs
almost globally which improves the region of attraction presented in [14] and natu-
rally generalizes the result known for the first-order model, see [42, Corollary 6.11]
and [47, Theorem 1]. Third, as in Section 4, the bound on Kcritical presented in (i) is
only tight and may be conservative for a particular set of natural frequencies. Since
the multi-rate Kuramoto model (1.3) is an instance of the parameterized system con-
sidered in Theorem 5.1, it has the same equilibria and the same stability properties
as the scaled Kuramoto model (5.8) (together with the frequency dynamics (5.9)).
Hence, the implicit formulae (3.5)-(3.6) can be applied to the scaled Kuramoto model
(5.8) to find the exact critical coupling for a given set of natural frequencies. Fourth,
we remark that every local bifurcation in the multi-rate Kuramoto model (1.3) is inde-
pendent of the inertiae Mi since local stability can be analyzed by means of the scaled
Kuramoto model (5.8), see Theorem 5.1. Moreover, the asymptotic magnitude of the
order parameter determined by the location of phase-locked equilibria is also indepen-
dent of the inertiae. Fifth and finally, Theorems 5.1 and 5.3 apply to any variant of
the multi-rate Kuramoto model (1.3) that can be written in the forced Hamiltonian
and gradient form (5.1) with normally hyperbolic equilibria. For example, the results
on almost global phase synchronization for certain non-complete coupling topologies
[44, 42, 10] and for state-dependent coupling weights [45] can be directly applied to
the multi-rate Kuramoto model (1.3).

Based on the results in this section, we conclude that the inertial terms do not
affect the location and local stability properties of synchronized trajectories in the
multi-rate Kuramoto model (1.3). However, the inertiae may still affect the transient
synchronization behavior, for example, the convergence rates, the shape of separatrices
and basins of attractions, and the qualitative (possibly oscillatory) transient dynamics.

Proof. We begin by proving the equivalence (i) ⇔ (ii). By Theorem 5.3, a locally
exponentially stable synchronized trajectory of the multi-rate Kuramoto model (1.3)
exists if and only if there exists a locally exponentially stable equilibrium of the corre-
sponding scaled Kuramoto model (5.8). The latter is true if and only if statement (i)
holds, see Theorem 4.1. Moreover, Theorem 4.1 asserts that a synchronized solution
is phase cohesive in ∆̄(γmin). This proves the equivalence (i) ⇔ (ii).

We next prove the implication (iv) =⇒ (iii). By assumption, there exist constants
θsync ∈ T and ω̄sync ∈ R such that θi(t) = θsync + ω̄synct (mod 2π), θ̇i(t) = ω̄sync, and
θ̈i(t) = 0 for i ∈ {1, . . . , n}. In the phase-synchronized case, the dynamics (1.3)
then read as Diω̄sync = ωi for all i ∈ {1, . . . , n}. Hence, a necessary condition for the
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existence of phase-synchronized solutions is that all ratios ωi/Di = ω̄sync are constant.
In order to prove the converse implication (iii) =⇒ (iv), let s̄ = ω̄sync and

consider the model (1.3) written in a rotating frame with frequency ω̄sync as

Mθ̈i +Diθ̇i = −K
n

n∑
i=1

sin(θi − θj) , i ∈ {1, . . . ,m} ,

Diθ̇i = −K
n

n∑
i=1

sin(θi − θj) , i ∈ {m+ 1, . . . , n} .
(5.12)

Note that (5.12) is an unforced and dissipative Hamiltonian system, and the corre-
sponding energy function V (θ, θ̇) = 1

2 θ̇
TMθ̇− K

n

∑n
i,j=1 cos(θi − θj) is non-increasing

along trajectories. Since the sublevel sets of V (θ, θ̇) are compact, the invariance prin-
ciple [32, Theorem 4.4] implies that every solution converges to set of equilibria. By
Theorem 5.3, we conclude that the phase-synchronized equilibrium of (5.12) is locally
exponentially stable if and only if the phase-synchronized equilibrium of the corre-
sponding scaled Kuramoto model (5.8) with ω̄i = 0 is exponentially stable. By [47,
Theorem 1], the latter statement is true, all other equilibria are locally unstable, and
thus the region of attraction is almost global. This concludes the proof of (iii)⇔ (iv).

To obtain the explicit synchronization phase, we sum over all equations (5.12)
to obtain

∑m
i=1Miθ̈i +

∑n
i=1Diθ̇i = 0. Integration of this equation along phase-

synchronized solutions yields that
∑n
i=1Diθi(t) =

∑n
i=1Diθi(0) is constant for all

t ≥ 0, where we already accounted for θ̇i(t) = 0 for all i ∈ {1, . . . , n} and all t ≥
0. Hence, the synchronization phase is given by a weighted average of the initial
conditions

∑n
i=1Diθi(0)/

∑n
i=1Di. In the original coordinates (non-rotating frame)

the synchronization phase is then given by
∑n
i=1Diθi(0)/

∑n
i=1Di + θ̇synct.

6. Conclusions. This paper reviewed various bounds on the critical coupling
strength in the Kuramoto model, formally introduced the powerful concept of phase
cohesiveness, and presented an explicit and tight bound sufficient for synchronization
in the Kuramoto model. This bound is necessary and sufficient for arbitrary distribu-
tions of the natural frequencies and tight for the particular case, where only implicit
bounds are known. Furthermore, a general practical stability result as well as various
performance measures have been derived as a function of the multiplicative gap in
the bound. Finally, we partially extended these results to the multi-rate Kuramoto
model and proved that the inertial terms do not affect synchronization conditions.

In view of the different biological and technological applications of the Kuramoto
model [47, 55, 21, 51, 19, 7, 25, 12], similar tight and explicit bounds have to be
derived for synchronization (as well as splay state stabilization) with arbitrary cou-
pling topologies, phase and time delays, non-gradient-like dynamics, and possibly
non-uniform coupling weights depending on state and time.
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