
Noname manuscript No.
(will be inserted by the editor)

Distributed Pursuit-Evasion without Global Localization via
Local Frontiers

Joseph W. Durham · Antonio Franchi · Francesco Bullo

Received: date / Accepted: date

Abstract This paper addresses a visibility-based
pursuit-evasion problem in which a team of mobile
robots with limited sensing and communication capa-
bilities must coordinate to detect any evaders in an
unknown, multiply-connected planar environment. Our
distributed algorithm can guarantee evader detection
and is built around maintaining complete coverage of
the frontier between cleared and contaminated regions
while expanding the cleared region. We detail a novel
distributed method for storing and updating this fron-
tier without building a global map or requiring global
localization. We demonstrate the functionality of the
algorithm through Player/Stage simulations in realistic
environments and through hardware experiments. We
also discuss the number of agents required to clear
a certain class of environments, as well as compare
Monte Carlo results for our algorithm to the theo-
retical optimum area cleared with a fixed number of
robots.

1 Introduction

This paper deals with a distributed pursuit-evasion
problem for a team of robotic searchers in an unknown
environment. The particular pursuit-evasion problem

J. W. Durham and F. Bullo
Department of Mechanical Engineering
University of California
Santa Barbara, CA 93106, USA
E-mail: (joey, bullo)@engineering.ucsb.edu

A. Franchi
Max Planck Institute for Biological Cybernetics
Dept. Human Perception Cognition and Action
Spemannstrasse 44, 72076 Tübingen, Germany
E-mail: antonio.franchi@tuebingen.mpg.de

we examine, also known as the clearing problem, in-
volves designing control and communication protocols
such that the searchers sweep an environment and
detect any intruders which may be present. The clear-
ing problem has received a lot of attention in recent
years because of its applications to safety and security.
In this paper, we describe a distributed environment
clearing algorithm based on the concept of the fron-
tier or boundary between cleared and contaminated
regions. Our algorithm can guarantee the detection
of any intruders or, if there are insufficient searchers
available, clear as much area as it can while ensuring
no cleared area is recontaminated.

1.1 Literature Review

In the literature on pursuit-evasion problems, many
different approaches and starting assumptions have
been explored. The study of guaranteeing detection of
evaders in planar environments began with Suzuki and
Yamashita (1992). For a single searcher, Gerkey et al
(2006) studied a searcher with a limited field of view
in a known polygon, while Sachs et al (2004) cleared
unknown environments without localization using min-
imalist sensing. The most similar work to this one is
Kolling and Carpin (2010), which uses coordinated
sweep lines of agents to clear unknown environments
while building a graph representing the cleared space.

Pursuit-evasion on graphs representing decomposi-
tions of known environments is a related topic which
goes back to Parsons (1978) and includes recent works
by Adler et al (2003) and Kolling and Carpin (2008).
Another active area is efficient evader detection, where
one or more searchers are tasked with probabilistically
locating targets which move randomly (Hollinger et al,

2 Joseph W. Durham et al.

2010). The pursuit-evasion literature has also addressed
what to do once evaders are located, including tracking
moving evaders (Jung and Sukhatme, 2002) and cap-
turing evaders (Bopardikar et al, 2008).

Beyond pursuit-evasion, our work draws inspiration
from methods for exploration and deployment of agents
based on the frontier between explored and unknown
regions (Yamauchi, 1998; Howard et al, 2002; Franchi
et al, 2009a).

1.2 Statement of Contributions

There are three key contributions of this work. First,
our frontier-based clearing algorithm can guarantee de-
tection of evaders in unknown, multiply-connected pla-
nar environments which may be non-polygonal. We in-
troduce the (d, φ)-searcher model, a realistic model of
current robot and sensor hardware with limited range
and limited field-of-view sensing, and prove that our
algorithm will clear an environment provided sufficient
searchers are available. We also discuss the number of
agents required for certain environments.

Second, our clearing algorithm is distributed and
efficient. We detail a novel method for storing and up-
dating the global frontier between cleared and contami-
nated areas based on local intersections of oriented arcs.
This method uses a small, constant amount of mem-
ory per robot and does not require a global map or
global localization. We also propose a viewpoint plan-
ning method which locally minimizes the number of
robots required to rapidly expand the cleared area.

Third, we present both realistic simulations and
hardware experiments to validate our approach. We
implemented the algorithm using the Multirobot In-
tegration Platform and the Player/Stage robot simu-
lation system. Our implementation demonstrates that
frontiers and sensor footprints can be handled in a
discetized fashion, that the algorithm is robust to sen-
sor and motion noise, and that the local optimizations
in our algorithm lead to efficient clearing of complex
environments. We also present Monte Carlo results for
the clearing efficacy of our algorithm for a fixed number
of robots.

1.3 Paper Organization

Section 2 provides definitions and states the problem we
are addressing. In 3 we examine a centralized version
of our algorithm to explain some details. The decen-
tralized clearing algorithm is presented in 4 and then
demonstrated through simulations and experiments. In

S

∂S

∂S

∂Sd

φ

L

L

L

Fig. 1 On the left, four obstacles surround a (d, φ)−searcher
and lie within the dashed circular sector representing the area
perceivable by the searcher’s sensor without occlusions. The
right image shows the boundary ∂S of the sensor footprint
for this configuration, with dashed oriented arcs for the free
boundary L and solid arcs for the local obstacle boundary

5 and 6 we discuss theoretical and numerical results.
We conclude in 7 and mention some future directions.

2 Searcher Model & Problem Formulation

We are given a team of n robotic searchers with lim-
ited sensing and communication capabilities and finite
memory. The searchers start clustered together in the
free space of an unknown but limited planar environ-
ment. Let Q be the free space of the environment, which
must be connected but can have holes and may be
non-polygonal. The searchers are tasked with detecting
evaders which may be arbitrarily small (even a single
point) and can move arbitrarily fast, but continuously,
through Q. The trajectories and initial positions of the
evaders are unknown.

2.1 Robot and Sensor Models

The robot model we use, the (d, φ)−searcher, is a dif-
ferential or omnidirectional drive mobile robot that can
rotate in place and translate continuously at bounded
speed through Q. Our model gets its name from the
attached distance sensor which has a maximum range
d > 0 and an angular field-of-view φ ∈ [π, 2π]. The
sensor cannot penetrate obstacles but is capable of de-
tecting any evaders visible to it. We will also discuss
the d-searcher model, which is a (d, φ)-searcher with
φ = 2π.

Let S denote the footprint of the sensor when a
robot is in a generic configuration, as shown in Fig.
1. The footprint is a local obstacle free region and we
say that a point is guarded by a robot if it belongs to
the footprint of the sensor of that robot. The oriented
boundary of the sensor footprint, ∂S of S, is a closed arc

Distributed Pursuit-Evasion without Global Localization via Local Frontiers 3

partitioned into two sets: (1) the local obstacle boundary
(all the points where the sensor has perceived an obsta-
cle), and (2) the free boundary, denoted by L, which
consists of all the remaining points. Notice that while
S is always a simply connected region, L is not, in gen-
eral, a connected set. We refer to the connected sub-
sets of L as free arcs. The orientation of ∂S is defined
in a counter-clockwise manner, such that a point mov-
ing along the boundary would have the internal part of
S on the left. The free arcs constituting L inherit the
orientation of ∂S and are an open subset of the topo-
logical manifold ∂S, with their endpoints on obstacles.
The local obstacle boundary arcs, on the other hand,
are closed in ∂S.

The perception of a searcher’s sensor at a given pose
is the tuple {S, ∂S,L}, i.e., a footprint S, the boundary
∂S, and the set of free boundary arcs L of ∂S.

2.2 Communication, Localization, and Memory
Constraints

We require that a pair of robots are guaranteed to be
able to communicate whenever their sensor footprints
intersect. We further assume that two communicating
robots can compute their relative poses, as a result of a
mutual localization procedure (e.g., by the method de-
scribed in Franchi et al (2009b), or by scan matching).
We also require that a robot is able to localize itself
with respect to a perception whenever it is inside the
footprint. The availability of any sort of global localiza-
tion is not assumed.

Each searcher must have an amount of memory
which is strictly sufficient to store two perceptions,
plus some variables of negligible size used for the ex-
ecution of the algorithm. This constraint means that
the clearing algorithm must use only a limited and
constant amount of memory per robot regardless of the
size of Q.

2.3 Inspected Region and Problem Statement

For notation and explanation, we have use for the union
of the perceptions taken by all robots from different
poses in Q during algorithm execution, which we refer
to as the inspected region and denote by I. Since our
algorithm does not allow recontamination, I also rep-
resents the cleared area. Though I will be connected, it
may not be simply connected, meaning that ∂I is a set
of a closed oriented curves. As with ∂S, ∂I is oriented
and partitioned into two sets: (1) the obstacle boundary,
and (2) the frontier denoted by F . We wish to empha-
size that our algorithm does not compute or store I,

which is incompatible with the memory constraint, but
instead uses only the oriented frontier F .

With these definitions we can now state the goal of
our algorithm: control a team of n (d, φ)-searchers so
that they always guard all the points of the frontier F
while expanding the cleared region I as much as possi-
ble, subject to the limited sensing, communication, and
memory constraints.

3 The Centralized Clearing Algorithm

For clarity, we have split the presentation of our clearing
algorithm into two stages. In this Section we pretend
that a central controller is commanding the searchers so
that we can describe the fundamental algorithm steps
and the data structures involved. In Section 4 we detail
the distributed implementation of the algorithm.

The team of n searchers is divided into two classes,
the frontier-guards and the followers:

– Frontier-guard : Each frontier-guard is assigned a
unique pose v = (x, y, θ) ∈ Q × S1 called the
guard’s viewpoint, which can move during the evo-
lution of the algorithm. The frontier-guard must
quickly reach its viewpoint and report a perception
{S, ∂S,L}. To detect evaders, each frontier-guard
must also continuously monitor its sensor.

– Follower : Each follower is assigned to follow a
frontier-guard, and this assignment can change
as the algorithm progresses. Each follower is only
required to passively follow its frontier-guard.

As needed, the central process will switch frontier-
guards to followers, and vice-versa. The steps of the
centralized clearing algorithm are as follows.

Centralized Clearing Algorithm
Initialize one robot as frontier-guard, the rest as follow-
ers. For each {Sk, ∂Sk,Lk} received, the central process
performs the following actions:
1: Compute Fk from Fk−1 and {Sk, ∂Sk,Lk} as de-

tailed in Sec. 3.1.
2: Compute the next set of viewpoints Vk+1 as detailed

in Sec. 3.2.
3: Assign each v ∈ Vk+1 to a nearby searcher and set

the searcher to be a frontier-guard.
4: Assign remaining searchers a frontier-guard to fol-

low.
5: Compute paths for all frontier-guards to reach their

viewpoints while maintaining coverage of Fk−1, and
send the paths to the guards.

At the beginning of the algorithm, all n searchers are
clustered around a point in Q. One robot is selected as
the initial frontier-guard and assigned its initial pose as

4 Joseph W. Durham et al.

Table 1 Main symbols used in the algorithm.

Symb. Description
Q Planar environment.
S(v) Sensor footprint from pose v.
Sk Sensor footprint of the k−th perception.
∂Sk Oriented boundary of Sk.
Lk Free boundary of ∂Sk.
Ik Inspected region at the k−th step := ∪k

i=1Si.
Fk Oriented frontier arcs of Ik. Fk = FExt

k−1 ∪ LExt
k .

FExt
k−1 Fk−1\closure(Sk).
LExt

k Lk\interior(Ik−1).
Vk Set of viewpoints at the k−th step.

a starting viewpoint. All other robots are set as follow-
ers of this guard. The frontier-guard then records the
first perception, which initializes the main data stored
during the evolution of the algorithm.

Whenever a frontier-guard arrives at its viewpoint
and records a new perception, it sends the perception to
a central processing unit. In this way the central process
receives a sequence of perceptions. For each perception
received, a new step k of the algorithm starts and the
perception is classified as {Sk, ∂Sk,Lk} and called the
k-th perception (refer to Table 1 for a reminder of the
meaning of the symbols).

We denote the total inspected region at step k as
Ik := ∪ki=1Si. Again, the algorithm does not use or
store Ik or the obstacle portion of ∂Ik; an important
innovation of this work is that it stores and updates
only Fk, the oriented frontier arcs of Ik. Since the ob-
stacle boundary of the inspected region Ik is impossible
for either searchers or evaders to cross, there are only
two ways an evader can enter Ik: (1) by being inside
of Sk\Ik−1 at the instant in which the k-th perception
is performed, or (2) by crossing Fk. In this first case
detection of the evader is immediate, the focus of our
algorithm is thus on maintaining complete coverage of
Fk and updating it when a new perception is added.

The basic flow of the centralized clearing algorithm
is as follows. The first step after receiving a new percep-
tion is to update the global frontier. The second step
is to determine a new set of viewpoints to cover and
expand the frontier. After that, searchers are assigned
roles as guards or followers and dispatched to their re-
spective target positions.

To guarantee the detection of any evaders in Q, the
planning of new viewpoints in step 2 must meet the
frontier guarding property and the expansion property
laid out in the following Definition. We describe our
method which achieves these properties in Section 3.2.

Definition 1 (Viewpoint Planning Properties)
Given a non-empty frontier Fk and a set of prior view-
points Vk, the viewpoint planner selects the smallest set

of viewpoints Vk+1 inside Ik which satisfy the following
two properties:

1. Frontier guarding: Ensure Fk is contained in the
closure of ∪v∈Vk+1S(v), and

2. Expansion: Ensure Area(Ik+1) > Area(Ik).

Within these constraints, the viewpoint planner max-
imizes Area(Ik+1) assuming that there will be no new
obstacles discovered.

We can now state the main result of this paper.

Theorem 1 (Detection of Evaders) Given an im-
plementation of the centralized clearing algorithm with
the viewpoint planning properties in Definition 1, and a
number of robots n ≥ max{|Vk| | for all steps k}, then
the entire environment Q is cleared and every evader in
Q is detected in finite time.

Proof. The expansion property in Defintion 1 ensures
that there will be a time step kf where Fkf

= ∅, mean-
ing that ∂Ikf

consists entirely of obstacle arcs and Ikf

completely covers Q. Therefore, for every evader e in
Q, there exists at least one instant of time when e ei-
ther (1) is inside of Ske

\Ike−1 at time ke ∈ {1, . . . , kf},
or (2) crosses Fke−1 during the time interval [ke−1, ke]
for ke ∈ {2, . . . , kf}. In the first scenario, detection of
the evader is immediate. We can conclude, by means of
the frontier guarding property, that the second scenario
will also be detected.

In the rest of this Section we describe how to imple-
ment the frontier update in step 1 of the algorithm and
how to plan viewpoints for step 2. The path-planning in
step 5 is also non-trivial, however we will only discuss
how to perform this in the context of the distributed
version of the clearing algorithm in Section 4.

3.1 Updating the Global Frontier without a Global
Map

On the first iteration, frontier F1 is initialized as the
free boundary of the first perception, L1. For each step
k > 1, the algorithm needs to compute the new fron-
tier Fk, i.e., the non-obstacle boundary of the inspected
region Ik = Ik−1 ∪ Sk. The set Fk can be partitioned
into two subsets, (1) the set FExt

k−1 of arcs from Fk−1

which do not belong to the closure of Sk, and (2) the
set LExt

k of arcs from Lk which are not on the interior
of Ik−1 = ∪k−1

i=1 Si. While the computation of FExt
k−1 from

Fk−1 and {Sk, ∂Sk,Lk} is immediate, in this section we
describe a novel method for computing LExt

k using only
the oriented arcs of Fk−1 and {Sk, ∂Sk,Lk}.

Distributed Pursuit-Evasion without Global Localization via Local Frontiers 5

1

(a)

3
2

2

(b)

Fig. 2 (a) After robots 1 and 2 have classified their fron-
tiers, robot 1 moves to a new position. Once robot 1 has
moved and recorded a new perception, its prior perception is
no longer stored by the robot team. (b) When robot 3 arrives
and records {Sk, ∂Sk,Lk} (striped yellow), it cannot prop-
erly classify Lk based only on the most recent perceptions of
the other robots. Without all of Ik−1, robot 3 can only de-
termine that the indicated section of Lk is not on the global
frontier using the intersections of ∂Sk and robot 2’s oriented
frontier segments (dashed red)

In all previous work including Franchi et al (2009a),
LExt
k has been computed using Sk and Ik−1. The disad-

vantages of this prior procedure for updating the fron-
tier are that computing Ik−1 requires global localization
and storing it requires an amount of memory propor-
tional to the area of environment Q, which is in contrast
with the problem statement in Sec. 2.3. It is also worth
noting that at step k it is not possible in general to com-
pute LExt

k using only the most recent sensor footprints
from each frontier-guard, see the example in Fig. 2. The
orientation of Fk−1 and ∂Sk is critically important for
properly determining the frontier without Ik−1.

Our global frontier update method for computing
LExt
k is based around the intersections of the oriented

arcs of Fk−1 and ∂Sk. Let L?k denote the set of points
belonging to the intersection between the arcs of Lk
and the arcs of Fk−1, and L̄?k the remaining points of
Lk. The actions of the global frontier update method
are defined as follows.

Global Frontier Update Method

1: Classify the neighborhood of each p ∈ L?k as internal
or not

2: Classify the ends of each ` ∈ Lk

⇔
l

J

p
p

p

p

p p⇔
p

f

J

l′

Fig. 3 Example classification of the neighborhood J of a
point p ∈ L?

k where arcs ` ∈ Lk and f ∈ Fk−1 intersect. At
left, the partitions of J induced by ` and f are represented
separately. The white region on the right side of the oriented
arcs indicates the exterior, and the patterned region on the
left indicates the interior. The fusion of the two partitions of J
is shown at right. The bold part of `, denoted by `′, belongs to
LExt

k because it lies between a white and a patterned region.
Note that in this case p ∈ `′

3: Propagate classification to rest of Lk
4: Set Fk = FExt

k−1 ∪ LExt
k

The points of LExt
k can be either on the boundary

of or exterior to Ik−1, the boundary points belong to
L?k while the exterior ones belong to L̄?k. The following
crucial result states that an arc in Lk can only switch
between the interior and exterior of Ik−1 at an inter-
section point in L?k.

Lemma 1 (Neighborhood Classification) Let ` be
an arc in Q which does not intersect Fk−1. If any point
of ` belongs to the exterior of Ik−1, then all of ` belongs
to the exterior. If any point of ` belongs to the interior
of Ik−1, then all of ` belongs to the interior.

Proof. Since ` is in Q, it cannot cross the obstacle
boundary of ∂Ik−1. Therefore, if ` does not intersect
Fk−1, then it does not cross ∂Ik−1.

The first step of the frontier update method is to
classify the neighborhood on ∂Sk of each intersection
point p ∈ L?k as either internal to Ik−1 or not. An ex-
ample of this neighborhood classification is shown in
Fig. 3. The neighborhood classifications for all possible
intersection cases are depicted in Fig. 4.

The second step of the method is to classify the ends
of each arc ` ∈ Lk in the neighborhood of the endpoints
of the adjacent obstacle arcs. These neighborhoods can
be classified using the following Lemma.

Lemma 2 (Obstacle Arc Classification) Let o de-
note a local obstacle arc of ∂Sk, let `L and `R ∈ L̄?k
denote the ends of the free arc segments on the left and
right of o, respectively, in the neighborhood of the end-
points of o. Let Eo ⊂ o be the set of endpoints of any
frontier arcs of Fk−1 which either begin or end on o,
and which are, in the neighborhood of o, fully contained
in the closure of Sk. Then:

6 Joseph W. Durham et al.

Fig. 4 The classification of the points of arc ` ∈ Lk in the
neighborhood of all possible types of intersections with arc
f ∈ Fk−1. Arc ` is drawn solid, while f is dashed. Each row
shows a different intersection type, with columns for the vari-
ous reciprocal orientations of ` and f . The first row shows iso-
lated crossings, the second shows isolated tangents, the third
shows joinings, and the fourth row shows segments where `
and f overlap. The bold portions of ` belong to LExt

k

– If Eo = ∅, then either `L and `R are both internal
to Ik−1 or neither are.

– If Eo 6= ∅, then `L is internal to Ik−1 if the closest1

e ∈ Eo is the beginning of a frontier arc, and not
internal otherwise. The opposite holds for `R.

Proof. If Eo = ∅, as shown in the first two cases of
Fig. 5, then there exists a free arc connecting `L with
`R which is contained in the interior of Sk and is close
enough to o to not intersect Fk−1. Therefore, we can
apply Lemma 1. If Eo 6= ∅, assume without loss of gen-
erality that it is a singleton, i.e., Eo = {e}, as shown
in the third and fourth cases of Fig. 5. Then, there ex-
ists a free arc connecting `L to the ‘nearest’ half of the
neighborhood of e which is in the interior of Sk and is
close enough to o to not intersect Fk−1. Therefore, we
can apply Lemma 1. Similar claims hold for `R.

The third and final step is to propagate the classifi-
cation from the neighborhoods to all points of the arcs
of Lk. This propagation again exploits Lemma 1. Notice
that, so long as the selection of viewpoints guarantees
that either L?k 6= ∅ or at least one local obstacle arc o
has a non-empty Eo, this third step is well defined.

Combined, these three steps determine which seg-
ments Lk are not in the interior of Ik−1 and thus should
be included in frontier Fk.

1 With respect to the distance on the arc o.

o

o

o

o

f

f
lRlL

lL

lL

lL

lR

lR

lR

Fig. 5 Four classification cases are depicted for an obstacle
arc o (dotted) with two adjacent free arcs (solid). In the first
two, no internal frontier arc has an endpoint on o, so in the
neighborhood of o the free arcs are classified as both frontier
(bold) or both internal (thin). In the second two cases, an
internal frontier arc f (dashed) has an endpoint on o which
induces opposite classifications for the two free arcs

3.2 Viewpoint Planning

In this Section we describe how to pick a set of view-
points Vk+1 which meet the frontier guarding property
and expansion property of Definition 1. With the dis-
tributed application in mind, we simplify the planning
of Vk+1 by constructing it from Vk. Let vk be the view-
point of the k-th perception. As detailed in Section 3.1,
Fk can be partitioned into two sets: FExt

k−1 (a subset of
the prior frontier), and LExt

k (a subset of ∂Sk). Let F Int
k−1

be the portion of Fk−1 which is inside the closure of Sk.
To construct Vk+1, we need the following sets:

1. The set of viewpoints V obs
k ⊂ Vk which are assigned

to guard only obsolete portions of the frontier in
F Int
k−1, if any.

2. A set of new viewpoints V ′ inside Sk to cover and
expand the new frontier segments LExt

k .

With these defined, we then set:

Vk+1 =
(
(Vk \ vk) \ V obs

k

)
∪ V ′.

The rest of this section is devoted to describing how to
choose V ′ inside of Sk when LExt

k 6= ∅.
We say that a free arc ` ∈ Lk is relevant for view-

point planning if it contains a frontier fragment from
LExt
k . A relevant free arc may contain one or more fron-

tier fragments, and each frontier fragment is entirely
contained in one relevant free arc. Let LRel

k ⊆ Lk de-
note the set of relevant free arcs around vk.

Our local viewpoint planning method consists of par-
titioning the frontier fragments of each `Rel ∈ LRel

k

among the fewest possible new viewpoints. We first de-
tail how to perform the method for d-searchers, that is,
robots with a sensor with a field-of-view of 2π. After-
wards, we describe how to adapt the method for (d, φ)-
searchers. In both cases, the actions of the local view-
point planning method are as follows.

Distributed Pursuit-Evasion without Global Localization via Local Frontiers 7

Local Viewpoint Planning Method

Initialize V ′ = ∅. Then, for each `Rel ∈ LRel
k perform

the following:
1: Determine p, the number of viewpoints needed to

cover `Rel

2: Partition `Rel into p pieces
3: for i = 1 to p do
4: Select a pose v in Sk to cover the i-th partition

of `Rel and as much new area as possible
5: Add v to V ′

Remark 1 The viewpoint planner we present here is for
circular sector footprints of radius d and field-of-view
φ ≥ π. For more general footprints, our clearing algo-
rithm could also be applied provided a viewpoint plan-
ning method with the properties in Definition 1 is avail-
able.

Each `Rel is comprised of straight radial segments
and circular segments with radius d; see the examples in
Fig. 1 and Fig. 6. The possible configurations are: single
radial; single curved; curved with radial on one side; or
curved with radial segments on both sides. Let S(v)
denote the sensor footprint for a robot at viewpoint v.
The following Lemma simplifies the determination of
when a radial segment is inside S(v) for φ = 2π.

Lemma 3 (Coverage of Radial Arcs) Let v′ be a
potential new viewpoint inside Sk for a d-searcher, and
let r ∈ LRel

k be a radial free arc segment. Let p be the
far endpoint of r and v′p be the line segment between v′

and p. If dist (v′, p) < d and v′p only intersects ∂S at
p, then open set r is contained inside of S (v′).

Proof. Our proof centers around the triangle T formed
by vk, v′, and p. Radial free arc segment r is a con-
nected subset of vkp. Since Sk has maximum radius
d, dist (v′, vk) < d. Combined with the fact that
dist (v′, p) < d, we can conclude that all of r is within
d of v′. All that remains is to show that there are no
obstructing obstacles inside of triangle T .

We know that v′p is contained in the closure of Sk
because it only intersects ∂S at p. Since Sk is star-
shaped, both vkp and vkv′ are also contained in the
closure of Sk. Then, as Sk is simply connected, we can
conclude that the interior of T is in Q and, therefore, r
is inside of S (v′).

There are two notable consequences of Lemma 3.
First, for any `Rel with only a radial segment, one view-
point is sufficient. Second, for any `Rel which contains
both curved and radial segments, we only need to par-
tition the curved segment: the viewpoint which covers

an endpoint of the curved segment will also cover any
attached radial segment.

To assist in selecting viewpoints to cover curved seg-
ments, we introduce parameter dmin ∈ (0, d], the mini-
mum distance between vk and any v ∈ V ′. As will be-
come clear, dmin encodes a trade-off in the algorithm:
smaller values of dmin can reduce |V ′| and thereby re-
duce the number of searchers required; larger values of
dmin can increase the area exposed and thereby reduce
the number of iterations required to clear Q.

Let δ (`Rel) be the angular width of `Rel measured
counter-clockwise from the right-most frontier point on
`Rel to the left-most frontier point on `Rel. A single
viewpoint at least dmin from vk can then cover an an-
gular width of at most α (dmin) given by

α (dmin) = 2 arccos (dmin/2d) ∈
[
2π
3 , π

)
.

The number of viewpoints η necessary to cover `Rel is
then determined by the following Lemma.

Lemma 4 (Number of Viewpoints Required) For
any `Rel ∈ LRel

k , the clearing algorithm requires η ∈
{1, 2, 3} viewpoints. Moreover:

− if δ (`Rel) ≤ 2π
3 , then η = 1,

− if 2π
3 < δ (`Rel) < π, then η = 1 or 2,

− if π ≤ δ (`Rel) < 2π, then η = 2 or 3, and
− if δ (`Rel) = 2π, then η = 3.

Proof. This result is a direct consequence of Lemma 3
and the fact that α (dmin) ∈

[
2π
3 , π

)
.

For η > 1, the angular width of `Rel is then parti-
tioned such that the first viewpoint covers [0, δ (`Rel) /η],
and each subsequent viewpoint covers the next equally
sized slice of angular width. This partitioning of `Rel

achieves step 2 of the viewpoint planning method.
After partitioning `Rel, the final step is to place each

new viewpoint v. This placement must ensure that a
perception from v covers the required portion of `Rel

and also uncovers as much area as possible beyond
`Rel (assuming no new obstacles). For single radial seg-
ments, we place v at the midpoint of the segment fac-
ing perpendicular to the segment out into the unknown
territory beyond `Rel. For all other configurations, we
construct a line through vk which bisects the curved arc
in `Rel assigned to v. We then place v on this bisector at
the point in Sk which is closest to the intersection with
`Rel and also ensures that both endpoints of the curved
arc in `Rel assigned to v will be inside S(v). Here pose
v is oriented radially outward from vk.

By construction, this method of selecting V ′ guaran-
tees that LExt

k ∈ ∪v∈V ′S(v) for searchers with φ = 2π,
meaning that the frontier guarding property in Defi-
nition 1 is satisfied. For dmin close to zero, it creates

8 Joseph W. Durham et al.

the fewest new viewpoints possible, while for dmin = d

it exposes more area with minimal additional view-
points. The following Lemma shows that this view-
point planner also guarantees the expansion property,
as Area (Ik+1) will be greater than Area (Ik).

Lemma 5 (Guaranteed Expansion) For each
v ∈ V ′, S(v) includes some new area A ∈ S(v) where
Area (A) > 0 and Area (A ∩ Ik) = 0.

Proof. Let f ∈ `Rel be a frontier segment assigned to v.
By definition, f is inside of Q and is a subset of Fk. By
Lemma 3, f is also inside of the open set S(v), so there
must be an open set A ⊂ Q which is inside of S(v) but
outside of Ik.

We have described a viewpoint planning method
which meets the requirements of Definition 1 for
searchers with φ = 2π. For (d, φ)-searchers whose sen-
sors have a field-of-view in[π, 2π), the above method is
optimal when `Rel contains either only radial frontier
fragments, or only curved frontier fragments. One op-
tion for handling mixed fragments is to split them and
handle the radial and curved parts separately. However,
this simple approach may create more viewpoints than
strictly required. We instead propose the following
geometric method.

Consider the case when `Rel consists of a radial seg-
ment on the right of a curved segment. Let pr be the
first frontier point in the radial part of `Rel, and let pm
be the intersection of the curved and radial segments.
Next, loop over possible pl’s, starting from pl = pm
and moving along the curved segment, stopping at the
furthest pl for which the midpoint of prpl is within d

of pm. Then, place v at the midpoint of prpl, facing
outward perpendicular to prpl. This placement ensures
that all frontier points between pr and pl are covered
by a perception taken from v for φ ≥ π, while maximiz-
ing the amount of `Rel covered. If any frontier on the
curved segment remains uncovered, it can be handled
using the prior approach. This method can be trivially
modified if the radial segment is on the left, and can
also be applied on both sides for a curved segment with
radial segments on both sides.

4 The Distributed Clearing Algorithm

In the distributed setting, the communication graph
is in general disconnected, necessitating some changes
from the centralized description. First, the global fron-
tier must be stored and updated in a distributed man-
ner. Second, viewpoint planning must be performed
locally by the frontier-guards. Furthermore, the dis-
tributed algorithm only has access to pairwise relative

mutual localization between neighbors. Finally, while
the centralized version is synchronous and sequential,
the distributed setting is asynchronous and concurrent,
i.e., it is possible for perceptions from disconnected
searchers to be recorded at the same time.

4.1 Distributed Handling of Global Frontier and
Viewpoint Planning

We distribute the storing and updating of the global
frontier by having each frontier-guard store its local
frontier segments and update them through communi-
cation with its neighboring frontier-guards. We denote
the section of the global frontier Fk owned by robot i
by Fk,i. This distributed storage of the global frontier
can always be achieved since, by the frontier guard-
ing property, each global frontier point is guarded by a
frontier-guard.

The pairwise frontier update method which follows
is a distributed version of the method in Sec. 3.1 for
classifying the free boundary Lk.

Pairwise Frontier Update Method
When robot i records a new perception, it updates Fk
as follows:
1: Classify neighborhood of each intersection p be-

tween Lk and Fk−1,i as internal or not, if any
2: for each robot j in communication with i do
3: Classify neighborhood of each intersection p be-

tween Lk and Fk−1,j as internal or not
4: Inform j if any piece of Fk−1,j lies inside Sk
5: Classify the ends of each ` ∈ Lk
6: Propagate classification to rest of Lk
7: Store Fk,i

This distributed frontier classification is always pos-
sible because the classification of Lk requires only the
frontier fragments from Fk−1 which intersect Sk. In the
distributed setting, each of these frontier fragments be-
long either to a neighboring guard’s perception or to
robot i’s previous perception. The localization with re-
spect to the first kind of fragments is guaranteed since
by assumption two robots whose footprints intersect
are in communication and are mutually localized. The
localization w.r.t. the second kind of fragments is also
guaranteed by assumption since robot i’s current view-
point lies in the footprint of the previous one.

Using the pairwise frontier update method, updates
to the global frontier are based only on current relative
poses of nearby searchers, not on absolute poses. The
distributed clearing algorithm, therefore, is able to
continue clearing an environment even if the searchers
cannot determine where they are relative to where
they started. Note that, because it operates in pairs,

Distributed Pursuit-Evasion without Global Localization via Local Frontiers 9

this frontier update method requires only an amount
of memory per robot proportional to that required to
store two perceptions.

Once Fk,i is determined, we can use the local view-
point planning method from Sec. 3.2. This method is
already distributed as it requires only the local frontier
of the frontier-guard doing the planning. The execution
of the path to new viewpoints can also be done without
global localization, whether it’s being executed by the
guard itself or by a follower. Since the new viewpoint
lies inside the local perception, either local odometry
of reasonable accuracy or a registration of footprints
taken along the path with Sk will suffice.

4.2 Distributed Algorithm & Robot Roles

The two classes of searchers from the centralized algo-
rithm are each split in two, yielding four possible states:

– Expand : When a searcher is assigned a new view-
point to move to, it enters the expand state until it
reaches the viewpoint and records a perception.

– Frontier-guard : Each frontier-guard i remains sta-
tionary at its viewpoint and has complete control
over its local frontier segments, Fk,i. It must com-
municate with neighboring frontier-guards to up-
date Fk,i, plan a new viewpoint to cover and expand
Fk,i, and dispatch a follower to the new viewpoint.

– Follow : Must passively follow and respond to com-
mands from a frontier-guard or expander.

– Wander : When a frontier-guard no longer has a lo-
cal frontier to guard, it wanders until it locates a
leader to follow.

The distributed clearing algorithm detailed in Table 2
consists of an initialization step, followed by each
searcher iteratively executing the procedure corre-
sponding to its current state. These procedures have
subroutines for all important computations, and detail
when searchers transition between states. There are
four key subroutines we would like to highlight:

– UpdateNeighbFrontier/Frontier: These two
functions perform the pairwise frontier update
method in Section 4.1.

– ViewPointPlan: This function follows the local
viewpoint planning method in Section 3.2, and then
picks the best new viewpoint to expand first.

– PathToViewPoint: Determines a safe path from the
current viewpoint to the new viewpoint inside S,
which can be a straight line since S is star-shaped.

– SearchForLeader: This function does a random
walk with two additional behaviors: 1) when it
encounters a frontier-guard, it switches to Follow;
2) wanderers may join to form a wandering blob.

Table 2 Details of the distributed clearing algorithm

Distributed Clearing Algorithm
To begin, one searcher is set to Expand to its starting
pose and all others start either Following the first or in
the Wander state. All agent’s then continuously execute
the procedure corresponding to their state:

Procedure Expand
Data: frontier,path
foreach follower in followers do1

Send(follower,“follow”,path);2

Move(path);3

{S, ∂S,L} ← Perceive();4

neighbFront ← UpdateNeighbFront();5

frontier ← Frontier({S, ∂S,L},frontier,neighbFront);6

DoBehavior(“Frontier-Guard”,S,frontier);7

Procedure Frontier-Guard
Data: S,frontier
if frontier is empty then1

Send(followers,“wander”);2

DoBehavior(“Wander”);3

(bestVP,NumVPs) ← ViewPointPlan(S,frontier);4

path ← PathToViewPoint(S,bestVP);5

if NumVPs == 1 then6

DoBehavior(“Expand”,frontier,path);7

else8

if followers has at least one follower then9

follower ← PopFollower(followers);10

Send(follower,“expand”,path);11

WaitForFollower(follower);12

else13

while no new neighbor and no followers do14

Sleep();15

DoBehavior(“Frontier-Guard”,S,frontier);16

Procedure Follow
Receive(Leader,message,path);1

switch message do2

case “follow”3

Move(path);4

case “expand”5

DoBehavior(“Expand”,∅,path);6

case “wander”7

DoBehavior(“Wander”);8

Procedure Wander
SearchForLeader();1

if leader found then2

DoBehavior(“Follow”);3

if all searchers wandering then4

exit5

10 Joseph W. Durham et al.

Fig. 6 Simulation of three (d, φ)-searchers clearing an environment. Recorded perceptions are shown in a light blue, with
frontiers shown with bold lines in the color of the frontier guard who owns them. The trajectories of the robots are shown in
the final panel, with large squares for viewpoints

The following subsections describe our implementation
of the algorithm, show simulation and hardware exper-
iment results, and expand on some technical details.

4.3 Illustrative Simulation

To demonstrate the utility of the proposed distributed
clearing algorithm, we implemented it using the open-
source Multirobot Integration Platform (MIP) (Franchi
and Stegagno, 2010) and the Player/Stage robot soft-
ware system (Gerkey and contributors, 2009). The
clearing algorithm and related modules were imple-
mented using the MIP architecture, which provides a
multi-tasking estimation/control framework, a realistic
simulation environment, and allows direct porting for
execution on real robots. Perceptions are implemented
as local coverage grids with 5cm resolution, with ori-
ented frontier arcs handled as ordered sequences of
cells. Each robot stores only its most recent perception
and its local frontier.

Figure 6 provides a detailed example of three robots
implementing the distributed algorithm. A video is also
available in Online Resource 1. The searchers are sim-
ulated Khepera III robots with laser rangefinders with
a range of 0.8 m and a field-of-view of 240◦. Perfect
mutual localization is provided for this simulation,
while the Smooth Nearness Diagram navigation driver
in Player is used to navigate between viewpoints and
avoid collisions (Durham and Bullo, 2008).

The first panel of Fig. 6 shows the initialization of
the algorithm. The three robots start within communi-
cation range of each other and with initial poses which
do not significantly interfere with each other’s sensors.
The green robot begins as a frontier-guard and records

the first perception. The blue robot then clears the area
behind the green robot.

In the second panel, the orange robot has expanded
one of the initial frontiers, classified its boundary, and
become a frontier-guard. As orange only needs one new
viewpoint to expand its single frontier arc, it will ex-
pand alone around the top of the obstacle. Blue is then
dispatched to clear the other initial frontier.

The next two images show the continued expansion
of the cleared area. By the fourth panel, both orange
and green have reached positions from which they re-
quire assistance in order to expand. After the blue robot
clears the inside of the U-shaped obstacle, it enters the
Wander state and searches for a leader.

The remaining images show the final stages of the
algorithm, where orange and blue clear one room while
green clears the lower corridor. Green finishes before
the others, and enters the Wander state to try to find
them. The final panel shows recorded trajectories for
the robots during clearing as well as all viewpoints.

4.4 Hospital Wing Simulation

Figure 7 presents a larger simulation in a more complex
environment modeled after part of a wing of a hospital.
A movie version is also available in Online Resource
2. The environment is 16m wide and 20m tall, with a
number of small patient rooms around a central desk,
as well as a couple storage closets and other rooms at
the bottom of the map.

Six simulated d-searchers with d = 2.0m begin in
the largest room in the bottom right corner. The first
image shows the result of the first expansion, with the
blue robot having reached its viewpoint and erasing the
first third of the initial full circle frontier. The initial

Distributed Pursuit-Evasion without Global Localization via Local Frontiers 11

Fig. 7 Three screenshots from a simulation of six d-searchers clearing a portion of a hospital wing. The paths of the agents
are shown at right, with all viewpoints drawn with larger squares

frontier-guard then dispatches another follower to cover
the second third, before expanding the final third itself.

By the middle image, the team has swept through
all of the lower rooms. Five of the searchers are en-
gaged in covering and expanding the frontier, while
the purple robot remains behind. The purple robot was
part of the group of four which cleared the bottom left
room, and all four of those searchers entered the Wan-
der state once that room was clear. While most of these
searchers found their way to an active frontier, the pur-
ple searcher is still wandering.

The final image shows the recorded trajectories
of each agent, with viewpoints indicated with larger
squares. The bottom set of rooms, as well as the rooms
in the top right, show a dense set of tracks of searchers.
The density in these rooms is a result of multiple
searchers repeatedly executing the Wander behavior
after clearing these parts of the map. The clear lines
in the top right and middle left show the efficient,
simple paths taken by searchers executing repeated
expansions.

4.5 Hardware Experiments

The distributed clearing algorithm was experimen-
tally validated using Khepera III robots. Each robot is
equipped with a wi-fi card and a Hukuyo URG-04LX
laser sensor. The latter has a field-of-view of 240◦ and a
range artificially limited to 0.8 m. Simple odometry is
used to provide mutual localization and Smooth Near-
ness Diagram navigation is used to avoid obstacles.
Each robot is controlled by a separate process and they
communicate with each other using a wireless network.

A complete experiment is summarized in Fig. 8,
where each column contains a camera image and the
relative perceptions for a distinct phase of the algo-
rithm. A video of the experiment is provided in On-
line Resource 3. In the first two panels (a,e) one robot
acts as frontier-guard while the others are followers. By
the second phase (b,f), the first dead-end corridor has
been cleared and two frontier-guards are set to sweep
the next two corridors. In the third phase (c,g) one
robot simulates a motor fault, which forces the two
other robots to complete the task by themselves. In
the end (d,h), the environment is fully cleared and the
trajectories for each robot are shown, with larger boxes
indicating viewpoints.

5 Theoretical Analysis & Results

5.1 Frontier Guarding & Expansion Properties

The behavior of the frontier-guards in the distributed
clearing algorithm guarantees both the frontier guard-
ing property and the expansion property from Defi-
nition 1. When expander i reaches its viewpoint and
makes a perception, it then enters the stationary
frontier-guard state. So long as i remains a frontier-
guard, it maintains complete coverage of the frontier
segments in Fk,i. Searcher i will only leave the frontier-
guard state if either Fk,i is erased by a new neighbor,
or if i determines that one new viewpoint is sufficient
to cover Fk,i and that the path to the viewpoint also
maintains coverage of Fk,i. The local viewpoint plan-
ning method guarantees that each new viewpoint will
expand the cleared area.

12 Joseph W. Durham et al.

Fig. 8 Four phases of an experiment with three Khepera III robots with Hukuyo URG-04LX laser sensors. One of the robots
simulates a motor fault (b,f) which forces the others to complete the task by themselves (d,h)

5.2 Algorithm Completeness

Two assumptions are required to extend Theorem 1 and
claim that the distributed clearing algorithm is guaran-
teed to detect every evader in Q. First, there must be
a sufficient number of searchers available to expand at
least one frontier segment at each step of the algorithm.
Second, any searcher who enters the Wander state must
reach an active frontier in finite time. When these two
assumptions are satisfied, the searchers will never have
to wait an infinitely long time between the recording of
perceptions. Therefore, we can conclude following the
proof of Theorem 1 and the frontier guarding and ex-
pansion properties that the distributed clearing algo-
rithm will clear all of Q and detect every evader in Q.

5.3 Bounds on Number of d-Searchers Required to
Clear Tree-like Environments

A well-known result from the literature is that comput-
ing the minimum number of searchers required to clear
a general graph is NP-hard (Parsons, 1978). This result
was extended in Guibas et al (1999) to searchers with
infinite range sensors in polygonal environments, and so
solving for the minimum number of d or (d, φ)-searchers
to clear a non-polygonal environment is also NP-hard.
Instead, we examine a simpler illustrative scenario.

Consider an environment made of narrow hallways
which intersect at junctions. Each hallway section be-
tween two junctions is narrower than 2d and longer than
2d, meaning that having a single d-searcher traverse
the hallway is both sufficient and necessary to clear the
hallway. In addition, assume that one robot placed in a
junction can detect any evader which enters the junc-

tion. With these assumptions, we can model the envi-
ronment as a graph where hallways are represented by
edges of unitary length, junctions by nodes with degree
three or greater, and any dead-end hallways as nodes
of degree one.

The following two Propositions give bounds on the
number of agents required for the special case where the
graph representing the environment is a tree. Let us as-
sume, without loss of generality, that the robots start
at a junction. We consider two strategies for dispatch-
ing followers: (1) assign all available followers to follow
an expander (depth-first strategy), and (2) a general
follower allocation strategy.

Proposition 1 (Depth-first on Tree) Let h be the
maximum number of hops from the starting node to a
leaf of the tree. The number of robots required to clear
the environment with the distributed clearing algorithm
using a depth-first strategy is upper bounded by: (i) h if
the starting node is a leaf, or (ii) h+ 1 otherwise.

Proof. From the starting node, the team will initially
expand through one path in the tree, with one robot
staying as a guard in each non-leaf node in the path.
The longest such path will require h − 1 guards if the
starting node is a leaf, and h guards otherwise. One
additional robot is needed to expand and clear the leaf
node at the end of the path. Hence the result follows.

Proposition 2 (General Tree Bound) Let ` be the
number of nodes in the tree which have a leaf node as
a child. Then, the number of robots required to clear
the environment with the distributed clearing algorithm
using any follower allocation strategy is upper bounded
by `+ 1.

Distributed Pursuit-Evasion without Global Localization via Local Frontiers 13

Proof. Expanding out from the starting node, the max-
imum number nodes which could requiring guarding at
the same time is equal to `. If one additional agent was
available, this agent would be dispatched to expand and
clear a leaf node. Once the leaf node was clear, the agent
would wander back to the parent node and then con-
tinue on to the next leaf, eventually clearing all the
leaves and thus the full tree.

5.4 Time and Space Computational Complexity

The four significant subroutines in our algorithm have
minimal computational requirements. One important
innovation of this works is the pairwise frontier merg-
ing method, which requires only O (2|∂S|) memory and
O

(
|∂S|2

)
time to find intersections and classify the lo-

cal frontier. Our geometric viewpoint planning method
typically requires only constant time per viewpoint, but
scales with |∂S| if φ < 2π and the relevant frontier
arc consists of both curved and radial segments. Path
planning to new viewpoints is trivial as the straight
line between viewpoints is always in S. Reactive colli-
sion avoidance can then be handled by a local planner
like Smooth Nearness Diagram navigation. Finally, the
search for leader subroutine is also straightforward as
it must simply pick a point on the free boundary of the
robot’s current sensor footprint to drive towards.

5.5 Detecting Completion

When the environment has been cleared, all searchers
will be in the Wander state. If all-to-one communica-
tion is available (e.g., if all robots have even a very
low-bandwidth connection to a central command cen-
ter), then detecting task completion is trivial. In the
most general case, the wandering searchers will have to
reach a consensus that the task is complete by querying
other searchers when they encounter them. In the ab-
sence of global localization or other means of assuring
rendezvous, our proposal is that robots in the Wander
state clump together when they encounter each other
to form wandering blobs. Eventually, through the ran-
dom walks of these growing blobs, all searchers will be
joined into a single blob and task completion can be
easily detected.

5.6 Handling Agent Failure

The distributed clearing algorithm relies on main-
taining complete coverage of the global frontier at all
times. The failure of any searcher in the frontier-guard

state, therefore, has the potential to recontaminate
the cleared area and require restarting the algorithm.
However, the algorithm can be made quite robust to
random failures with a few minor modifications, at the
cost of requiring a larger robot team.

The two mission-critical robot behaviors are Frontier-
guard and Expand. To handle the potential failure of
a frontier-guard, all followers of the guard could hold
duplicate copies of the guard’s perception and local
frontier. The followers would regularly communicate
with the guard to check that it is functioning and, if it
fails, then one follower would take its place. If a high
degree of robustness is required for a particular appli-
cation, the algorithm could be modified to ensure each
guard always has one or more followers. The failure of
a searcher in the Expand state could be handled by one
of its followers in a similar manner. In addition, when
a frontier-guard commands a searcher to expand to a
particular point, it can regularly check the expander’s
progress and dispatch another agent if necessary.

6 Numerical Analysis & Results

In this section we use a Monte Carlo probability esti-
mation method from Tempo et al (2005) to place some
probabilistic bounds on how much area 12 d-searchers
can clear in an infinite obstacle-free environment. The
simulated searchers expand from their starting position
and clear as much area as they can before reaching a
final equilibrium where the team would need additional
searchers to continue. The theoretical limit on the area
cleared by 12 d-searchers occurs when the searchers are
at the vertices of a 12-sided regular polygon with sides
of length 2d. The cleared area in this limit is the area of
the regular polygon plus the area of the sensor footprint
of each searcher beyond the polygon. For n searchers,
this area is given by

Cleared area limit =
nd2

tan
(
π
n

) +
(n+ 2)πd2

2
.

We set d = 1.0, meaning the maximum clearable area
for 12 searchers is 66.78m2.

The Chernoff bound describes the minimum number
of random samples N required to reach a certain level
of accuracy in a probability estimate. For an accuracy
ε ∈ (0, 1) and confidence 1 − η ∈ (0, 1), the number of
samples is given by

N ≥ 1
2ε2 log 2

η .

For η = 0.01 and ε = 0.1, at least 116 samples are
required.

14 Joseph W. Durham et al.

In each trial, we chose a random agent as the
initial frontier-guard, which produced differences in
subsequent robot roles and timing of establishment
of perceptions. In addition, the robots are only asked
to get within 2 cm and 2◦ of a particular viewpoint,
which leads to variability in the resulting perceptions
and frontiers.

Over 118 simulations, the 12 searchers cleared an
average of 93.4% of the optimum area with a standard
deviation of 2.3%. The maximum percentage cleared
was 97.3%, while the minimum was 88.5%. A video of
an example trial which cleared 96.2% of the optimal
area is available as Online Resource 4. Variability in
the area cleared came from differences in the overlap
between searcher footprints and how closely the final
shape resembled a circle.

Based on these results, we can conclude that with
99% confidence there is at least a 90% probability that
12 d-searchers executing the distributed clearing algo-
rithm in a large empty environment will clear at least
88.5% of the maximum possible area.

7 Conclusion & Future Work

We have presented a distributed pursuit-evasion algo-
rithm for a team of mobile robots with limited sensing
and communication capabilities, limited on-board
memory, and access to only local mutual localization.
Our algorithm can guarantee detection of moving
evaders in an unknown, non-polygonal environment
with holes, provided the team consists of a sufficient
number of robots. A key contribution of this algorithm
is a novel method for updating the global frontier
between cleared and contaminated regions using only
local information. We also validated the algorithm
through both simulations and hardware experiments,
and discussed some theoretical and numerical results
on the algorithm’s performance.

There are a number of interesting future directions
for this work. One useful extension would be to guaran-
tee a connected communication graph for the searchers
at all times, perhaps including a connection back to
the initial starting point. The development of bounds
on the number of d−searchers required to clear a gen-
eral environment would be a significant contribution.
Finally, the frontier concept could also be applied to
three-dimensional environments.

Acknowledgements The authors would like to thank Paolo
Stegagno and the Robotics Lab at DIS led by Giuseppe Ori-
olo. This work is supported in part by National Science
Foundation award IIS-0904501 and by Army Research Office
MURI award W911NF-05-1-0219.

References

Adler M, Räcke H, Sivadasan N, Sohler C, Vöcking B
(2003) Randomized pursuit-evasion in graphs. Com-
binatorics, Probability and Computing 12(3):225–
244

Bopardikar SD, Bullo F, Hespanha JP (2008) On
discrete-time pursuit-evasion games with sensing lim-
itations. IEEE Trans on Robotics 24(6):1429–1439

Durham JW, Bullo F (2008) Smooth nearness-diagram
navigation. In: IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems, Nice, France, pp 690–695

Franchi A, Stegagno P (2010) Multirobot Inte-
grated Platform. http://www.dis.uniroma1.it/
∼labrob/software/MIP/

Franchi A, Freda L, Oriolo G, Vendittelli M (2009a)
The sensor-based random graph method for coop-
erative robot exploration. IEEE/ASME Trans on
Mechatronics 14(2):163–175

Franchi A, Oriolo G, Stegagno P (2009b) Mutual lo-
calization in a multi-robot system with anonymous
relative position measures. In: 2009 IEEE/RSJ Int.
Conf. on Intelligent Robots and Systems, St. Louis,
MO, pp 3974–3980

Gerkey B, contributors (2009) The Player/Stage
Project. http://playerstage.sourceforge.net,
version 2.12

Gerkey BP, Thrun S, Gordon G (2006) Visibility-based
pursuit-evasion with limited field of view. Interna-
tional Journal of Robotics Research 25(4):299–315

Guibas LJ, Latombe JC, Lavalle SM, Lin D, Motwani
R (1999) A visibility-based pursuit-evasion problem.
International Journal of Computational Geometry &
Applications 9(4/5):471–494

Hollinger G, Singh S, Kehagias A (2010) Improving ef-
ficiency of clearing with multi-agent teams. Interna-
tional Journal of Robotics Research 29(8):1088–1105

Howard A, Matarić MJ, Sukhatme GS (2002) An incre-
mental self-deployment algorithm for mobile sensor
networks. Autonomous Robots 13(2):113–126

Jung B, Sukhatme GS (2002) Tracking targets using
multiple robots: The effect of environment occlusion.
Autonomous Robots 13(3):191–205

Kolling A, Carpin S (2008) Multi-robot surveillance: an
improved algorithm for the graph-clear problem. In:
2008 IEEE Int. Conf. on Robotics and Automation,
Pasadena, CA, pp 2360–2365

Kolling A, Carpin S (2010) Multi-robot pursuit-evasion
without maps. In: 2010 IEEE Int. Conf. on Robotics
and Automation, Anchorage, Alaska, pp 3045–3051

Parsons TD (1978) Pursuit-evasion in a graph. In: Alavi
Y, Lick D (eds) Theory and Applications of Graphs,
Lecture Notes in Mathematics, vol 642, Springer, pp

Distributed Pursuit-Evasion without Global Localization via Local Frontiers 15

426–441
Sachs S, Rajko S, LaValle SM (2004) Visibility-based

pursuit-evasion in an unknown planar environment.
International Journal of Robotics Research 23(1):3–
26

Suzuki I, Yamashita M (1992) Searching for a mobile in-
truder in a polygonal region. SIAM Journal on Com-
puting 21(2):863–888

Tempo R, Calafiore G, Dabbene F (2005) Randomized
Algorithms for Analysis and Control of Uncertain
Systems. Springer

Yamauchi B (1998) Frontier-based exploration using
multiple robots. In: 2nd Int. Conf. on Autonomous
Agents, Minneapolis, MN, pp 47–53

