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Abstract— The celebrated Kuramoto model captures various
synchronization phenomena in biological and man-made dy-
namical systems of coupled oscillators. It is well-known that
there exists a critical coupling strength among the oscillators
at which a phase transition from incoherency to synchronization
occurs. This paper features three contributions. First, we char-
acterize and distinguish the different notions of synchronization
used throughout the literature and formally introduce the con-
cept of phase cohesiveness as an analysis tool and performance
index for synchronization. Second, we review the vast literature
providing necessary, sufficient, implicit, and explicit estimates
of the critical coupling strength in the finite and infinite-
dimensional case. Finally, we present the first explicit necessary
and sufficient condition on the critical coupling strength to
achieve synchronization in the finite-dimensional Kuramoto
model for an arbitrary distribution of the natural frequencies.
The multiplicative gap in the synchronization condition yields
a practical stability result determining the admissible initial
and the guaranteed ultimate phase cohesiveness as well as the
guaranteed asymptotic magnitude of the order parameter.

I. THE KURAMOTO MODEL OF COUPLED OSCILLATORS

A classic model for the synchronization of coupled oscil-
lators is due to Kuramoto [1]. The Kuramoto model considers
n ≥ 2 coupled oscillators each represented by a phase
variable θi ∈ T1, the 1-tours, and a natural frequency ωi ∈ R.
The system of coupled oscillators obeys the dynamics

θ̇i = ωi −
K

n

n∑
j=1

sin(θi − θj) , i ∈ {1, . . . , n} , (1)

where K > 0 is the coupling strength among the oscillators.
The Kuramoto model (1) finds application in various

biological synchronization phenomena, and we refer the
reader to the excellent reviews [2], [3] for various references.
Recent technological applications of the Kuramoto model
include motion coordination of particles [4], synchronization
in coupled Josephson junctions [5], deep brain stimulation
[6], and transient stability analysis of power networks [7].

Kuramoto himself analyzed the model (1) based on the
order parameter reiψ , 1

n

∑n
j=1 e

iθj , which corresponds the
centroid of all oscillators when represented as points on the
unit circle in C1. The magnitude r of the order parameter
can be understood as a measure of synchronization: if all
oscillators are perfectly synchronized with identical angles
θi(t), then r = 1, and if all oscillators are spaced equally
on the unit circle, then r = 0. With the order parameter, the
Kuramoto model (1) can be written in the insightful form

θ̇i = ωi −Kr sin(θi − ψ) , i ∈ {1, . . . , n} . (2)
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Equation (2) gives the intuition that the oscillators syn-
chronize by coupling to a mean field represented by the
order parameter reiψ . Intuitively, for small coupling strength
K each oscillator rotates with its natural frequency ωi,
whereas for large coupling strength K all angles θi(t) will
be entrained by the mean field reiψ . This phase transition
from incoherency to synchronization occurs for some critical
coupling Kcritical and has been the source of numerous
articles starting with Kuramoto’s own insightful analysis [1],
[8]. For instance, since r ≤ 1, no solution of (2) of the
form θ̇i(t) = θ̇j(t) can exist if K < |ωi − ωj |/2. Hence,
K≥|ωi−ωj |/2 is a necessary synchronization condition and
a lower bound for Kcritical. Various necessary and sufficient
bounds on Kcritical for both the on-set and the ultimate stage
of synchronization have been derived in the vast literature.

The contributions of this paper are three-fold.
First, we characterize, distinguish, and relate different

concepts of synchronization and their analysis methods,
which are studied and employed in the networked control,
physics, and dynamical systems communities. In particular,
we review the concepts of phase synchronization and fre-
quency synchronization, and introduce the notion of phase
cohesiveness. In essence, a solution to the Kuramoto model
(1) is phase cohesive if all angles are bounded within a
(possibly rotating) arc of fixed length. The notion of phase
cohesiveness provides a powerful analysis tool for synchro-
nization and can be understood as a performance index for
synchronization similar to the order parameter.

As second contribution, we review the extensive literature
on the Kuramoto model, and present various necessary, suffi-
cient, implicit, and explicit estimates of the critical coupling
strength for the finite and infinite-dimensional Kuramoto
model in a unified language [1]–[4], [7]–[25]. Aside from the
comparison of the different estimates of the critical coupling
strength, the second purpose of this literature review is the
comparison of the different analysis techniques.

As third, final, and main contribution of this paper,
we provide an explicit necessary and sufficient condition
on the critical coupling strength to achieve exponential
synchronization in the finite-dimensional Kuramoto model
for an arbitrary distribution of the natural frequencies ωi.
In particular, synchronization occurs for K > Kcritical =
ωmax − ωmin, where ωmax and ωmin are the maximum and
minimum natural frequency, respectively. The multiplicative
gap Kcritical/K determines the admissible initial and the
guaranteed ultimate level of phase cohesiveness as well as the
guaranteed asymptotic magnitude r of the order parameter.
In particular, the ultimate level of phase cohesiveness can
be made arbitrary small by increasing the multiplicative
gap Kcritical/K. This result resembles the control-theoretic
concept of practical stability if K and Kcritical are understood



as a synchronization-enhancing gain and as a measure for
the desynchronizing non-uniformity among the oscillators.
Furthermore, our main result includes estimates on the
exponential synchronization rate for phase and frequency
synchronization as well as a local stability property.

Compared to the authors’ earlier work in power networks
[7], the third contribution proves necessity of the sufficient
bound on the critical coupling derived in [7] and doubles the
estimate for the region of attraction presented in [7].

The remainder of this paper is organized as follows.
Section II reviews different concepts of synchronization and
provides a motivating example. Section III reviews the litera-
ture on the critical coupling strength in the Kuramoto model,
and Section IV presents our main result. The simulation
studies in Section V compare our bound with other explicit
and necessary or implicit and exact bounds known in the
literature. Finally, Section VI concludes the paper.

Notation: The torus is the set T1 = ]−π,+π], where
−π and +π are associated with each other, an angle is
a point θ ∈ T1, and an arc is a connected subset of T1.
The product set Tn is the n-dimensional torus. With slight
abuse of notation, let |θ1 − θ2| denote the geodesic distance
between two angles θ1 ∈ T1 and θ2 ∈ T1. For γ ∈ [0, π],
let ∆(γ) ⊂ Tn be the set of angle arrays (θ1, . . . , θn) with
the property that there exists an arc of length γ containing
all θ1, . . . , θn in its interior. Thus, an angle array θ ∈ ∆(γ)
satisfies maxi,j∈{1,...,n} |θi − θj | < γ. For γ ∈ [0, π], we
also define ∆̄(γ) to be the union of the phase-synchronized
set {θ ∈ Tn | θi = θj , i, j ∈ {1, . . . , n}} and the
closure of the open set ∆(γ). Hence, θ ∈ ∆̄(γ) satisfies
maxi,j∈{1,...,n} |θi−θj | ≤ γ; the case θ ∈ ∆̄(0) corresponds
simply to θ taking value in the phase-synchronized set.
Finally, given an n-tuple (x1, . . . , xn), let xmax and xmin be
the corresponding maximum and minimum elements.

II. SYNCHRONIZATION NOTIONS AND CONCEPTS

Different levels of synchronization are typically distin-
guished for the Kuramoto model (1). The case when all angles
θi(t) converge exponentially to a common angle θ∞ ∈ T1 as
t → ∞ is referred to as exponential phase synchronization
and can only occur if all natural frequencies are identical. If
the natural frequencies are non-identical, then each pairwise
distance |θi(t)− θj(t)| can converge to a constant value, but
this value is not necessarily zero. The following concept of
phase cohesiveness addresses exactly this point. A solution
θ : R≥0 → Tn to the Kuramoto model (1) is phase cohesive
if there exists a length γ ∈ [0, π[ such that θ(t) ∈ ∆̄(γ) for all
t ≥ 0, i.e., at each time t there exists an arc of length γ con-
taining all angles θi(t). A solution θ : R≥0 → Tn achieves
exponential frequency synchronization if all frequencies θ̇i(t)
converge exponentially fast to a common frequency θ̇∞ ∈ R
as t → ∞. Finally, a solution θ : R≥0 → Tn achieves
exponential synchronization if it is phase cohesive and it
achieves exponential frequency synchronization.

If a solution θ(t) achieves exponential frequency syn-
chronization, all phases asymptotically become constant in a
rotating coordinate frame with frequency θ̇∞, or equivalently,
all phase distances |θi(t) − θj(t)| asymptotically become
constant. Hence, the terminology phase locking is sometimes

also used in the literature to define a solution θ : R≥0 → Tn
that satisfies θ̇i(t) = θ̇∞ [11], [15], [20] or θi(t) − θj(t) =
constant for all i, j ∈ {1, . . . , n} and for all t ≥ 0 [9],
[19], [21], [23], [24]. Other commonly used terms in the
vast synchronization literature include full, exact, or perfect
synchronization (or even phase locking [3]) for phase syn-
chronization and frequency locking, frequency entrainment,
or partial synchronization for frequency synchronization.

In the networked control community, boundedness of
angular distances and consensus arguments are typically
combined to prove frequency synchronization [7], [12], [13],
[15], [16], [18]. Our analysis in Section IV makes this ap-
proach to synchronization explicit by distinguishing between
phase cohesiveness and frequency synchronization. Note that
phase synchronization is simply the extreme case of phase
cohesiveness with limt→∞ θ(t) ∈ ∆̄(0), and phase cohe-
siveness can also be understood as a performance measure
for synchronization. Indeed, if the magnitude r of the order
parameter is understood as an average performance index for
synchronization, then phase cohesiveness can be understood
as a worst-case performance index. Since the order parameter
reiψ is the centroid of all phasors eiθj ∈ C1, it is contained
in the convex hull of the arc of length γ, as illustrated in
Figure 1. Hence, the magnitude of the order parameter can
be easily related to a guaranteed level of phase cohesiveness.

Lemma II.1 Consider an array of angles θ=(θ1, . . . , θn) ∈
Tn, n≥2, and compute the magnitude of the order parameter
r(θ)= 1

n |
∑n
j=1 e

iθj |. The following statements hold:
1) if θ ∈ ∆̄(γ) for some γ ∈ [0, π[, then r(θ) ∈

[cos(γ/2), 1]; and conversely
2) if r(θ) ∈ [0, 1] and θ ∈ ∆̄(π), then θ ∈ ∆̄(γ) for some

γ ∈ [2 arccos(r(θ)), π].

In the physics and dynamical systems community expo-
nential synchronization or phase locking is usually analyzed
in relative coordinates. For instance, since the average fre-
quency 1

n

∑n
i=1 θ̇i(t) = 1

n

∑n
i=1 ωi , ωavg is constant, the

Kuramoto model (1) is sometimes [19], [20] analyzed with
respect to a rotating frame in the coordinates ξi = θi−ωavgt
(mod 2π), i ∈ {1, . . . , n}, corresponding to a deviation
from the average angle. The existence of an exponentially
stable one-dimensional (due to translational invariance) equi-
librium manifold in ξ-coordinates then implies local stability
of phase-locked solutions and exponential synchronization.
Alternatively, the translational invariance can be removed by
formulating the Kuramoto model (1) in grounded coordinates

rmin rmax

γ

γ

Fig. 1. Schematic illustration of an arc of length γ ∈ [0, π], its convex
hull (shaded), and a location • of the corresponding order parameter reiψ .



δi = θi − θn, for i ∈ {1, . . . , n − 1} [7], [21]. We
refer the reader to [7, Lemma IV.1] for a geometrically
rigorous characterization of the grounded δ-coordinates and
the relation of exponential stability in δ-coordinates and
exponential synchronization in θ-coordinates.

The following example of two oscillators illustrates the
notion of phase cohesiveness, applies graphical synchroniza-
tion analysis techniques, and points out various important
geometric subtleties occurring on the compact state space T2.

Example II.1 (Two oscillators) Consider n = 2 oscillators
with ω2 > ω1. We restrict our attention to angles contained
in an open half-circle: for angles θ1, θ2 with |θ2 − θ1| < π,
we define the angular difference θ2 − θ1 to be the number
in ]−π, π[ with magnitude equal to the geodesic distance
|θ2−θ1| and with positive sign iff the counter-clockwise path
length from θ1 to θ2 on T1 is smaller than the clockwise path
length. With this definition the two-dimensional Kuramoto
dynamics (θ̇1, θ̇2) can be reduced to the scalar difference
dynamics θ̇2− θ̇1. After scaling time as t 7→ t(ω2−ω1) and
introducing κ = K/(ω2 − ω1) the difference dynamics are

d

d t
(θ2 − θ1) = f(θ2 − θ1) := 1− κ sin(θ2 − θ1) . (3)

The scalar dynamics (3) can be analyzed graphically by
plotting the vector field f(θ2 − θ1) over the difference
variable θ2 − θ1, as in Figure 2(a). The non-smoothness of
f(θ2− θ1) at the boundaries {0, π} is an artifact of the non-
smoothness of the geodesic distance on the state space T2.
Figure 2 displays a saddle-node bifurcation at κ = 1: for
κ < 1 no equilibrium of (3) exists, and for κ > 1 an
asymptotically stable equilibrium θstable ∈ ]0, π/2[ together
with a saddle point θsaddle ∈ ]π/2, π[ exists. These equilibria
satisfy sin(θstable) = sin(θsaddle) = κ−1. Thus, θsaddle and
θstable can be shifted arbitrary close to π, respectively zero, by
increasing κ. For θ(0) ∈ ∆(|θsaddle|) all trajectories converge
(exponentially) to θstable, that is, the oscillators synchronize
exponentially. Additionally, the oscillators are phase cohesive
iff θ(0) ∈ ∆̄(|θsaddle|), where all trajectories remain bounded.
For θ(0) 6∈ ∆̄(|θsaddle|) the difference θ2(t) − θ1(t) will in-
crease beyond π, and by definition will change its sign since
the oscillators change orientation. Ultimately, θ2(t) − θ1(t)
converges to the equilibrium θstable in the branch where θ2−
θ1 < 0. In the configuration space T2 this implies that the
geodesic distance |θ2(t)− θ1(t)| increases to its maximum
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(a) Vector field (3) for θ2 − θ1 > 0 (b) Trajectory θ(t) for κ = 1

Fig. 2. Plot of the vector field (3) for various values of κ and a trajectory
θ(t) ∈ T2 for the critical case κ = 1, where the dashed line is the
equilibrium manifold and � and • correspond to θ(0) and limt→∞ θ(t).

value π and shrinks again, that is, the oscillators are not phase
cohesive and revolve once around the circle before converg-
ing to the equilibrium manifold. Note that for κ � 1 the
oscillators practically achieve phase synchronization from
every initial condition in an open semi-circle. In the critical
case, κ = 1, the saddle point at π/2 is globally attractive but
not stable: for θ2(0)−θ1(0)= π/2 + ε (with ε >0 sufficiently
small), the oscillators are not phase cohesive and revolve
around the circle before converging to the saddle equilibrium
manifold in T2, as illustrated in the simulation in Figure
2(b). Thus, the saddle equilibrium manifold is both attractor
and separatrix which corresponds to a double zero eigenvalue
with two dimensional Jordan block in the linearized case.
In conclusion, the simple but already rich 2-dimensional case
shows that two oscillators are phase cohesive and synchro-
nize if and only if K > Kcriticial , ω2 − ω1, and the ratio
κ−1 = Kcriticial/K < 1 determines the ultimate phase cohe-
siveness as well as the set of admissible initial conditions. In
other words, practical phase synchronization is achieved for
K � Kcriticial, and phase cohesiveness occurs only for initial
conditions θ(0) ∈ ∆̄(γ), γ = arcsin(Kcriticial/K) ∈ ]π/2, π[.
This set of admissible initial conditions ∆̄(γ) can be enlarged
to an open semi-circle by increasing K/Kcriticial. Finally,
synchronization is lost in a saddle-node bifurcation 1 at
K = Kcriticial. In Section IV we will generalize all outcomes
of this simple analysis to the case of n oscillators. �

III. REVIEW OF BOUNDS FOR THE CRITICAL COUPLING

In case that all natural frequencies are identical, that is,
ωi ≡ ω for all i ∈ {1, . . . , n}, a transformation to a rotating
frame leads to ω ≡ 0. In this case, the analysis of the
Kuramoto model (1) is particularly simple and almost global
stability can be derived by various methods. A sample of
different analysis schemes includes the contraction property
[22], quadratic Lyapunov functions [13], linearization [23],
or order parameter and potential function arguments [4].

In the following, we review various analysis methods and
the resulting bounds on the critical coupling strength for
the case of non-identical frequencies. Most of the following
techniques also apply to the case of identical frequencies.

A. Bounds for the Infinite Dimensional Kuramoto Model
In the physics and dynamical systems community the

Kuramoto model (1) is typically studied in the continuum
limit as the number of oscillators tends to infinity and the
natural frequencies obey an integrable distribution function
g : R → R≥0. In this case, model (1) is rendered to a first
order continuity equation or a second order Fokker-Planck
equation when stochasticity is included. Kuramoto himself
considered a symmetric, continuous, and unimodal distribu-
tion g(ω) centered above zero and showed in an insightful
and ingenuous analysis [1], [8] that the incoherent state (i.e.,
a uniform distribution of the oscillators on the unit circle)
supercritically bifurcates for the critical coupling strength

Kcritical =
2

πg(0)
. (4)

1For Kuramoto oscillator models of dimension n ≥ 3, this loss of
synchrony via a saddle-node bifurcation at Kcriticial is only the starting point
of a series of bifurcation occurring if K is further decreased, see [26].



The bound (4) for the on-set of synchronization has also been
derived in [2], [3]. In [9] Ermentrout considered symmetric
distributions g(ω) with bounded domain ω ∈ [−ωmax, ωmax],
and studied the existence of phase-locked solutions. The cou-
pling threshold Kcritical necessary for the existence of phase-
locked solution reads in our notation as [9, Proposition 2]

ωmax

Kcritical
= max
p∈R,p≥1

{
1
p2

∫ 1

−1

√
p2 − ω2g(ω)dω

}
. (5)

Ermentrout further showed that formula (5) yields Kcritical ≥
2ωmax for symmetric distributions and Kcritical ≥ 4ωmax/π
whenever g is non-increasing in [0, 1]. Both of these bounds
are tight for a bipolar (i.e., a bimodal double-delta) distribu-
tion and a uniform distribution [9, Corollary 2], [11, Sections
3 & 4]. Similar results for the bipolar distribution are also
obtained in [3], and a bimodal Lorentzian distribution is
analyzed in [10]. For various other references analyzing the
continuum limit of the Kuramoto model we refer to [2], [3].

B. Explicit and Necessary or Sufficient Bounds for the Finite
Dimensional Kuramoto Model

For the finite dimensional Kuramoto model (1), we assume
that the natural frequencies are supported on a compact
interval ωi ∈ [ωmax, ωmin] ⊂ R, i ∈ {1, . . . , n}. This
assumption can be made without loss of generality since the
critical coupling Kcritical is not finite for unbounded natural
frequencies ωi [19, Theorem 1]. In [12], [13] a necessary
condition for the existence of synchronized solutions is given
in terms of the width of the interval [ωmax, ωmin] as

K >
n(ωmax − ωmin)

2(n− 1)
. (6)

Obviously, in the limit as n→∞, this bound reduces (ωmax−
ωmin)/2, the simple bound derived in the introduction of this
paper. A looser but still insightful necessary condition is K ≥
2σ, where σ is the variance of the ωi [11], [19, Corollary
2]. For bipolar distributions ωi ∈ {ωmin, ωmax}, necessary
explicit conditions similar to (6) can be derived for non-
complete and highly symmetric coupling topologies [25].

Various bounds sufficient for synchronization have been
derived including estimates of the region of attraction [7],
[12]–[18]. Typically, these sufficient bounds are based on
incremental stability arguments and are of the form

K > ‖V ω‖p · f(n, γ) , (7)

where ‖·‖p is the p-norm and V is a matrix (of yet
unspecified row dimension) measuring the non-uniformity
among the ωi. For instance, V = In − (1/n)1n×n gives
the ith component of V ω as ωi − ωavg, that is, as deviation
from the average natural frequency. Finally, the function
f : N× [0, π/2[→ [1,∞[ captures the dependence of Kcritical
on the number of oscillators n and the scalar γ determining
a bound on the admissible pairwise phase differences, which
is, for instance, of the form ‖(. . . , θi(t)− θj(t), . . . )‖p ≤ γ.

Two-norm bounds, i.e., p = 2 in condition (7), have been
derived using quadratic Lyapunov functions in [12, proof
of Theorem 4.2] and [7, Theorem V.9], where the matrix
V ∈ Rn(n−1)/2×n is the incidence matrix such that V ω is

the vector of n(n − 1)/2 pairwise differences ωi − ωj . A
sinusoidal Lyapunov function [15, Proposition 1] leads to a
two-norm bound with V = In − (1/n)1n×n. Similar two-
norm bounds have been obtained by contraction mapping
[13, Theorem 2] and by contraction analysis [14, Theorem
3.8], where V ∈ Rn−1×n is an orthonormal projector on the
subspace orthogonal to 1n×1. For all cited references the
region of attraction is given by the initial phase differences
in two-norm or ∞-norm balls satisfying ‖V θ(0)‖2,∞ < π.
Unfortunately, none of these bounds scales independently of
n since ‖V ω‖22 is a sum of at least n− 1 terms in all cited
references and f(n, γ) in condition (7) is either an increasing
[13] or a constant function of n [7], [12], [14], [15].

A scaling of condition (7) independently of n has been
achieved only when considering the width ωmax − ωmin =
‖(. . . , ωi − ωj , . . . )‖∞, that is, for V ω being the vector of
all n(n − 1)/2 pairwise frequency differences and p = ∞
in condition (7). A quadratic Lyapunov function leads to
f(n, γ) = n/(2 sin(γ)) [12, proof of Theorem 4.1], a
contraction argument leads to f(n, γ) = n/((n− 2) sin(γ))
[16, Lemma 9], and a geometric argument leads to the
scale-free bound f(γ) = 1/(2 sin(γ/2) cos(γ)) [17, proof
of Proposition 1]. In [18, Theorem 3.3] and in our earlier
work [7, Theorem V.3], the simple and scale-free bound
f(γ) = 1/ sin(γ) has been derived by analyticity and con-
traction arguments. In our notation, the region of attraction
for synchronization is in all the cited references [7], [12],
[16]–[18] given as θ(0) ∈ ∆̄(γ) for γ ∈ [0, π/2[.

C. Implicit and Exact Bounds for the Finite Dimensional
Kuramoto Model

Three recent articles [19]–[21] independently derived a
set of implicit consistency equations for the exact critical
coupling strength Kcritical for which phase-locked solutions
exist. Verwoerd and Mason provided the following implicit
formula to compute Kcritical [19, Theorem 3]:

Kcritical = nu∗/
∑n

i=1

√
1− (Ωi/u∗)2 , (8)

where Ωi = ωi − 1
n

∑n
j=1 ωj and u∗ ∈ [‖Ω‖∞ , 2 ‖Ω‖∞] is

the unique solution to the implicit equation

2
∑n

i=1

√
1− (Ωi/u∗)2 =

∑n

i=1
1/

√
1− (Ωi/u∗)2 . (9)

Verwoerd and Mason also extended their results to bipartite
graphs [24] but did not carry out a stability analysis. The
formulas (8)-(9) can be reduced exactly to the implicit self-
consistency equation derived by Mirollo and Strogatz in [20]
and by Aeyels and Rogge in [21], where additionally a
local stability analysis is carried out. The stability analysis
[20], [21] in the n-dimensional case shows the same sadle-
node bifurcation as the two-dimensional Example II.1: for
K < Kcritical there exist no phase-locked solutions θ(t),
for K > Kcritical there exist stable phase-locked solutions
θ(t), and for K = Kcritical the Jacobians of phase-locked
solutions equilibria have a double zero eigenvalue with two-
dimensional Jordan block, as illustrated in Example II.1.

In conclusion, in the finite dimensional case various nec-
essary or sufficient explicit bounds on the coupling strength



Kcritical are known as well as implicit formulas to compute
Kcritical which is provably a threshold for local stability.

IV. AN EXPLICIT, NECESSARY, AND SUFFICIENT
CONDITION ON THE CRITICAL COUPLING STRENGTH

From the point of analyzing or designing a sufficiently
strong coupling in the Kuramoto-type applications [2]–[7],
the exact bound (8)-(9) has three drawbacks. First, it is
implicit and thus not suited for performance or robustness
estimates in case of additional coupling strength, e.g., which
level of ultimate phase cohesiveness or which magnitude of
the order parameter can be achieved for K = c · Kcritical
with a certain c > 1. Second, the corresponding region of
attraction of a phase-locked equilibrium for a given K >
Kcritical is unknown. Finally, the particular natural frequencies
ωi (or their distributions) are typically time-varying, uncer-
tain, or even unknown in most biological or technological
applications [2]–[7]. In this case, the exact Kcritical has to
be dynamically estimated and re-computed over time, or
a conservatively strong coupling K � Kcritical has to be
chosen. Unfortunately, none of the explicit sufficient bounds
(7) appears to be tight to the exact implicit bound (8)-(9).

The following theorem states an explicit bound on the
coupling strength together with performance estimates, con-
vergence rates, and a guaranteed semi-global region of attrac-
tion for synchronization. Besides improving all other bounds
known to the authors, our bound is tight and thus necessary
and sufficient when considering arbitrary distributions of the
natural frequencies supported on a compact interval.

Theorem IV.1 (Explicit, necessary, and sufficient syn-
chronization condition) Consider the Kuramoto model (1)
with natural frequencies (ω1, . . . , ωn) and coupling strength
K. The following three statements are equivalent:

(i) the coupling strength K is larger than the maximum
non-uniformity among the natural frequencies, i.e.,

K > Kcritical , ωmax − ωmin ; (10)

(ii) there exists an arc length γmax ∈ ]π/2, π] such that
the Kuramoto model (1) synchronizes exponentially for
all possible distributions of the natural frequencies
supported on [ωmin, ωmax] and for all initial phases
θ(0) ∈ ∆(γmax); and

(iii) there exists a locally exponentially stable synchronized
trajectory θ : R≥0 → Tn in ∆̄(γmin) for some arc
length γmin ∈ [0, π/2[ and for all possible distributions
of the natural frequencies supported on [ωmin, ωmax].

If the three equivalent cases (i), (ii), and (iii) hold, then
the ratio Kcritical/K and the arc lengths γmin ∈ [0, π/2[
and γmax ∈ ]π/2, π] are related uniquely via sin(γmin) =
sin(γmax) = Kcritical/K, and the following statements hold:

1) phase cohesiveness: the set ∆̄(γ) is positively invari-
ant for every γ ∈ [γmin, γmax], and each trajectory start-
ing in ∆(γmax) approaches asymptotically ∆̄(γmin);

2) order parameter: the asymptotic value of the magni-
tude r∞ of the order parameter is bounded as

1 ≥ r∞ ≥ cos
(γmin

2

)
=

√
1 +

√
1− (Kcritical/K)2

2
;

3) frequency synchronization: the synchronization fre-
quency is the average frequency ωavg = 1

n

∑n
i=1 ωi,

and, given phase cohesiveness in ∆̄(γ), γ ∈ [0, π/2[,
the exponential synchronization rate is no worse than
λfs = −K cos(γ); and

4) phase synchronization: if ωi = ω ∈ R for all i ∈
{1, . . . , n}, then for every θ(0) ∈ ∆̄(γ), γ ∈ [0, π[, the
phases synchronize exponentially to the average phase
θavg(t) := 1

n

∑n
i=1 θ(0) + ωt and the exponential syn-

chronization rate is no worse than λps = −K sinc(γ).

To compare the bound (10) to the bounds presented in
Section III, we note from the proof of Theorem IV.1 that
our bound (10) can be equivalently stated as K > (ωmax −
ωmin)/ sin(γ) and thus improves the sufficient bounds [12]–
[17]. In the simple case n = 2 analyzed in Example II.1, the
bound (10) is obviously exact and also equals the necessary
bound (6). Furthermore, Theorem IV.1 fully generalizes the
observations in Example II.1 to the n-dimensional case. In
the infinite-dimensional case the bound (10) is tight with
respect to the necessary bound for a bipolar distribution ωi ∈
{ωmin, ωmax} derived in [3], [9], [11]. Note that condition (10)
guarantees synchronization for arbitrary distributions of ωi
supported in [ωmin, ωmax], which can possibly be uncertain,
time-varying (addressed in detail in [27]), or even unknown.
Theorem IV.1 also guarantees a larger region of attraction
θ(0) ∈ ∆(γmax) for synchronization than [7], [12]–[18].

Besides the necessary and sufficient bound (10), Theorem
IV.1 gives guaranteed exponential convergence rates for
frequency and phase synchronization, and it establishes a
practical stability result in the sense that the multiplicative
gap Kcritical/K in the bound (10) determines the admissible
initial and the guaranteed ultimate phase cohesiveness as
well as the guaranteed asymptotic magnitude r of the order
parameter. In view of this result, the convergence properties
of the Kuramoto model (1) are best described by the control-
theoretical terminology “practical phase synchronization.”

The proof of Theorem IV.1 is detailed in [27] and is
only briefly sketched here. Similar to [7], [16]–[18], the
proof of sufficiency (i) ⇒ (ii) relies on a contraction ar-
gument in combination with a consensus analysis: if con-
dition (10) holds, then the Lyapunov function V (θ(t)) =
maxi,j∈{1,...,n} |θi(t)− θj(t)| guarantees the phase cohe-
siveness and phase synchronization, as stated in 1) and 4).
Statement 2) on the order parameter follows then immedi-
ately from Lemma II.1. Notice that the frequencies θ̇i(t)
of the Kuramoto model obey the linear time-varying and
symmetric consensus dynamics d

d t θ̇i =
∑n
j=1 aij(t) (θ̇j −

θ̇i), where all terms aij(t)=aji(t)=(K/n) cos(θi(t)−θj(t))
become strictly positive in finite time due to 1). Thus, a stan-
dard consensus analysis yields the frequency synchronization
stated in 3). In summary, condition (10) implies (ii) and 1)-
4). The necessity (ii) ⇒ (i) is proven by showing that the
bound (10) is tight: if (i) is not satisfied, then exponential
synchronization cannot occur for a bipolar distribution of
the natural frequencies ωi ∈ {ωmin, ωmax}. Finally, the
equivalence (i), (ii) ⇔ (iii) follows from the definition of
exponential synchronization and by basic arguments from
ordinary differential equations, similar to [7, Lemma IV.1].



V. SIMULATION STUDIES

Theorem IV.1 places a hard bound on the critical coupling
strength Kcritical for all distributions of ωi supported on the
compact interval [ωmax, ωmin], including the worst-case bipo-
lar distribution. For a particular distribution g(ω) supported
on [ωmin, ωmax] the bound (10) is only sufficient and possibly
a factor 2 larger than the necessary bound (6). The exact
critical coupling for g(ω) lies somewhere in between and
can be obtained by solving the implicit equations (8)-(9).

The following example illustrates the average case for
natural frequencies sampled from a uniform distribution
g(ω) = 1/2 supported for ω ∈ [−1, 1]. Figure 3 reports
numerical findings on the critical coupling strength for n ∈
[2, 300] oscillators in a semi-log plot, where the coupling
strengths for each n are averaged over 1000 simulations.

First, note that the three displayed bounds are equivalent
for n = 2 oscillators. As the number of oscillators increases,
the sufficient bound (10) clearly converges to ωmax−ωmin =
2, the width of the distribution g(ω), and the necessary
bound (6) accordingly to half of the width. The exact bound
(8)-(9) quickly converges to 4(ωmax − ωmin)/(2π) = 4/π
in agreement with the results (4) and (5) predicted for the
continuum limit case. It can be observed that the exact bound
(8)-(9) is closer to the tight bound (10) for a small number
of oscillators, i.e., when there are few outliers increasing
the width ωmax − ωmin. For large n, the sample size of ωi
increases and thus also the number of outliers. In this case,
the exact bound (8)-(9) is closer to the necessary bound (6).

VI. CONCLUSIONS

This paper reviewed various bounds on the critical cou-
pling strength in the Kuramoto model, formally introduced
the powerful concept of phase cohesiveness, and presented an
explicit and tight bound sufficient for synchronization in the
finite-dimensional Kuramoto model. This bound is necessary
and sufficient for arbitrary distributions of the natural fre-
quencies and tight for the particular case, where only implicit
bounds are known. Furthermore, a general practical stability
result as well as various performance measures have been
derived as a function of the multiplicative gap in the bound.

In view of the different biological and technological
applications of the Kuramoto model [2]–[7], similar tight
and explicit bounds have to be derived for synchronization
(as well as splay state stabilization) with arbitrary coupling
topologies, possibly non-uniform and time-varying coupling
weights, phase and time delays, and higher order dynamics.

n

4/π

K
cr
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Fig. 3. Comparison of the necessary bound (6) (◦), the exact and implicit
bound (8)-(9) (♦), and the tight and explicit bound (10) (�) on Kcritical.
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