A Distributed Simplex Algorithm and the Multi-Agent Assigrent Problem

Mathias Birger, Giuseppe Notarstefano, Frank ANger and Francesco Bullo

Abstract— In this paper we propose a novel distributed algorithm to  algorithm has been exploited in the computer science literature
solve degenerate linear programs on asynchronous network®amely,  for a while, see e.g. [7], [8]. An alternative contribution in this

we propose a distributed version of the well known simplex gorithm. 505 focusing in particular on the multi-agent requirements, is
We prove its convergence to the global lexicographic minimuon for ! ’

possibly fully degenerate problems and provide simulatioa supporting ~ 9iven in [1], see also [9], wherdistributed abstract programare
the conjecture that the completion time scales linearly wi the diameter  introduced as a general class of optimization problems including
of the graph. The algorithm can be interpreted as a dual versin of  linear programs and eonstraints consenstegorithm is proposed
Lﬁggﬁ‘;ﬂ%‘vﬂtg;&”ﬁgg{'issﬂggﬂg&”:oﬂirr‘]’ggrsg(rjogla[nlqlst?:if]‘;';ewaebia‘i‘g to solve them. Following the trail opened in [1], in this paper we
a multi-agent task assignment problem and show that it can besolved ~ ProPOSe a distributed version of the well known and widely used
by means of our distributed simplex algorithm. simplex method [10] to solve linear programming in a distributed

way.
[. INTRODUCTION

The increasing interest in performlng_ complex tasks via _multl The contributions of this paper are threefold. First, we introduce
agent systems (e.g. sensor and robotic networks) has raised the,. ~ . ; - .
. . . Lo Lo a distributed version of the well known simplex algorithm to
interest in solving distributed optimization problems. The funda- . . .

. R . . .. Solve degenerate linear programs in asynchronous networks with
mental paradigms in distributed computation are that: (i) infor:

mation, relevant for the solution of the problem, is distributed alpme-varymg directed communication topology. Each agent has a

S .candidate basis that it exchanges with its neighbors and updates
over a network of processors with limited memory and computatloB iteratively performincpivot operations on a subset of columns
capability, and (ii) the overall computation relies only on local com>Y €ly pertormingpl P . ; ) o

iven by its basis, its neighbors’ candidate bases and its original

putation and information exchange amongst neighboring processogfﬂumns it has been assigned. The new algorithm relies only on the

Optimizing linear objectives over linear constraints takes a centr%N Lo . d
) N ; . 0 step procedure of exchanging information and performing the
role in the optimization literature and thus deserves particular.

. e ) . ; glvot operation. This can be done by each agent on its own speed,
attention also in distributed computation. In this paper we consider . . I
and does not require network-wide coordination by consensus-

a distributed version of linear programs. In particular, we consideir pe algorithms between the update steps. This distinguishes our

linear programs in standard form where the number of decisio . - . .
. : : . _algorithm form other distributed simplex algorithms. Second, we
variables is much larger than the number of equality constraints . . . : :
: ; . - . Characterize the main properties of the algorithm. In detail, we show

Each processor in the network is assigned only the mformatlotrr]]at our proposed algorithm can deal with fully degenerate linear
relative to a subset of the decision variables. The objective is 10 prop 9 y deg

agree on a global minimum of the problem, if it exists, or agree thaf ograms. This is obtained by modifying the local solver at each

the problem is either unbounded or infeasible. Particular attentionnOde so that the p'VOt. steps }mplemeﬁemcog.raphlc ratio testAs
S ; ; . a consequence of using lexicographic ordering, we prove that each
is given to degenerate linear programs, in which more than ong

o ; candidate basis converges to the unique lexicographic minimum
solution is optimal and a mutual agreement of all agents on on o . -

o . of the problem. The main idea behind the proposed distributed
solution is required.

Although distributed and parallelized optimization aIgorithmsS'mpleX algorithm is inspired by the constraints consensus algorithm

have been studied for a long time, see e.g. [2], the muIti-ageH{Oposed in [1]. In fact, in this paper we show that, if constraints

; ; . 2~ consensus is implemented for linear programs in standard dual
perspective has recently become subject of renewed interest in Cm by using a lexicoaraphic test. then the proposed distributed
control and optimization theory community. While several interior . y 9 cographic ’ the prop )

plex turns to be its dual implementation. Third and final, we

point algorithms were proposed to solve quadratic programs arig'{g

w how to apply the proposed algorithm to the multi-agent
other convex programs [3.]’ [4], 5], [6], to the b_est O.f our knodge_ assignment problem which is known to be highly primal degenerate.
a theory for distributed linear programming is missing. The ide

of parallelizing and distributing the computation of the simplex. = show that, thanks to the special structure of the problem,
P 9 9 P P if N is the number of agents and, thud]? the number of
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II. CENTRALIZED LINEAR PROGRAMMING wherec, € R and 4, € R? refer to the problem data related to
e%olumn h. The reduced cost gives rise to the standard optimality
Oqondition in linear programming.

Theorem 2.1 (Optimality Condition, [1O])tf for some given ba-

Some preliminaries concerning linear programming are review:
in this section. The goal is to lay the ground for the remainder

the paper. sis B with basic feasible solutioms = Az'b the reduced cost
A. Problem formulation and optimality conditions ¢r, > 0, for all columnsh € H, then this solution is optimal. O
Throughout this paper, we consider linear programs in thB. Problem degeneracy
standard equality form A difficulty in linear programming is that the optimal solution
. T may be not unique. In this case the linear program is called
mm ¢ (1) degenerateCommonly, two types of degeneracy are distinguished.
st. Az =b x>0, A linear program is said to bprimal degeneratdf there is more

dxn 4 n than one basis that leads to the optimal primal solution. That is,
where A € R™", b € R” andc € R", are the problem data and here exist two base®; and B, such thatrp, = zp, = o

x € R" is the vector of decision variables. In this paper, we arg, 5 primal degenerate linear program, some of the optimal basic
interested in problems where the number of decision variables 5iapless; are zero, and the corresponding basic columns can
significantly larger than the number of constraidtsWithout 0SS tharefore be replaced by some non-basic columns, without changing
of generality, it can be assumed thahk(A) = d, since otherwise hq value z5. A linear program is said to beual degenerate
constraints are redundant and can be ignored. A problem in forp nore than one primal solution is optimal. That is, there exist
(_1) is called thq)rimal problem The dual problemof the standard ggyerg| bases, sd¥; and B;, providing different basic solutions,
linear program (1) is xp, # wxp,, while both bases admit the optimal primal cost
zp; = zp; = z". A primal linear program is dual degenerate if and
only if its dual problem is primal degenerate. A problem is said to
While the primal problem has decision variables and con- befully non-degeneratéf it is neither primal nor dual degenerate.
straints, this relation is just reversed in the dual. In the followingNon-degeneracy is highly desirable from a computational point of
we will be working with the primal problem, but will sometimes view, as the following results show.

max bTy s.t. ATy <e. (2)

explicitly refer to the dual formulation. We callalumnof problem Lemma 2.2 ([11]):Every fully non-degenerate linear program
(1), a vectorh; € R'*¢ defined as has at most one optimal solution. O
- Theorem 2.3 ([11]):If a linear program has an optimal solution
{C } - { Cly---sCn ] =:[hy,...,ha], (3) andis fully non-degenerate, then there exists a sequence of adjacent
A Aty An bases from any basiB to the unique optimal basiB*. |

However, degeneracy is a very common phenomenon in linear
programs and solution methods are required to deal with highly
gegenerate linear problems.

wherec; € R are the coefficients of the vectomnd A; € R4*! are

the columns ofA. Note that the name column refers to the primal
problem formulation and that a column in the primal correspond
to an inequality constraint in the dual. The set of all columns i€. A simplex algorithm for degenerate linear programs

denoted byH = {hi}ic(1,...ny. For any subsez C H, the A well established procedure for solving linear programs is

notationcg and Ac refers to the cost vector and the constrainihe simplex algorithmintroduced by Dantzig [10]. An informal
matrix, respectively constructed from the columns contained ifescription of the simplex algorithm is as follows:

G. The same notatior is used to denote the corresponding
decision variables. Using this notation, a linear program (1) is fully
characterized by the paitt, b), that is by the set of columns and
the right-hand side vector of the equality constraints. A well known
notion in linear programming is the one basic solution A set
of exactlyd columnsB C H is called abasisif rank(Ap) = d.
The fundamental theorem of linear programmifitQ] states that
if a linear program(H, b) has an optimal feasible solution, it has
an optimal basic feasible solution. The optimal solution of a line
program is, in general, such that thasic variablesztg # 0 and
the non-basic variables:x = 0. A solution for the basic variables
is determined byrp = AL'b. A basis is called deasible basis
if xp > 0. Two basedB; andB, are said to beadjacent if there
exist columnse € By andl € B; such thatB, = {B: Ue} \ {1}.
For each feasible basis there is a value calledptfimal cost

Simplex AlgorithmLet a primal feasible basi® be given.

While there exists an entering columen¢ B such that

c. < 0, find a leaving basic columi{e) € B such that

(BU{e}) \ {1} is again a feasible basis. Exchange the

columnl with e to get a new basis.
The procedure of replacing a basic column with a non-basic one
is called pivot For a non-degenerate linear program, the primal
cost improves at each iteration, i€\ (1} < 2B Since only a
Hinite number of bases exist, the algorithm converges after a finite
number of steps to the optimal solution. However, non-degeneracy
is often not met and basically two problems arise in the application
of the simplex algorithm to degenerate linear programs: (i) cycling
among multiple bases (primal degeneracy), and (ii) convergence to
a non-unigue minimizer (dual degeneracy). While the first problem
has received great attention in the literature, the second problem has
(4) been rarely studied. However, problem (i) turns to be critical in a

multi-agent setup, where several decision makers solve the problem

A basisB; is optimalif there is no other basiB;, j # 4, such that and, thus, have to agree on the same solution.
zp; > zp,. In the following we will mark optimal values with a  In order to handle degeneracy, a simplex algorithm with a unique
star. solution is presented in the following. We are using the algorithm

Suppose a basiB is known, then there is immediate need forproposed in [12], relying on results in [11]. The algorithm relies
a criterion to check whether this basis gives rise to an optimaleavily on the concept déxicographic orderingof vectors.

T
ZB = CBXB.

solution, thatiszp = z*. Therefore, the following concept is useful.  Definition 2.4 (Lex-positivity):If v = (v1,...,7-) is a vector,
Given a basi® and a single non-basic coluning B, thereduced then it is said to bdexico-positive(or lex-positive) ify # 0 and
costof the column is defined as the first non-zero component ofis positive. O

~ T, T T Lexico-positivity will be denoted by the symbel - 0. Given two
th=cn— Ap(Ap') cB =t r{Bun}C{BUK}, ®) vectors,v and u, we say thatv > u if v —u = 0 andv <X 0



if —v = 0orv = 0. Given a set of vector§v,,...,v,}, the Algorithm 2 Si npl ex (H, B)
lexicographical minimum, denotddxmin is the elemenw;, such  Require: A set of columngH, a lex-feasible basiB C H
that v; > v; for all j # 4. For the same set of vectors, we use  while Je € H such that[r{TBUe}C{BUe},r{TBUe}] <0 do
lexsorf{vs,...,v,} to refer to the lexicographically sorted set of B «— Pivot (B,e)
these vectors. end while

The concept of lex-positivity gives rise to a refinement of the
notion of feasible basis.

_ Definition 2.5 (Lex-feasibility):A feasible basis is calledlex- The proposed simplex algorithm requires a lex-feasible basis for
icographically feasible(lex-feasible) if every row of the mafrix the initialization. Several procedures are known in the literature
[Az b, Ap'|is lex-positive. U to initialize a simplex algorithm. In this paper we use thig-

_Itis well known in the literature [10], see also [12], that they; method We assume without loss of generality that each entry
simplex method can be refined such that after a pivot iteration thg the vectorb is non-negative. Therartificial decision variables
new basis is again primal lex-feasible. This is done by choosing, = 7, are introduced. Corresponding to the artificial decision

the leaving col_umns apcording to tﬂn?xicographic ratio testLet_ variables, an initial basiB  is defined as follows. Chooség,, =
BB be a lex-feasible basis ardhe entering column, then the leaving andcp,, = M-1, wherel,, is thed x d identity matrix, andl is a

column is chosen as d-dimensional vector of ones. The cost coefficients are all given the
Lex(€) = arg lexmin{[A5'b, A5'e;/(A5" Ac)e;] value M > 0, which is chosen larger than any cost coefficient that
jeB (6)  possibly occurs in the original problem, &l > max;=1,....n(ci).
(A5 Al)ej > 0}, In the following, the columns corresponding to the initial basis

o . ) are denoted byi;. An initial basis defined in this way is primal lex-
where the subscrips;j denotes selection of thg-th row of the feasiple, since every row di~'b,17'] is lexicographic positive.
matrix, respectively vector. It is well known that the lexicographic

ratio test is equivalent to a perturbation making the problem primal I1l. NETWORK MODEL

non-degenerate [10]. Such a selection rule prevents the simplexgefore introducing the network model we need some definitions
algorithm from cycling. ) from graph theory. Let. = ({1,..., N}, E.) denote a directed,
In a multi-agent setting, we want the algorithm to converg&tatic graph (digraph). The sétl,..., N} are the nodes of the
to a unique optimal solution. This is usually not required in graph, corresponding to unique identifiers of the agents. The set
centralized linear programming, where all optimal solutions arg; -~ {1,...,N}? denotes the set of edges connecting two nodes.
equally desirable. However, distributed algorithms have to ensufghe number of edges going out from (coming into) néde called
that all computation nodes end up with the same solution. In ordefe outdegree (indegree). A digraph is said tstrengly connected
to guarantee convergence of the algorithm taraque solution, it for every pair of nodesi, j) € {1,...,N} x {1,..., N}, there
the optimization criterion can be suitably modified. We chang@yists a path of directed edges that goes fiota 5. In a directed
the minimization objective from the primal cost= ¢’z to the graph, the minimum number of edges between noded j is
lexicographically perturbed cost called thedistancefrom i to j and is denoted bylist(i, j). The
_ T 2 n maximumdist (s, j) taken over all pairgi, j) is thediameterof the
$(z) = ¢ @+ bz +doz2 + . + Gy, ™ graphg. and ié de)noted bytiam (G.). V\fe al%ow the communication
where z; represents thé-th component of the vector. For a  network to be time-varying and therefore to be described by a time-
sufficiently small constan®,, the optimizerz*=argmin, ¢(z) dependent digraph of the forgv.(t) = (V, E(t)), t € Rxo, where
corresponds to the unique optimal solution of (1) which is minimat represents the universal time. The set of outgoing (incoming)
in a lexicographic sense. Now lét = [do,...,d5]" and write neighbors of node at timet are the set of nodes to (from) which
¢ = (c" +6T)x. A column becomes admissible with respect tothere are edges from (to)at timet. They are denoted b¥/ou: (4, t)
the perturbed cosp if ¢. = r{TBUe}c{BUe} +7{pueyd < 0. This  andNin (i, ), respectively.

in turn is equivalent to requiring A graph G.(t) models the communication in the network in the
T T sense that at time there is an edge from nodeto nodej if and
[r{BUe}C{BUEY, T{BUE}] < 0. ®) only if agent: transmits information to agent at time ¢. In the

fest of the paper we use the following assumption.

| Assumption 3.1 (Periodically Strong Connectivityihere exists
positive and bounded constafit such that for every time instant
€ Rxo, the digraphGZ«(t) := U< ,G.(7) is strongly connected.

Remark 2.6:The perturbation used in (7) and (8) requires al
ordering of the decision variables, respectively columns. We wil
discuss a suitable perturbation for distributed linear programmin
later on. d

Next, we give a pseudo code description of the Iexico-Ij
graphically modifiedPi vot algorithm and, consistently, of the
Si npl ex algorithm. ThePi vot in this form is proposed in [12].

The agents in the network performdastributed algorithn]13] to

solve the optimization problem. In what follows, the supersdfipt
denotes that a quantity belongs to ager distributed algorithm
consists of: (1) the sdlfi/, called the set oftatesw!’, (2) the set
¥, called thecommunication alphabénhcluding thenull element,

Algorithm 1 Pi vot (B, e)

Require: A lex-feasible basi®, a non-basic colume ¢ B () the mapVBG: W x (1,...,N) — %, calledmessage functign
if [r{Bue)CiBUEY, T{BUey] < O then and (4) the mafSTF: W x Y — W, called thestate transition
select the leaving columhex(e) via lex ratio test(6) function In addition to the universal time, we denotet!’ the
if Lex(e) # @ then time instants at which agent updates its internal state. In this
B« (BU{e}) \ {Lex(e)} % make the pivot sensek is a counter for updates performed by an a?ent. Between
else two discrete updates, the state is constalfit(t) = w(t,") for all

B« null % problem is unbounded t}f] <t< tﬂl. The evolution of the distributed algorithm is then

e(:jn_(fj i as follows. The algorithm starts at= 0 and each agent initializes
E&r:atulrn]E its state tOwM(O). Each agent performs two actions repeatedly:

(i) the ith agent sends to each of its outgoing neighbors in the




communication graph a message compute®/B&(w !’ (t%])); (i)

whenever it receives information from its in-neighbors, it update®r obl em dat a: ((H, b), Ge, P)
its statew[’](tﬂl) according to the state transition function. Eacha| gorit hm Distributed Simplex
agent performs these two actions at its own speed and independgit s age al phabet : S=HU{null}

of the speed of the other agents. In this sense, no synchronizati'gp

. . . : . : (4] i =
is required in the network. Following [2], we say that the algorithm ' 0¢&Ssor state: B C H with card(B) = d

is partially asynchronoussince it performs asynchronously, but! nitialization: Bl := B

T. imposes a global bound on the time allowed to pass betwegRincti on MSG(BIY, )

consecutive state updates. return all hiil contained inB(i! but not inB ;.
IV. DISTRIBUTED LINEAR PROGRAMMING function STF(BL, y)

) ) ) o . . % executed by agent with y,; := MSGBU!, i) = Bl

In this section we describe our distributed simplex algorithm o . y agent ) Yi ) " g
ve li f the form (1) if y; #null forall j € N7(q) then

solve linear programs o . HmP  lexsort{B1) UBL U (Ujerr, o) 7))
First, we present the notion alistributed linear program Bl Si npl ex (Htw B JENT () Yi
Definition 4.1 (Distributed linear program)A distributed linear ’

else
program is a tupldg., (H, b), P) that consists of Bl — nul |
(i) a time-varying communication graph G.(t) = end if
({1,...,N}, E:(¢));
(i) a linear program(H, b); ‘
(iiy a unique partitioning? = {Pll, i = 1,... N} of the
problem columns, witfHl = U, P, O Theorem 4.3:Consider a  distributed linear  program
A solution of the distributed linear program is attained when al(Gc(t), (H,b),?) ~ with  periodically ~ strongly ~ connected
agents have computed the same basis sol(fifigh). network Gc(t), t € Rso. Let the agents run the

Defining a distributed linear program in this way, implies theDistributed Simplex algorithm. Then there exists a finite time
following properties. An entry of the decision vecterbelongs to 7 such that
only one agent and each agensupervisesq; decision variables, (i) if the centralized problenfH, b) has a finite optimal solution,
with 3> n; = n. We write z;. to refer to thex-th decision the candidate basé”! of all agents have converged to the
variable supervised by ageintwith x = 1, ..., n;. We assume that same lex-optimal basis;
the problem information is initially distributed all over the network (i) if the centralized problem(H, b) is unbounded, all agents
of agents. That is, the each colurpn., consisting of the coefficient have detected unboundedness, in the sense that all bases are
cix € R and the vectord;,. € R?, is initially only available to the thenul I symbol;
agenti. The information, that is permanently available to an agent(iii) if the centralized problem(H, b) is infeasible, all agents
is defined by the partitioP, i.e. P! = {h;. : & = 1,...,n:}. can detect infeasibility, in the sense that all baB&S have

We will use the big-M method to locally initialize the optimiza- converged, but still contain artificial columns. d
tion problem at every agent in the network. To do that, we need For space constrains the proof omitted in this paper and will be
the following assumption. provided in a forthcoming document.

Assumption 4.2:An upper boundV/ on the cost coefficients; Having established the convergence properties of the Dis-
is known to every agent. O  tributed Simplex algorithm, we also provide a Halting Condition.

o ) ] We provide here, without proof, the Halting Condition proposed in
A. Distributed Simplex Algorithm [1].

ThePi vot iteration, presented in Section Il, is at the basis of the Theorem 4.4 ([1]): Consider a network described by a time-
distributed algorithm presented below. Let us first informally outlindndependent, strongly connected digragh implementing a Dis-
the underlying idea of the algorithm, performing on a partiallytributed Simplex algorithm. Each agent can halt the algorithm
asynchronous network. execution if the value of the basis has not changed in a time interval

Distributed Simplex AlgorithmLet G.(t) be a time- of length (2 diam(Gc) + 1)T. U
varying communication graph. The state of every agent g Duality to Constraints Consensudgorithm

i is a lex-feasible basisy!?(t) = Bll(¢). Each agent
initializes a lex-feasible basis using the big-M method.
Each agent performs consecutively the following tasks:

(i) it transmits irregularly, but at least after a time
interval of maximal lengthle, its basis to all its
out-neighbors;

(i) whenever it acquires a basis from one of its in-
neighbors, it sorts all columns in its memory - its
permanent column®!¥, its local basis¥ and the
columns received from its neighbolé’!, j € N -
according to a lexicographic ordering and performs
the Si mpl ex ;

Distributed linear programs, as they are introduced in this note,
are strongly related tdistributed abstract programstroduced in
[1].

Abstract programs are a generalization of linear programs [14],
usually presented in the dual form (2). They are defined by a
pair (H,w), where H is a finite set with the elements called
constraints and w : 2 — W is a function taking values in
a linearly ordered sefW, <). In distributed abstract programs,
[1] , the constraints inH are distributed throughout a network
of agents, similar to the column distribution considered in this
note. In the Constraints Consensus algorithm agents transmit con-
L . L . . tinuously constraints taken from the sHt The next proposition

(iii) it updates ts Ioca!_ basis with the optimal basis clarifies the relation between the Constraints Consensus algorithm,
computed in step (ii). when applied to linear programs in standard dual form, and the

Next, we analyze the technical properties of the proposedistributed Simplex algorithm.
algorithm. The following theorem summarizes the convergence proposition 4.5: The Constraints Consensus algorithm of [1] ap-
properties of the Distributed Simplex algorithm. The proof of thejied to a fully non-degenerate linear program of the form (2) is
algorithm is inspired to the proof of Theorem IV.4 in [1]. dual to the Distributed Simplex algorithm. 0



TABLE |
THE ASSIGNMENTPROBLEM DATA AS DISTRIBUTED LINEAR
PROGRAM.

hjk: edge ofG, connecting agent and tasksx
H: N? edges ofG,
b: vector of ones iRV —1

Pl . N edges ofg, connecting agent with all N tasks

@ _@ Ge: partially asynchronous communication network among agents
B: spanning tree ofj,, with 2N — 1 arcs.

Agents Tasks

Fig. 1. Assignment Grapb,,.

This problem has always an optimal solutien, < {0,1},
corresponding to the optimal assignment. Note that the linear

Proof: The linear program (2) is shown to be an abstracPr09ram (9)-(12) has: = N? decision variables and = 2N
program in [1]. Each constraint of the dual problem (2) correspondfau@lity constraints. The problem is fully determined by a subset
to a column of the primal problem. Since strong duality holds, fon ¢ = 2N B 1 equality constraints, gnd one constralnt can be
a given set of columns, respectively constraints, both algorithnighnored' QbV'OUSW' an gdge of_the assignment ggpis uniquely
compute the same primal and dual feasible solution. m Characterized by the triplet of integers

hin = (C“@, Z', Ii) (13)

V. THE DISTRIBUTED ASSIGNMENTPROBLEM L . o .
which is the cost coefficient;,, and the corresponding identifier of

One of the most fundamental resource allocation problemsn agent and a tasks. Table | shows how the assignment problem
(and one of the most relevant benchmark problems for linearan be represented as a distributed linear program.
programming) is the matching oiV agents toN tasks on a The decision variables:;,, in (9)-(12) determine whether the
one-to-one basis, while minimizing the overall cost. edge h;. will be active, and therefore whether agenwill be

assigned to task. As previously seen, the optimal solutiarf

A distributed assignment probleroonsists of N agents that must have exactlyV entries equal td, since this provides a full
(i) communicate over a time-varying directed communicatiorassignment. However, since a basis solution contains alays1
network G.(t); (ii) aim to find a one-to-one assignment f§ decision variables, the assignment problem is inherently primal
tasks; while (iii) initially each ageni only knows the cost;. degenerate. Very often (although not inherently) the assignment

it takes it to perform the tasks € {1,...,N}. A distributed problem is also dual degenerate. Consider for example the extreme,
assignment problem is solved, when all agents know the sanbet not unrealistic, situation wherg,, = 1, for all i,x. Such a
optimal assignment. multiplicity of optimal solution imposes a severe challenge in the

distributed assignment problem. It is not sufficient for an agent

A popular method to illustrate assignment problems is by bipato have locally available an optimal solution, but it is critically
tite assignment graph@, = {V, W; E, }, whereV is the set of all necessary that all agents have the same optimal solution available.
agents andV is the set of tasks. Figure 1 illustrates the assignmenkhe Distributed Simplex algorithm is perfectly suited to solve the
graph. distributed assignment problem. Next, we provide a bound on the

Note that now two different graphs are connected to the probleriumber of bytes that agents need to transmit for the distributed
(i) the assignment graph,, representing the agent-task assignment@ssignment problem.
and (i) the communication grap. representing the inter agent  Proposition 5.1:At each communication instant, every agent
communication structure. According to the notation introduced foiransmits at mos© (N log, N) bytes.
the Distributed Simplex algorithm, we will use in the following Proof: Assume that the integers;,. can be encoded with
Roman letters, e.d, to index the agents, and Greek letters, e,g. 2 bytes. Let the ceil operatofr] indicate a rounding ofr to
to index the tasks. The edges of the assignment gtapt) € £,  the next larger integer. Then a column can be encoded with
are weighted with the cost coefficients, € Z~o. 2+ [1(log,(N) + 1)] bytes. Thus, at each round, at m@q —

For each agent and tasks a binary decision variable;,. € 1) - (2+ [§(logo(N) 4 1)]) bytes are sent out by each agerm
{0,1} is introduced, which isl if agenti is assigned to task With an increasing number of agem&in the network, the number
x and 0 otherwise. The assignment problem corresponds now @ bytes that has to be exchanged grows only WitV log, V).
the optimization problemmin,,. co.1} >, 3., CixTix, With the In contrast, the number of decision variableof the centralized
constraints that a full assignment is achieved. It is well known i@ssignment problem (9) grows witt(N?). Therefore, while the
the literature that the convex relaxation of the previous problerfiriginal problem grows quadratically, the local complexity of the

gives rise to the linear optimization problem [15], [10]: Distributed Simplex algorithm increases only almost linearly.
We use distributed assignment problems to analyze by simulation
min Z Z Cinin (9) the expected time complexity of the Distributed Simplex algorithm.
i w For each simulation, we generate a random assignment problem
_ ; by choosing the cost coefficients, uniformly from the interval
s.t. iw=1 Vie{l,...,N}, 10 . . .
E;m e d } (10) [0,20]. This allows a randomized analysis of the expected conver-

gence time of the Distributed Simplex algorithm.
Z zin =1, Vee{l,...,N}, (11) We use the following setup: throughout all scenarios we consider
¢ ) N = 40 agents. Therefore, the centralized assignment problem
0 < @in, V(i) (12)  hasn = 1600 columns. For simulation purposes, we consider a
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Communication rounds in dependence of the number of in-

determines the dimension of the local subproblems. While the
subproblems each agent has to solve are fairly small for few in-
neighbors, they can become very large, and in the limit even the
centralized problem, as the number of neighbors increases. We can
conclude from the Figures 2 and 3, that, in the given setup, there
is an optimal communication graph with aroumd in-neighbors,
where the expected number of communication rounds is almost
minimal, while the local subproblems are still of a moderate size.

VI. CONCLUSIONS

We have proposed the notion 8fistributed Linear Programs
as an extension of linear programs to a multi-agent setup. By
utilizing a non-standard version of the classical simplex algorithm, a
distributed algorithm, named Distributed Simplex has been derived
for solving Distributed Linear Programs. The algorithm is proven
to work in asynchronous networks and poses little requirements
on the communication structure. Additionally, we have derived a

bars indicate thed5% confidence intervals for the expected number ofduality relation of the new algorithm to the recently proposed Con-

communication rounds.

synchronous communication network, where all agents trans

straints Consensus algorithm. Finally, the multi-agent assignment
problem has been introduced exemplary as a relevant problem class
for which the algorithm is especially well suited. The multi-agent

nAissignment problem is also used for a randomized analysis of the

their information simultaneously. We call a time interval with €XPected time complexity of the proposed algorithm. The simulation

information exchange and local computations a communicati
round. We assume that all agents are arrangedringastructure.

Each agents communicates one-directional to a specified number of

gigsults indicate, that the time complexity grows at least linearly with

the diameter of the communication network.
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