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Abstract: In transient stability studies in power networks two types of mathematical models are
commonly used – the differential-algebraic structure-preserving model and the reduced dynamic
model of interconnected swing equations. This paper analyzes the reduction process relating the
two power network models. The reduced admittance matrix is obtained by a Schur complement
of the topological network admittance matrix with respect to its bus nodes. We provide a detailed
spectral, algebraic, and graph-theoretic analysis of this network reduction process, termed Kron
reduction, with particular focus on the effective resistance. As an application of this analysis,
we are able to state concise conditions relating synchronization in the considered structure-
preserving power network model directly to the state, parameters, and topology of the underlying
network. In particular, we provide a spectral condition based on the algebraic connectivity of
the network and a second condition based on the effective resistance among generators.
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1. INTRODUCTION

The envisioned future power grid is expected to be ex-
tremely complex. Its power generation will be highly dis-
tributed and it will rely increasingly on renewable en-
ergy sources, such as wind and solar power, which cause
stochastic disturbances. In face of these uncertainties and
the rising complexity, the detection and rejection of insta-
bility mechanisms leading to power blackouts will be one of
the major tasks to be handled by the future “smart grid.”

One important form of power network stability is transient
stability, which is the ability of a power system to remain
in synchronism when subjected to large transient distur-
bances such as faults on system components or significant
changes in load or generation. The problem of synchro-
nization and transient stability is well-studied in the power
systems community and surveyed by Pai (1989), Alberto
et al. (2001), and Chiang (2010). The structure preserving
(or network-preserving) power system model considered in
transient stability analysis consists of a set of differential-
algebraic equations representing the rotor dynamics of
each generator as well as the power flow at each bus. If the
loads in the network are modeled as constant impedances,
the power system model can be reduced to the well-known
swing equations featuring an all-to-all coupling among the
generators. This network-reduced model is mathematically
tractable but the original network topology represent-
ing the system components is lost. Analytic approaches
to synchronization in structure-preserving models have
been considered by Bergen and Hill (1981), Tsolas et al.
(1985), Zou et al. (2003), and Guedes et al. (2005). These
approaches rely on Hamiltonian arguments and also lead
to computational procedures providing precise estimates
of the region of attraction for synchronization. An open
problem, recognized by Hill and Chen (2006) and not re -
solved by classical analysis methods, is the quest for explicit
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and concise conditions for synchronization as a function of
state, parameters, and topology of the power network.

In an earlier work the authors analyzed synchronization
and transient stability in a network-reduced power system.
Among other things, Dörfler and Bullo (2010b) provided
a solution to the open problem of relating synchronization
in a power network to the underlying network structure.
In particular, the synchronization conditions read as “the
network connectivity has to dominate the network’s non-
uniformity (in effective power inputs to the generators)
and the network’s losses (due to transfer conductances).”
Since a network-reduced power system model features all-
to-all coupling the conditions derived by Dörfler and Bullo
(2010b) did not capture the original power network topol-
ogy. The main contribution of this paper are as follows.

As a first contribution, we provide a rigorous algebraic
analysis and graph-theoretic interpretation of the Kron
reduction process relating the network-preserving and the
network-reduced power system model. In essence, Kron
reduction of a network is a Schur complement of the Lapla-
cian matrix with respect to a set of nodes. We relate the
spectrum of the resulting Kron-reduced Laplacian matrix
to the spectrum of the non-reduced Laplacian matrix and
give various interpretations in the spirit of algebraic graph
theory. In particular, we relate the elements of the Kron-
reduced Laplacian to the effective resistance in the non-
reduced network, which is a graph-theoretical distance and
connectivity measure (Doyle and Snell, 1984). The spectral
analysis is presented in detail in Dörfler and Bullo (2010a)
whereas this article focuses on the effective resistance. This
analysis leads to the second contribution of this paper,
the extension of the synchronization conditions derived by
Dörfler and Bullo (2010b) to structure-preserving (topo-
logical) power network models. The first condition we
provide depends on the algebraic connectivity of the non-
reduced network, which is a spectral connectivity measure.
A second alternative condition depends on the effective re-
sistance among the generators in the non-reduced network.



These conditions are derived for a lossless network under
the assumptions of uniform voltage levels at all generator
nodes and zero shunt admittances. For the second condi-
tion additionally uniform effective resistances among the
generators are assumed, which can be justified for various
examples. We are aware that the considered network-
preserving power system model is idealistic, but for this
model we can analytically approach the open problem
proposed by Hill and Chen (2006): we provide explicit and
concise conditions that relate synchronization in a power
network to the network state, parameters, and topology.

Paper organization: The remainder of this section introduces
some notation. Section 2 recalls the network-preserving
and network-reduced power system model as well as the
Kron reduction process. Section 3 analyzes the Kron re-
duction process resulting in the novel synchronization con-
ditions stated in Section 4. Section 5 concludes the paper.

Notation: Given a finite set Q we let |Q| be its cardinality
and define for n ∈ N the index set In := {1, . . . , n}.
Let 1 and 0 be the vectors of unit and zero entries of
appropriate dimension, and define ei to be vector of zeros
of appropriate dimension with entry 1 at position i.
Given a complex-valued 2d-array {Aij} with i, j ∈ In, let
A ∈ Cn×n denote the associated matrix and A∗ the con-
jugate transposed matrix, and define Amax =maxij{|Aij |}
and Amin = minij{|Aij |}. We use the following notation
(Zhang, 2005): for two non-empty index sets α, β ⊆ In let
A[α, β] denote the submatrix of A obtained by the rows
indexed by α and the columns indexed by β and define the
shorthands A[α, β) = A[α, In \ β], A(α, β] = A[In \ α, β],
and A(α, β) = A[In \ α, In \ β]. Note the consistency
A[i, j] = Aij for i, j ∈ In. In case that A[α, α) and A(α, α]
are the matrices of zero entries, A is a block-diagonal
matrix denoted by A = blkdiag(A[α, α], A(α, α)).
The Schur complement of A w.r.t. A(α, α) is given by

A/A(α, α) = A[α, α]−A[α, α)A(α, α)−1A(α, α]
provided that A(α, α) is nonsingular. If A is Hermitian,
then we implicitly assume that its (real) eigenvalues are
arranged in increasing order λ1(A)≤λ2(A)≤ . . .≤λn(A).
For a weighted undirected graph induced by a symmetric
and nonnegative adjacency matrix A = AT ∈ Rn×n, the
Laplacian matrix is defined as L(A) = diag(

∑n
j=1 Aij)−A

= L(A)T . Recall that irreducibility of the Laplacian matrix
is equivalent to connectivity of the corresponding graph.

2. REVIEW OF THE POWER NETWORK MODEL

This section recalls network-preserving and network-
reduced power system models to be found in Pai (1989);
Anderson and Fouad (1977); Bergen and Vittal (2000).
The models as well as the network reduction process are
related to basic matrix and algebraic graph theory.

2.1 The Network-Preserving Power System Model

Consider the single-line diagram of a power network
Gnetwork, such as the New England Power Grid which can
be found in Pai (1989) and is schematically illustrated in
Figure 1. The nodes of the network can be classified as n
generator nodes VG, n generator terminal buses VGB , and
m load buses VLB . The network has the following topology:

(i) each generator node iG ∈ VG is connected to exactly
one generator terminal bus iGB ∈ VGB ,

(ii) each generator terminal bus iGB ∈ VGB is connected
to at least one load bus iLB ∈ VLB , and
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Fig. 1. Schematic representation of the power network
topology (i)-(iii) for the New England Power Grid.
The symbols �� , �♦ , and •◦ correspond to the gen-
erators VG = {1, . . . , 10}, generator terminal buses
VGB = {30−39}, and the load buses VLB = {11, 29}.

(iii) the buses VGB ∪ VLB form a connected network.

In essence, this topology corresponds to a connected net-
work among the bus nodes VGB ∪ VLB , and the generator
nodes VG are coupled to the interior network via VGB .
Adopting nomenclature of circuit theory, the generators
and the bus nodes are also denoted as boundary nodes and
interior nodes, a distinction which is obvious in Figure 1.

Each edge connecting two nodes i and j is weighted by
a non-zero line admittance Yij ∈ C which is typically of
inductive nature, i.e., a negative imaginary part dominates
a small positive real part. This weighting of the network
Gnetwork gives rise to the complex-valued adjacency matrix

A(Gnetwork) :=

 0 YG-GB 0
Y T

G-GB 0 YGB-LB

0 Y T
GB-LB YLB-LB

∈C(2n+m)×(2n+m),

where YG-GB is a permutation of a diagonal matrix (see
(i)), YGB-LB has at least one non-zero entry in every row
(see (ii)), and YLB-LB = Y T

LB-LB is such that the graph
among the interior nodes is connected (see (iii)).

Finally, the loads on the network are modeled as passive
shunt admittances connecting the buses to the ground:

(iv) each bus i ∈ VGB ∪ VLB is connected to the ground
via a shunt admittance Yi-ground.

In case the shunt admittance at a bus is zero, the bus is
said to be floating. From a viewpoint of circuit theory, the
topology (i)-(iv) gives rise to Kirchhoff’s equations

I = YnetworkV , (1)
where V = [VG |VGB |VLB]T ∈ C2n+m is the vector of
nodal voltages, I = [IG |0 |0)]T ∈ C2n+m is the vector of
currents injected into the nodes, and Ynetwork is the (2n +
m)-dimensional admittance matrix. The matrix Ynetwork is
the sum of the complex-valued Laplacian L(A(Gnetwork))=
diag(

∑n
j=1 A(Gnetwork)ij) − A(Gnetwork) and a diagonal

matrix containing the shunt admittances:
Ynetwork = L(A(Gnetwork))

+ blkdiag(00T ,diag(YiGB-ground),diag(YiLB-ground)) . (2)
In the completely floating case, where all shunt admit-
tances YiGB-ground and YiLB-ground are zero, Ynetwork is
simply a complex-valued Laplacian (or Kirchhoff) matrix.



The rotor dynamics of generator i are given by the constant-
voltage behind reactance model (Anderson and Fouad, 1977)

Mi

πf0
θ̈i = −Diθ̇i + Pm,i − Pe,i, i ∈ {1, . . . , n} , (3)

where the rotor angle θi is measured with respect to a
rotating frame with frequency f0,Pm,i > 0 is the mechan-
ical power input, and Mi > 0 and Di > 0 are the inertia
and damping constant. The active output power injected
by generator i into the adjacent generator terminal bus
(with index jGB) is Pe,i = <(Vi ·V ∗

jGB
Y ∗

ijGB
). Typically, the

loads are modeled as passive shunt admittances. Thus, the
passive interior network is governed by Kirchoff’s laws and
for each bus i ∈ VGB ∪ VLB the power flow equations are

0 = Vi

∑
j∈VG∪VGB∪VLB

Ynetwork[ij]∗V ∗
j . (4)

The generator rotor dynamics (3) and the algebraic power
flow equations (4) define the classic differential-algebraic
structure-preserving power network model.

2.2 The Network-Reduced Power System Model

Since the loads are modeled as passive admittances, all
passive nodes VGB ∪ VLB can be eliminated, i.e., the
algebraic equations (4) are removed and the network is
reduced to its n active nodes VG, where the current IG

is injected. Spoken in terms of circuit theory, we look for
the reduced admittance matrix Yred that maps boundary
voltages to boundary currents according to IG = YredVG.
Remark 2.1. (Physical interpretation of Yred). The (i, j) el-
ement of Yred can be physically interpreted as the current
at a generator node i due to a potential of 1 at the
generator node j and 0 at all other generator nodes. �

For the subsequent network reduction it is assumed that
Ynetwork(In, In) is non-singular, which can be easily veri-
fied due to diagonal dominance (as seen in (2)) and irre-
ducibility of Yred (due to connectivity of the corresponding
graph). Standard Gaussian elimination of the lower n+m
nodes in equation (1) leads to IG = YredVG, where the
reduced admittance matrix Yred is the Schur complement

Yred = Ynetwork/Y (In, In) .

This Schur-complementation is referred to as reduction by
structural partitioning in the power systems literature.

Instead of obtaining Yred as the Schur complement of
the suitably partitioned matrix Ynetwork, the interior (pas-
sive) nodes VGB ∪ VLB can be eliminated equivalently by
subsequent Kron reduction. Given an admittance matrix
Y ∈ Rk × k, removal of the kth node in VGB ∪ VLB , gives
the reduced admittance matrix Y + ∈ R(k − 1)×(k − 1) as

Y +
ij = Yij − Yik Yjk/Ykk , i, j ∈ {1, . . . , k − 1} . (5)

Kron’s reduction formula (5) corresponds the Schur com-
plement Ynetwork/Ykk, or equivalently, Gaussian elimination
of the kth line in equ. (1). The following lemma follows di-
rectly from the Quotient Formula (Zhang, 2005, Theorem
1.4) and noting that Y (In, In) and Ykk are non-singular.
Lemma 2.2. Subsequent Kron reduction of Ynetwork with
respect to all nodes VGB ∪ VLB is equivalent to the Schur
complement Yred = Ynetwork/Y (In, In). �

Subsequent Kron reduction all interior nodes VGB ∪ VLB

leads to a complete graph among the boundary nodes VG,
which will be formally shown in the next section. Note also
that real (respectively imaginary) matrices Ynetwork have
real (respectively imaginary) reduced matrices Yred.

The off-diagonal elements of Yred are referred to as transfer
admittances and the diagonal elements as self-admittances.
Typically, the admittances are inductive on the transmis-
sion level, the line admittances dominate the shunt admit-
tances, and Yred is a fully populated Laplacian-like matrix,
which is verified later in Theorem 3.2. For these reasons
Yred typically satisfies <(Yred[i, j])≥0 and =(Yred[i, j])>0
for all i 6= j, and <(Yred[i, i])≥ 0 and =(Yred[i, i]) < 0 for
the self-admittances, which we assume from now on.

In the reduced network the electrical output power is Pe,i =
<(Vi

∑n
j=1Yred[i, j])∗V ∗

j ) given by the power-angle relation

Pe,i =
∑n

j=1
|Vi||Vj |

(
<(Yred[i, j]) cos(θi − θj)

+ =(Yred[i, j]) sin(θi − θj)
)
. (6)

Equations (3) and (6) give the classic constant-voltage
behind reactance model of interconnected swing equations.

2.3 Review Sufficient Synchronization Conditons

Consider a lossless power network model with <(Yred[i, j]) =
0 for all i, j ∈ In and define the coupling weights Pij :=
|Vi||Vj |=(Yred[i, j]) > 0 (maximum power transferred be-
tween generators i and j) with Pii := 0 for i ∈ In. Then
the power network model given by (3) and (6) reads as

Mi

πf0
θ̈i = −Diθ̇i + Pm,i −

∑n

j=1
Pij sin(θi − θj) . (7)

Consider a weighting of the damping as µ=
∑n

k=1
(1/

∏n

k 6=i
Dk)

×min{i,j}{
∏n

k 6=i,j
Dk}(mini6=j{DiDj}/ maxi6=j{DiDj})1/2/n (if

all Di are equal, then µ=1/Di) and the maximal inertia
over damping ratio ε := Mmax/(πf0Dmin). Two sufficient
conditions for synchronization of the power system model
(7) derived by Dörfler and Bullo (2010b) are as follows.
Theorem 2.3. Consider the power network model (7). As-
sume that either one of the following two conditions hold

n
mini 6=j{Pij}

Dmax
> max

{i,j}

{
Pm,i

Di
− Pm,j

Dj

}
, (8)

λ2(L(Pij)) > ‖(Pm,2/D2 − Pm,1/D1, . . . )‖2 /µ . (9)
If initially all angles θi(0) are contained in an arc of
length strictly less than π/2, then for any bounded initial
frequencies θ̇i(0) there exists ε∗ > 0 such that for all ε < ε∗

the power network model synchronizes exponentially. �
Remark 2.4. (Technical comments). It is also possible to
give explicit conditions on the asymptotic phase differ-
ences, the synchronization frequency and rates, and con-
ditions for phase synchronization. The interested reader
is referred to Dörfler and Bullo (2010b). The smallness
assumption on ε is a singular perturbation assumption
such that the dimension-reduced Kuramoto-type model

Diθ̇i = Pm,i−
∑n

j=1
Pij sin(θi−θj), i ∈ {1, . . . , n} . (10)

can be analyzed. This assumption is thoroughly justified in
Dörfler and Bullo (2010b): among other justifications, the
reduced model (10) is (i) topologically equivalent to the full
model (7) independent of the magnitude of ε, and (ii) equiv-
alent to the model analyzed by the classic and industrially
applied PEBS and BCU algorithms (Chiang, 2010). �
Remark 2.5. (Physical interpretation of Theorem 2.3) For
uniform voltages, |Vi|≡V, we have that Pij=V 2=(Yred[i, j])
and the left-hand sides of (8)-(9) reflect directly the
connectivity of the graph induced by Yred: the term



n mini 6=j{Pij}/Dmax is a lower bound for mini

∑
j Pij/Dj ,

the worst coupling of one generator to the network, and
λ2(L(Pij)) is the algebraic connectivity of the coupling.
The left-hand side measures the non-uniformity in power
inputs Pm,i scaled by the damping Di and the term µ which
captures the non-uniformity in the damping. In summary,
conditions (8) and (9) can be interpreted as “the network
connectivity has to dominate its non-uniformity.” �

3. ANALYSIS OF THE KRON REDUCTION PROCESS

Consider a real-valued, nonnegative, and irreducible adja-
cency matrix A = AT ∈ Rn×n with zero diagonal elements
Aii = 0 and the corresponding connected and undirected
graph. Since A = −L + diag(

∑n
j 6=i Lij), the Laplacian L

equivalently induces the graph. Given a proper subset of
nodes α ⊂ In with 2 ≤ |α| ≤ n − 1, we define the Kron-
reduced matrix Lred = L/L(α, α) ∈ R(n−|α|)×(n−|α|). For
notational simplicity, assume that α = {1, . . . , |α|}.
In a lossless power network with purely inductive admit-
tances and zero shunt admittances, the nodes α and In \α
correspond to the generators and buses, and the matrices
L and Lred correspond to =(−Ynetwork) and =(−Yred).

It is convenient to regard Lred as obtained by subsequent
application of Kron’s reduction formula (5). Consider for
` ∈ {1, . . . , n− |α|} the following iterative Kron reduction

L` = L`−1/L`−1
k`k`

, (11)

where L` ∈ R(n−`)×(n−`), k` = n + 1 − ` is the lowest
diagonal entry of L`−1, and L0 := L initializes (11). In
components, L` evolves according to Kron’s formula (5):

L`
ij = L`−1

ij − L`−1
ik`

L`−1
jk`

/L`−1
k`k`

, (12)

where i, j ∈ {1, . . . , n − `}, By Lemma 2.2, the Kron-
reduced matrix Lred can be obtained by subsequent reduc-
tion of all nodes k` ∈ In \ α, that is, L/L(α, α) = Ln−|α|.
Remark 3.1. (Related literature). In electrical impedance
tomography Lred is also referred to as the Dirichlet-to-
Neumann map (Curtis et al., 1994, 1998). The Schur
complement of a matrix and its corresponding graph is
also referred to as Schur contraction (Ayazifar, 2002), it
is known in the context of (block) Gaussian elimination
(Saad, 2003), and serves as an application example in
linear algebra (Fan, 2002; Stone and Griffing, 2009). �

3.1 Topological, Algebraic, and Spectral Properties

This paragraph briefly summarizes some properties estab-
lished by Dörfler and Bullo (2010a). First, note that the
Kron reduction is well-defined, the class of symmetric and
irreducible Laplacian matrices is closed under Kron reduc-
tion, and the algebraic connectivity is non-decreasing.
Theorem 3.2. (Algebraic and Spectral Properties of Kron
Reduction) The following statements hold for the reduced
Laplacian matrix Lred =L/L(α, α):

(1) the Schur complement Lred =L/L(α, α) always exists;
(2) Lred is a symmetric and irreducible Laplacian matrix;
(3) for any r = 1, 2, . . . , |α| it holds that

λr(L) ≤ λr(Lred) ≤ λr(L[α, α]) ≤ λr+n−|α|(L), (13)
in particular it follows that λ2(Lred) ≥ λ2(L); and

(4) Lred[i, j] ≤ L[α, α][i, j] for all i, j ∈ In \ α. �

The next result follows directly from the iterative Kron
reduction (12) and the corresponding graph induced by L`.

Theorem 3.3. (Topological Properties of Kron Reduction).
The following statements hold for the graph induced by the
Kron-reduced matrix Lred = L/L(α, α):

(1) All existing edges in the graph induced by Lij , i, j ∈
α, persist in the graph induced by Lred;

(2) Kron reduction of the nodes In\α leads to a complete
graph among all nodes α that were adjacent to the
nodes In \ α prior to the reduction; and

(3) If the nodes In \ α are connected and each node α
is adjacent to at least one node in In \ α, then Kron
reduction of all nodes In\α leads to a complete graph
among the α nodes. Equivalently, the Kron-reduced
Laplacian matrix Lred induces a complete graph. �

3.2 Review of the Effective Resistance

The effective resistance or resistance distance Rij between
two nodes i, j ∈ In of an undirected, connected, and
uniformly weighted graph with Laplacian L is defined as

Rij := (ei − ej)T L†(ei − ej) = L†
ii + L†

jj − 2L†
ij , (14)

where L† is the Moore-Penrose pseudo inverse of L. Since
L† is symmetric and Rii := 0 by definition, the resistance
matrix R is again a symmetric matrix. For i 6= j the
reciprocal 1/Rij is referred to as the effective conductance.
Remark 3.4. (Physical interpretation). If the graph is un-
derstood as an electrical network, Rij corresponds to the
potential difference between the nodes i and j when a unit
current is injected in i and extracted in j. Definition (14)
can be extended to weighted graphs with additional self-
loops if the weights are understood as line conductances
and the self-loops as shunt conductances in the circuit. �

The effective resistance captures global properties of the
graph topology such as distance and connectivity mea-
sures. Many interesting results relating R, L, and L† can
be found in Fouss et al. (2007) and Gutman and Xiao
(2004). Applications of effective resistance can be found
in the length of random walks (Fouss et al., 2007; Doyle
and Snell, 1984), connectivity of biochemical molecules
(Klein and Randić, 1993), and distributed estimation algo-
rithms (Barooah and Hespanha, 2009). In the literature on
electrical impedance tomography the effective resistance
is sometimes associated with the Dirichlet-to-Neumann
map, i.e., the reduced Laplacian Lred (Curtis et al., 1994;
Saksena, 2002; Ehrlich, 1996; Jorgensen and Pearse, 2009).

There are other methods to compute the effective re-
sistance, for example, via an auxiliary Laplacian with
self-loops (Gutman and Xiao, 2004) or via the grounded
Laplacian L(n, n), where the removed node n is taken as
reference (Barooah and Hespanha, 2009; Saksena, 2002;
Ayazifar, 2002). The intuition in Remark 3.4 implies that
the effective resistance Rij equals again the potential dif-
ference between i and j. This intuition can be confirmed.
Lemma 3.5. For all i, j ∈ In and γ 6= 0 it holds that

Rij ≡ (ei − ej)T (L− (γ/n)1T 1)−1(ei − ej) . (15)
For all i, j ∈ In−1 it holds that

Rij ≡ (ei − ej)T L(n, n)−1(ei − ej) . (16)

Proof. The identity (15) is a simple generalization of
Theorem 5 in Gutman and Xiao (2004). To prove (16), we
define L̂ := L(n, n). From (Fouss et al., 2007, Appendix
B, eq. (17)) it holds that L̂−1

ij =L†
ij−L†

in−L†
jn−L†

nn. The
identity (16) can now be directly verified. �



Remark 3.6. In (16) the reference node n is chosen arbi-
trarily. By choosing a different reference node, say 1, all
elements Rin, i ∈ {2, . . . , n}, can be obtained from L(1).�

3.3 Relationship between the Reduced Laplacian Matrix
and the Matrix of Effective Resistances

The intuition in the Remarks 2.1 and 3.4 suggests that the
elements of the reduced Laplacian Lred[i, j] are related to the
corresponding effective conductances 1/Rij . The following
theorem gives the exact relation between the reduced
Laplacian matrix and the corresponding effective resis-
tances. In essence, the effective resistance among the α
nodes is invariant under Kron reduction of the nodes In\α.
Theorem 3.7. (Invariance of Effective Resistance) Con-
sider the reduced Laplacian Lred =L/L(α, α) and the ma-
trix R of effective resistances as defined in (14). Then for
i, j ∈ α, i 6=j, it holds that Rij = (ei− ej)T L†

red(ei− ej).�

Proof. Let δ > 0 and consider the modified and non-
singular Laplacian L̃ := L+(δ/n)11T and its inverse given
by L† + (1/δn)11T (Gutman and Xiao, 2004, Generaliza-
tion of Theorem 5). In analogy to Lemma 3.5, it holds that

Rij = (ei − ej)T (L† + (1/δn)11T )(ei − ej)

= (ei − ej)T L̃−1(ei − ej) (17)

since (ei − ej)T 1 = 0. Note that we are only interested
in the effective resistances among the nodes α, i.e., the
|α| × |α| block of L̃−1. The Schur complement formula
(Zhang, 2005, Theorem 1.2) gives the |α|× |α| block of
L̃−1 as (L̃/L̃(α, α))−1. Consequently, (17) is rendered to

Rij = (ei − ej)T (L̃/L̃(α, α))−1(ei − ej) (18)
Note that the right-hand side of (17), or equivalently (18),
is independent of δ since the matrices are evaluated on the
subspace orthogonal to 1, the nullspace of L̃ as δ ↓ 0.
Thus, on the image of L the limit of the right-hand side
of (18) exists as δ ↓ 0. By definition, L† acts as regular
inverse on the image of L, and equation (18) is rendered
to Rij = (ei − ej)T (L/L(α, α))†(ei − ej). Finally, recall
thatLred = L/L(α, α) which yields the claimed identity.�

Theorem 3.7 establishes a simple relationship between the
matrices R and L†

red. Other methods constructing R from
L†

red can be found in (Curtis et al., 1994; Saksena, 2002;
Ehrlich, 1996). An implicit relation without pseudo inverse
is given by the Penrose equation LredR[α, α]Lred =−2Lred

which can be derived from (Xiao and Gutman, 2003,
Theorem 6). In general, it is not possible to derive an
explicit algebraic relationship between R and Lred or relate
bounds on R to bounds on Lred. This is not surprising since
the general problem of element-wise bounding inverses of
interval matrices is known to be NP-hard. However, an
analytical relationship between R and Lred can be found
if the resistances among the nodes α are uniform.
Corollary 3.8. The following statements are equivalent:

(1) the off-diagonal elements of Lred are uniform, i.e.,
there is λ > 0 such that Lred[i, j] = −λ for all
i, j ∈ I|α|, i 6= j;

(2) the effective resistance Rij among the nodes α is
uniform, i.e., there is r > 0 such that Rij = r for
all i, j ∈ α, i 6= j.

Moreover, if both cases are true, then λ=(2/|α|)/r. �

Proof. Assume 1) holds. Hence, Lred =λ(|α|I|α| − 11T )
and L†

red is readily obtained as L†
red =(|α|I|α|−11T )/(|α|2λ).

This can be easily verified since L†
red satisfies the four Pen-

rose equations. According to Theorem 3.7, we obtain the
effective resistance Rij =2/(|α|λ) = r for i, j ∈ α, i 6= j.

Assume that 2) holds. According to Theorem 3.7 this is
equivalent to the m := |α|(|α| − 1)/2 linear equations

r = −
∑|α|

k 6=i
L†

red[i, k]−
∑|α|

k 6=j
L†

red[j, k]−2L†
red[i, j] (19)

for m unknowns L†
red[i, j] (the diagonal resistances are

obtained as L†
red[i, i] = −

∑|α|
k 6=i L†

red[i, k]). One solution to
(19) is obviously given by the uniform solution L†

red[i, j] =
−r/(2|α|) for all i, j ∈ I|α|, i 6= j. This solution is isolated
since q · (−r/(2|α|)) is a solution to (19) iff q=1. Thus, the
elements L†

red[i, j]=−r/(2|α|) and the corresponding ele-
ments Lred[i, j]=−2/(r|α|) are uniform for i,j∈α, i6=j. �

The following examples demonstrate that uniform resis-
tances among a set of nodes occur for various graph topolo-
gies, where we assumed uniform weightings for simplicity.
Example 3.9. (Uniform Effective Resistances). In the triv-
ial case, |α|= 2, Corollary 3.8 reduces to (Jorgensen and
Pearse, 2009, Corollary 4.41) and the effective resistance
among the α nodes is clearly uniform. Second, if the α
nodes are 1-connected leaves of a highly symmetric graph
among the nodes In \ α, such as a star-shaped tree, a
complete graph, or a combination of these two, then the
effective resistance among the α nodes is uniform. Third,
the effective resistance in large-scale small-world networks
is known to become uniform among sufficiently distant
nodes (Korniss et al., 2006). Fourth, with increasing num-
ber of nodes the effective resistance in random geometric
graphs converges to a degree-dependent limit (Radl et al.,
2009), which is uniform for various geometries and node
distributions. Fifth and finally, geometric graphs such as
lattices and their fuzzes are special random geometric
graphs with vertices sampled on a grid. According to
the previous arguments, the resistance among sufficiently
distant lattice nodes becomes uniform in the large limit.�

4. SPECTRAL AND RESISTANCE-BASED
CONDITIONS FOR SYNCHRONIZATION

In the following, the results of Section 3 will be applied to a
lossless power network, where Ynetwork is purely inductive.
We assume uniform voltages |Vi| = V and that the shunt
admittances can be modeled equivalently as admittances
with respect to an auxiliary reference bus, and thus all
buses are floating. In this case,=(−Ynetwork)is a real-valued
Laplacian and it follows that=(−Yred) = L(Pij)/V 2.

One of the following two synchronization conditions re-
quires uniform effective resistances among the generators
VG. Note that this assumption is different from requiring
uniform line admittances. This assumption can be verified
for Examples 3.9 and is also reasonable from a physical
viewpoint: the generators are spread over the network
such that they can effectively balance the loads. Thus, the
potential difference (the effective resistance) should ideally
be equal for all generator pairs. Under this assumption we
can state the following corollary to Theorem 2.3.
Corollary 4.1. (Spectral and Resistance-based Synchro-
nization Condition) Consider the reduced power network
model (7) derived from Gnetwork with floating buses, and



assume uniform voltages |Vi| = V for all generators. As-
sume that either one of the two following conditions hold:

(i) the effective conductance 1/R among all generator nodes
in Gnetwork is uniform and larger than a critical value, i.e.,

1
R

> max
{i,j}

{
Pm,i

Di
− Pm,j

Dj

}
Dmax

2V 2
, (20)

or (ii) the algebraic connectivity of the power network
Gnetwork is larger than a critical value, i.e.,
λ2(=(−Ynetwork))) > ‖(Pm,2/D2 − Pm,1/D1, . . . )‖2 /(V 2µ).

(21)
If initially all angles θi(0) are contained in an arc of
length strictly less than π/2, then for any bounded initial
frequencies θ̇i(0) there exists ε∗ > 0 such that for all ε < ε∗

the power network model synchronizes exponentially. �

Proof. Under the assumptions in case (i), it follows from
Corollary 3.8 that |Yred[i, j]| = 2/(nR) and consequently
also mini 6=j{Pij} = 2V 2/(nR). Thus condition (8) in
Theorem 2.3 is rendered to (20). In case (ii), condition (21)
guarantees condition (9) in Theorem 2.3 due to Theorem
3.2. Synchronization follows directly from Theorem 2.3.�

5. CONCLUSIONS

This paper studied synchronization in a simple network-
preserving power system model. In particular, the network
reduction to the swing equations model was related to the
reduced Laplacian matrix for which various algebraic and
graph-theoretic properties were established, in particular
the relationship to the effective resistance. These results
allowed the extension earlier synchronization conditions
by Dörfler and Bullo (2010b) for network-reduced power
system models to network-preserving models.

In order to state the final synchronization conditions, var-
ious assumptions have to be made on the power network
side. The following assumptions should be removed to
render the power network model more realistic: purely
inductive line admittances, non-zero shunt admittances,
and non-uniform voltages during transients. The authors’
ongoing research addresses sharper synchronization condi-
tions, the effects of loads modeled as shunt admittances,
and further properties of the Kron reduction process.
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