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Abstract—This paper considers the synchronization and tran-
sient stability analysis in a simple model of a structure-preserving
power system. We derive sufficient conditions relating synchro-
nization in a power network directly to the underlying network
state, parameters, and topology. In particular, we provide a
spectral condition based on the algebraic connectivity of the
network and a second condition based on the effective resistance
among generators. These conditions build upon the authors’
earlier results on synchronization in network-reduced power
system models. Central to our analysis is the reduced admittance
matrix of the network, which is obtained by a Schur complement
of the network’s topological admittance matrix with respect to
its bus nodes. This network-reduction process, termed Kron
reduction, relates the structure-preserving and the network-
reduced power system model. We provide a detailed graph-
theoretic, algebraic, and spectral analysis of the Kron reduction
process leading directly to the novel synchronization conditions.

I. I NTRODUCTION

In face of the rising complexity of the envisioned future
power grid and the stochastic disturbances caused by re-
newable energy sources such as wind and solar power, an
important form of power network stability is the so-called
transient stability. Transient stability considers the stability
of a synchronous operating point arising after large transient
disturbances such as faults of system components or significant
changes in load or generation. The more general concept
of synchronization encompasses transient stability, is defined
independent of specific equilibria, and is loosely speakingthe
ability of a power system to remain in synchronism when
subjected to transient disturbances in parameters or topology.

The problem of synchronization and transient stability is
well-studied and surveyed in [1]–[3]. The mathematical model
considered in transient stability analysis consists of a set of
differential-algebraic equations representing the rotordynam-
ics of each generator as well as the power flow at each
bus in the network. In a classic setting, the loads in the
network are modeled as constant impedances, which allows the
reduction of the power system model to the well-knownswing
equationsfeaturing an all-to-all coupling among the generators
[4], [5]. This so-called network-reduced modelis mathe-
matically tractable but the original network topology repre-
senting the system components is lost. Analytic approaches
to structure-preserving(or network-preserving) models have
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been considered in [6]–[9]. The cited approaches for both
network-reduced and structure-preserving models [1]–[9]rely
on Hamiltonian arguments, which also lead to computational
procedures providing precise estimates of the region of attrac-
tion of synchronous equilibria. An open problem, recognized
by Hill and Chen [10] and not resolved by classical analysis
methods, is the quest for explicit and concise conditions for
synchronization as a function of state, parameters, and graph-
theoretical properties of the power network.

Recently, different scientific communities showed an bur-
geoning interest in synchronization, including the networked
control community interested in theconsensus protocol[11],
the dynamical systems community analyzing theKuramoto
model of coupled oscillators[12], and the physics community
studying synchronization incomplex networksand its relation
to the algebraic connectivity [13] and the effective resistance
[14], which are spectral and graph-metric connectivity mea-
sures. In the earlier work [15] the authors combined classic
transient stability analysis and synchronization theory to ap-
proach the outstanding problem of relating synchronization in
a network-reduced power system to the underlying network
structure. In particular, the synchronization conditionsread as
“the network connectivity has to dominate the network’s non-
uniformity (in effective power inputs) and the network’s losses
(due to transfer conductances).” Since network-reduced power
system models feature all-to-all coupling, the conditionsin
[15] did not capture the original power network topology.

As a first contribution of this paper, we provide a rigorous
algebraic analysis and graph-theoretic interpretation ofthe
Kron reduction process relating the structure-preservingand
the network-reduced power system model. In essence, Kron
reduction of a network is a Schur complement of the Laplacian
matrix with respect to a set of nodes. We relate the spectrum of
the resulting Kron-reduced Laplacian matrix to the spectrum
of the non-reduced Laplacian matrix, relate its elements to
the effective resistances in the non-reduced network, and give
various interpretations in the spirit of algebraic graph theory.
The analysis of the effective resistance is presented in detail
in [16] whereas this article focuses on the spectral analysis.

The detailed analysis of the Kron reduction process leads
to the second contribution of this paper, the extension of
the synchronization conditions derived by [15] to structure-
preserving (topological) power network models. As a result,
two sufficient conditions for synchronization among generators



are presented depending on the algebraic connectivity and
the effective resistance among the generators, both in the
non-reduced network. These conditions bridge the gap from
transient stability in power networks to the synchronization
analysis carried out by the physics community [13], [14] and
are derived for a lossless network under the assumptions of
uniform voltage levels at all generator nodes and zero shunt
admittances. The second condition relies upon the additional
assumption of uniform effective resistances; this assumption
can be justified for various examples. We are aware that the
considered network-preserving power system model is idealis-
tic and no estimates for the region of attraction of synchronous
equilibria are provided. Rather, our analysis aims at the open
problem proposed by [10]: we provide explicit and concise
conditions that relate synchronization to the state, parameters,
and graph-theoretical properties of the power network.

Paper organization:The remainder of this section intro-
duces some notation. Section II recalls the structure-preserving
and network-reduced power system models, the network-
reduction process, and a short summary of the authors’ earlier
results. Section III presents the analysis of the Kron reduction
process resulting in novel synchronization conditions stated in
Section IV. Finally, Section V concludes the paper.

Notation:Given a finite setQ, we let |Q| be its cardinality
and define forn ∈ N the index setIn := {1, . . . , n}. Let 1p×q

and0p×q be thep×q dimensional matrices of unit and zero en-
tries. Given a complex-valued 2d-array{Aij} with i, j ∈ In,
let A ∈ Cn×n denote the associated matrix andA∗ the conju-
gate transposed matrix, and defineAmax= maxij{|Aij |} and
Amin =minij{|Aij |}. We use the following standard notation
for submatrices [17]: for two non-empty index setsα, β ⊆ In

let A[α, β] denote the submatrix ofA obtained by the rows
indexed byα and the columns indexed byβ and define the
shorthandsA[α, β) = A[α, In \ β], A(α, β] = A[In \ α, β],
and A(α, β) = A[In \ α, In \ β]. We adopt the shorthand
A[{i}, {j}] = A[i, j] = Aij for i, j ∈ In. If the matrices
A[α, α) and A(α, α] have zero entries, thenA is a block-
diagonal matrix denoted byA = blkdiag(A[α, α], A(α, α)).

For a nonsingularA(α, α), theSchur complementof A w.r.t.
the blockA(α, α) (or equivalently the indicesα) is the|α|×|α|
dimensional matrix denoted byA/A(α, α) and defined by

A/A(α, α) = A[α, α] − A[α, α)A(α, α)−1A(α, α] .

If A is Hermitian, then we implicitly assume that its eigenval-
ues are arranged in increasing order:λ1(A)≤ . . .≤λn(A).

For a weighted undirected graph induced by a symmetric
and nonnegative adjacency matrixA = AT ∈ R

n×n, the
Laplacian matrixis defined asL(A) = diag(

∑n

j=1 Aij) − A

= L(A)T . Recall thatirreducibility of the Laplacian matrix is
equivalent to connectivity of the corresponding graph.

II. REVIEW OF THE POWER NETWORK MODEL

This section recalls the structure-preserving and network-
reduced power system model to be found in [1], [18], [19] and
relates network-reduction process to algebraic graph theory.

A. The Structure-Preserving Power System Model

Consider the single-line diagram of a power network
Gnetwork, such as theNew England Power Gridwhich can be

found in [1] and is schematically illustrated in Figure 1. The
nodes of the network can be classified asn generator nodes
VG, n generator terminal busesVGB, andm load busesVLB.
The network has the following topology:

(i) each generator nodeiG ∈ VG is connected to exactly
one generator terminal busiGB ∈ VGB,

(ii) each generator terminal busiGB ∈ VGB is connected to
at least one load busiLB ∈ VLB, and

(iii) the busesVGB ∪ VLB form a connected network.

In essence, this topology corresponds to a connected network
among the bus nodesVGB ∪ VLB, and the generator nodes
VG are coupled to the interior network viaVGB. Adopting
nomenclature of circuit theory, the generators and the buses
are also denoted as boundary nodes and interior nodes.

Each edge connecting two nodesi and j is weighted by a
non-zeroline admittanceYij = Yji ∈ C which is typically of
inductive nature, i.e., a negative imaginary part dominates a
small positive real part. This weighting of the networkGnetwork

gives rise to the complex-valued adjacency matrix

A(Gnetwork) :=





0n×n YG-GB 0n×m

Y T
G-GB 0n×n YGB-LB

0m×n Y T
GB-LB YLB-LB



∈C
(2n+m)×(2n+m),

where the matricesYG-GB, YGB-LB, andYLB-LB = Y T
LB-LB induce

the topology(i)-(iii) . Finally, the loads are modeled as passive
shunt admittancesconnecting the buses to the ground:
(iv) each busi ∈ VGB ∪VLB is connected to the ground via

a shunt admittanceYi-ground.
In case the shunt admittance at a bus is zero, the bus is
said to befloating. From a viewpoint of circuit theory, the
topology(i)-(iv) and Kirchhoff’s and Ohm’s laws give rise to
the network equations relating voltages and currents as

I = YnetworkV , (1)

whereV = [VG |VGB |VLB]T ∈ C2n+m is the vector of nodal
voltages,I = [IG |0 |0]T ∈ C

2n+m is the vector of currents
injected into the nodes, andYnetwork ∈ C(2n+m)×(2n+m)

is the nodaladmittance matrix. The matrix Ynetwork is the
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Fig. 1. Schematic representation of the power network topology (i)-(iii) for
the New England Power Grid. The symbols�� , �♦ , and•◦ correspond to the
generatorsVG = {1, . . . , 10}, generator terminal busesVGB = {30− 39},
and the load busesVLB = {11, 29}.



sum of the complex-valued Laplacian (or Kirchhoff) matrix
L(A(Gnetwork))=diag(

∑n

j=1 A(Gnetwork)ij)−A(Gnetwork) and
a diagonal matrix containing the shunt admittances:

Ynetwork = L(A(Gnetwork))

+ blkdiag(0n×n, diag(YiGB-ground), diag(YiLB -ground)) . (2)

In the completely floating case, where all shunt admittances
are zero,Ynetwork is simply a complex-valued Laplacian matrix.

We assume that the rotor dynamics of generatori are given
by the constant-voltage behind reactance model [18], [19]

Mi

πf0
θ̈i = −Diθ̇i + Pm,i − Pe,i, i ∈ {1, . . . , n} , (3)

where the rotor angleθi is measured with respect to a rotating
frame with frequencyf0, Pm,i > 0 is the mechanical power
input, andMi > 0 and Di > 0 are the inertia and damping
constant. The active output power injected by generatori
into the adjacent generator terminal bus (with indexjGB) is
Pe,i = ℜ(ViI

∗
i ) = ℜ(ViY

∗
ijGB

(V ∗
i −V ∗

jGB
)). Typically, the loads

are modeled as passive shunt admittances. Thus, the interior
network is governed by the network equations (1) and for each
busi ∈ VGB ∪VLB the power flow equations are obtained as

0 = Vi

∑

j∈VG∪VGB∪VLB

Ynetwork[i, j]
∗V ∗

j . (4)

The constant-voltage behind reactance generator dynamics(3)
and the algebraic power flow equations (4) define the classic
differential-algebraicstructure-preservingpower system model.

B. The Network-Reduced Power System Model

Since the loads are assumed to be constant, all passive nodes
VGB ∪VLB can be eliminated, i.e., the algebraic equations (4)
are removed and the network is reduced to itsn active nodes
VG, where the currentIG is injected. Spoken in terms of circuit
theory, we look for thereduced admittance matrixYred relating
boundary voltages and currents according toIG = YredVG.

Remark II.1 (Physical interpretation of Yred) The(i, j) el-
ement ofYred corresponds to the current at generatori due to
a potential of1 at generatorj and0 at all other generators.�

For the subsequent network reduction it is assumed that
Ynetwork(In, In) is non-singular, which can be easily verified
due to diagonal dominance (as seen in (2)) and irreducibility of
Yred (due to connectivity of the corresponding graph). Standard
Gaussian elimination of the lowern + m nodes in equation
(1) leads toIG = YredVG, where the reduced admittance matrix
Yred is obtained as the Schur complement

Yred = Ynetwork/Y (In, In) .

This Schur-complementation is referred to asreduction by
structural partitioningin the power systems literature.

Instead of obtainingYred as the Schur complement of the
suitably partitioned matrixYnetwork, the interior (passive) nodes
VGB ∪ VLB can be eliminated equivalently byiterative Kron
reduction. Given an admittance matrixY ∈ Rk×k, the removal
of thekth node inVGB∪VLB, leads to the reduced admittance
matrix Y + ∈ R(k−1)×(k−1) defined component-wise as

Y +
ij = Yij − Yik Yjk/Ykk , i, j ∈ {1, . . . , k − 1} . (5)

Kron’s reduction formula (5) corresponds the Schur comple-
mentY + = Y/Ykk, or equivalently, Gaussian elimination of
the kth line in equation (1). The following lemma follows
directly from theQuotient Formula[17, Theorem 1.4].

Lemma II.2 Iterative Kron reduction ofYnetwork with respect
to all nodesVGB∪VLB is equivalent to the Schur complement
Yred = Ynetwork/Y (In, In). �

Iterative Kron reduction of all interior nodesVGB∪VLB leads
to a complete graph among the boundary nodesVG, which will
be formally shown in the next section. Note also that purely
real (respectively imaginary) matricesYnetwork have purely real
(respectively imaginary) reduced matricesYred.

The off-diagonal elements ofYred are referred to astransfer
admittancesand the diagonal elements asself-admittances.
Typically, the admittances are inductive on the transmission
level, the line admittances dominate the shunt admittances,
and Yred is a fully populated Laplacian-like matrix, which is
verified later in Theorem III.4. For these reasonsYred typically
satisfiesℜ(Yred[i, j])≥ 0 andℑ(Yred[i, j]) > 0 for all i 6= j,
and ℜ(Yred[i, i]) ≥ 0 and ℑ(Yred[i, i]) < 0 for the self-
admittances, which we assume from now on.

In the reduced network the electrical output power isPe,i =
ℜ(Vi

∑n

j=1 Yred[i, j])
∗V ∗

j ) given by thepower-angle relation

Pe,i =
∑n

j=1
|Vi||Vj |

(

ℜ(Yred[i, j]) cos(θi − θj)

+ ℑ(Yred[i, j]) sin(θi − θj)
)

. (6)

Equations (3) and (6) give the classic constant-voltage behind
reactance model of interconnectedswing equations.

C. Review of Sufficient Synchronization Conditions for a Loss-
less Network-Reduced Power System Model

Exponential synchronizationin the reduced power network
model given by (3) and (6) means that all angular (geodesic)
distances|θi(t) − θj(t)| become bounded belowπ/2 and all
frequency differenceṡθi(t) − θ̇j(t) converge to zero with
exponential decay rate. When writing the system given by (3)
and (6) in relative angular coordinates, the classic definition of
transient stabilityis stability of an equilibrium(θ∗, θ̇∗) arising
after a fault-clearance. Note that transient stability is aspecial
case of synchronization, and the latter is defined independently
of an explicit equilibrium point(θ∗, θ̇∗) and even indepen-
dently of the existence of an equilibrium for (3) and (6).

In the earlier work [15], the authors derived sufficient
conditions under which the network-reduced model given by
(3) and (6) synchronizes exponentially. In the following, we
review some of the results of [15] in the case of a lossless
power network model withℜ(Yred[i, j])= 0 for all i, j ∈ In.
Define thecoupling weightsPij := |Vi||Vj |ℑ(Yred[i, j]) > 0
(maximum power transferred between generatorsi andj) with
Pii := 0 for i ∈ In, then the dynamics (3) and (6) read as

Mi

πf0
θ̈i = −Diθ̇i + Pm,i −

∑n

j=1
Pij sin(θi − θj) . (7)

To quantify the non-uniformity of the damping constants,
defineµ =

Pn

k=1
(Dk/n)

p

mini6=j{DiDj}/maxi6=j{DiDj}3 (if
all Di≡D, thenµ=1/D). Also let ǫ := Mmax/(πf0Dmin) be



the maximal inertia over damping ratio. Two sufficient condi-
tions for synchronization of the model (7) are as follows [15]:

Theorem II.3 Consider the power network model(7). Assume
that either one of the following two conditions hold

n
mini6=j{Pij}

Dmax
> max

{i,j}

{

Pm,i

Di

−
Pm,j

Dj

}

, (8)

λ2(L(Pij)) > ‖(Pm,2/D2 − Pm,1/D1, . . . )‖2 /µ . (9)

If initially all angles θi(0) are contained in an arc of length
strictly less thanπ/2, then for any bounded initial frequencies
θ̇i(0) there existsǫ∗ > 0 such that for allǫ < ǫ∗ the power
network model synchronizes exponentially.

Remark II.4 (Physical interpretation of Theorem II.3) For
uniform voltages,|Vi|≡V, we have thatPij = V 2ℑ(Yred[i, j]).
Thus, the left-hand sides of (8)-(9) reflect the connec-
tivity of the weighted graph induced byYred: the term
n mini6=j{Pij}/Dmax is a lower bound formini

∑

j Pij/Dj,
the worst coupling of one generator to the network, and
λ2(L(Pij)) is the algebraic connectivity of the coupling. The
right-hand side describes the non-uniformity in power inputs
Pm,i scaled by the dampingDi. In summary, conditions (8)
and (9) can be interpreted as “the network connectivity has to
dominate the network non-uniformity in power inputs.” �

Remark II.5 (Technical comments) It is also possible to
extend Theorem II.3 to non-zero transfer conductances, give
explicit conditions on the initial and asymptotic phase differ-
ences, the synchronization frequency and rates, and conditions
for phase synchronization. The interested reader is referred to
[15]. The smallness assumption onǫ is a singular perturbation
assumption such that the dimension-reduced model

Diδ̇i = Pm,i−
∑n

j=1
Pij sin(δi−δj), i ∈ {1, . . . , n} . (10)

can be analyzed. This assumption is well justified in [15]:
among other justifications, (i)ǫ is indeed a small physical
quantity when considering overdamped generators subject to
local excitation controllers, (ii) the reduced model (10) is (ii)
topologically equivalent to the full model (7) independentof
the magnitude ofǫ, and (iii) the model (10) equivalent to
the model analyzed by the classic and industrially applied
PEBS and BCU algorithms [3]. The authors’ analysis in [15]
approaches the reduced model (10) as a generalization of the
Kuramoto model [12] and the consensus protocol [11]. The
synchronization conditions (8)-(9) are derived for the reduced
model (10) and it can be shown that the approximation error
θi(t)−δi(t) is of orderǫ and ultimately vanishes, c.f. [15].�

Remark II.6 (Necessary synchronization conditions)We
emphasize that the conditions (8) and (9) are only sufficient. To
derive a necessary condition for synchronization in the reduced
model (10), consider the equationδ̇i − δ̇j ≡ 0, which has no
solution if |Pm,i/Di−Pm,j/Dj| >

∑n

k=1(Pik/Di +Pjk/Dj).
Thus, the frequencies cannot be synchronized if the non-
uniformity dominates the coupling. Our ongoing research
reveals that condition (8) is necessary and sufficient when
reducing (10) to the classic Kuramoto model with arbitrary and
unknown distribution of the oscillators’ natural frequencies.�

III. A NALYSIS OF THE KRON REDUCTION PROCESS

Consider a connected, weighted, and undirected graph with
n nodes with LaplacianL = LT ∈ R

n×n. Given a subset of
nodesα with 2 ≤ |α| ≤ n − 1, the Kron-reduced Laplacian
matrix is defined asLred := L/L(α, α) ∈ R|α|×|α|. For
notational simplicity, assume thatα = {1, . . . , |α|}, that is,
L(α, α) is the lower diagonal block ofL.

In a lossless network with purely-inductive line admittances
and zero shunt admittances, the nodesα andIn \α obviously
correspond to the generators and buses, and the matricesL
andLred correspond toℑ(−Ynetwork) andℑ(−Yred).

Remark III.1 (Related literature) In electrical impedance
tomography Lred is also referred to as theDirichlet-to-
Neumann map[20]. The Schur complement of a matrix and
its graph is also referred to asSchur contraction[21], it is
known in the context of Gaussian elimination [22], and also
as popular application example in linear algebra [23], [24].�

A. Algebraic, Spectral, and Topological Properties

Recall that certain classes of matrices we are interested in
are closed under Schur complementation [17, Chapter 4].

Lemma III.2 The following classes of matrices are closed
under Schur complementation: Hermitian matrices, (strictly)
diagonally dominant matrices, andM -matrices.

Another property of the Schur complement that we will
make use of is theinterlacing property[23, Theorem 3.1]:

Lemma III.3 Let A be a Hermitian positive semidefinite
matrix of order n and let β be a non-empty proper sub-
set of In such thatA[β, β] is nonsingular. Then, for any
r ∈ {1, . . . , n − |β|},

λr(A) ≤ λr(A/A[β, β]) ≤ λr(A(β, β)) ≤ λr+|β|(A) .

The following theorem shows that also the class of symmet-
ric and irreducible Laplacian matrices is closed under Schur
complementation with non-decreasing algebraic connectivity.

Theorem III.4 (Algebraic and Spectral Properties of Kron
Reduction) The following statements hold for the reduced
Laplacian matrixLred = L/L(α, α):

1) the Schur complementLred = L/L(α, α) always exists;
2) Lred is a symmetric and irreducible Laplacian matrix;
3) for any r ∈ {1, . . . , |α|},

λr(L) ≤ λr(Lred) ≤ λr(L[α, α]) ≤ λr+n−|α|(L), (11)

and, in particular,λ2(Lred) ≥ λ2(L); and
4) Lred[i, j] ≤ L[α, α][i, j] for all i, j ∈ In \ α.

Proof: By definition, L is weakly diagonally dominant
sinceLij =

∑n

j=1|Lij | for all i ∈ In. Due to connectivityL
is irreducible and thusL(α, α) is strictly diagonally dominant,
i.e.,Lii =

∑n

j=1 |Lij | >
∑n

j=|α|+1 |Lij | for all i ∈ α. Hence,
L(α, α) is invertible and statement 1) follows.

Due to the Quotient Formula for Schur complements [17,
Theorem 1.4],Lred = L/L(α, α) can be obtained by iterative



application of the Kron reduction formula (5) with respect to
the lowest diagonal element. In the first step, a matrixL+ :=
L/Lnn ∈ R(n−1)×(n−1) is obtained with

L+
ij = Lij − LinLjn/Lnn .

SinceL is a symmetric and diagonally dominantM -matrix, so
is L+ by Lemma III.2. Moreover,L+ has zero row sum since

n−1
∑

j=1

L+
ij =

n−1
∑

j=1

(

Lij −
Lin Ljn

Lnn

)

=−Lin − Lin

n−1
∑

j=1

Ljn

Lnn

=0,

where the last step follows since
∑n−1

j=1 Ljn = −Lnn due to
symmetry ofL. Hence,L+ is a symmetric Laplacian matrix,
which can also be concluded forLred by repetitive arguments.

SinceL is a Laplacian matrix and hence positive semidefi-
nite, Lemma III.3 can be applied withβ = In\α and results in
statement 3). In particular, (11) gives thatλ2(Lred)≥λ2(L)>
0, which implies non-decreasing algebraic connectivity and
thus also irreducibility ofLred. This completes the proof of
statement 2). Statement 4) follows from [25, Lemma 1].

The following theorem gives an intuitive understanding of
the Kron reduction process, the resulting reduced Laplacian
matrix, and the corresponding graph.

Theorem III.5 (Topological Properties of Kron Reduction)
The following statements hold for the graph induced by the
Kron-reduced matrixLred = L/L(α, α):

1) All existing edges in the graph induced byLij , i, j ∈ α,
persist in the graph induced byLred;

2) Kron reduction of the nodesIn \ α leads to a complete
graph among all nodesα that were adjacent to the nodes
In \ α prior to the reduction; and

3) If the nodesIn \ α are connected and each nodeα
is adjacent to at least one node inIn \ α, then Kron
reduction of all nodesIn \α leads to a complete graph
among theα nodes. Equivalently, the Kron-reduced
Laplacian matrixLred induces a complete graph.

Proof: Since the class of Laplacian matrices is closed
under the Schur complement, by Theorem III.4, we restrict
the discussion to off-diagonal elementsLij with i 6=j.

First, we prove statements 1) and 2) for a single-step Kron
reduction (5). Any nonzero and thus strictly negative element
Lij is rendered to a strictly negative elementL+

ij since the first
term on the right-hand side of equation (5) is strictly negative
and the second term is non-positive. Therefore, all existing
edges in the graph induced byLij persist in the graph induced
by L+

ij . A zero elementLij is converted into a strictly negative
elementL+

ij iff both nodei and nodej are adjacent to node
k. Since iterative Kron reduction is equivalent to the Schur
complementLred = L/L(α, α), statements 1) and 2) follow.

Under the assumption of statement 3), iterative Kron re-
duction of n−|α|+1 (all but one) “interior nodes”In \ α
renders a connected graph among the interior nodes to a single
interior node connected to all nodesα. Reduction of this last
interior node results in a complete graph among the nodesα.

We remark that Theorem III.5 is stated in Theorems 4.20
and 4.23 in [21] using entirely different proof techniques.

B. Kron Reduction and Effective Resistance

This subsection briefly summarizes some properties estab-
lished in [16]. Theeffective resistanceor resistance distance
Rij between two nodesi, j ∈ In of an undirected, connected,
and uniformly weighted graph with LaplacianL is defined as

Rij := L†
ii + L†

jj − 2L†
ij , (12)

whereL† is the Moore-Penrose pseudo inverse ofL. SinceL†

is symmetric andRii := 0 by definition, the resistance matrix
R is again a symmetric matrix. Fori 6= j the reciprocal1/Rij

is referred to as theeffective conductancebetweeni, j ∈ In.

Remark III.6 (Physical interpretation) If the graph is un-
derstood as an electrical network,Rij corresponds to the
potential difference between the nodesi and j when a unit
current is injected ini and extracted inj. Definition (12)
can be readily extended to weighted graphs if the weights
are understood as conductances in the electrical circuit.�

The effective resistance captures various global properties of
the graph topology such as distance and connectivity measures.
Many interesting results relatingR, L, andL† can be found
in [26], and applications of effective resistance range from
the connectivity of biochemical molecules to performance of
distributed estimation algorithms and random walks in graphs.

The physical intuition in the Remarks II.1 and III.6 suggests
that the elementsLred[i, j] are related to the corresponding
effective conductances1/Rij. The following theorem gives the
exact relation between the reduced Laplacian and the effective
resistance. In essence, the effective resistance among a set of
nodesα is invariant under Kron reduction of the nodesIn \α.

Theorem III.7 (Invariance of the Effective Resistance)
Consider the reduced LaplacianLred = L/L(α, α), and the
matrixR of effective resistances defined in(12). Then fori, j ∈
α, i 6= j, it holds thatRij = L†

red[i, i]+L†
red[j, j]−2L†

red[i, j] .

Theorem III.7 establishes a simple but implicit relationship
amongR andL†

red. If the effective resistances among the nodes
α are uniform, then an explicit relationship can be found:

Corollary III.8 The following statements are equivalent:
1) the off-diagonal elements ofLred are uniform: there is

λ > 0 such thatLred[i, j] = −λ for all i, j ∈ I|α|, i 6= j;
2) the effective resistancesRij amongα nodes are uniform:

there isr > 0 such thatRij = r for all i, j ∈ α, i 6= j.
Moreover, if both cases are true, thenλ = (2/|α|)/r.

Uniform effective resistances among a set of nodesα occur
in a variety of graphs, as the following examples demonstrate.

Example III.9 (Uniform Effective Resistances)In the trivial
case,|α| = 2, the effective resistance among theα nodes is
clearly uniform. Second, if theα nodes are 1-connected leaves
of a highly symmetric graph among the nodesIn \ α, such
as a star-shaped tree, a complete graph, or a combination of
these two, then the effective resistance among the nodesα is
uniform. Third, the effective resistance in large-scale random
small-world networks is known to become uniform among
sufficiently distant nodes. Fourth, the effective resistance in



random geometric graphs converges to a uniform limit as
the number of nodes increases. Fifth and finally, geometric
graphs such as lattices and their fuzzes are special random
geometric graphs with vertices sampled on a grid. Accord-
ing to the previousarguments, the resistance among sufficiently
distant lattice nodes becomes uniform in the large limit [16].�

IV. SUFFICIENT SPECTRAL AND RESISTANCE-BASED

CONDITIONS FORSYNCHRONIZATION

In the following, the results of Section III are applied to
a lossless power network, whereYnetwork is purely inductive.
Assume that the voltages are uniform, and that the shunt
admittances can be modeled equivalently as admittances with
respect to an auxiliary reference bus, and thus all buses are
floating. In this case,ℑ(−Ynetwork) is a real-valued Laplacian
and it follows thatℑ(−Yred) = L(Pij)/V 2. Under this assump-
tion we can state the following corollary to Theorem II.3.

Corollary IV.1 (Spectral and Resistance-based Synchro-
nization Condition) Consider the network-reduced model(7)
derived from the structure-preserving model(3)-(4), and as-
sume floating buses and uniform generator voltages|Vi|≡V .
Assume that either one of the two following conditions hold:

(i) the effective conductance1/R among all generator nodes
in ℑ(−Ynetwork)) is uniform and larger than a critical value, i.e.,

1

R
> max

{i,j}

{

Pm,i

Di

−
Pm,j

Dj

}

Dmax

2V 2
, (13)

or (ii) the algebraic connectivity of the power networkGnetwork

is larger than a critical value, i.e.,

λ2(ℑ(−Ynetwork))) > ‖(Pm,2/D2 − Pm,1/D1, . . . )‖2 /(V 2µ).
(14)

If initially all angles θi(0) are contained in an arc of length
strictly less thanπ/2, then for any bounded initial frequencies
θ̇i(0) there existsǫ∗ > 0 such that for allǫ < ǫ∗ the power
network model synchronizes exponentially.

Proof: Under the assumptions in case(i), it follows from
Corollary III.8 that|Yred[i, j]| = 2/(nR) and consequently also
mini6=j{Pij} = 2V 2/(nR). Thus condition (8) in Theorem
II.3 is rendered to (13). In case(ii) , condition (14) guarantees
condition (9) in Theorem II.3 due to statement 3) in Theorem
III.4. Synchronization follows directly from Theorem II.3.

Condition (13) requires uniform effective resistances among
the generators, which can be verified for the Examples III.9
and is also reasonable from a physical viewpoint: the genera-
tors are spread over the network such that they can effectively
balance the loads. Thus, the potential difference (the effective
resistance) should ideally be equal for all generator pairs.

V. CONCLUSIONS

This paper studied synchronization in a simple structure-
preserving power network model. The network-reduction to
the classic swing equations was related to the reduced Lapla-
cian matrix for which various algebraic and graph-theoretic
properties were established. These results allowed the ex-
tension of the authors’ earlier synchronization conditions for
network-reduced models to network-preserving models.

The following assumptions should be removed to render the
power network model more realistic: purely inductive line ad-
mittances, zero shunt admittances, and uniform voltages during
transients. Ongoing work addresses sharper synchronization
conditions, the effects of loads modeled as shunt admittances,
and further properties of the Kron reduction process.
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