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_ Abstract—This paper considers the synchronization and tran- been considered in [6]-[9]. The cited approaches for both
sient stability analysis in a simple model of a structure-peserving network-reduced and structure-preserving models [1]48]
power system. We derive sufficient conditions relating syrmwo- o Hamiltonian arguments, which also lead to computational

nization in a power network directly to the underlying network - . . .
state, parameters, and topology. In particular, we provide a procedures providing precise estimates of the region tdait

spectral condition based on the algebraic connectivity of te tion of synchronous equilibria. An open problem, recogdize
network and a second condition based on the effective resisice by Hill and Chen [10] and not resolved by classical analysis

among generators. These conditions build upon the authors’ methods, is the quest for explicit and concise conditionrs fo

earlier results on synchronization in network-reduced pover At ;
o ; synchronization as a function of state, parameters, anghgra
system models. Central to our analysis is the reduced admétce y . . P 9
theoretical properties of the power network.

matrix of the network, which is obtained by a Schur complemen . ek -
of the network’s topological admittance matrix with resped to Recently, different scientific communities showed an bur-

its bus nodes. This network-reduction process, termed Kron geoning interest in synchronization, including the netveor
reduction, relates the structure-preserving and the netwtk-  control community interested in theonsensus protocgll1],
reduced power system model. We provide a detailed graph- yna gynamical systems community analyzing tieramoto
theoretic, algebraic, and spectral analysis of the Kron redction del of led illator.2 d the phvsi it
process leading directly to the novel synchronization conitons. model of coupled oscilla c_)rﬁ. ], an € physics community
studying synchronization inomplex networkand its relation
to the algebraic connectivity [13] and the effective resise

In face of the rising complexity of the envisioned futurél4]’ which are spectral and graph-metric connectivity mea

power grid and the stochastic disturbances caused by ?rg_res. In the earlier work [15] the authors combined classic

newable energy sources such as wind and solar power, ae}p&ent stability an_aIyS|s and synchro_nlzatlon the(o_ryi_p_-
: e roach the outstanding problem of relating synchronirsitio
important form of power network stability is the so-called

transient stability Transient stability considers the stabilitya network-reducgd power system to th.e underllyllng network
structure. In particular, the synchronization conditioead as

of a synchronous operating point arising after large teamtsi T .
. .. “the network connectivity has to dominate the network’s non
disturbances such as faults of system components or sigmific n{'formity (in effective power inputs) and the network'stes

changes m_loa_d or generation. The more ge_rjeral_ conc%&)ue to transfer conductances).” Since network-reducedepo
of synchronization encompasses transient stability, fsele

. e e ' - system models feature all-to-all coupling, the conditiams
independent of specific equilibria, and is loosely speakimg . o
ability of a power system to remain in synchronism whe[115] did not capture the original power network topology.

subjected to transient disturbances in parameters ordggpol As a first contribution of this paper, we provide a rigorous
) b gpot. Igebraic analysis and graph-theoretic interpretationthef

The problem of synchronization and transient stability i ron reduction process relating the structure-presereing
well-studied and surveyed in [1]-[3]. The mathematical |E|,riodth tworke dp d gt del. | P K
considered in transient stability analysis consists of taoe € network-reduced power systeém model. In essence, xron
differential-algebraic equations representing the raymam- redu_ctlon of a network is a Schur complement of the Laplacian
ics of each generator as well as the power flow at eanhatrlanh respect to a set ofnode_s. We rel_ate the spectfum o

e resulting Kron-reduced Laplacian matrix to the spemntru

bus in the network. In a classic setting, the loads in t the non-reduced Laplacian matrix, relate its elements to
network are modeled as constantimpedances, which all@vs . . pl ' .
e effective resistances in the non-reduced network, ared g

reduction of the power system model to the well-knaswing various interpretations in the spirit of algebraic grapéatty
equationdeaturing an all-to-all coupling among the generator.'r:,he analysis of the effective resistance is presented iaildet

[4], [5]. This so-callednetwork-reduced modeis mathe- [16] whereas this article focuses on the spectral anslysi

matically tractable but the original network topology repr . : .
senting the system components is lost. Analytic approacr}esThe detailed analysis of the Kron reduction process leads

. . 0 the second contribution of this paper, the extension of
to structure-preservingor network-preserving) models havethe synchronization conditions derived by [15] to struetur

preserving (topological) power network models. As a result
This work was supported by NSF grants CMS-0626457 and CNeg@®.  two sufficient conditions for synchronization among getansa
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are presented depending on the algebraic connectivity aodnd in [1] and is schematically illustrated in Figure 1.eTh
the effective resistance among the generators, both in thedes of the network can be classifiedragenerator nodes
non-reduced network. These conditions bridge the gap frof, n generator terminal busé&; g, andm load buses/; g.
transient stability in power networks to the synchronimati The network has the following topology:

analysis carried out by the physics community [13], [14] and (i) each generator nodis € V¢ is connected to exactly
are derived for a lossless network under the assumptions of one generator terminal busg € Ve,

uniform voltage levels at all generator nodes and zero shurli) each generator terminal bugg € V5 is connected to
admittances. The second condition relies upon the addition at least one load busg € V.5, and

assumption of uniform effective resistances; this assiompt (jii) the buse9/¢5 U V5 form a connected network.

can be justified for various examples. We are aware that teessence, this topology corresponds to a connected retwor
considered network-preserving power system model |S|rsiealam0ng the bus nodelcs U Vig, and the generator nodes
tic and no estimates for the region of attraction of synchren Ve are coupled to the interior network videz. Adopting

equilibria are provided. Rather, our analysis aims at thenopnomenclature of circuit theory, the generators and the suse
problem proposed by [10]: we provide explicit and concisgqe giso denoted as boundary nodes and interior nodes.

conditions that relate synchronization to the state, patars, Each edge connecting two nodeand j is weighted by a
and graph—theqret[cal properties of the power network_. non-zeroline admittancey;; = Y;; € C which is typically of
Paper organization:The remainder of this section intro-, 4, ctive nature, i.e., a negative imaginary part dominate

duces some notation. Section Il recalls the structureepve®y ¢, positive real part. This weighting of the netwaFkework
and network-reduced power system models, the networks < rise to the complex-valued adjacency matrix

reduction process, and a short summary of the authorseear

results. Section Il presents the analysis of the Kron rédnc Onxn | Yo6B | Onxm
process resulting in novel synchronization conditiontestan  A(Ghework) :=| Yo g | Onxn | YopLp | € C2ntm)x(2ndm)
Section IV. Finally, Section V concludes the paper. Ouxn | Ydg1s | Yieis ]
Notation: Given a finite setQ, we let|Q| be its cardinality ) s
and define fon € N the index sef,, := {1,...,n}. Let1,,, Wherethe matrice¥scg, Yoa-18, andYie..s = Y. p induce

and0,,, be thepx ¢ dimensional matrices of unit and Zeroqenthe topolog_y(i)-(iii). Finally, the loads are modeled as passive
tries. Given a complex-valued 2d-arréy;;} with i, j € Z,, Shunt admittancesonnecting the buses to the ground:
let A € C**" denote the associated matrix add the conju- (iv) each bus € VgpUVy g is connected to the ground via
gate transposed matrix, and defidgax= max;;{|4;;|} and a shunt admittanc®;.grouna
Amin=min;;{|As|}. We use the following standard notationn case the shunt admittance at a bus is zero, the bus is
for submatrices [17]: for two non-empty index sets? C Z,,  said to befloating From a viewpoint of circuit theory, the
let A[a, 3] denote the submatrix oft obtained by the rows topology (i)-(iv) and Kirchhoff’s and Ohm’s laws give rise to
indexed bya and the columns indexed by and define the the network equations relating voltages and currents as
shorthandsA[«, 5) = Ala, Z,, \ O], A, 8] = A[Z, \ o, F],
and A(a,3) = A[Z, \ o, Z, \ 3]. We adopt the shorthand I = YnetworV (1)
Al{e}, {7}] = Ali,j] = Ayj for4,j € I,,. If the matrices whereV = [Vg| Veg | Vig]? € C?"*™ is the vector of nodal
gligl’S‘r?aﬁ;iﬁig(aégl}Or:g\éeb;eioblekn;.“es'At[hEﬂ] ':54 a bl()))Ck' voltages,I = [Ig|0|0]7 € C?"*™ is the vector of currents

9 = iag(Ala, of, A(a, a)). injected into the nodes, andfjework € CEntm)x@ntm)

For a nonsingulad («, «), theSchur complemenf A w.r.t. . . X ; .
the blockA(a, o) (or equivalently the indices) is the|a|x | is the nodaladmittance matrix The matrix Ynework iS the
dimensional matrix denoted hyt/A(«, «) and defined by

A/A(a, a) = Alo, o] — Ala, a)A(e, @) "t A, a] .

If A is Hermitian, then we implicitly assume that its eigenval-

ues are arranged in increasing order{A) <...<\,(A).
For a weighted undirected graph induced by a symmetric

and nonnegative adjacency matrix = AT ¢ R"*", the
Laplacian matrixis defined asL(A) = diag(Z?:l Ai;)— A
= L(A)T. Recall thatrreducibility of the Laplacian matrix is
equivalent to connectivity of the corresponding graph.

Il. REVIEW OF THE POWERNETWORK MODEL

This section recalls the structure-preserving and network
reduced power system model to be found in [1], [18], [19] and
relates network-reduction process to algebraic graphryheo

A. The Structure-Preserving Power System Model Fig. 1. Schematic representation of the power network tapo(i)-(iii) for
. . . . the New England Power Grid. The symbd@, ¢, and® correspond to the
Consider the single-line diagram of a power networfenerators)s; = {1,...,10}, generator terminal busag;z = {30 — 39},

Ghetworke SUCh as thélew England Power Grigvhich can be and the load buse®;, 5 = {11,29}.



sum of the complex-valued Laplacian (or Kirchhoff) matridKron's reduction formula (5) corresponds the Schur comple-
L(A(Gm,vo,k)):diaug(zz.‘:1 A(Ghetwork)ij) — A(Ghetwork) @and - mentY ™ = Y/Yy, or equivalently, Gaussian elimination of
a diagonal matrix containing the shunt admittances: the kth line in equation (1). The following lemma follows
directly from theQuotient Formula[17, Theorem 1.4].
Yhetwork = L(A(Gnetwork))

+ blkdiag(0y, xr, diag(Yigs-ground), diag(Yig-ground)) - (2) Lemma 1.2 Iterative Kron reduction ofthework With respect

. . to all nodesVgg U Vi g Iis equivalent to the Schur complement
In the completely floating case, where all shunt admittanc
P y 9 %—Qéd - Ynetwork/ Y(I’nvz’n)- O

are zeroYnework S simply a complex-valued Laplacian matrix.
We assume that the rotor dynamics of generatme given Iterative Kron reduction of all interior nod@4;gUV g leads
by the constant-voltage behind reactance model [18], [19] to a complete graph among the boundary nadgswhich will
M; .. . , be formally shown in the next section. Note also that purely
ﬁ—fOHi =—Dibi + Pni — Peis, i€{1,....n}, (3) real (respectively imaginary) matric&ewon have purely real
. . . (respectively imaginary) reduced matricBsg.
where the rotor angle; is measure(_j with respect t_o arotating The off-diagonal elements dfeq are referred to asansfer
frame with frequencyfo, Pm,; > 0 is the mechanical power oqmitancesand the diagonal elements aslf-admittances
input, and; > 0 and D; > 0 are the inertia and dampingqy yically, the admittances are inductive on the transrossi
constant. The active output power injected by generatoligye| the line admittances dominate the shunt admittances
into the adja*cent generator 'ierm|2al bus (with indek) i  5qy;., is a fully populated Laplacian-like matrix, which is
Pei = R(Vil}) = R(ViY;5, (V" = Vi, ). Typically, the loads eified later in Theorem I11.4. For these reasdfs typically

e:] T JGB/ .
are modeled as passive shunt admittances. Thus, the mteéﬁ}iSﬁeS%(Y}ed[i,j]) >0 and S(Yiedi, j]) > 0 for all i # j,
d R(Yied[i,7]) > 0 and $(Yied[i,i]) < 0 for the self-

network is governed by the network equations (1) and for eag
busi € Vap UV g the power flow equations are obtained a§dmittances. which we assume from now on.

0=V, Z Yaetwordd, 5]V . (4) In the reduced network the electrical output powePis =
JEVGUVGBUVL ! R(V; Z?:l Yred[?, j])*V}") given by thepower-angle relation
The constant-voltage behind reactance generator dyng8)ics "
and the algebraic power flow equations (4) define the classic ~ Pe;i = ijl [VillV; | (R(Yeed[i, 5]) cos(8; — )
differential-algebraic structure-preserving poweregstnodel. o
J P I POWETENS + S(Yredi, 1)) sin(8; — 6,)). (6)

B. The Network-Reduced Power System Model . . . .
. ) Equations (3) and (6) give the classic constant-voltagénileh
Since the loads are assumed to be constant, all passive n‘?g%ﬁtance model of interconnecteding equations
Vop UV B can be eliminated, i.e., the algebraic equations (4

are removed and the network is reduced tonitactive nodes C. Review of Sufficient Synchronization Conditions for ast.os
Vs, where the currenks is injected. Spoken in terms of circuitless Network-Reduced Power System Model

theory, we look for theeduced admittance matrieq relating  Exponential synchronizatioim the reduced power network
boundary voltages and currents accordingdo= YredVs. model given by (3) and (6) means that all angular (geodesic)
distances;(t) — 6,(t)| become bounded below/2 and all
frequency differenced;(t) — 6;(t) converge to zero with
exponential decay rate. When writing the system given by (3)
and (6) in relative angular coordinates, the classic defimibf

For the subsequent network reduction it is assumed tiggnSient stabilityis stability of an equilibriun(6, 6*) arising
YnewordZn, Z) is non-singular, which can be easily verifiedfter a fault—clear.anc.e. Note that transient s_tablllt_y gpacial
due to diagonal dominance (as seen in (2)) and irredugilofit €as€ Of synchronization, and the latter is defined indepetyde
Yieq (due to connectivity of the corresponding graph). Standaf @1 explicit equilibrium point(¢*, 6*) and even indepen-
Gaussian elimination of the lower + m nodes in equation dently of the existence of an equilibrium for (3) and (6).
(1) leads talg = YieqVs, where the reduced admittance matrix In the earlier work [15], the authors derived sufficient

Remark 1.1 (Physical interpretation of Yieq) The(i, ) el-
ement ofYeq corresponds to the current at generatdue to
a potential ofl at generatoy and0 at all other generatoifs.

Yieq is Obtained as the Schur complement conditions under which the network-reduced model given by
(3) and (6) synchronizes exponentially. In the followingg w
Yied = Ynetwork/ Y (Zn, Z1) - review some of the results of [15] in the case of a lossless
This Schur-complementation is referred to msluction by Power network model withR(Yred[i, j]) :0(f\or all i,j € Zn.
structural partitioningin the power systems literature. Define thecoupling weightsP; := |V;||V}[S(Yeedli, j]) > 0

Instead of obtaining/ieq as the Schur complement of the(Maximum power transferred between generaiansd j) with
suitably partitioned matri¥memork the interior (passive) nodes?i = 0 for i € Z,,, then the dynamics (3) and (6) read as
Ve U VL can be eliminated equivalently bierative Kron M . n .
reduction Given an admittance matriX € R***, the removal W—foei = —Dibli + Prnj — ZFl Pjsin(0; — 0;) . (7
of the kth node inV; g UV} i, leads to the reduced admittance

matrix Y+ € R(=-D%(-1) defined component-wise as To quantify the non-uniformity of the damping constants,

define =33, (Di/n)/miniz;{D; D;}/ max.; {D:D; }* (if
Yij =Y, —YiYie/Yer, 4,j€{1,....,k—1}. (5) all D;=D, thenp=1/D). Also lete := Mmax/ (7 foDmin) be




the maximal inertia over damping ratio. Two sufficient cendi  1ll. A NALYSIS OF THEKRON REDUCTION PROCESS

n nodes with Laplaciar. = LT € R"*". Given a subset of

Theorem 1.3 Consider the power network modé). Assume nodesa with 2 < |a| < n — 1, the Kron-reduced Laplacian

that either one of the following two conditions hold

matrix is defined asLjeq := L/L(a,a) € Rlexlel For
min . { P} - Prj  Pnmj ®) notational simplicity, assume that = {1,...,|a|}, that is,
T Do T\ D D, J° L(a, ) is the lower diagonal block of..

In a lossless network with purely-inductive line admittasc
A2(L(Pij)) > ||(Pn2/D2 = Pna/ Dy, ly /i (9) and zero shunt admittances, the nodesndZ,, \ « obviously
If initially all angles 6,(0) are contained in an arc of length correspond to the generators and buses, and the mafrices
strictly less thanr/2, then for any bounded initial frequenciesand Lreq correspond t63(—Ynework) and (—Yred).
0;(0) there exists* > 0 such that for alle < ¢* the power
network model synchronizes exponentially. Remark 11l.1 (Related literature) In electrical impedance
o . tomography Lieg is also referred to as thd®irichlet-to-
Re_mark II.4 (Physical interpretation of Theogem II.B) For Neumann maj20]. The Schur complement of a matrix and
uniform voltages|V;|=V, we have that; = V°3(Yeed[i, j]). jts graph is also referred to &chur contraction21], it is
Thus, the left-hand sides of (8)-(9) reflect the connegnoun in the context of Gaussian elimination [22], and also

tivity of the weighted graph induced byed: the term g nonyiar application example in linear algebra [23
nminz;{P;;}/Dmax is a lower bound fomin, - ; P;;/D;, pop PP P 9 (23] {24]

the worst coupling of one generator to the network, amdl. Algebraic, Spectral, and Topological Properties

A2(L(P;;)) is the algebraic connectivity of the coupling. The Recall that certain classes of matrices we are interested in
right-hand side describes the non-uniformity in power 88puaye closed under Schur complementation [17, Chapter 4].
P, scaled by the dampind;. In summary, conditions (8)

and (9) can be interpreted as “the network connectivity bastemma 1112 The following classes of matrices are closed
dominate the network non-uniformity in power inputs.” L0 ynder Schur complementation: Hermitian matrices, (dyjct

Remark I1.5 (Technical comments) It is also possible to diagonally dominant matrices, antl/-matrices.
extend Theorem 11.3 to non-zero transfer conductanceg, giv
explicit conditions on the initial and asymptotic phasdedif
ences, the synchronization frequency and rates, and comslit
for phase synchronization. The interested reader is exfe
[15]. The smallness assumption eis a singular perturbation
assumption such that the dimension-reduced model

Another property of the Schur complement that we will
make use of is thénterlacing property[23, Theorem 3.1]:

Lemma 1ll.3 Let A be a Hermitian positive semidefinite
matrix of ordern and let 5 be a non-empty proper sub-
. " set of Z,, such that A[3, 8] is nonsingular. Then, for any
Dz5z = Pmﬂ._zj*l F’ij sin(di—(ij), i€ {1, .. .,TL} . (10) re {1, NS |ﬁ|}1

can be analyzed. This assumption is well justified in [15]: A-(A) < A(A/A[B, B]) < A(A(B,5)) < Agip(A).
among other justifications, (i is indeed a small physical

quantity when considering overdamped generators sulgect t The fqllowmg_ theorem S.hOWS tha}t alsp the class of symmet-
local excitation controllers, (ii) the reduced model (18Yi) ric and irreducible Laplacian matrices is closed under $chu

topologically equivalent to the full model (7) independefit complementation with non-decreasing algebraic connigctiv

the magnitude ofe, and (iii) the model (10) equivalent to . .
the model analyzed by the classic and industrially appIiT eorem .4 (Algebra_uc and Spectral Properties of Kron
PEBS and BCU algorithms [3]. The authors’ analysis in [1 eductllon) The_ following statem.ents hold for the reduced
approaches the reduced model (10) as a generalization of lacian matrixLred = L/L (e, a): )
Kuramoto model [12] and the consensus protocol [11]. Thel) the Schur complemetteq = L/L(a, a) always exists;
synchronization conditions (8)-(9) are derived for theugetl ~ 2) Lred is @ symmetric and irreducible Laplacian matrix;
model (10) and it can be shown that the approximation error3) foranyr e {1,... |a|},

0;(t)—9;(t) is of ordere and ultimately vanishes, c.f. [15]l A(L) < Ar(Lred) < Ar(Llov, a]) < Apn—jaf (L), (11)

Remark 11.6 (Necessary synchronization conditions)We
emphasize that the conditions (8) and (9) are only sufficiemt
derive a necessary condition for synchronization in the:ced
model (10), consider the equatioh— d; = 0, which has no Proof: By definition, L is weakly diagonally dominant
solution if | Py i/ Di— P j/Dj| > > "_y (Pit/Di+ Pji./Dj).  since L;; =", |Ly| for all i € Z,,. Due to connectivityl
Thus, the frequencies cannot be synchronized if the nds-irreducible and thug (., o) is strictly diagonally dominant,
uniformity dominates the coupling. Our ongoing researdte., 1.,;, = Z;?ZI |Li;| > Z?:‘alﬂ |L;;| for all i € a. Hence,
reveals that condition (8) is necessary and sufficient Whma,a) is invertible and statement 1) follows.

reducing (10) to the classic Kuramoto model with arbitratia  pue to the Quotient Formula for Schur complements [17,
unknown distribution of the oscillators’ natural frequésst]  Theorem 1.4],Leq = L/L(c, o) can be obtained by iterative

and, in particular\>(Led) > X2(L); and
4) Lredt, j| < L], ][z, j] for all 4,5 € Z,, \ .



application of the Kron reduction formula (5) with respeat tB. Kron Reduction and Effective Resistance
the lowest diagonal element. In the first step, a makrix:=

4 ' a This subsection briefly summarizes some properties estab-
L/L,, € R»=1x(=1) s gbtained with

lished in [16]. Theeffective resistancer resistance distance

Lt =Lij — LinLin/Lnn - R;; between two nodes j € Z,, of an undirected, connected,
W Tnnens and uniformly weighted graph with Laplacidnis defined as
SincelL is a symmetric and diagonally dominaht-matrix, so + t t
is LT by Lemma I11.2. MoreoverL " has zero row sum since Rij:= L + Lj; = 2L;;, (12)

n—1 n—1 whereL! is the Moore-Penrose pseudo inversd.oinceLt

Z Lij — ——— | =—Lin — L Z —— =0, Iissymmetric and?;; := 0 by definition, the resistance matrix
Lnn j=1 Lnn R is again a symmetric matrix. For# j the reciprocal /R;;

is referred to as theffective conductandeetweeni, j € Z,,.

n—1

+ _
E L=
j=1

where the last step follows sincE;.‘;ll L;, = —Lyy, due to o ) )
symmetry ofL. Hence,L* is a symmetric Laplacian matrix, Remark 111.6 (Physical _mterpretatlon) If the graph is un-
which can also be concluded fdreq by repetitive arguments. derstood as an electrical network,;; corresponds to the

SinceL is a Laplacian matrix and hence positive semidefRotential difference between the nodesand j when a unit
nite, Lemma 1.3 can be applied with = Z,,\ o and results in current is |nJ_ected ini and extrgcted inj. Deﬁmuon (12)_
statement 3). In particular, (11) gives that(Lieq) > Ao(L)> C@N be readily extended to we|g_hted graphs_ if th_e weights
0, which implies non-decreasing algebraic connectivity arf€ understood as conductances in the electrical circuitl

thus also irreducibility ofLreq. This completes the proof of  The effective resistance captures various global progeedi
statement 2). Statement 4) follows from [25, Lemma 1]® the graph topology such as distance and connectivity messur
The following theorem gives an intuitive understanding aflany interesting results relating, L, and LT can be found
the Kron reduction process, the resulting reduced Laptacig [26], and applications of effective resistance rangamfro
matrix, and the corresponding graph. the connectivity of biochemical molecules to performante o
distributed estimation algorithms and random walks in bsap
The physical intuition in the Remarks II.1 and I11.6 suggest
at the elementd.eq[i, j] are related to the corresponding
e . : effective conductancdy R;;. The following theorem gives the
1) All existing edges in the graph induced By;, i,j € @, exact relation between the reduced Laplacian and the ifect
persist in the graph induced bYreq; resistance. In essence, the effective resistance amonigod se

2) Kron reduction of the nodes, \ o leads to a complete nodesy is invariant under Kron reduction of the nodgs\ a.
graph among all nodes that were adjacent to the nodes

T, \ « prior to the reduction; and Theorem IIl.7 (Invariance of the Effective Resistance)
3) If the nodesZ, \ a are connected and each node Consider the reduced Laplaciaheq = L/L(a, «), and the
is adjacent to at least one node #, \ «, then Kron matrix R of effective resistances defined42). Then fori, j €
reduction of all nodeq,, \ « leads to a complete graph a, i # j, it holds thatR;; = L i, ]+ LLj, j] — 2LL 44, 7] -
among thea nodes. Equivalently, the Kron-reduce
Laplacian matrix Lyeq induces a complete graph.

j=1

Theorem II1.5 (Topological Properties of Kron Reduction)
The following statements hold for the graph induced by tl]ﬁ
Kron-reduced matrixLreq = L/L(c, «):

dTheorem [11.7 establishes a simple but implicit relatiopsh

amongR and |, If the effective resistances among the nodes
Proof: Since the class of Laplacian matrices is closed are uniform, then an explicit relationship can be found:

under the Schur complement, by Theorem IIl.4, we restrict . . )

the discussion to off-diagonal elemerts; with i ;. orollary I11.8 The following statements are equivalent:

First, we prove statements 1) and 2) for a single-step Kron1l) the off-diagonal elements dfieq are uniform: there is

reduction (5). Any nonzero and thus strictly negative eleme A > 0 such thatLredli, j| = —Aforall i, j € Zjo), i # j;
L;; is rendered to a strictly negative elemdnjj since the first ~ 2) the effective resistancés; amongx nodes are uniform:
term on the right-hand side of equation (5) is strictly nagat there isr > 0 such thatR;; = r for all i,j € a, i # j.

and the second term is non-positive. Therefore, all exgstiMoreover, if both cases are true, then= (2/|«a|)/r.
edges in the graph induced thy; persistin the graph induced  piform effective resistances among a set of nodescur

by L;. A zero elemenL;; is converted into a strictly negativej, 4 variety of graphs, as the following examples demorestrat
eIementij iff both nodei and nodej are adjacent to node
k. Since iterative Kron reduction is equivalent to the Schugxample 111.9 (Uniform Effective Resistances)in the trivial
complementlyeq = L/L(c, o), statements 1) and 2) follow. case,|a| = 2, the effective resistance among thenodes is
Under the assumption of statement 3), iterative Kron relearly uniform. Second, if the nodes are 1-connected leaves
duction of n—|a|+1 (all but one) “interior nodesZ,, \ a« of a highly symmetric graph among the nodgs\ «, such
renders a connected graph among the interior nodes to @sirgf a star-shaped tree, a complete graph, or a combination of
interior node connected to all nodes Reduction of this last these two, then the effective resistance among the nadss
interior node results in a complete graph amongthe nad@ uniform. Third, the effective resistance in large-scaled@m
We remark that Theorem 111.5 is stated in Theorems 4.Znall-world networks is known to become uniform among
and 4.23 in [21] using entirely different proof techniques. sufficiently distant nodes. Fourth, the effective resistaim



random geometric graphs converges to a uniform limit asThe following assumptions should be removed to render the
the number of nodes increases. Fifth and finally, geometpower network model more realistic: purely inductive lirte a
graphs such as lattices and their fuzzes are special randwittances, zero shunt admittances, and uniform voltagesglu
geometric graphs with vertices sampled on a grid. Accortlansients. Ongoing work addresses sharper synchromizati
ing to the previous arguments, the resistance among sutfigie conditions, the effects of loads modeled as shunt admignc
distant lattice nodes becomes uniform inthe large limit][I6 and further properties of the Kron reduction process.

IV. SUFFICIENT SPECTRAL AND RESISTANCEBASED
CONDITIONS FORSYNCHRONIZATION

In the following, the results of Section Il are applied to

a lossless power network, whekgework IS purely inductive.

Assume that the voltages are uniform, and that the shu
admittances can be modeled equivalently as admittancés w
respect to an auxiliary reference bus, and thus all buses dfé

floating. In this case¥(—Ynemork) IS @ real-valued Laplacian

and it follows thats(—Yeq) = L(P;;)/V2. Under this assump- [5]

tion we can state the following corollary to Theorem II1.3.

Corollary IV.1 (Spectral and Resistance-based Synchro-
nization Condition) Consider the network-reduced mod@é)
derived from the structure-preserving mod8)-(4), and as-
sume floating buses and uniform generator voltagés="V'.

Assume that either one of the two following conditions hold:
(i) the effective conductandgr among all generatornodes [8l

in 3(—Yhework)) is uniform and larger than a critical value, i.e.,
Lo [ Poi Pi)| Do
D, D; ) 2v?’

R {ij}
or (ii) the algebraic connectivity of the power netwdHetwork
is larger than a critical value, i.e.,

AQ(%(_net\Nork))) > ||(Pm,2/D2 - Pm,l/Dla .-

(13)

Mo /(V2p).
(14)

If initially all angles 6;(0) are contained in an arc of length [12]
strictly less thanr/2, then for any bounded initial frequencies
0:(0) there existss® > 0 such that for alle < €* the power |3

network model synchronizes exponentially.

Proof: Under the assumptions in ca@g it follows from
Corollary 111.8 that|Yied[i, ]| = 2/(nR) and consequently also

min,;{P;;} = 2V?/(nR). Thus condition (8) in Theorem [15]

[1.3 is rendered to (13). In cagé), condition (14) guarantees

condition (9) in Theorem 11.3 due to statement 3) in Theoref#o]

[11.4. Synchronization follows directly from Theorem 11.38

Condition (13) requires uniform effective resistances agno ElB]
the generators, which can be verified for the Examples 111.9
and is also reasonable from a physical viewpoint: the genef!
tors are spread over the network such that they can efféctiveo)

balance the loads. Thus, the potential difference (thectte

resistance) should ideally be equal for all generator pairs 27

V. CONCLUSIONS

This paper studied synchronization in a simple structure-
preserving power network model. The network-reduction gy
the classic swing equations was related to the reduced Lapla
cian matrix for which various algebraic and graph-thecretfzg,]
properties were established. These results allowed the ex-

tension of the authors’ earlier synchronization condsidor
network-reduced models to network-preserving models.
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