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Abstract— In this paper, we investigate a cooperative esti-
mation problem for visual sensor networks based on multi-
agent optimization techniques. A passivity-based visual motion
observer is employed as a tool to meet the objective. We first
give an interpretation of the visual motion observer from the
viewpoint of optimization and present new inputs motivated
by the optimization techniques on manifolds. Based on the
investigations, we formulate a novel cooperative estimation
problem to be tackled. Then, a cooperative estimation algorithm
is presented based on multi-agent optimization techniques. Fi-
nally, the effectiveness of the present algorithm is demonstrated
through experiments.

I. I NTRODUCTION

A visual sensor network [1]–[3] is a network consisting of
spatially distributed smart cameras, which is a kind of sensor
networks. Unlike the other sensors measuring some values
such as temperature and pressure, vision sensors do not
provide such explicit data but combining image processing
techniques or human operators with the measurement gives
information on what happens, what a target is, where it is
and where it bears. Due to the nature, visual sensor networks
are useful in environmental monitoring, surveillance, target
tracking and entertainment.

A lot of research works have been devoted to combining
control techniques with visual information so-called visual
feedback control or visual servoing [4]–[8]. The authors
also presented dynamic visual feedback control schemes
for 3D target tracking based on passivity in [7], where a
vision-based observer called visual motion observer plays a
central role to estimate the target’s pose. However, in visual
sensor networks, it is expected not only to give an estimate
but also to cooperate with each other vision sensor, which
brings us new theoretical challenges. The main advantages
of cooperation are: (i) accuracy of estimates by integrating
richer information than the case of a single sensor, (ii) tol-
erance against obstruction, misdetection in image processing
and sensor failures and (iii) wide vision and elimination of
blind areas by fusing images of a scene from a variety of
viewpoints.

Cooperative estimation for sensor networks has been tack-
led in recent years [9], [10]. [10] presents distributed Kalman
filters based on the consensus algorithm [11] and exemplifies
the fact that averaging the estimates among the neighbors
achieves more accurate estimation than averaging sensed
data as in [9]. Unfortunately, the algorithm is not applicable
to our problem since the object’s pose takes values in a
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non-Eucledean space. Meanwhile, [2] presents a distributed
version of the computation algorithm of an average on Spe-
cial Orthogonal Group called Karcher mean [12]. However,
this work focuses on the averaging by assuming that the
target’s orientation is obtaineda priori and does not mention
estimation from image data.

In this paper, we formulate a novel vision-based coop-
erative estimation problem for visual sensor networks and
present an algorithm based on multi-agent optimization tech-
niques [13]. For this purpose, after introducing the problem
setting and the visual motion observer [7], we first recon-
sider the processes in the observer from the viewpoint of
optimization. Then, we present some novel inputs motivated
by the techniques in optimization and prove correctness of
the estimate based on passivity. We moreover show that
using passivity allows us to evaluate the error from the
actual object’s pose even if the object is moving, while opti-
mization handles only static problems. Following the above
investigations, we next formulate a cooperative estimation
problem, where a minimization problem of an aggregate
objective function is presented. We then present a cooperative
estimation algorithm which embody both of the consensus
and gradient descent algorithm. The gradient descent term is
introduced to make the estimate track to a moving object’s
pose while the consensus term is to lead the estimate to a
value close to an average of vision sensors’ estimates if the
object is static. We moreover gives an upper bound of the
error between the estimates and their average for a static
object based on the results in the multi-agent optimization
[13]. Finally, it is demonstrated through experiments that the
present algorithm is effective in estimation for both static
and moving target object.

II. N OTATIONS AND BASIS OFOPTIMIZATION ON SO(3)

For a matrixM ∈ R3×3, MT denotes the transpose of
M , tr(M) the trace ofM , anddet(M) the determinant of
M . The operatorssym(·) and sk(·) are respectively defined
as sym(M) = 1

2 (M +MT ) and sk(M) = 1
2 (M −MT ).

Let us first consider the Lie groupSO(3) defined as below.

SO(3) = {R ∈ R3×3| RTR = I3, det(R) = +1}

We describe the vector space consisting of all skew symmet-
ric matrices inR3×3 by so(3). The notation∧ : R3 → so(3)
is a skew symmetric operator satisfyingx̂y = x× y for any
vectorsx andy with cross product×. ∨ : so(3) → R3 is the
inverse operator of∧. The exponential map fromso(3) to
SO(3) is denoted byexp(·). We usually useeω̂ ∈ SO(3) to
denoteexp(ω̂). The inverse map of the exponential map is



denoted bylog(·). For more details on the notations, please
refer to [14].

In this paper, we consider the following two metrics on
SO(3) between any two elementsQ andR of SO(3).

ϕF
Q(R) =

1
2
∥R−Q∥2

F = tr(I −QTR) (1)

ϕR
Q(R) =

1
2
∥ log(QTR)∥2

F (2)

where ∥ · ∥F represents the Frobenius norm. The function
ϕF

Q(R) andϕR
Q(R) are square of so-called Euclidean distance

and Riemannian distance [15] respectively. It is known that
the gradients [16] ofϕF

Q(R) andϕR
Q(R) at R ∈ SO(3) are

given as follows [2], [12], [15].

gradRϕ
F
Q = −Rsk(RTQ), (3)

gradRϕ
R
Q = −R log(RTQ). (4)

The Newton vector with respect to the functionϕF
Q(R) at

R ∈ SO(3) is ηR satisfying

HessR ϕF
QηR = −gradR ϕF

Q(R), (5)

where HessR ϕF
QηR is the Hessian ofϕF

Q at R [16]. The
solution to (5) is given by the closed form

ηR = Rγnv(RTQ)∧, (6)

γnv(M) = γ̄−1
nv (M)sk(M)∨,

γ̄nv(M) =
1
2

(tr(sym(M))I3 − sym(M)) .

We next consider the special Euclidean spaceSE(3) :=
R3×SO(3). If we use the homogeneous representation, each
elementg = (p,R) ∈ SE(3) is described as

g =
[
R p
0 1

]
∈ R4×4. (7)

Analogous to the definition ofso(3), we definese(3) =
R3 × so(3). Then, in homogeneous coordinates, an element
ξ̂ ∈ se(3) is described as

ξ̂ =
[
ω̂ v
0 0

]
∈ R4×4.

In this paper, we also use the following metric onSE(3)
between two elementsg1 = (p1, R1) andg2 = (p2, R2).

ψg1(g2) = φp1(p2) + ϕF
R1

(R2), (8)

whereφq(p) = 1
2∥p− q∥2.

III. PROBLEM SETTING

Throughout this paper, we consider the situation wheren
vision cameras see different target objects (Fig. 1). Suppose
that each vision camerai ∈ V := {1, · · · , n} has communi-
cation and computation capability. The problem is motivated
by some scenarios such as estimation of group behaviors,
estimation under uncertainties including noises, incomplete
localization and parametric uncertainties of vision cameras.
With such uncertainties, the visual measurement would be
contaminated by them and the object’s pose consistent with
the measurement would differ among sensors even if the
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Fig. 1. Visual Sensor Network

actual target is single. Under the situation, a way to gain
accurate estimate of the object is averaging the individual
objects’ poses.

A. Rigid Body Motion

Let the coordinate framesΣw, Σi and Σoi represent the
world frame, thei-th vision camera frame, and the frame of
the object which vision camerai sees, respectively. Then, the
pose of vision camerai and objectoi are denoted bygwi =
(pwi, e

ξ̂θwi) and gwoi = (pwoi , e
ξ̂θwoi ). Let pioi ∈ R3 and

eξ̂θioi ∈ SO(3) be the position vector and the rotation matrix
from the vision camera frameΣi to the object frameΣoi .
Then, the relative pose fromΣi to Σoi can be represented by
gioi = (pioi , e

ξ̂θioi ) ∈ SE(3) and satisfiesgioi = g−1
wi gwoi .

We next define the body velocity of the objectΣoi relative
to the world frameΣw asV b

woi
= (vwoi , ωwoi) or

V̂ b
woi

= g−1
woi

ġwoi =
[
ω̂woi vwoi

0 0

]
∈ R4×4, (9)

where vwoi and ωwoi represent the linear velocity of the
origin and the angular velocity fromΣw to Σc, respectively
[14]. Similarly, vision camerai’s body velocity relative to
Σw will be denoted asV b

wi = (vwi, ωwi).
By using the body velocitiesV b

wi and V b
woi

, the body
velocity of the relative rigid body motiongioi is written as

V b
ioi

= −Ad(g−1
ioi

)V
b
wi + V b

woi
. (10)

B. Visual Measurement

In this subsection, we define the visual measurement of
the vision camera which is available for estimation of target
objects’ motion. Throughout this paper, we use the pinhole
camera model with a perspective projection [14].

In this paper, we assume that each target object hasm
feature points and each vision camera can extract them
from the visual data by using some techniques. The position
vectors of the target objecti’s l-th feature point relative
to Σoi and Σi are denoted bypoil ∈ R3 and pil ∈ R3

respectively. With a slight abuse of notation, as[pT
il 1]T and

[pT
oil

1]T , we havepil = gioipoil,.
Let them feature points of the objectoi on the image plane

coordinate of vision camerai fi := [fT
i1 · · · fT

im]T ∈ R2m

be the measurement of the vision camerai. It is well known



[14] that the perspective projection of thel-th feature point
onto the image plane gives us the image plane coordinate
fil ∈ R2 as

fil =
λi

zil

[
xil

yil

]
, (11)

wherepil = [xil yil zil]T andλi is a focal length of vision
camerai. It is straightforward to extend this model tom
image pointsfi andpi := [pT

i1 · · · pT
im]T ∈ R3m.

C. Communication Model

The vision cameras have communication capability with
the neighboring cameras and constitute a network. The com-
munication is modeled by a graphG = (V, E), whereE ⊂
V × V. Namely, vision camerai can get some information
from j if (j, i) ∈ E . In addition, we define the neighbor set
Ni := {j ∈ V| (j, i) ∈ E}.

IV. V ISUAL MOTION OBSERVER

In this section, we consider the problem that a vision
camerai estimates the target object motiongioi from the
visual measurementsfi without considering communication.
For this purpose, we introduce the visual motion observer
presented in [7].

A. Estimation Error System

The visual motion observer has the same structure as
Luenberger observer. We thus first prepare the model of the
actual rigid body motion relative to the vision camera. Using
the relative rigid body motion (10), we choose estimates
ḡioi

= (p̄ioi
, e

ˆ̄ξθ̄ioi ) andV̄ b
ioi

of the relative rigid body motion
and velocity respectively as

V̄ b
ioi

= −Ad(ḡ−1
ioi

)V
b
wi + uei. (12)

The new inputuei = [vT
uei ω

T
uei]

T is to be determined in
order to drive the estimated values̄gioi and V̄ b

ioi
to their

actual values. Once the estimatēgioi is determined, the
estimated measurement̄fi (i = 1, . . . ,m) is also computed
similarly to (III-B) and (11). In the following, we use the
notationp̄il := [x̄il ȳil z̄il]T , l ∈ [1,m].

We next define the estimation error between the estimated
value ḡioi and the actual relative rigid body motiongioi

as gei = (pei, e
ξ̂θei) := ḡ−1

ioi
gioi . Using the notations

eR(eξ̂θ) := sk(eξ̂θ)∨, the vector representation of the es-
timation error is also given by

eei := ER(gei), ER(gei) :=
[
pT

ei eT
R(eξ̂θei)

]T

. (13)

Note thateei = 0 iff pei = 0 andeξ̂θei = I3.
Let us now derive a relation between the actual and

estimated visual measurements. If we define the visual error
asfei := fi(gioi)− f̄i(ḡioi), then the estimation error vector
eei can be reconstructed from the visual error by

eei = J†
i (ḡioi

)fei, (14)

[7], where † denotes the pseudo-inverse andJi(ḡioi) :
SE(3) → R2m×6 is defined as

Ji(ḡioi) :=
[
JT

i1(ḡioi) JT
i2(ḡioi) · · · JT

im(ḡioi)
]T
,

Jil(ḡioi) := J̃il(ḡioi)e
ˆ̄ξθ̄ioi

[
I −p̂oil

]
,

J̃il(ḡioi) :=

[
λ
z̄il

0 −λx̄il

z̄2
il

0 λ
z̄il

−λȳil

z̄2
il

]
.

We assume that the matrixJi(ḡioi) is full column rank for all
ḡioi ∈ SE(3). It is known that ifm ≥ 4 the image Jacobian
has the full column rank.

Differentiating gei = ḡ−1
ioi
gioi with respect to time and

using (10) and (12), we obtain the estimation error system

V b
ei = −Ad(g−1

ei )uei + V b
woi

. (15)

B. Stability Analysis

In this subsection, we design the visual motion observer
and analyze stability of the closed-loop system. For this
purpose, we first give a remarkable fact.

Fact 1: [7] If V b
woi

= 0, then the following inequality
holds for the estimation error system (15).∫ T

0

uT
ei(−eei)dt ≥ −γi, (16)

whereγi is a positive scalar.
Let us takeuei as the input andeei as the output of (15).
Then, Fact 1 implies that the estimation error system (15) is
passive from the inputuei to the output−eei.

Based on the above passivity property, we consider the
following input

uei = −kei(−eei) = keieei, kei > 0. (17)

Then, from passivity-based control theory, we can prove the
asymptotic stability of the equilibrium pointeei = 0 for the
closed-loop system (15) and (17). This implies that the visual
motion observer leads the estimateḡioi to the actual relative
pose of the static objectgioi asymptotically as long as the
initial estimation error is small enough.

V. RECONSIDERATION OFV ISUAL MOTION OBSERVER

In this section, we reconsider the update procedure of the
estimatēgio in the visual motion observer from the viewpoint
of optimization onSE(3).

In case ofV b
woi

= V b
wi = 0, we see from (12) and (17)

that the estimatēgioi is updated according to

˙̄gioi = ḡioi(keieei)∧

= kei

[
e

ˆ̄ξθ̄ioi sk(e−
ˆ̄ξθ̄ioi eξ̂θioi ) pioi − p̄ioi

0 0

]
.(18)

From (3), (18) is rewritten as

˙̄gio = kei

[
−grad

e
ˆ̄ξθ̄ioi

ϕF

e
ξ̂θioi

−gradp̄ioi
φpioi

0 0

]
. (19)



(19) indicates that the update process of the estimate is
interpreted as a process to solve the optimization problem

min
ḡ∈SE(3)

ψgioi
(ḡ). (20)

From the fact, we will use the functionψ as an individual
objective function to be minimized in cooperative estimation
for visual sensor networks. Before mentioning it, we give
some extensions of the results in [7] from the viewpoint of
optimization theory on manifolds [16] in this section.

A. Riemannian Metric

In this subsection, we use the Riemannian metricϕR

instead ofϕF in (20), which gives the update procedure

uei = uR(eei) = keiγ(eei), |θei| < π/2. (21)

γ([xT
1 xT

2 ]T ) :=
[

x1

γR(x2)

]
, γR(x) := γ̄R(x)x

γ̄R(x) := sin−1(∥x∥)/∥x∥

The restriction|θei| < π/2 is imposed to guarantee well-
definedness of the function̄γR(·).

In terms of (21) we immediately obtain the following
proposition.

Proposition 1: Suppose thatV b
woi

= 0. Then, for the
closed-loop system (12) with the input (21), the origineei =
0 is an asymptotically stable equilibrium point.
In addition, we have the following result for a moving object.

Proposition 2: Consider the system (12) and (21) with
input V b

woi
and outputeei. Then, if

kei −
1

2δ2
− 1

2
> 0 (22)

holds for someδ > 0 and |θei| < π/2 is satisfied for all
time, theL2-gain of the system is less thanδ.

B. Newton Method

To accelerate convergence in optimization, we have an
option to use Newton method. Namely, in this subsection,
we use instead of (19) the update rule

uei = unv(eei) :=
[
I 0
0 γ̄−1

nv (eξ̂θei)

]
eei, |θei| < π/2. (23)

In terms of (23), we have the following proposition.
Proposition 3: Suppose thatV b

woi
= 0. Then, for the

closed-loop system (12) with the input (23), the origineei =
0 is an asymptotically stable equilibrium point.

We also get the following proposition for a moving object.
Proposition 4: Consider the system (12) and (23) with

input V b
woi

and outputeei. Then, if

kei −
1

2δ2
− 1

2
> 0 (24)

holds for someδ > 0 and |θei| < π/2 is satisfied for all
time, theL2-gain of the system is less thanδ.
Propositions 1 and 3 prove only convergence and a similar
statement might be obtained by optimization theory onceeei

is reconstructed from the image data though the reconstruc-
tion is also a part of the visual motion observer. However,

optimization theory handles only static problems and does
not provide any answer to the estimation when the sensor
and target object are moving as in Propositions 2 and 4.

VI. COOPERATIVEESTIMATION ALGORITHM

A. Problem Reformulation

In this section, we consider a visual sensor network
consisting of multiple vision sensors assuming that each
vision sensori knowsgwi.

We first formulate the cooperative estimation problem to
be considered in this paper. It is expected for visual sensor
networks to meet the following requirements simultaneously.

• (Averaging) The estimates take values close to an aver-
age of{gwoi}i∈V for a static object.

• (Tracking) The estimates track the actual object’s pose
gwoi for a moving object.

We first define the individual objective function to be min-
imized by each vision sensori asψgwoi

. Then, we formulate
a cooperative estimation problem as a minimization of the
aggregate objective function

min
ḡ=(p̄,e

ˆ̄ξθ̄)∈SE(3)

Ψ(ḡ), Ψ(ḡ) :=
1
n

n∑
i=1

ψgwoi
(ḡ). (25)

It should be now noted that in our setting each vision sensor
does not know neighbors’ objective functionψgwoj

since it
containsgwoj to be estimated.

The problem (25) is divided into independent problems

min
p̄∈R3

1
n

n∑
i=1

φpwoi
(p̄), (26)

min
e
ˆ̄ξθ̄∈SO(3)

Φ(e
ˆ̄ξθ̄), Φ(e

ˆ̄ξθ̄) :=
1
n

n∑
i=1

ϕF

eξ̂θwoi
(e

ˆ̄ξθ̄). (27)

The solution to (27) is called Euclidean mean [15]. Given
orientationseξ̂θwoi , i ∈ V, the meanR∗ is given by

eξ̂θ∗
= Proj(R̄), R̄ =

1
n

∑
i∈V

eξ̂θwoi (28)

[15], whereProj(M) gives the orthogonal projection ofM
ontoSO(3) and is computed effectively by using the singular
value or polar decompositions ofM [17]. Note that just
computing the Euclidean mean for a static object is not so
difficult even in a distributed fashion. Indeed,R̄ is computed
by using the consensus algorithm [11] under appropriate
assumptions on the graph. However, such a scheme works
only for a static object.

B. Multi-agent Optimization

In this paper, we present an algorithm, which embodies
not only the consensus but also the the gradient descent
algorithm withψgwoi

in order to achieve tracking. Recently,
such an update procedure is presented in [13] in order to
solve the multi-agent optimization problem

min
x∈Rn

F (x) :=
N∑

i=1

Fi(x) (Fi : convex), (29)
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under the situation where each agenti does not know
Fj , j ̸= i but only Fi. There, the following update rule of
the estimate of solutionxi is presented, which consists of the
consensus and gradient descent algorithm of the individual
objective functionFi.

xi[k + 1] = −αigradxi[k]Fi +
∑
j∈V

aijxj [k], (30)

where aij = aji, aij = 0 if (i, j) /∈ E and
∑

j∈V aij =
1 ∀i ∈ V. We remark that (30) is a simplified version and
more general one with a variable gain for random graphs is
presented in [13]. [13] also derives a boundϵk,i such that

F (yi[k]) ≤ F (x∗) + ϵk,i, yi[k] =
1
k

k−1∑
h=0

xi[k],

wherex∗ is the actual optimal solution to (29). If we can
present such an algorithm for our problem, it is possible
to get an approximate value of the Euclidean mean for a
static object. Hereafter, we mainly focus on (27) since the
minimization (26) is just a special case of the problem [13].

C. Cooperative Estimation Algorithm

In this subsection, we chooseR3×3 as a vector space to
execute averaging. We consider the scalar fieldϕ̃Q : R3×3 →
R such thatϕ̃Q(R) = 1

2∥R−Q∥2
F . Then, the solution to

min
R∈R3×3

Φ̃(R), Φ̃(R) :=
1
n

n∑
i=1

ϕ̃
eξ̂θwoi

(R) (31)

is given byR̄ = 1
n

∑n
i=1 e

ξ̂θwoi .
Let us now present the update rule of the cooperative

estimatee
ˆ̄ξθ̄i,ce [k] by introducing a fictitious variableXi[k].

Xi[k + 1] = −αigradXi[k]ϕ̃eξ̂θwoi
+

∑
j∈V

aijXj [k]. (32)

e
ˆ̄ξθ̄i,ce [k + 1] = Proj(Xi[k + 1]) (33)

Let us now show how to implement (32) by using the
visual motion observer. It is sufficient to show that

gradX ϕ̃eξ̂θwoi
= X − eξ̂θwoi (34)

is provided by the observer. Onceeei is reconstructed
from (14) in the visual motion observer, we geteξ̂θei =

Fig. 3. Overview of Experimental Environment

e−
ˆ̄ξθ̄ioi eξ̂θioi = e−

ˆ̄ξθ̄woi eξ̂θwoi by using the function
exp ◦γR. Now, we computeMi such thatMT

i Mi = 2I −
2sym(eξ̂θei) for the symmetric matrix2I − 2sym(eξ̂θei),
which givese

ˆ̄ξθ̄woi − eξ̂θwoi since

2I − 2sym(eξ̂θei) = (e
ˆ̄ξθ̄woi − eξ̂θwoi )T (e

ˆ̄ξθ̄woi − eξ̂θwoi ).

We thus useXi[k] +Mi[k] − eξ̂θwoi as the gradient (34).
The total algorithm is shown in Fig. 2, wherēgi,ce[k] is

an eventual estimate of sensori. It should be noted that the
estimatēgio in the visual motion observer is not replaced by
g−1

wi ḡi,ce[k]. This is because the task imposed on the observer
is to providegradXi[k]ϕ̃eξ̂θwoi

as accurately as possible and
it is achieved when|θei| is sufficiently small.

In the following, we see that an upperbound on the error
from the actual Euclidean mean is given by the present
algorithm if the object is static. An additional computation
of Yi[k] = 1

k

∑k−1
h=0Xi[h] immediately givesϵk,i such that

Φ̃(Xi[k]) ≤ ϵk,i + Φ̃(R̄) from [13]. More importantly, [13]
providesϵi = limk→∞ ϵk,i and hence, afterXi[k] converges
to a valueXi,

Φ̃(Xi[k]) ≤ ϵi + Φ̃(R̄)

since otherwise the statement in [13] does not hold. We
thus get an upper boundϵi after convergence without any
additional computation. Note however that closeness ofXi[k]
to R̄ does not imply that ofe

ˆ̄ξθ̄i,ce [k] to the solution to the
original problem (27) in terms of the metricΦ. We thus
finally give the following proposition.

Proposition 5: Suppose that̃Φ(X) ≤ ϵ+ Φ̃(R̄). Then,

Φ(Proj(X)) ≤ Φ(eξ̂θ∗
) +

1
2
(
√

2ϵ+ ∥ΣX − I∥)2, (35)

holds, whereΣX is given by the singular value decomposi-
tion of X asX = UXΣXV

T
X .

(35) evaluates the closeness ofe
ˆ̄ξθ̄i,ce [k] to the solution to the

original problem (27). From the fact that∥ΣX − I∥F = 0
if X ∈ SO(3), (35) implies that the approximate solution
degrades asXi[k] becomes far fromSO(3).

VII. V ERIFICATION THROUGHEXPERIMENTS

We finally demonstrate the effectiveness of the present
algorithm through experiments by using three CCD cam-
eras KMT1607 (Komoto Corp.) with lens LTV2Z3314CS-
IR (Raymax Corp.). As an object, we prepare a board with
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four colored feature points attached to a mobile robot e-nuvo
WHEEL (ZMP Corp.). A PC can send the velocity command
to the robot through a wireless communication device Wiport
(LANTRONIX) and it moves according to the command. The
image data is sent to a frame grabber board Piccolo Diligent
(Euresys Corp.) attached to a PC and the feature points
are extracted by an image processing software HALCON
(Linx). The present algorithm is written in MATLAB and
SIMULINK, and is implemented on a digital signal processor
DS1104 (dSPACE Inc.) using the Real-Time Workshop. The
frame rate provided by the camera are 30 [fps].

We perform two different experiments. In both
experiments, cameras are set so thatpw1 =
[−0.35 0.18 0]T , ξθw1 = [0 0.37 0]T , pw2 = 0, ξθw2 = 0
pw3 = [0.37 0.18 0]T , ξθw3 = [0 − 0.37 0]T . Let the
initial values be equal to the initial estimates in the visual
motion observer asXi[0] = e

ˆ[0 0 π/3]T ∀i ∈ {1, 2, 3}. In
addition, we use the communication graph with the edge
setE = {(1, 2), (2, 1), (2, 3), (3, 2)}.

In the first experiment, we run the algorithm for a static
object with ξθwo = [0 0 0]T . Fig. 4 shows the time
responses of the sum of the errors between the estimates
and the actual pose measured by the functionϕ, where we
start communication at10[s]. We see from the figure that
the function decreases by about20 − 25[%] after starting
communication, which shows that the estimation accuracy
improves due to the averaging term in (32).

In the second experiment, we rotate the object so that the
third element ofξθwo decreases over the time interval about
[10, 18] and increases over about[18, 27]. Fig. 5 shows the
time responses of the estimates(ξθwo)3 by the cooperative
estimation algorithm (red curves) and the visual motion
observer (blue curves). The solid curves show the estimates
of camera 1, dotted ones those of camera 2 and dash-
dotted ones those of camera 3. We see from the figure that
tracking to the moving object is also achieved by the present
algorithm due to the gradient descent term in (32). The
tracking might be seen more apparently by a movie, which
is downloaded athttp://www.fl.ctrl.titech.ac.
jp/researches/movie new/movie1/VSN.wmv . All
of these results show the effectiveness of the present algo-
rithm for both a static and moving object.

VIII. C ONCLUSION

In this paper, we have investigated a cooperative estima-
tion problem for visual sensor networks based on multi-agent
optimization techniques. A passivity-based visual motion
observer has been employed as a tool to meet the objective.
We first have given an interpretation of the visual motion
observer from the viewpoint of optimization and present
new inputs to the observers. Based on the investigations,
we have formulated a novel cooperative estimation problem
and a cooperative estimation algorithm has been presented
based on multi-agent optimization techniques. Finally, the
effectiveness of the present algorithm has been demonstrated
through experiments.

REFERENCES

[1] H. Aghajan and A. Cavallaro (Eds), “Multi-Camera Networks: Prin-
ciples and Applications,” Academic Press, 2009.

[2] R. Tron, R. Vidal and A. Terzis, “Distributed Pose Averaging in
Camera Sensor Networks via Consensus on SE(3),” International
Conference on Distributed Smart Cameras, 2008.

[3] M. Zhu and S. Martinez, “Distributed Coverage Games for Mobile
Visual Sensors (I), Reaching the set of Nash equilibria,” Proc. of the
48th IEEE Conference on Decision and Control and 28th Chinese
Control Conference, pp. 169–174, 2009.

[4] G. Chesi and K. Hashimoto (Eds), “Visual Servoing via Advanced Nu-
merical Methods,” Lecture Notes in Control and Information Sciences,
Vol. 401, Springer-Verlag, 2010.

[5] G. Hu, W. MacKunis, N. Gans, W. E. Dixonm, J. Chen, A. Behal and
D. Dawson, “Homography-based Visual Servo Control with Imperfect
Camera Calibration,” IEEE Trans. on Automatic Control, Vol. 54, No.
6, pp. 1318–1324, 2009.

[6] T. Ding, M. Sznaier and O. Camps, “Receding Horizon Rank Min-
imization Based Estimation with Applications to Visual Tracking,”
Proc. of the 47th IEEE Conference on Decision and Control, pp. 3446–
3451, 2008.

[7] M. Fujita, H. Kawai and M. W. Spong, “Passivity-based Dynamic
Visual Feedback Control for Three Dimensional Target Tracking:
Stability and L2-gain Performance Analysis,” IEEE Trans. on Control
Systems Technology, Vol.15, No.1, pp. 40–52, 2007.

[8] H. Kawai, T. Murao and M. Fujita, “Visual Motion Observer-based
Pose Control with Panoramic Camera via Passivity Approach,” Proc.
of the 2010 American Control Conference, to appear, 2010.

[9] R. Olfati-Saber, “Distributed Kalman Filter with Embedded Consensus
Filters,” Proc. of the 44th IEEE Conference on Decision and Control
and 2005 European Control Conference, pp.8179- 8184, 2005.

[10] R. Olfati-Saber, “Distributed Kalman Filter for Sensor Networks,”
Proc. of the 46th IEEE Conference on Decision and Control, pp.5492-
5498, 2007.

[11] R. Olfati-Saber, J. A. Fax and R. M. Murray, “Consensus and Coop-
eration in Networked Multi-Agent Systems,” Proc. of the IEEE, Vol.
95, No. 1, pp. 215–233, 2007.

[12] J. H. Manton, “A Globally Convergent Numerical Algorithm for
Computing the Centre of Mass on Compact Lie Groups,” Proc. of
the 8th Control, Automation, Robotics and Vision Conference, 2004,
Vol. 3, pp. 2211–2216, 2004.

[13] A. Nedic and A. Ozdaglar, “Distributed Subgradient Methods for
Multi-agent Optimization,” IEEE Trans. on Automatic Control, Vol.
54, No. 1, pp. 48-61, 2009.

[14] Y. Ma, S. Soatto, J. Kosecka and S. S. Sastry, “An Invitation to 3-D
Vision: From Images to Geometric Models,” Springer, 2004.

[15] M. Moakher, “Means and averaging in the group of rotations,” SIAM
Journal on Matrix Analysis and Applications, Vol. 24, No. 1, pp. 1–16,
2002.

[16] P. A. Absil, R. Mahony and R. Sepulchre, “Optimization Algorithms
on Matrix Manifolds,” Princeton Press, 2008.

[17] G. H. Golub and C. F. Van Loan, “Matrix Computations,” The Johns
Hopkins University Press, London, 1989.


