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Abstract—In this paper, we investigate a cooperative esti- non-Eucledean space. Meanwhile, [2] presents a distributed
mation problem for visual sensor networks based on multi- version of the computation algorithm of an average on Spe-
agent optimization techniques. A passivity-based visual motion cial Orthogonal Group called Karcher mean [12]. However
observer is employed as a tool to meet the objective. We first , . . . ’
give an interpretation of the visual motion observer from the this Work.focus_es .on thg averqglng by assuming thfit the
viewpoint of optimization and present new inputs motivated target’s orientation is obtaineaipriori and does not mention
by the optimization techniques on manifolds. Based on the estimation from image data.
investigations, we formulate a novel cooperative estimation In this paper, we formulate a novel vision-based coop-

problem to be tackled. Then, a cooperative estimation algorithm o oive estimation problem for visual sensor networks and
is presented based on multi-agent optimization techniques. Fi-

nally, the effectiveness of the present algorithm is demonstrated Présent an algorithm based on multi-agent optimization tech-
through experiments. niques [13]. For this purpose, after introducing the problem

setting and the visual motion observer [7], we first recon-
|. INTRODUCTION sider the processes in the observer from the viewpoint of
A visual sensor network [1]-[3] is a network consisting ofoptimization. Then, we present some novel inputs motivated
spatially distributed smart cameras, which is a kind of sens® the techniques in optimization and prove correctness of
networks. Unlike the other sensors measuring some valué¥ estimate based on passivity. We moreover show that
such as temperature and pressure, vision sensors do H8tNg passivity allows us to evaluate the error from the
provide such explicit data but combining image processingctual object’s pose even if the object is moving, while opti-
techniques or human operators with the measurement giv@ézation handles only static problems. Following the above
information on what happens, what a target is, where it i§vestigations, we next formulate a cooperative estimation
and where it bears. Due to the nature, visual sensor networkgoblem, where a minimization problem of an aggregate
are useful in environmental monitoring, surveillance, targe@bjective function is presented. We then present a cooperative
tracking and entertainment. estimation algorithm which embody both of the consensus
A lot of research works have been devoted to combiningnd gradient descent algorithm. The gradient descent term is
control techniques with visual information so-called visuaintroduced to make the estimate track to a moving object's
feedback control or visual Servoing [4]_[8] The authorg?0se while the consensus term is to lead the estimate to a
also presented dynamic visual feedback control schemdalue close to an average of vision sensors’ estimates if the
for 3D target tracking based on passivity in [7], where #@bject is static. We moreover gives an upper bound of the
vision-based observer called visual motion observer playsedror between the estimates and their average for a static
central role to estimate the target's pose. However, in visugbject based on the results in the multi-agent optimization
sensor networks, it is expected not only to give an estimafé3]. Finally, it is demonstrated through experiments that the
but also to Cooperate with each other vision sensor, Whid?fesent algorithm is effective in estimation for both static
brings us new theoretical challenges. The main advantag@8d moving target object.
of cooperation are: (i) accuracy of estimates by integratingi
richer information than the case of a single sensor, (ii) toll!: NOTATIONS AND BASIS OF OPTIMIZATION ON SO(3)
erance against obstruction, misdetection in image processingror g matrix A/ € R3*3, M7 denotes the transpose of

and sensor failures and (i) wide vision and elimination ofy ;. tr(M) the trace ofM, anddet(M) the determinant of

blind areas by fusing images of a scene from a variety ofy The operatorsym(-) andsk(-) are respectively defined

viewpoints. assym(M) = 1 (M + M7T) andsk(M) = (M — M7T).
Cooperative estimation for sensor networks has been tack-| et s first consider the Lie grouO(3) defined as below,

led in recent years [9], [10]. [10] presents distributed Kalman

filters based on the consensus algorithm [11] and exemplifies  SO(3) = {R € R**3| RTR = I3, det(R) = +1}

the fact that averaging the estimates among the neighbors ) o

achieves more accurate estimation than averaging send¥@ describe the vector space consisting of all skew symmet-

data as in [9]. Unfortunately, the algorithm is not applicabléiC matrices inR*** by so(3). The notatiom : R® — so(3)

to our problem since the object's pose takes values in i§ @ Skew symmetric operator satisfying =« x y for any
vectorsz andy with cross product. V : so(3) — R? is the
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denoted bylog(-). For more details on the notations, please g

refer to [14]. -
In this paper, we consider the following two metrics on ¥ .
S0O(3) between any two element3 and R of SO(3). i@ @f ‘\
oo(R) = SIR-QlE=u(-Q"R) (1) - @
Lo ofmiz oy N g e
95 = gllee@ R @ e

where|| - | represents the Frobenius norm. The function
o6 (R) andgg(R) are square of so-called Euclidean distance
and Riemannian distance [15] respectively. It is known that
the gradients [16] off,(R) and ¢¢;(R) at R € SO(3) are
given as follows [2], [12], [15].

Fig. 1. Visual Sensor Network

—Rsk(RTQ), ()
—Rlog(R"Q). (4)

The Newton vector with respect to the functi¢g(R) at
R € SO(3) is ng satisfying

Hessp ¢onr = —gradp ¢ (R), ®)

where Hessr ¢gnr is the Hessian ofpy, at R [16]. The
solution to (5) is given by the closed form

gradRQ% =
grangbg =

nr = Ry (RTQ)/\ ) (6)
Fan(M) = ’_Yr:vl(M)Sk(M)va
v (M) = % (tr(sym(M))I3 — sym(M)) .

We next consider the special Euclidean spade(3) :=

R3 x SO(3). If we use the homogeneous representation, eagj

elementg = (p, R) € SE(3) is described as

g= ﬁf ﬂ € RV, @

Analogous to the definition oko(3), we definese(3) =

R3 x so(3). Then, in homogeneous coordinates, an elemem4] Similarly

¢ € se(3) is described as

F_ w v 4x4
e[ g enn

In this paper, we also use the following metric 6%(3)
between two elementg, = (p1, R1) andgs = (p2, R2).

1/191 (92) Pp1 (p2) + ¢E1 (RQ)v (8)
whereg,(p) = 3llp — ql*.
IIl. PROBLEM SETTING

actual target is single. Under the situation, a way to gain
accurate estimate of the object is averaging the individual
objects’ poses.

A. Rigid Body Motion

Let the coordinate frames,,, ¥; and X, represent the
world frame, thei-th vision camera frame, and the frame of
the object which vision cametissees, respectively. Then, the
pose of vision cameraand objecto; are denoted by,,; =
(pm,ewwi) and guwo, = (Pwo,,e%%0i). Let p;,, € R? and
ef%0i € SO(3) be the position vector and the rotation matrix
from the vision camera framg; to the object framex,,.
Then, the relative pose frod; to %, can be represented by
Gio; = (Dio;, %) € SE(3) and satisfiego, = 9o} Guwo, -

We next define the body velocity of the objecs; relative
the world frameX,, as V., = (vwo,,wwo,) OF

“rb _ -1 - _ (Dwoi Vwo, 4x4
Vwoi - gwoigwm‘ - |: 0 0 :| € R ’ (9)
where v,,,, and w,,,, represent the linear velocity of the
origin and the angular velocity frorl,, to X, respectively
vision camera’s body velocity relative to
Y., Will be denoted ad’?; = (Vui, Wui)-

By using the body velocitied/?; and V), , the body
velocity of the relative rigid body motiop;,, is written as
Vi, = —Ad, Vi + Vi, (10)

i()i
B. Visual Measurement

In this subsection, we define the visual measurement of
the vision camera which is available for estimation of target
objects’ motion. Throughout this paper, we use the pinhole
camera model with a perspective projection [14].

Throughout this paper, we consider the situation where In this paper, we assume that each target objectrhas
vision cameras see different target objects (Fig. 1). Suppofeature points and each vision camera can extract them
that each vision camerac V := {1,--- ,n} has communi- from the visual data by using some techniques. The position
cation and computation capability. The problem is motivatedectors of the target objects I-th feature point relative
by some scenarios such as estimation of group behaviots,¥,, and 3; are denoted by,; € R® andp; € R?
estimation under uncertainties including noises, incompletespectively. With a slight abuse of notation,[g§ 1] and
localization and parametric uncertainties of vision camera{gyoTil 1T, we havep;; = gio,Po1;-

With such uncertainties, the visual measurement would be Let them feature points of the objeet on the image plane
contaminated by them and the object's pose consistent witoordinate of vision cameraf; := [f} --- fL.]7 € R*™

the measurement would differ among sensors even if thme the measurement of the vision camert is well known



[14] that the perspective projection of th¢h feature point [7], where { denotes the pseudo-inverse add(gi.,)
onto the image plane gives us the image plane coordinas# (3) — R?>™*6 is defined as

fi € R* as . T T
N Ji(Gio,) = [ J(Gio)) T5(Gio) - Jh(Gie) |,
N il _ = £0, .
fil N Zil |: Yil :| ’ (11) Jil(gioi) = Jil(gioi)egewi [ I —Po;l ] )
20 -
wherepi; = [zi yu .ziz]T and A; is a focal length of vision Ji(Gio,) = [ z(i)z \ K ] .
cameras. It is straightforward to extend this model ta Zu 2%
i i ) S N o A & 3m
image pointsf; andp; := [p;, Piml" € R We assume that the matrik(g;,, ) is full column rank for all
C. Communication Model Gio, € SE(3). It is known that ifm > 4 the image Jacobian

. - . has the full column rank.
The vision cameras have communication capability with Differentiating g.; — gi_oigmi with respect to time and

the r?eig_hbo_ring cameras and constitute a network. The corlﬁlémg (10) and (12), we obtain the estimation error system
munication is modeled by a gragh = (V, ), where& C

VY x V. Namely, vision camera can get some information Vi o= —Ad -1 Uei + Ve, (15)
from j if (4,7) € £. In addition, we define the neighbor set
Ni:={j€V| (4,i) € E}. B. Stability Analysis

In this subsection, we design the visual motion observer
and analyze stability of the closed-loop system. For this
In this section, we consider the problem that a visiopurpose, we first give a remarkable fact.
camerai estimates the target object motigr,, from the Fact 1: [7] If V}, = 0, then the following inequality
visual measurement without considering communication. holds for the estimation error system (15).
For this purpose, we introduce the visual motion observer

! T
presented in [7]. / uli(—eei)dt > —;, (16)
0

IV. VISUAL MOTION OBSERVER

A. Estimation Error System where~; is a positive scalar.

The visual motion observer has the same structure ast us takeu.; as the input and,; as the output of (15).
Luenberger observer. We thus first prepare the model of thighen, Fact 1 implies that the estimation error system (15) is
actual rigid body motion relative to the vision camera. Usingassive from the inputu,; to the output—e,;.
the relative rigid body motion (10), we choose estimates Based on the above passivity property, we consider the
Gio, = (Dio,, %) andV; of the relative rigid body motion following input
and velocity respectively as

Uej = 7kez’(*6ei) = kei€ei, kei > 0. (17)
Vo, = —Ad Vi + uer (12) N
oy Then, from passivity-based control theory, we can prove the
The new inputu,; = [vL,, w..]T is to be determined in asymptotic stability of the equilibrium point.; = 0 for the

order to drive the estimated valugs,, and 7> to their ~Closed-loop system (15) and (17). This implies that the visual
actual values. Once the estimage, is deterﬁﬂned, the Mmotion observer leads the estimatg, to the actual relative
estimated measuremefit (i = 1,...,m) is also computed Pose of the static objegf;,, asymptotically as long as the
similarly to (l1-B) and (11). In the following, we use the initial estimation error is small enough.

notationp;; := [z v za|’, 1 € [1,m)].

We next define the estimation error between the estimatecY' RECONSIDERATION OFVISUAL MOTION OBSERVER

value g;,, and the actual relative rigid body motiog,, In this section, we reconsider the update procedure of the
as gei = (pei,es?) = g;ojgioi. Using the notations estimatey;, in the visual motion observer from the viewpoint
er(ef?) = sk(ef9)V, the vector representation of the es-Of optimization onSE(3).

timation error is also given by In case ofV,), = V), = 0, we see from (12) and (17)

T that the estimatg;,, is updated according to
= Er(gei), Er(gei) = | pT. oL (e0ei . (13 .
€ei R(gez)» R(gez) DPei BR(S ) ( ) gioi _ gioi (keieei)/\
Note thate,; = 0 iff p.; = 0 andese: = I, =k eSlioisk(e=Eos %01 pio, — Pio, (18)
Let us now derive a relation between the actual and 0 0
estimated visual measurements. If we define the visual error ] ]
as fu; == fi(gio.) — f:(Gio, ), then the estimation error vector F1OM (3), (18) is rewritten as

ee; can be reconstructed from the visual error by ) F
ei —gradeggm e, —gradﬁwi Ppio,

eei = I} (Gio,) fery (14) Fio = Kei l 0 0 ] - (19



(19) indicates that the update process of the estimate aptimization theory handles only static problems and does
interpreted as a process to solve the optimization problermot provide any answer to the estimation when the sensor
and target object are moving as in Propositions 2 and 4.
min v, (7). (20)

SE(3
9eSEM) VI. COOPERATIVEESTIMATION ALGORITHM

From the fact, we will use the function as an individual ,
objective function to be minimized in cooperative estimation ] ] ) )
for visual sensor networks. Before mentioning it, we give M this section, we consider a visual sensor network
some extensions of the results in [7] from the viewpoint ofONSisting of multiple vision sensors assuming that each

optimization theory on manifolds [16] in this section. vision sensor knows gu;. _ o
We first formulate the cooperative estimation problem to

. Problem Reformulation

A. Riemannian Metric be considered in this paper. It is expected for visual sensor
In this subsection, we use the Riemannian metsit networks to meet the following requirements simultaneously.
instead ofg™ in (20), which gives the update procedure « (Averaging) The estimates take values close to an aver-

age of{gw., }icy for a static object.

_.,R
tei = (€ei) = Keiy(eei), |feil < 7/2. (21) « (Tracking) The estimates track the actual object’'s pose
([ 27T = L aé; )} , Yr(z) == Fp(x)z Juwo, fOr a moving object.

B - ( R\%2 We first define the individual objective function to be min-
Yr(z) :=sin™ ([lz]))/|z| imized by each vision sensoms, , . Then, we formulate

The restriction|,;| < /2 is imposed to guarantee well- a cooperative estimation problem as a minimization of the

definedness of the functions(-). aggregate objective function
In terms of (21) we immediately obtain the following

proposition. min U(g), ¥(g) = L > Vg, (3)-  (25)
Proposition 1: Suppose thatiboi = 0. Then, for the g=(p,ef?)eSE(3) n =

closed-loop system (12) with the input (21), the origin = It should be now noted that in our setting each vision sensor

0 is an asymptotically stable equilibrium point. does not know neighbors’ objective functldn, since it

In addition, we have the following result for a moving objectcontainsg.,,, to be estimated.
Proposition 2: Consider the system (12) and (21) with The problem (25) is divided into independent problems
input V2, and outpute;. Then, if

11 prwo p (26)
= — — = 22 ekt 1
holds for somes > 0 and |f.;| < 7/2 is satisfied for all min @(655)7 @(655) _1 > 6 (9. (@7)
time, the L,-gain of the system is less than e€9€50(3) n. e
B. Newton Method The solution to (27) is called Euclidean mean [15]. Given
. .. . i I gewoi , * I

To accelerate convergence in optimization, we have dpyientationse , ¢ €V, the meanR” is given by
option to use Newton method. Namely, in this subsection, o N £0uo,
we use instead of (19) the update rule et =Proj(R), k= ; € (28)
Ui = U™ (601 1= {I . 0 , } eei, |0ui| < m/2. (23) [15], whereProj(M) gives the orthogonal projection off

0 Yy (6£ <) onto.SO(3) and is computed effectively by using the singular

In terms of (23), we have the following proposition. value or polar decompositions af/ [17]. Note that just

Proposition 3: Suppose that/?, = 0. Then, for the computing the Euclidean mean for a static object is not so
closed-loop system (12) with the input (23), the origin=_difficult even in a distributed fashion. Indeefl,is computed
0 is an asymptotically stable equilibrium point. by using the consensus algorithm [11] under appropriate

We also get the following proposition for a moving object2ssumptions on the graph. However, such a scheme works
Proposition 4: Consider the system (12) and (23) withonly for a static object.

. ) ' .
input V2, and outpute,;. Then, if B. Multi-agent Optimization

oi— —— — = >0 (24) In this paper, we present an algorithm, which embodies
202 2 not only the consensus but also the the gradient descent

holds for somes > 0 and [f.;| < /2 is satisfied for all algorithm with,,, in order to achieve tracking. Recently,
time, the Ly-gain of the system is less than such an update procedure is presented in [13] in order to

Propositions 1 and 3 prove only convergence and a similaplve the multi-agent optimization problem

statement might be obtained by optimization theory onge

i_s reeonstructed from the image date though the reconstruc- min F(z Z F(z) (F; : convex, (29)
tion is also a part of the visual motion observer. However, z€R"



o Vision Camera
oil

Relative Feature | P Perspective
Points Model Projection

Image Jacobian

Poil Vision Camera Model

fai

| Relative Feature | P Perspective
Points Model Projection

Gradient |—>| Update of '——-i._:ﬁ B
Computation (Pi,Xi) Proj exdice i i i .
FIX_'; Xi Fig. 3. Overview of Experimental Environment
P X
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et fbio; = 7E0wo; 8wo; by using the function

exp oyg. Now, we computeM; such thatMiTMi = 2] —
under the situation where each agentdoes not know 2sym(effi) for the symmetric matrix2] — 2sym(e&?),
Fj, j # i but only F;. There, the following update rule of \\hich giveSeggwai _ ¢€0uo; gince
the estimate of solution; is presented, which consists of the X . X N X
consensus and gradient descent algorithm of the individua2l — 2sym(et%t) = (e80uoi — 80woi)T (e80woi — 80wy,

objective functionF;. . .
) We thus useX;[k] + M;[k] — e%==: as the gradient (34).

z;ilk + 1] = —augrad,, ;; I + Zaijxj (%], (30) The total algorithm is shown in Fig. 2, whefg ..[k] is
JEV an eventual estimate of sensoilt should be noted that the
wherea;; = aji, a;; = 01if (i,5) ¢ £ and) .\ a; = estimateg;, in the visual motion observer is not replaced by
k) ) yi —

1 Vi € V. We remark that (30) is a simplified version anddu: Ji.cc[k]- This is because the task imposed on the observer
more general one with a variable gain for random graphs [§ O providegrady, ;¢ .., @s accurately as possible and

presented in [13]. [13] also derives a bound such that it is achieved whend.;| is sufficiently small.
In the following, we see that an upperbound on the error

from the actual Euclidean mean is given by the present
algorithm if the object is static. An additional computation
. _ _ of Y;[k] = £ 3252} Xi[h] immediately gives; ; such that
where z* is the actual optimal solution to (29). If we can @(Xi[k]) <enst i)(R) from [13]. More importantly, [13]

present such an algorithm for our problem, it is pOSSiblﬁrovideSei — Timy,. e and hence, aftek;[k] converges
to get an approximate value of the Euclidean mean for B a valueX: '
11

static object. Hereafter, we mainly focus on (27) since the _ o
minimization (26) is just a special case of the problem [13]. O(X;[k]) < e+ P(R)

k—1
k) < FG) + o, wlk] = 7 S ailk],
h=0

C. Cooperative Estimation Algorithm since otherwise the statement in [13] does not hold. We
In this subsection, we choo@**? as a vector space to thusi 'get an upper 'bounq after convergence without any
execute averaging. We consider the scalar figja R3*3 — additional computation. Note however that closenes¥ (k|
R such thathSQ(R) = %HR — Q|/%. Then, the solutionto  t0 R does not imply that o&%%[k] to the solution to the
original problem (27) in terms of the metrié. We thus

- - 1 <X - . . . o
min ®(R), ®(R) := — Z¢ o, (R) (31) finally give the followmg proposition. o
ne— ¢ Proposition 5: Suppose tha®(X) < ¢ + ®(R). Then,

L = n £ . £ 1
is given by R = L 3" | e80uei, P (Proj(X)) < ®(e8%) + = (V2e + ||Bx — I|))?, (35)
Let us now present the update rule of the cooperative o 2 ) )
estimatect?:.<< [k] by introducing a fictitious variablé;[k]. hOIdS’ whereby is given b%/ the singular value decomposi-
R tionof X as X =Ux¥xVy.
Xilk + 1] = —asgrady, 9& ouo, + 2 @i X,k (32)  (35) evaluates the closeness:8f:<< k] to the solution to the
) jev original problem (27). From the fact thd®&y — I||r = 0
e&0ice [k + 1] = Proj(X;[k + 1)) (33) if X € SO(3), (35) implies that the approximate solution

i ) degrades as(;[k] becomes far fron50(3).
Let us now show how to implement (32) by using the

visual motion observer. It is sufficient to show that VII. V ERIFICATION THROUGH EXPERIMENTS
b T We finally demonstrate the effectiveness of the present
N - X — EOwo,; 4 A . .
grady ¢ oo, ¢ (34) algorithm through experiments by using three CCD cam-
is provided by the observer. Once,; is reconstructed eras KMT1607 (Komoto Corp.) with lens LTV2Z3314CS-
from (14) in the visual motion observer, we get’s = IR (Raymax Corp.). As an object, we prepare a board with
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VIII. CONCLUSION

In this paper, we have investigated a cooperative estima-
tion problem for visual sensor networks based on multi-agent
optimization techniques. A passivity-based visual motion
observer has been employed as a tool to meet the objective.
We first have given an interpretation of the visual motion
observer from the viewpoint of optimization and present
new inputs to the observers. Based on the investigations,
we have formulated a novel cooperative estimation problem

and a cooperative estimation algorithm has been presented
based on multi-agent optimization techniques. Finally, the
effectiveness of the present algorithm has been demonstrated
through experiments.

four colored feature points attached to a mobile robot e-nuvo
WHEEL (ZMP Corp.). A PC can send the velocity command
to the robot through a wireless communication device Wiport!]
(LANTRONIX) and it moves according to the command. The 2]
image data is sent to a frame grabber board Piccolo Diligent
(Euresys Corp.) attached to a PC and the feature points
are extracted by an image processing software HALCO
(Linx). The present algorithm is written in MATLAB and
SIMULINK, and is implemented on a digital signal processor
DS1104 (dSPACE Inc.) using the Real-Time Workshop. The™

frame rate provided by the camera are 30 [fps].
(5]
both

We perform two different experiments. In
experiments, cameras are set so that,
[—0.35 0.18 0]7,&0,1 = [0 0.37 0]7, pua = 0,02 = 0 [6]
Pws = [0.37 0.18 0]7,£0,3 = [0 — 0.37 0]T. Let the
initial values be equal to the initial estimates in the visual
motion observer asy;[0] = e 0 7/31" vi € {1,2,3}. In 7]
addition, we use the communication graph with the edge
seté = {(1,2),(2,1),(2,3),(3,2)}.

In the first experiment, we run the algorithm for a static

object with £0,,, = [0 0 0]7. Fig. 4 shows the time
responses of the sum of the errors between the estimaté¥
and the actual pose measured by the functiprnvhere we
start communication at0[s]. We see from the figure that [10]
the function decreases by abak — 25[%] after starting
communication, which shows that the estimation accuragy,;
improves due to the averaging term in (32).

In the second experiment, we rotate the object so that tie]
third element of¢6,,, decreases over the time interval about
[10,18] and increases over aboli8, 27]. Fig. 5 shows the
time responses of the estimatg¥®,,,)s by the cooperative [13]
estimation algorithm (red curves) and the visual motion
observer (blue curves). The solid curves show the estimatgsg,
of camera 1, dotted ones those of camera 2 and dash-
dotted ones those of camera 3. We see from the figure tH&!
tracking to the moving object is also achieved by the present
algorithm due to the gradient descent term in (32). Thase]
tracking might be seen more apparently by a movie, WhiCHJ]
is downloaded ahttp://www.fl.ctrl.titech.ac.
jp/researches/movie _new/moviel/VSN.wmv . All
of these results show the effectiveness of the present algo-
rithm for both a static and moving object.

REFERENCES

H. Aghajan and A. Cavallaro (Eds), “Multi-Camera Networks: Prin-
ciples and Applications,” Academic Press, 2009.

R. Tron, R. Vidal and A. Terzis, “Distributed Pose Averaging in
Camera Sensor Networks via Consensus on SE(3),” International
Conference on Distributed Smart Cameras, 2008.

] M. Zhu and S. Martinez, “Distributed Coverage Games for Mobile

Visual Sensors (I), Reaching the set of Nash equilibria,” Proc. of the
48th IEEE Conference on Decision and Control and 28th Chinese
Control Conference, pp. 169-174, 2009.

G. Chesi and K. Hashimoto (Eds), “Visual Servoing via Advanced Nu-
merical Methods,” Lecture Notes in Control and Information Sciences,
Vol. 401, Springer-Verlag, 2010.

G. Hu, W. MacKunis, N. Gans, W. E. Dixonm, J. Chen, A. Behal and
D. Dawson, “Homography-based Visual Servo Control with Imperfect
Camera Calibration,” IEEE Trans. on Automatic Control, Vol. 54, No.
6, pp. 1318-1324, 2009.

T. Ding, M. Sznaier and O. Camps, “Receding Horizon Rank Min-
imization Based Estimation with Applications to Visual Tracking,”
Proc. of the 47th IEEE Conference on Decision and Control, pp. 3446—
3451, 2008.

M. Fujita, H. Kawai and M. W. Spong, “Passivity-based Dynamic
Visual Feedback Control for Three Dimensional Target Tracking:
Stability and L2-gain Performance Analysis,” IEEE Trans. on Control
Systems Technology, Vol.15, No.1, pp. 40-52, 2007.

H. Kawai, T. Murao and M. Fujita, “Visual Motion Observer-based
Pose Control with Panoramic Camera via Passivity Approach,” Proc.
of the 2010 American Control Conference, to appear, 2010.

R. Olfati-Saber, “Distributed Kalman Filter with Embedded Consensus
Filters,” Proc. of the 44th IEEE Conference on Decision and Control
and 2005 European Control Conference, pp.8179- 8184, 2005.

R. Olfati-Saber, “Distributed Kalman Filter for Sensor Networks,”
Proc. of the 46th IEEE Conference on Decision and Control, pp.5492-
5498, 2007.

R. Olfati-Saber, J. A. Fax and R. M. Murray, “Consensus and Coop-
eration in Networked Multi-Agent Systems,” Proc. of the IEEE, Vol.
95, No. 1, pp. 215-233, 2007.

J. H. Manton, “A Globally Convergent Numerical Algorithm for
Computing the Centre of Mass on Compact Lie Groups,” Proc. of
the 8th Control, Automation, Robotics and Vision Conference, 2004,
Vol. 3, pp. 2211-2216, 2004.

A. Nedic and A. Ozdaglar, “Distributed Subgradient Methods for
Multi-agent Optimization,” IEEE Trans. on Automatic Control, Vol.
54, No. 1, pp. 48-61, 2009.

Y. Ma, S. Soatto, J. Kosecka and S. S. Sastry, “An Invitation to 3-D
Vision: From Images to Geometric Models,” Springer, 2004.

M. Moakher, “Means and averaging in the group of rotations,” SIAM
Journal on Matrix Analysis and Applications, Vol. 24, No. 1, pp. 1-16,
2002.

P. A. Absil, R. Mahony and R. Sepulchre, “Optimization Algorithms
on Matrix Manifolds,” Princeton Press, 2008.

G. H. Golub and C. F. Van Loan, “Matrix Computations,” The Johns
Hopkins University Press, London, 1989.



