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Abstract— We propose distributed algorithms to automati-
cally deploy a group of robotic agents and provide coverage of
a discretized environment represented by a graph. The classic
Lloyd approach to coverage optimization involves separate
centering and partitioning steps and converges to the set of
centroidal Voronoi partitions. In this work we present a novel
graph coverage algorithm which achieves better performance
without this separation while requiring only pairwise “gossip”
communication between agents. Our new algorithm provably
converges to an element of the set of pairwise-optimal partitions,
a subset of the set of centroidal Voronoi partitions. We illustrate
that this new equilibrium set represents a significant perfor-
mance improvement through numerical comparisons to existing
Lloyd-type methods. Finally, we discuss ways to efficiently do
the necessary computations.

I. I NTRODUCTION

Coordinated networks of robots are already in use for
environmental monitoring [1] and warehouse logistics [2].
In the near future, improvements to the capabilities of
autonomous robots will enable robotic teams to revolutionize
transportation and delivery of products to customers, search
and rescue, and many other applications. All of these tasks
share a common feature: the robots are asked to provide
service over a space. The distributedterritory partitioning
problemfor robotic networks consists of designing individual
control and communication laws such that the team will
divide a space into territories. Typically, partitioning is done
so to optimize a cost function which measures the quality of
service provided by the team.Coverage controladditionally
optimizes the positioning of robots inside a territory.

This paper describes a distributed coverage control algo-
rithm for a network of robots to optimize the response time of
the team to service requests in an environment represented
by a graph. Optimality is defined with reference to a cost
function which depends on the locations of the agents and
geodesic distances in the graph. As with all multiagent
coordination applications, the challenge comes from reducing
the communication requirements: the proposed algorithm
requires only “gossip” communication, that is, asynchronous
and unreliable pairwise communication.

A broad discussion of partitioning and coverage control is
presented in [3] which builds on the classic work of Lloyd [4]
on algorithms for optimal quantizer design through “cen-
tering and partitioning.” The relationship between discrete
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and continuous coverage control laws based on Euclidean
distances is studied in [5]. Coverage control and partitioning
of discrete sets are also related to the literature on the
facility location or k-center problem [6]. Coverage control
algorithms for non-convex environments are discussed in [7],
[8], [9] while equitable partitioning is studied in [10]. Other
works considering decentralized methods for coverage con-
trol include [11] and [12].

In [13] the authors have showed how a group of robotic
agents can optimize the partition of convex bounded subset
of R

d using a Lloyd-type algorithm with pairwise “gossip”
communication: only one pair of regions is updated at
each step of the algorithm. This gossip approach to Lloyd
optimization was extended in [14] to discretized non-convex
environments more suitable for physical robots.

There are three main contributions of this paper. First, we
present a novel gossip coverage algorithm and prove it con-
verges to an element in the set of pairwise-optimal partitions
in finite time. This solution set is shown to be a strict subset
of the set of centroidal Voronoi partitions, meaning the new
algorithm has fewer local minima than Lloyd-type methods.
Second, through realistic Player/Stage simulations we show
that the set of pairwise-optimal partitions avoids many of the
local minima which can trap Lloyd-type algorithms far from
the global optimum. Third, we discuss how to efficiently
compute our new pairwise coverage optimization.

This paper is organized as follows. Section II defines
the domain and goal of our algorithm, while III contains a
review of Lloyd-type gossip algorithms from [14]. Section IV
presents our new algorithm and its properties, while in V
we detail its computational requirements. In Section VI we
provide numerical results and comparisons to prior methods,
and we end with concluding remarks in VII.

In our notation,R≥0 denotes the set of non-negative real
numbers andZ≥0 the set of non-negative integers. Given a
setX, |X| denotes the number of elements inX. Given sets
X,Y , their difference isX \ Y = {x ∈ X | x /∈ Y }. A
set-valued map, denoted byT : X ⇉ Y , associates to an
element ofX a subset ofY .

II. PROBLEM FORMULATION

The problem domain and goal we are considering is the
same as that in [14]: given a group ofN robotic agents with
limited sensing and communication capabilities, and a dis-
cretized environment, we want to apportion the environment
into smaller regions and assign one region to each agent. The
goal is to optimize the quality of coverage, as measured by
a cost functional which depends on the current partition and
the positions of the agents.



Let the finite setQ be the discretized environment. We
assume that the elements ofQ, which can be thought of
as locations, are connected by weighted edges. LetG =
(Q,E,w) be an (undirected) weighted graph with edge set
E ⊂ Q × Q and weight mapw : E → R>0; we let we > 0
be the weight of edgee. We assume thatG is connected and
think of the edge weights as distances between locations.

In any weighted graphG there is a standard notion of
distance between vertices defined as follows. Apath in G
is an ordered sequence of vertices such that any consecutive
pair is an edge ofG. Theweight of a pathis the sum of the
weights of the edges in the path. Given verticesh andk in
G, the distancebetweenh and k, denoteddG(h, k), is the
weight of the lowest weight path between them, or+∞ if
there is no path. IfG is connected, then the distance between
any two vertices is finite. By convention,dG(h, k) = 0 if
h = k. Note thatdG(h, k) = dG(k, h), for any h, k ∈ Q.

We will be partitioning Q into N connected subsets
or territories to be covered by individual agents. To do
so we need to define distances on induced subgraphs of
G = (Q,E,w). Given I ⊂ Q, the subgraph induced
by the restriction ofG to I, denotedG∩ I, is the graph
with vertex set equal toI and with edge set containing all
weighted edges ofG where both vertices belong toI, i.e.
(Q,E,w)∩ I = (Q∩ I, E ∩ (I × I), w|I×I). The induced
subgraph is a weighted graph with a notion of distance
between vertices: givenh, k ∈ I, we write dI(h, k) :=
dG∩ I(h, k). Note thatdI(h, k) ≥ dG(h, k).

We then define aconnected subset ofQ as a subsetS ⊂ Q
such thatS 6= ∅ andG∩S is connected, withC(Q) denoting
the set of such subsets. We can then define partitions ofQ
into connected sets as follows.

Definition II.1 (Connected partitions) Given the graph
G = (Q,E,w), we define aconnectedN−partition of Q
as a collectionp = {pi}

N
i=1 of N subsets ofQ such that

(i)
⋃N

i=1 pi = Q;
(ii) pi ∩ pj = ∅ if i 6= j;
(iii) pi 6= ∅ for all i ∈ {1, . . . , N};
(iv) pi ∈ C(Q) for all i ∈ {1, . . . , N}.

Let P to be the set of such partitions.

Remark II.2 When |Q| ≥ N and G is connected, it is
always possible to find a connectedN−partition of Q. Pick
N unique vertices fromQ to seed the subsets, then iteratively
grow each subset by adding unclaimed neighboring vertices.

For our gossip algorithms we need to introduce the notion
of adjacent subsets. Two distinct connected subsetspi, pj are
said to beadjacentif there are two verticesqi, qj belonging,
respectively, topi and pj such that(qi, qj) ∈ E. Observe
that if pi andpj are adjacent thenpi ∪ pj ∈ C(Q). Similarly,
we say that robotsi and j are adjacent or are neighbors if
their subsetspi and pj are adjacent. Accordingly we next
provide the definition of anadjacency graph, which we will
use in the analysis of our gossip algorithms.

Definition II.3 (Adjacency graph) For p ∈ P, we define
theadjacency graphbetween regions of partitionp asG(p) =
({1, . . . , N}, E(p)), where (i, j) ∈ E(p) if pi and pj are
adjacent.

OnQ, we define aweight functionto be a bounded positive
function φ : Q → R>0 which assigns a positive weight to
each element ofQ. Given pi ∈ C(Q), we define theone-
center functionH1 : pi → R≥0 as

H1(h; pi) =
∑

k∈pi

dpi
(h, k)φ(k).

A technical assumption is then needed to define the
generalized centroidof a connected subset. In what follows,
we assume that atotal order relation, <, is defined onQ:
hence, we can also denoteQ = {1, . . . , |Q|}.

Definition II.4 (Centroid) Let Q be a totally ordered set,
and pi ∈ C(Q). We define generalized centroid ofpi as

Cd(pi) := min{argmin
h∈pi

H1(h; pi)}.

In subsequent use we will drop the word “generalized” for
brevity. Note that with this definition the centroid is well-
defined, and also that the centroid of a region always belongs
to the region. With a slight notational abuse, we defineCd :
P → QN as the map which associates to a partition the
vector of the centroids of its elements.

With these notions we can introduce themulticenter func-
tion Hmulticenter : P × QN → R≥0 defined by

Hmulticenter(p, c) =
N∑

i=1

H1(ci; pi).

Our motivation for using this cost function is to optimize the
response time of the robots to a task appearing randomly inQ
according relative weightsφ. We aim to minimizeHmulticenter

with respect to both the partitionsp and the pointsc so as
to minimize the expected distance from this random vertex
to the centroid of the partition the vertex is in.

Among the ways of partitioningQ, there is one which is
worth special attention. Given pointsc ∈ QN such that if
i 6= j, then ci 6= cj , the partitionp ∈ P is said to be a
Voronoi partition of Q generated by cif, for eachpi and all
k ∈ pi, we haveci ∈ pi anddG(k, ci) ≤ dG(k, cj), ∀j 6= i.

Proposition II.5 (Properties of multicenter function) Let
p ∈ P, c ∈ QN , and letp∗ be a Voronoi partition generated
by c. Then

Hmulticenter(p,Cd(p)) ≤ Hmulticenter(p, c),

Hmulticenter(p
∗, c) ≤ Hmulticenter(p, c).

These statements motivate the following definition: a par-
tition p ∈ P is acentroidal Voronoi partitionif p is a Voronoi



partition generated byCd(p). Based on the multicenter
function, we defineHexpected: P → R≥0 by

Hexpected(p) = Hmulticenter(p,Cd(p))

=

N∑

i=1

∑

x∈pi

dpi
(x,Cd(pi))φ(x).

Observe thatHexpected has the following property as an
immediate consequence of Proposition II.5: givenp ∈ P, if
p∗ is a Voronoi partition generated byCd(p) then

Hexpected(p
∗) ≤ Hexpected(p).

We are now in a position to state the goal of our algorithm:
solving the optimization problem

min
p∈P

Hexpected(p),

using only pairwise territory exchanges between agents along
the edges ofE(p). In the literature this optimization is
typically studied with either centralized control or with
synchronous and reliable communication between several
agents, see [3] and [9]. We believe these communication
requirements are unrealistic for deployed robotic networks,
and thus are interested in solutions requiring only pairwise
gossip communication as first explored in [13] and [14].

III. L LOYD-TYPE GOSSIP GRAPH COVERAGE

In this Section we briefly review thediscretized Lloyd-type
gossip coverage algorithmproposed in [14].

Lloyd-type Gossip Graph Coverage Algorithm

At each timet ∈ Z≥0, each agenti ∈ {1, . . . , N} maintains
in memory a connected subsetpi(t). The collectionp(0) =
{p1(0), . . . , pN (0)} is an arbitrary connectedN−partition
of Q. At eacht ∈ Z≥0 a communicating pair, say(i, j) ∈
E(p(t)), is selected by a deterministic or stochastic process
to be determined. Assume thati < j. Every agentk 6∈ {i, j}
setspk(t+1) = pk(t), while i andj perform the following:

1: agenti transmits its subsetpi(t) to j and vice-versa
2: both agents compute centroidsCd(pi) and Cd(pj), set

u = pi ∪ pj , and the sets

Wi→j = {x ∈ pi : du(x,Cd(pj)) < du(x,Cd(pi))}

Wj→i = {x ∈ pj : du(x,Cd(pi)) < du(x,Cd(pj))}

Wi∼=j = {x ∈ pi ∪ pj : du(x,Cd(pi)) = du(x,Cd(pj))}

3: if Wi→j ∪ Wj→i = ∅ then
4: pi(t + 1) := pi(t) andpj(t + 1) := pj(t)
5: else
6: pi(t + 1) := ((pi \ Wi→j) ∪ Wj→i) ∪ Wj∼=i,

pj(t + 1) := ((pj \ Wj→i) ∪ Wi→j) \ (Wj∼=i ∩ pj)
7: end if

Observe thatWi→j (resp.Wj→i) contains the cells ofpi

(resp.pj) which are closer toCd(pj) (resp.Cd(pi)), whereas
Wi∼=j represents the set of the tied cells. In other words,

when two robots exchange territory using this Lloyd-type
algorithm, their updated regions{pi(t + 1), pj(t + 1)} are
the Voronoi partition of the setpi(t)∪pj(t) generated by the
centroidsCd(pi) andCd(pj), with all tied cells assigned to
the agent with the lower index.

Now, for any pair(i, j) ∈ {1, . . . , N}2, i 6= j, we define
the mapTij : P ⇉ P as

Tij(p) =

{
p, if (i, j) /∈ E(p) or Wi→j ∪ Wj→i = ∅

{p1, . . . , p̂i, . . . , p̂j , . . . , pN}, otherwise,

where p̂i = ((pi \ Wi→j) ∪ Wj→i) ∪ Wj∼=i, and p̂j =
((pj \ Wj→i) ∪ Wi→j) \ (Wj∼=i ∩ pj) .

The dynamical system on the space of partitions is there-
fore described by, fort ∈ Z≥0,

p(t + 1) = Tij(p(t)), for some(i, j) ∈ E(p(t)), (1)

together with a rule for which edge(i, j) is selected at each
time. We also define the set-valued mapT : P ⇉ P by

T (p) = {Tij(p) | (i, j) ∈ E(p)}. (2)

In Theorem (III.2) we summarize the convergence proper-
ties of the Lloyd-type discretized gossip coverage algorithm.
To do so, we need the following definition.

Definition III.1 (Uniform and random persistency) Let
X be a finite set.

(i) A map σ : Z≥0 → X is uniformly persistentif
there exists a duration∆ ∈ N such that, for each
x ∈ X, there exists an increasing sequence of times
{tk}k∈Z≥0

⊂ Z≥0 satisfying tk+1 − tk ≤ ∆ and
σ(tk) = x for all k ∈ Z≥0.

(ii) A stochastic processσ : Z≥0 → X is randomly
persistentif there exists a probabilityp ∈ ]0, 1[ such
that, for eachx ∈ X and for eacht ∈ Z≥0

P
[
σ(t + 1) = x |σ(t), . . . , σ(1)

]
≥ p.

Theorem III.2 (Convergence under persistent gossip)
Consider the Lloyd-type discretized gossip coverage
algorithm T and the evolutionsp : Z≥0 → P defined by

p(t + 1) = Tσ(t)(p(t)), for t ∈ Z≥0,

whereσ : Z≥0 → {(i, j) ∈ {1, . . . , N}2 | i 6= j} is either a
deterministic map or a stochastic process. Then the following
statements hold:

(i) if σ is a uniformly persistent map, then any evolution
p converges in a finite number of steps to a centroidal
Voronoi partition; and

(ii) if σ is a randomly persistent stochastic process, then
any evolutionp converges almost surely in a finite
number of steps to a centroidal Voronoi partition.

Convergence to a centroidal Voronoi partition puts this
pairwise optimization algorithm in the same class with
centralized Lloyd methods. However, there can be a great
number of possible centroidal Voronoi partitions for a given
discretized environment and, in our experience, the algorithm
too frequently converges to a suboptimal solution. This issue
motivates the developments in the following Section.



IV. PAIRWISE-OPTIMAL GOSSIP COVERAGE ALGORITHM

In this section we present a novel gossip graph coverage
algorithm which improves on the performance achievable by
the Lloyd-type algorithm reviewed in the previous Section.
First we introduce the following notational definition.

Givenp ∈ P and distinct componentspi andpj , let Ppi∪pj

denote the set of all distinct pairs of vertices inpi ∪ pj . We
assume that the elements inPpi∪pj

are sorted lexicographi-
cally. In formal terms, ifpi ∪pj =

{
h1, . . . , h|pi∪pj |

}
where

hs < hs+1 for s = {1, . . . , |pi ∪ pj | − 1}, then

Ppi∪pj
=

{
(h1, h2), (h1, h3), . . . , (h1, h|pi∪pj |), (h2, h3), . . .

. . . , (h|pi∪pj |−1, h|pi∪pj |)
}

.

Notice that|Ppi∪pj
| =

|pi∪pj | (|pi∪pj |−1)
2 .

The pairwise-optimal discretized gossip coverage algo-
rithm is defined as follows.

Gossip Optimal Graph Coverage Algorithm

At each timet ∈ Z≥0, each agenti ∈ {1, . . . , N} maintains
in memory a connected subsetpi(t). The collectionp(0) =
{p1(0), . . . , pN (0)} is an arbitrary connectedN−partition
of Q. At eacht ∈ Z≥0 a communicating pair, say(i, j) ∈
E(p(t)), is selected by a deterministic or stochastic process
to be determined. Assume thati < j. Every agentk 6∈ {i, j}
setspk(t+1) = pk(t), while i andj perform the following:

1: agenti transmits its subsetpi(t) to j and vice-versa
2: both agents compute the setu = pi ∪ pj , the function

D : Pu → R>0

D((a, b)) =
∑

h∈u

min {du(h, a), du(h, b)} ,

and find the setSD = argmin(hs,hr)∈Pu
{D(hs, hr)}

3: assumingSD is lexicographically ordered, both agents
pick the first pair inSD, say(a∗, b∗)

4: both agents compute the sets

Wa∗ = {x ∈ u : du(x, a∗) ≤ du(x, b∗)}

Wb∗ = {x ∈ u : du(x, b∗) < du(x, a∗)}

5: if H1(Cd(Wa∗);Wa∗) + H1(Cd(Wb∗);Wb∗) <
H1(Cd(pi(t)); pi(t)) + H1(Cd(pj(t)); pj(t)) then

6: pi(t + 1) = Wa∗ , pj(t + 1) = Wb∗

7: else
8: pi(t + 1) = pi(t), pj(t + 1) = pj(t)
9: end if

Remark IV.1 The lexicographic rule for picking(a∗, b∗)
used here makes the dynamical system represented by the
algorithm deterministic and well-defined. In practice any pair
in SD can be chosen.

The following Proposition characterizes a desirable prop-
erty of the regionsWa∗ andWb∗ .

Proposition IV.2 The regionsWa∗ and Wb∗ as defined in
Gossip Optimal Graph Coverage Algorithm, are connected.

Thanks to Proposition IV.2 we have that, for any pair
(i, j) ∈ {1, . . . , N}2, i 6= j, we can define the mapTij :
P → P by

Tij(p) =

{
p, if (i, j) /∈ E(p)

{p1, . . . , p̂i, . . . , p̂j , . . . , pN}, otherwise,

where p̂i = Wa∗ and p̂j = Wb∗ . Therefore, the dynamical
system on the space of partitions can again be described in
compact form by (1) and (2) but with this newTij .

To establish the convergence properties of thepairwise-
optimal discretized gossip coverage algorithmwe need the
following definition.

Definition IV.3 A partition p ∈ P is said to be apairwise-
optimal partitionif, for every(i, j) ∈ E(p)

H1(Cd(pi); pi) + H1(Cd(pj); pj) =

min
a,b∈pi∪pj





∑

k∈pi∪pj

min
{
dpi∪pj

(a, k), dpi∪pj
(b, k)

}





The following Proposition characterizes the set of the
pairwise-optimal partitions.

Proposition IV.4 Let p ∈ P be apairwise-optimal partition.
Thenp is also acentroidal Voronoi partition.

We are now ready to state the main result of this paper.

Theorem IV.5 (Convergence under persistent gossip)
Consider the pairwise-optimal discretized gossip coverage
algorithm T and the evolutionsp : Z≥0 → P defined by

p(t + 1) = Tσ(t)(p(t)), for t ∈ Z≥0,

whereσ : Z≥0 → {(i, j) ∈ {1, . . . , N}2 | i 6= j} is either a
deterministic map or a stochastic process. Then the following
statements hold:

(i) if σ is a uniformly persistent map, then any evolution
p converges in a finite number of steps to a pairwise-
optimal partition; and

(ii) if σ is a randomly persistent stochastic process, then
any evolutionp converges almost surely in a finite
number of steps to a pairwise-optimal partition.

Proofs for these statements are provided in [15].
In contrast to the Lloyd-type algorithm in Section III, this

new pairwise-optimal algorithm converges to an element in
the set of pairwise-optimal partitions. This result is a useful
improvement as the set of pairwise-optimal partitions is a
subset of the set of centroidal Voronoi partitions, so that
the new algorithm can avoid many of the local minima in
which Lloyd-type methods get stuck. We will demonstrate
this improvement in Section VI.



Fig. 1. At left, ten robots are positioned at the centroids oftheir initial partitions in a non-convex environment. The boundary of each agent’s partition is
drawn in a different color. The middle shows the final solutionof a centralized Lloyd optimization with a total cost of624.1m. At right is a final solution
for the pairwise-optimal discretized gossip coverage algorithm starting from the final centralized Lloyd solution, with an improved cost of610.3m.

V. SCALABILITY PROPERTIES

In this Section we discuss how to compute the optimal
new centroids(a∗, b∗) ∈ Ppi∪pj

for the Gossip Optimal
Graph Coverage Algorithm, as well as a sampling method
to greatly reduce the computational complexity. Determining
(a∗, b∗) requires an exhaustive search over all possible pairs
of vertices for a pair with the lowest cost to coverpi ∪ pj .
Using Johnson’s all pairs shortest paths algorithm as a first
step to compute a pairwise distance matrix forpi∪pj , (a∗, b∗)
can be found inO(|pi|

3) with a memory requirement of
O(|pi|

2) (aspi ∪ pj is of order|pi|).
For mobile robots with limited onboard resources, these

requirements may be too steep. In such circumstances, we
propose instead to sample pairs of potential new centroids
when applying the algorithm. The first sample pair would
be the agents’ previous centroids, with the rest drawn at
random from the setPpi∪pj

. For m sample pairs, this
approach requires2m calls to Dijkstra’s one-to-all shortest
paths algorithm to find the pair with the lowest cost, for
a total time complexity ofO(m|pi| log(|pi|)) and a memory
requirement ofO(|pi|). It is also worth noting that if all edge
weights inG are equal (i.e., for a regular grid discretization),
then a breadth-first-search approach can replace Dijkstra and
the time complexity drops toO(m|pi|). This sample-based
approach greatly reduces the time and memory requirements,
and will still converge to a pairwise-optimal partition.

VI. SIMULATION RESULTS

To demonstrate the utility of the proposed gossip coverage
algorithm, we implemented it and other coverage algorithms
using the open-source Player/Stage robot software system
[16] and the Boost Graph Library (BGL) [17]. All results
presented here were generated using Player 2.1.1, Stage
2.1.0, and BGL 1.34.1. A non-convex environment was
specified with a bitmap and overlaid with a0.1m resolution
occupancy grid, producing a lattice-like graph with all edge
weights equal to0.1m. To compute distances on graphs with
uniform edge weights we extended the BGL implementation
of breadth-first-search with a distance recorder event visitor.
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Fig. 2. Histograms of final total costs for100 simulations of pairwise-
optimal (gray) and Lloyd-type (black) gossip coverage. All runs started from
the initial partition in Fig. 1 with different random sequences of agent pairs.
The dashed red line shows the final cost using a centralized Lloyd algorithm.

Figure 1 provides one example of how convergence to the
set of pairwise-optimal partitions represents an improvement
over Lloyd-type methods. On the left is the non-convex
environment used for all results in this Section, as well as
an initial partition for 10 robots. The middle panel shows
the result of a centralized Lloyd optimization where all
agents iteratively update their centroid and partition based
on the centroids of all other agents. The final equilibrium
for this centralized method is a centroidal Voronoi partition
with a total cost of624.1m. However, this solution is not a
pairwise-optimal partition. We started the pairwise-optimal
discretized gossip coverage algorithm using this partition as
the initial condition. After70 pairwise exchanges between
random agent pairs, the algorithm reached the pairwise-
optimal partition at right which has a lower cost of610.3.
The best known10-partition of this map has cost610.0.

Figure 2 compares100 simulations of the Lloyd-type
and pairwise-optimal discretized gossip coverage algorithms.
We started each simulation from the initial partition in
Fig. 1 and used different random sequences of agent pairs
for each case. The new pairwise-optimal algorithm shows
marked improvement over the Lloyd-type gossip algorithm,
achieving a total cost within2% of the best known cost in
85% of trials, while also avoiding the worst local minima.
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Fig. 3. Histograms of final costs for simulations starting from10 random
initial conditions for the environment in Fig. 1. The pairwise-optimal (gray)
and Lloyd-type (black) gossip coverage algorithms each ran20 times per
initial condition using different random sequences of agent pairs. The dashed
red line shows the final cost using a centralized Lloyd algorithm.

Figure 3 compares final cost histograms for10 random
initial conditions for the same environment. Each initial
condition was created by selecting unique starting locations
for the agents uniformly at random, and using these locations
to generate a Voronoi partition. The histograms compare
20 simulations of Lloyd-type and the new pairwise-optimal
gossip coverage starting from the same initial partition but
with different random orders of exchanges. The centralized
Lloyd final cost for each initial condition is also shown.
The new pairwise-optimal method outperforms both Lloyd-
type methods for all10 tests, although the Lloyd-type gossip
method is close in two of the trials. These results illustrate
that convergence to a pairwise-optimal partition represents
a significant performance enhancement over classic Lloyd
methods. Interestingly, the Lloyd-type gossip algorithm also
substantially outperforms the centralized version in8 of the
trials. We speculate this is due to the gossip method taking
trajectories through the space of connectedN−partitions
which are not possible for the centralized approach.

VII. C ONCLUSIONS

We have presented a novel distributed coverage control
algorithm which requires only pairwise communication be-
tween agents. The classic Lloyd approach to optimizing
quantizer placement involves iteration of separate centering
and Voronoi partitioning steps. In the graph coverage domain,
the separation of centroid and partition optimization seems
unnecessary computationally for gossip algorithms. More
importantly, we have shown that improved performance can
be achieved without this separation. Our new pairwise-
optimal discretized gossip coverage algorithm provably con-
verges to a subset of the centroidal Voronoi partitions which
we labeled the set of pairwise-optimal partitions. Through
numerical comparisons we demonstrated that this new subset
of solutions avoids many of the local minima in which both
gossip and centralized Lloyd-type algorithms can get stuck.
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