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Abstract—We propose distributed algorithms to automati-
cally deploy a group of robotic agents and provide coverage of
a discretized environment represented by a graph. The classic
Lloyd approach to coverage optimization involves separate
centering and partitioning steps and converges to the set of
centroidal Voronoi partitions. In this work we present a novel
graph coverage algorithm which achieves better performance
without this separation while requiring only pairwise “gossip”
communication between agents. Our new algorithm provably
converges to an element of the set of pairwise-optimal partitions,
a subset of the set of centroidal Voronoi partitions. We illustrate
that this new equilibrium set represents a significant perfor-
mance improvement through numerical comparisons to existing
Lloyd-type methods. Finally, we discuss ways to efficiently do
the necessary computations.

I. INTRODUCTION
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and continuous coverage control laws based on Euclidean
distances is studied in [5]. Coverage control and partitign

of discrete sets are also related to the literature on the
facility location or k-center problem [6]. Coverage control
algorithms for non-convex environments are discussed]in [7
[8], [9] while equitable partitioning is studied in [10]. kar
works considering decentralized methods for coverage con-
trol include [11] and [12].

In [13] the authors have showed how a group of robotic
agents can optimize the partition of convex bounded subset
of R? using a Lloyd-type algorithm with pairwise “gossip”
communication: only one pair of regions is updated at
each step of the algorithm. This gossip approach to Lloyd
optimization was extended in [14] to discretized non-canve

Coordinated networks of robots are already in use fd¢nvironments more suitable for physical robots.

environmental monitoring [1] and warehouse logistics [2]. There are three main contributions of this paper. First, we
In the near future, improvements to the capabilities ofresenta novel gossip coverage alg'orlt'hm anq prove it con-
autonomous robots will enable robotic teams to revolugieni VErges to an element in the set of pairwise-optimal partitio

transportation and delivery of products to customers,ckearin finite time. This solution set is shown to be a strict subset
and rescue, and many other applications. All of these tasRé the set of centroidal Voronoi partitions, meaning the new

share a common feature: the robots are asked to provi@igorithm has fewer local minima than Lloyd-type methods.
service over a space. The distributeritory partitioning Second, through realistic Player/Stage simulations wevsho

problemfor robotic networks consists of designing individualthat the set of pairwise-optimal partitions avoids manyhef t
control and communication laws such that the team willec@l minima which can trap Lloyd-type algorithms far from

divide a space into territories. Typically, partitionirgdone

the global optimum. Third, we discuss how to efficiently

so to optimize a cost function which measures the quality FoMpute our new pairwise coverage optimization.

service provided by the tearoverage controhdditionally
optimizes the positioning of robots inside a territory.

This paper is organized as follows. Section Il defines
the domain and goal of our algorithm, while 1l contains a

This paper describes a distributed coverage control algéeview of Lloyd-type gossip algorithms from [14]. Section |
rithm for a network of robots to optimize the response time ofresents our new algorithm and its properties, while in V
the team to service requests in an environment represenitl detail its computational requirements. In Section VI we
by a graph. Optimality is defined with reference to a cogprovide numerical results and comparisons to prior methods
function which depends on the locations of the agents arfd we end with concluding remarks in VL.
geodesic distances in the graph. As with all multiagent In our notation,R>, denotes the set of non-negative real
coordination applications, the challenge comes from rieguc Numbers and’, the set of non-negative integers. Given a
the communication requirements: the proposed algorithgetX, |X| denotes the number of elementsin Given sets
requires only “gossip” communication, that is, asynchumo XY, their difference isX \ Y = {z € X |z ¢ Y}. A
and unreliable pairwise communication. set-valued map, denoted by : X = Y, associates to an

A broad discussion of partitioning and coverage control iglement ofX a subset ofy”.
presented in [3] which builds on the classic work of Lloyd [4]
on algorithms for optimal quantizer design through “cen-
tering and partitioning.” The relationship between disere

Il. PROBLEM FORMULATION

The problem domain and goal we are considering is the
same as that in [14]: given a group &f robotic agents with
limited sensing and communication capabilities, and a dis-
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cretized environment, we want to apportion the environment
into smaller regions and assign one region to each agent. The
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cost functional which depends on the current partition and
the positions of the agents.



Let the finite setQ) be the discretized environment. We Definition 11.3 (Adjacency graph) For p € P, we define
assume that the elements € which can be thought of theadjacency graphetween regions of partitiopasg(p) =
as locations, are connected by weighted edges.dlet  ({1,...,N},&(p)), where(i,5) € E(p) if p; and p; are
(Q, E,w) be an (undirected) weighted graph with edge seidjacent.

E C @ x @ and weight mapy : E — R<(; we letw, >0
be the weight of edge. We assume thaf is connected and  On @, we define aveight functiorto be a bounded positive
think of the edge weights as distances between locations.function ¢ : Q — R+, which assigns a positive weight to

In any weighted graplG there is a standard notion of each element of). Givenp; € C(Q), we define theone-
distance between vertices defined as followspah in G center functior; : p; — R as
is an ordered sequence of vertices such that any consecutive
pair is an edge ofi. Theweight of a paths the sum of the Ha(hspi) = dy, (b, k)(k).
weights of the edges in the path. Given vertiéeand & in kep;
géi;hﬁ%?talcfotﬁxte Svr]e}:gi?%];,thdgg?vtleeidnc;Er?élr?,' &tr;fe A tet_:hnical as;umption is then needed to define the
there is no path. I& is connected, then the distance betwee‘qenerallzed centroidf a connecte_d SUbS.Et' In yvhat fOIIO_WS’
any two vertices is finite. By conventiong(h, k) — 0 if we assume that otal order relation, <, is defined onQ:

h = k. Note thatde (h, k) — de(k, b), for anyh, k € Q. Nence, we can also denafg={1,.... |Q[}.

We will be partitioning Q into N connected subsets
or territories to be covered by individual agents. To ddefinition I1.4 (Centroid) Let @ be a totally ordered set,
so we need to define distances on induced subgraphs afd p; € C(Q). We define generalized centroid of as
G = (Q,E,w). Given I C (@, the subgraph induced
by the restriction ofG to I, denotedG N1, is the graph Cd(p;) := min{argmin Hi(h; p;)}-
with vertex set equal td and with edge set containing all hep:
weighted edges ofs where both vertices belong th i.e.  |n subsequent use we will drop the word “generalized” for
(QE,w)nI = (QNI,EN(I x I),w|rxz). The induced previty. Note that with this definition the centroid is well-
subgraph is a weighted graph with a notion of distancgefined, and also that the centroid of a region always belongs
between vertices: giver,k € I, we write d;(h,k) :=  to the region. With a slight notational abuse, we defihk:
dcnr(h, k). Note thatd, (h, k) > da(h, k). P — QN as the map which associates to a partition the

We then define @onnected subset 6f as a subse¥ C Q@ vector of the centroids of its elements.
such thatS # () andG N S'is connected, witl(Q2) denoting  \jith these notions we can introduce tiilticenter func-
the set of such subsets. We can then define partitior® of tion 74, kicenter: P x QN — Rs defined by
into connected sets as follows. B

N
Definition 1.1 (Connected partitions) Given the graph Hmuticented p; ) = ZHl(C“pi)'
G = (Q,E,w), we define aconnectedN —partition of Q =t
as a collectionp = {p;}, of N subsets of) such that Our motivation for using this cost function is to optimizeeth
(i) Uil\il pi = Q; response time of the robots to a task appearing randondy in
(i) pinp; =0ifi+#j; according relative weights. We aim to minimizeH muticenter
(iiy p; #0forallic{l,....N} with respect to both the partitions and the points: so as
(iv) p;eC(Q)forallic{1,....N}. to minimize the expected distance from this random vertex

to the centroid of the partition the vertex is in.
Among the ways of partitioning), there is one which is

. _ . worth special attention. Given pointsc @ such that if
Remark 1.2 When |Q| > N and G is connected, it is £ j, thene; # ¢;, the partitionp € P is said to be a

always possible to find a connect@dd—partition of Q. Pick Voronoi partition of Q generated by i€ for eachp; and all

N unique vertices fron@) to seed the subsets, then iteratively;, € pi, we have; € p; anddg(k, ¢i) < da(k, ¢;), Vi # i.
grow each subset by adding unclaimed neighboring vertices. "’ L = I

Let P to be the set of such partitions.

For our gossip algorithms we need to introduce the notioRroposition 1.5 (Properties of multicenter function) Let
of adjacent subsets. Two distinct connected sulysejs; are p € P, c € Q" , and letp* be a Voronoi partition generated
said to beadjacentif there are two vertices;, ¢; belonging, by c. Then
respectively, top; and p,; such that(¢;,q;) € E. Observe

that if p; andp; are adjacent thep; Up; € C(Q). Similarly, Hmutticentedp; Cd(p)) < Hmutticented D, ¢),

we say that robots and j are adjacent or are neighbors if HrmutticenteP™ 5 ¢) < Hmulticented P €)-

their subsetg; and p; are adjacent. Accordingly we next

provide the definition of amdjacency graphwhich we will These statements motivate the following definition: a par-

use in the analysis of our gossip algorithms. tition p € P is acentroidal Voronoi partitiorif p is a Voronoi



partition generated byCd(p). Based on the multicenter when two robots exchange territory using this Lloyd-type

function, we defin€Heypected: P — R>o by algorithm, their updated regiongp;(t +1),p;(t + 1)} are
the Voronoi partition of the set;(t) Up;(t) generated by the
Hexpectedp) = Hmuticente( P, Cd(p)) centroidsCd(p;) and Cd(p;), with all tied cells assigned to
N the agent with the lower index.
= Z Z dp, (x, Cd(p;))p(x). Now, for any pair(i,j) € {1,...,N}2, i # j, we define
i=lzepi the mapT;; : P =% P as

immediate consequence of Proposition 11.5: giyea P, if R R ]
{p1,---,Pis--»Djs-- PN}, otherwise

p* is a Voronoi partition generated lyd(p) then
where p; = ((pi \ Wi—;) UW,_;) U Wj~;, and p; =

") < .
Hexpecedp”) < Hexpeciedp) (s \ Wji) UWij) \ (Wjai ;) - o
We are now in a position to state the goal of our algorithm: The dynamical system on the space of partitions is there-

Observe thatHexpected has the following property as an
Tij(p) = {

solving the optimization problem fore described by, fot € Z>,
%171;1 HexpectedD), p(t+1) =Ti;(p(t), forsome(i,j) € E(p(t)), (1)

together with a rule for which edgg, j) is selected at each

using only pairwise territory exchanges between agentmgalotime. We also define the set-valued nifip P = P by
the edges of€(p). In the literature this optimization is

typically studied with either centralized control or with T(p) = {Ti;(0)| (i, 1) € £(p)}- @
synchronous and reliable communication between severalln Theorem (Ill.2) we summarize the convergence proper-
agents, see [3] and [9]. We believe these communicatidies of the Lloyd-type discretized gossip coverage alpanit
requirements are unrealistic for deployed robotic netwprk To do so, we need the following definition.

and thus are interested in solutions requiring only paewis

gossip communication as first explored in [13] and [14]. Definition 1Il.1 (Uniform and random persistency) Let

X be a finite set.

I1l. LLOYD-TYPE GOSSIP GRAPH COVERAGE (i) Amapo : Z>y — X is uniformly persistentif
In this Section we briefly review thdiscretized Lloyd-type there exists a duratiomd € N such that, for each
gossip coverage algorithmroposed in [14]. x € X, there exists an increasing sequence of times

{tk}trez-, C Z>o satisfyingtii1 — t, < A and
o(ty) = x for all k € Zxo.

(if) A stochastic process : Z>o — X is randomly
persistentf there exists a probability € ]0,1[ such

Lloyd-type Gossip Graph Coverage Algorithm

At each timet € Z~(, each agent € {1,.. .,N}.maintains that, for eachz € X and for eacht € Z-
in memory a connected subsg{t). The collectionp(0) = -
{p1(0),...,pn(0)} is an arbitrary connected —partition Plo(t+1) =zlo(t),...,0(1)] > p.

of Q. At eacht € Z>, a communicating pair, say, j) €
E(p(t)), is selected by a deterministic or stochastic proce
to be determined. Assume thiak j. Every agent ¢ {7, j}
setspi(t+ 1) = pi(t), while i andj perform the following:

Theorem IIl.2 (Convergence under persistent gossip)
Tonsider the Lloyd-type discretized gossip coverage
algorithm 7" and the evolutiong : Z>, — P defined by

1: agenti transmits its subset;(¢) to j and vice-versa p(t+1) =T, (p(t)), forte Zso,
2: both agents compute centroidsl(p;) and Cd(p;), set whereo : Zso — {(i,5) € {1,...,N}2| i # j} is either a
u = p; Up;, and the sets deterministic map or a stochastic process. Then the foligwi
statements hold:
Winj = {2 € pi 2 dulw, Cd(p;)) < du(a, Cd(p:))} (i) if o is a uniformly persistent map, then any evolution
Wi ={z € p; : du(z,Cd(pi)) < du(z, Cd(p;))} p converges in a finite number of steps to a centroidal
Wiaj = {x € pi Up; : du(x,Cd(p;)) = du(z,Cd(p;))} Voronoi partition; and

(i) if o is a randomly persistent stochastic process, then

3 1f Wij U Wj—i =0 then any evolutionp converges almost surely in a finite

g eéé(ﬁ U =pit) andp;(t +1):=p;(1) number of steps to a centroidal Voronoi partition.

6: pi(t+1):=((pi \ Wimj) UW;;) U Wy, Convergence to a centroidal Voronoi partition puts this
pi(t+1) = ((pj \ W;—:) UW,;) \ (W;=; Npj) pairwise optimization algorithm in the same class with

7: end if centralized Lloyd methods. However, there can be a great

number of possible centroidal Voronoi partitions for a give
Observe thalV;_.; (resp.W,_,;) contains the cells op;  discretized environment and, in our experience, the alyori

(resp.p;) which are closer t@d(p;) (resp.Cd(p;)), whereas too frequently converges to a suboptimal solution. Thiggss

W;~; represents the set of the tied cells. In other wordsnotivates the developments in the following Section.



IV. PAIRWISE-OPTIMAL GOSSIP COVERAGE ALGORITHM  Proposition 1V.2 The regionsi¥,- and W,- as defined in

In this section we present a novel gossip graph covera&'éoss'p Optimal Graph Coverage Algorithm, are connected.
algorithm which improves on the performance achievable by
the Lloyd-type algorithm reviewed in the previous Section
First we introduce the following notational definition.

Thanks to Proposition 1V.2 we have that, for any pair
(i,5) € {1,...,N}?, i # j, we can define the map;; :

Givenp € P and distinct componenis andp;, let Py, y, P —P by
denote the set of all distinct pairs of verticespinU p;. We P, it (i,5) ¢ E(p)
assume that the elements i), _,,, are sorted lexicographi- Tij(p) = { ~ ~ } otherwise
cally. In formal terms, ifp; Up; = {h1, ..., hjp,up, } Where Py Pisee oo Py e PN T
hs < hgyy for s ={1,...,|p; Up;| — 1}, then wherep; = W,. andp; = W;-. Therefore, the dynamical
_ ‘ system on the space of partitions can again be described in
Fyuop; = {(h,ha), (haha), s (R Bigaogy)s (o ), compact form by (1) and (2) but with this nef;.
""(h‘piUpj‘_l’h‘piUpj‘)}' To establish the convergence properties of plaérwise-
Notice that|P,, ., | = |piUp;| (Igiuwlq). optimal discretized gossip coverage algorithme need the

The pairwise-optimal discretized gossip coverage algofollowmg definition.

rithm is defined as follows. o - ] ) o
Definition 1V.3 A partition p € P is said to be apairwise-

optimal partitionif, for every (i, j) € £(p)

H1(Cd(pi); pi) + Hi(Cd(p;); ) =

Gossip Optimal Graph Coverage Algorithm

At each timet € Z>(, each agent € {1,..., N} maintains
in memory a connected subseg(t). The collectionp(0) = . L ) d bk
{p1(0),...,pn(0)} is an arbitrary connected —partition a,bEpiUp,; > min {dpup, (@ k), dpuy, (0,0}

of Q. At eacht € Z>, a communicating pair, say, j) € cPips

E(p(t)), is selected by a deterministic or stochastic process The following Proposition characterizes the set of the
to be determined. Assume thiak j. Every agent ¢ {i,j}  pairwise-optimal partitions.
setspi(t+ 1) = pi(t), while i andj perform the following:

1: agenti transmits its subset;(t) to j and vice-versa  Proposition IV.4 Letp € P be apairwise-optimal partition

2: both agents compute the set= p; U p;, the function Theny is also acentroidal Voronoi partition
D: Pu - R>O

D((a,b)) =Y _ min{dy(h,a),du(h,b)},

heu

We are now ready to state the main result of this paper.

Theorem IV.5 (Convergence under persistent gossip)

and find the seSp = argmin;,_j, yep, {D(hs, hr)} Consider the pairwise-optimal discretized gossip coverag
3: assumingSp is lexicographically ordered, both agentsalgorithm 7" and the evolutiong : Z~, — P defined by

pick the first pair inSp, say (a*,b*)

4: both agents compute the sets p(t+1) =T, (p(t)), forte Zso,
Wor ={z € u:dy(x,a*) < dy(z,b)} whereo : Zso — {(i,7) € {1,...,N}?| i # j} is either a
Wy = {z € u: dy(w,b*) < du(z,a*)} deterministic map or a stochastic process. Then the foligwi
statements hold:
50 if Hy(Cd(War); Wax) + Ha(CA(Wp- ); Wes ) < () if o is a uniformly persistent map, then any evolution
Ha(Cd(pi(t)); pi(t)) + Ha(Cd(p;(t)); p,(t)) then p converges in a finite number of steps to a pairwise-
6: pi(t+1)=Wa, pi(t+1)=W,y optimal partition; and
7: else (ii) if o is a randomly persistent stochastic process, then
8: Zéz‘(_lf“r 1) =pi(t), pi(t+1)=p;t) any evolutionp converges almost surely in a finite
9: end i

number of steps to a pairwise-optimal partition.

Proofs for these statements are provided in [15].
Remark IV.1 The lexicographic rule for pickinga*,b*) In contrast to the Lloyd-type algorithm in Section Ill, this
used here makes the dynamical system represented by tiew pairwise-optimal algorithm converges to an element in
algorithm deterministic and well-defined. In practice aajrp the set of pairwise-optimal partitions. This result is afuke
in Sp can be chosen. improvement as the set of pairwise-optimal partitions is a
subset of the set of centroidal Voronoi partitions, so that
The followin_g Proposition characterizes a desirable progne new algorithm can avoid many of the local minima in
erty of the regiond¥V,. and W,-. which Lloyd-type methods get stuck. We will demonstrate
this improvement in Section VI.



Fig. 1. At left, ten robots are positioned at the centroidsheir initial partitions in a non-convex environment. Theuhdary of each agent’s partition is
drawn in a different color. The middle shows the final solutidra centralized Lloyd optimization with a total cost @24.1m. At right is a final solution
for the pairwise-optimal discretized gossip coverage dlgor starting from the final centralized Lloyd solution, wian improved cost 0610.3m.

V. SCALABILITY PROPERTIES

t

In this Section we discuss how to compute the optimal
new centroids(a*,b*) € P,,up, for the Gossip Optimal
Graph Coverage Algorithm, as well as a sampling method
to greatly reduce the computational complexity. Determgni
(a*,b*) requires an exhaustive search over all possible pairs
of vertices for a pair with the lowest cost to covgru p;.
Using Johnson’s all pairs shortest paths algorithm as a first
step to compute a pairwise distance matrixfoup;, (a*, b*) 510 620 630 e40 650 660 670 680

: RN A :
can b2e found |n(9('\pl| ) with a memory requirement of Final total cost {2)
O(lpi|*) (aspi Up; is of order|p;|).

For mobile robots with limited onboard resources, thesgig. 2. Histograms of final total costs fai00 simulations of pairwise-

requirements may be too steep. In such circumstances, @imal (gray) and Lloyd-type (black) gossip coverage. Alis started from
. h . . the initial partition in Fig. 1 with different random sequ&s of agent pairs.

propose ms_tead to sample pairs Of_pOten“al new _Centro'('ﬂﬁe dashed red line shows the final cost using a centralizBetildlgorithm.

when applying the algorithm. The first sample pair would

be the agents’ previous centroids, with the rest drawn at

random from the setP,,,,. For m sample pairs, this - : o :
approach require@m calls to Dijkstra’s one-to-all shortest set of pairwise-optimal partitions represents an improsm
over Lloyd-type methods. On the left is the non-convex

paths algorithm to find the pair with the lowest cost, for_ "~ . : .
. . environment used for all results in this Section, as well as
a total time complexity of2(m/|p;|log(|p:|)) and a memory

. . . : an initial partition for 10 robots. The middle panel shows
requirement oO(|pi|). Itis also worth noting that if all edge the result of a centralized Lloyd optimization where all

weights inG are equal (i.e., for a regular grid discretization), . . . . o
then a breadth-first-search approach can replace Dijkstta aagents iteratively update their centroid and partitionelas

. . . on the centroids of all other agents. The final equilibrium
the time complexity drops t@(m|p;|). This sample-based . . . : ) "
approach greatly reduces the time and memory requirement[%r this centralized method is a centr0|_dal V0r_0n0|_ paotit
and will still converge to a pairwise-optimal partition. W't.h a total (.:OSt Of62A.".1m' However, this SO'“F'OU IS not a

pairwise-optimal partition. We started the pairwise-oyati

discretized gossip coverage algorithm using this partitie
the initial condition. After70 pairwise exchanges between

To demonstrate the utility of the proposed gossip coveragandom agent pairs, the algorithm reached the pairwise-
algorithm, we implemented it and other coverage algorithmgptimal partition at right which has a lower cost ©f0.3.
using the open-source Player/Stage robot software systérhe best knowrl0-partition of this map has co$t10.0.
[16] and the Boost Graph Library (BGL) [17]. All results Figure 2 comparesl00 simulations of the Lloyd-type
presented here were generated using Player 2.1.1, Stagwl pairwise-optimal discretized gossip coverage algost
2.1.0, and BGL 1.34.1. A non-convex environment wa$Ve started each simulation from the initial partition in
specified with a bitmap and overlaid withOalm resolution Fig. 1 and used different random sequences of agent pairs
occupancy grid, producing a lattice-like graph with all edg for each case. The new pairwise-optimal algorithm shows
weights equal t@).1m. To compute distances on graphs withmarked improvement over the Lloyd-type gossip algorithm,
uniform edge weights we extended the BGL implementatioachieving a total cost withi?% of the best known cost in
of breadth-first-search with a distance recorder eventovisi 85% of trials, while also avoiding the worst local minima.

Ion coun

Simulat

Figure 1 provides one example of how convergence to the

VI. SIMULATION RESULTS
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VIl. CONCLUSIONS

We have presented a novel distributed coverage control
algorithm which requires only pairwise communication be-
tween agents. The classic Lloyd approach to optimizing
guantizer placement involves iteration of separate cemner
and Voronoi partitioning steps. In the graph coverage damai
the separation of centroid and partition optimization seem
unnecessary computationally for gossip algorithms. More
importantly, we have shown that improved performance can
be achieved without this separation. Our new pairwise-
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Fig. 3. Histograms of final costs for simulations starting fréhrandom
initial conditions for the environment in Fig. 1. The pairedsptimal (gray)
and Lloyd-type (black) gossip coverage algorithms each2@iimes per [8]
initial condition using different random sequences of agairs. The dashed
red line shows the final cost using a centralized Lloyd atbari
[9]

Figure 3 compares final cost histograms fdér random
initial conditions for the same environment. Each initiaf10]
condition was created by selecting unique starting looatio
for the agents uniformly at random, and using these Ioca’[iorﬂll
to generate a Voronoi partition. The histograms compare
20 simulations of Lloyd-type and the new pairwise-optimal
gossip coverage starting from the same initial partition b2
with different random orders of exchanges. The centralized
Lloyd final cost for each initial condition is also shown.[13]
The new pairwise-optimal method outperforms both Lloyd-
type methods for all0 tests, although the Lloyd-type gossip[14]
method is close in two of the trials. These results illustrat
that convergence to a pairwise-optimal partition reprtsxsen[15
a significant performance enhancement over classic Lloyd
methods. Interestingly, the Lloyd-type gossip algorithispa
substantially outperforms the centralized versiorg iof the
trials. We speculate this is due to the gossip method taking
trajectories through the space of connect®d-partitions [17]
which are not possible for the centralized approach.

[16]

optimal discretized gossip coverage algorithm provably-co
verges to a subset of the centroidal Voronoi partitions Wwhic

labeled the set of pairwise-optimal partitions. Through

numerical comparisons we demonstrated that this new subset
of solutions avoids many of the local minima in which both
gossip and centralized Lloyd-type algorithms can get stuck
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