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Identifying cyber attacks under local model information
Fabio Pasqualetti, Ruggero Carli, Antonio Bicchi, and Francesco Bullo

Abstract— This work considers the problem of detecting
corrupted components as well as external attacks in a large
scale decentralized system. The electric power system, the
transportation system, and generally any computer or network
system are examples of large scale systems for which cyber-
attacks have become an important threat. Despite the recent
advances in the theory of detection and identification of
misbehaving parts, the existing procedures to enforce security
are still computationally inefficient and numerically unreliable.
We consider the case of linear networks, and we model an
external attack as an exogenous input affecting the system. We
exploit two complementary methods that relies on two different
sets of assumptions to reduce the complexity of the misbehavior
detection and identification. The first method takes advantage of
the presence in the network of weakly interconnected subparts,
it requires the agents to have only a limited knowledge of
the network model, and it affords local identification of the
misbehaving agents whose behavior deviates more than a
threshold. The second method relies on the presence of a
set of trustworthy agents (leaders) with better computation
and communication capabilities. Only relying on a partial
knowledge of the network model, the leaders cooperatively
detect and identify the misbehaving agents. The proposed
methods are shown to improve the detection time, the numerical
reliability, and the computational cost of existing algorithms.

I. INTRODUCTION

The increasing reliance on network systems to support crit-
ical operations in defense, electric power management, and
telecommunication raises the issue of the reliability and the
robustness of such systems against external attacks. Because
of the decentralized nature of network systems, cyber attacks
compromising the availability of resources, the integrity of
data, or the confidentiality of information are easily launched
by a malignant agent. Unfortunately, the growing dimension
of network systems forbids any centralized implementation
of an attack detection system, ruling out classical solutions
as presented in [1], [2].

The distributed computation of an agreement on a variable
of interest is among the fundamental tasks to be accom-
plished by the member of a distributed system. In this work,
we consider linear discrete time consensus algorithms as
described in [3], and we allow for the presence of misbe-
having agents which interfere with the nominal behavior of
the network. Following [4], we consider the extreme case
of Byzantine agents, which have complete knowledge of the
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system structure and state, and which collude in order to
cause the biggest damage to the network.

The detection and the identification of misbehaving agents
in a network has been the subject of intensive study, see
e.g. [5], [6], and it is now well known that the network
connectivity1 determines the ability of a network to sustain
arbitrary malfunctioning. Precisely, if the attack is driven by
an omniscient adversary, then the total number of misbe-
having components needs to be less than one-half of the
network connectivity, and less than one-third of the number
of processors for the detection to take place. In the last few
years, the problem of reaching consensus in the presence
of misbehaving agents has been revisited from a control
theoretic perspective. In this works, the network is assumed
to evolve as a linear dynamical system, and the misbehaving
agents are modeled as unknown and unmeasurable inputs.
In [7] the problem of detecting and identifying misbehaving
agents in a linear consensus network is first introduced,
and a solution is proposed for the single faulty agent case.
In [8], [9], the authors provide a policy that k malicious
agents can follow to prevent some of the nodes of a 2k-
connected network from computing the desired function of
the initial state, or, equivalently, from reaching an agreement.
On the contrary, if the connectivity is 2k + 1 or more, then
the authors show that generically the set of misbehaving
nodes is identified independent of its behavior, so that the
desired consensus is eventually reached. Finally, in [4] a
complete characterization of the policies that make a set of
misbehaving agents undetectable is given in terms of the zero
dynamics of a linear system associated with the network,
and the connection between the graph connectivity and the
zero dynamics is explained. Despite the advances in the
theoretical understanding of the detection and identification
of misbehaving agents, efficient decentralized algorithms
ensuring security against attacks are still missing. The proce-
dures proposed so far rely indeed on an heavy combinatorial
machinery to locate the attackers, they require every agent to
have complete knowledge of the network structure, and they
need a number of steps proportional to the cardinality of the
network to converge. Therefore, although provably correct,
the existing algorithms are practically applicable only when
the dimension of the network is relatively small.

The main contribution of this work are as follows. We
present two novel methods to reduce the computational
cost of the existing detection and identification algorithms.
The proposed procedures rely on two different sets of as-
sumptions, and they can be complementarily or alternatively
employed depending on the network model. The first method

1The connectivity of a graph is the maximum number of disjoint paths
between any two vertices of the graph. A graph is complete if it has
connectivity n− 1, where n is the number of vertices in the graph.
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is designed to exploit the presence in a network of weakly
interconnected subparts. We introduce the notion of network
decentralization, in terms of relatively weakly connected sub-
networks, and derive a sufficient condition on the consensus
matrix that allows to identify a certain class of misbehaving
agents under limited information on the network structure.
The second method admits the presence of a subset of agents
with better computation and communication capabilities
(leaders), and it achieves exact detection and identification
even when the entire network structure is not available to any
of the leaders. Under the assumption that the leaders coincide
with the vertices of a connected communication graph, two
algorithms are proposed to distributively reconstruct the state
of the network in the presence of an unknown input, and to
detect the presence of a misbehaving agent. Both algorithms
require only a limited knowledge of the network structure,
and they are shown to converge in a finite number of steps.
We conclude the paper by showing the effectiveness of our
algorithms through a numerical study.

The rest of the material is organized as follows. Section
II contains the problem setting and a brief review of the
existing results. Section III describes our method to exploit
the presence of weakly interconnected subnetworks, and
Section IV contains an example. Sections V introduces the
hierarchical structure we propose, and it contains our main
results on the unknown input estimation problem and on the
detection problem. Sections VI and VII contain respectively
a numerical study and our conclusion.

II. PROBLEM SETUP AND PREVIOUS RESULTS

Let G denote a directed graph with vertex set V =
{1, . . . , n} and edge set E ⊂ V ×V . The in-neighbor set of
a node i ∈ V , i.e., all the nodes j ∈ V such that the pair
(j, i) ∈ E, is denoted with Ni. We let each vertex j ∈ V
denote an autonomous agent, and we associate a real number
xj with each agent j. Let the vector x contain the values xj .
A linear iteration over G is an update rule for x and it is
described by the linear discrete time system

x(t + 1) = Ax(t). (1)

In this work, we focus on a particular class of linear iter-
ation, in which the matrix A is row-stochastic and primitive.
The matrix A is referred to as a consensus matrix, and the
system (1) is called consensus system. Moreover, the graph
G is referred to as the communication graph associated with
the consensus system (1) or, equivalently, with the consensus
matrix A.

We allow for some agents to update their state differently
than specified by the matrix A by adding an exogenous
input to the consensus system. Let ui, i ∈ V , be the input
associated with the i-th agent, and let u be the vector of the
functions ui. The consensus system becomes

x(t + 1) = Ax(t) + u(t).

Definition 1 (Misbehaving agent) An agent j is misbehav-
ing if there exists a time t ∈ Z≥0 such that uj(t) 6= 0, and
it is well-behaving otherwise.

Throughout the paper, let K = {i1, i2, . . . } ⊆ V denote the
set of misbehaving agents, let ei be the i-th vector of the
canonical basis, and let BK = [ei1 ei2 · · · ]. The consensus
system with misbehaving agents K assumes the form

x(t + 1) = Ax(t) + BKuK(t). (2)

We associate an output matrix Cj to each agent j, which
describes the information about the state of the network
that is directly available to j. In particular, yj(t) = Cjx(t),
Cj = [en1 . . . enp ]T , and {n1, . . . , np} = Nj . Throughout
the paper, let Im(A) and Ker(A) denote the range space
and the null space defined by the matrix A. We now review
the existing methods to detect and identify the misbehaving
agents.

A. Existing work

We focus on the agent j, and we assume that it only relies
on its local observations. Let Y d

j denote the vector containing
the output yj from time 0 up to time d, and let

Od
j =


Cj

CjA
...

CjA
d−1

 ,

where A is the iteration matrix of (1). In [10] it is pointed
out that the row-space of Od

j characterizes the set of all
calculable linear functionals for the agent j in d time
steps. Clearly, if Ker(Od

j ) = 0, then any desired function
of the initial state can be evaluated by j in d steps. In
[8], [4] the estimation problem is extended to include the
presence of unknown and unmeasurable inputs affecting the
network. Precisely, consider the system (2), and assume
that BK is known. It is observed that a necessary and
sufficient condition for each node to estimate the state of
the whole network without knowing the input uK is that the
triple (A,BK , Cj), is strongly observable2. Moreover, if the
system (A,BK1∪K2 , Cj) results to be strongly observable
for every possible pair K1,K2 of misbehaving agents, then
it is shown that the state of the network can be recovered by
j without knowing the input matrix. To see this, let

F d
j (K) =



0 0 · · · · · · 0

CjBK 0
. . . . . . 0

CjABK CjBK
. . . . . .

...
...

. . . . . . . . .
...

CjA
d−2BK CjA

d−1BK · · · CjBK 0


.

Under the strong observability assumption of the triple
(A,BK1∪K2 , Cj) for all K1, K2, there exists an unique set K
such that Y d

j = Od
j x+F d

j (K)Ud, where x denotes the state
of the network, and Ud contains the misbehaving input up to
time d. Therefore, by combinatorially testing every possible
set of misbehaving agents, both the state as well as the
location of the misbehaving agents are estimated. In [4] it is

2A linear system is called strongly observable if for every initial condition
x0 and for every input function u the following holds: y(t) = 0 for all
t ≥ 0 implies x0 = 0, see for instance [11].
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observed that the above condition is equivalent to the absence
of zero dynamics for the system (A, [BK1 BK2 ], Cj), and a
method based on filters providing decoupling of the inputs
is proposed to identify the misbehaving agents.

Although provably correct, the procedures proposed in
[8], [4] to ensure trustworthy computation in the face of
misbehaving agents rely on heavy assumptions. First, each
well-behaving agent is required to know entirely the network
model. Second, the complexity of the identification process is
proportional to

(|V |
|K|
)
, since every possible set of misbehaving

agents needs to be checked in order to ensure a correct
identification. Third and finally, the identification time d
grows with the cardinality of the network, because, in the
worst case, we need d = |V | − 1 to guarantee an exact
estimation of the state.

III. APPROXIMATE DETECTION AND IDENTIFICATION

We first review in this section a filter approach to the
detection and isolation of misbehaving agents in a linear
network, and we then characterize a condition that allows to
achieve detection and identification even after reducing the
assumptions of the classical approach. For easy of notation,
we consider now the single misbehaving agent case. Let j be
a well-behaving agent, and consider the problem of deciding
whether the agent i1 or the agent i2 is misbehaving. Let the
linear discrete time filter

wi1(t + 1) = Fi1wi1(t) + Ei1yj(t),
ri1(t) = Mi1wi1(t) + Hi1yj(t),

(3)

be such that ri1 6= 0 if and only if i1 is misbehaving. It
follows that the signal ri1 allows to uniquely identify the
misbehaving agent i1 against the well-behaving agent i2.
By implementing a similar filter for each possible pair3 of
misbehaving agent, the presence of the misbehaving agent i1
is finally assessed by the agent j. A technique to design the
filter (3) can be found in [4], where the knowledge of the
network matrix A by the well-behaving agent j is assumed.

We consider now the case in which each well-behaving
agent has a partial knowledge of the network model, and it
cannot therefore compute the filter presented in (3). Let A
be a consensus matrix, and observe that it can be written as
Ad + ε∆, where ‖∆‖∞ = 2, 0 ≤ ε ≤ 1, and Ad is block
diagonal with a consensus matrix on each of the N diagonal
blocks. For instance, let A = [akj ], and let V1, . . . , VN be
the subsets of agents associated with the blocks. Then the
matrix Ad = [ākj ] can be defined as

(i) ākj = akj if k 6= j, and k, j ∈ Vi, i ∈ {1, . . . , N},
and

(ii) ākk = 1 + akk −
∑

j∈Vi
akj , and

(iii) ākj = 0 otherwise.
Moreover, ∆ = 2(A− Ad)/‖(A− Ad)‖∞, and ε = 1

2‖A−
Ad‖∞. Note that, if ε is “small”, then the agents belonging
to the same group are strongly interacting, while the agents
belonging to different groups are weakly coupled, see Fig.
2(a) for an example. We assume the groups of strongly
interacting agents to be given, and we leave the problem of
determining such partitions as the subject of future research,

3The design of the filter matrices depends upon the pair (i1, i2).

for which the ideas presented in [12], [13] constitute a very
relevant result.

We now focus on the h-th block. Let K = v∪ l be the set
of misbehaving agents, where v = Vj∩K, and l = K\v. Let
j ∈ Vh, and consider the system (Ad, Bv, Cj). Recall from
[4] that the misbehaving agents v are identifiable by agent j
if the inputs uv and ui can be decoupled, for all i ∈ V \ v.
Precisely, consider the system[

x
wv

]+
=
[

Ad 0
EvCj Fv

] [
x
wv

]
+
[

Bv Bi

0 0

] [
uv

ui

]
,

rv =
[

HvCj Mv

] [ x
wv

]
,

(4)

and the system[
x
wi

]+
=
[

Ad 0
EiCj Fi

] [
x
wi

]
+
[

Bv Bi

0 0

] [
uv

ui

]
,

ri =
[

HiCj Mi

] [ x
wi

]
.

(5)

Then the misbehaving agents v are identifiable by agent j
if, for all i ∈ V \ v, we have rv 6= 0 and ri = 0 whenever
uv 6= 0. It should be noticed that, since Ad is block diagonal,
the residual generators to identify the set v can be designed
by only knowing the h-th block of Ad, and hence only a
finite region of the original consensus network. Moreover, the
misbehaving agents l do not affect the residuals ri, i ∈ Vh,
so that the agents v are identifiable by agent j if, for all
i ∈ Vh \ v, we have rv 6= 0 and ri = 0 whenever uv 6= 0.
By applying the above residual generators to the consensus
system Ad + ε∆ with misbehaving agents K we get[

x̂
ŵv

]+
= Āε,v

[
x̂
ŵv

]
+
[

Bv Bl Bi

0 0 0

] uv

ul

ui

 ,

r̂v =
[

HvCj Mv

] [ x̂
ŵv

]
,

and[
x̂
ŵi

]+
= Āε,i

[
x̂
ŵi

]
+
[

Bv Bl Bi

0 0 0

] uv

ul

ui

 ,

r̂i =
[

HiCj Mi

] [ x̂
ŵi

]
,

where

Āε,v =
[

Ad + ε∆ 0
EvCj Fv

]
, Āε,i =

[
Ad + ε∆ 0

EiCj Fi

]
.

Because of the matrix ∆ and the input ul, the residual ri is
generally nonzero even if ui = 0. However, the misbehaving
agents v remain identifiable by j if for each i ∈ Vj \ v it
holds ‖r̂v‖∞ > ‖r̂i‖∞ for all uv 6= 0.

Theorem III.1 (Local identification) Let V be the set of
agents, let K be the set of misbehaving agents, and let
Ad+ε∆ be a consensus matrix, where Ad is block diagonal,
‖∆‖∞ = 2, and 0 ≤ ε ≤ 1. Let each block h of Ad
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be a consensus matrix with agents Vh ⊆ V , and with
connectivity |K ∩Vh|+1. There exists α > 0 and umax ≥ 0,
such that, if each input signal ui, i ∈ K, takes value in
U = {u : εαumax ≤ ‖u‖∞ ≤ umax}, then each well-behaving
agent j ∈ Vh can identify in finite time the faulty agents
K ∩ Vh.4

Proof: We focus on the agent j ∈ Vh, and, without
loss of generality, we assume that uK(0) 6= 0, and that the
residual generators have a finite impulse response. Let dj =
‖Vh‖, and note that dj time steps are sufficient for each agent
j ∈ Vh to identify the misbehaving agents. Let ut denote the
input sequence up to time t. Let v = K ∩ Vh, l = K \ v,
and observe that

r̂v(dj) = [ HvCj Mv ] Ādj
ε,vx̄(0) + ĥv ? udj−1

v + ĥl ? u
dj−1
l ,

where ĥv and ĥl denote the impulse response from uv and
ul respectively. We now determine an upper bound for each
term of r̂v(dj). Let the misbehaving inputs take place in
U = {u : εαumax ≤ ‖u‖∞ ≤ umax}. By using the triangle
inequality on the impulse responses of the residual generator,
it can be shown that

‖ĥl ? u
dj−1
l ‖∞ ≤ ‖hl ? u

dj−1
l ‖∞ + εc1umax = εc1umax,

where hl denotes the impulse response form ul to rv of the
system (4), and c1 is a finite positive constant independent
of ε. Moreover, it can be shown that there exist two positive
constant c2 and c3 such that

‖ [ HvCj Mv ] Ādj
ε,vx̄(0)‖∞ ≤ εc2umax,

and

min
uv∈U

‖ĥv ? udj−1
v ‖∞ ≥ min

uv∈U
‖hv ? udj−1

v ‖∞ − εc3umax.

Analogously, for the residual generator associated with the
well-behaving agent i, we have

r̂i(dj) = [ HiCj Mi ] Ādj

ε,ix̄(0) + ĥv ? udj−1
v + ĥl ? u

dj−1
l ,

and hence

r̂i(dj) ≤ ε(c(i)
4 + c

(i)
5 + c

(i)
6 )umax.

Let c̄ = c1 + c2 + c3 + maxi∈Vh\v(c(i)
4 + c

(i)
5 + c

(i)
6 ), and

let β be such that minuv∈U ‖hv ?u
dj−1
v ‖∞ > βumin. Then a

correct identification of the misbehaving agents v takes place
if βumin > εc̄umax.

Notice that the constant α in Theorem III.1 can be com-
puted by bounding the infinity norm of the impulse response
of the residual generators. An example follows.

IV. AN EXAMPLE OF LOCAL IDENTIFICATION

We show in this section the advantages of the clustered
setup described in Section III. Consider the consensus net-

4An identification procedure based on this method is in [14].
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Fig. 1. A consensus network with two weakly interconnected subnetworks.

work in Fig. 1, where A = Ad + ε∆, ε ≤ 1, and

Ad =


1/3 1/3 1/3 0 0 0 0
1/3 1/3 1/3 0 0 0 0
1/3 1/3 1/3 0 0 0 0
0 0 0 1/4 1/4 1/4 1/4
0 0 0 1/4 1/4 1/4 1/4
0 0 0 1/4 1/4 1/4 1/4
0 0 0 1/4 1/4 1/4 1/4

 ,

∆ =


0 0 0 0 0 0 0
0 −1 0 1 0 0 0
0 0 −1 0 0 0 1
0 0 1 0 −1 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 1 0 0 0 −1

 .

Let K = {2, 7} be the set of misbehaving agents,
and let ‖x(0)‖∞ ≤ 1. Consider the agent 1, and let
(F2, E2,M2,H2) and (F3, E3,M3,H3) be the residual gen-
erators as in (4) and (5) respectively, where

F2 =
[
−1/3 −1/3
1/3 1/3

]
, E2 =

[
−2/3 0 −1/3
2/3 0 1/3

]
,

M2 =
[

1 0
0 −1

]
, H2 = [ 1 0 0

0 1 0 ] ,

and

F3 =
[
−1/3 1/3
−1/3 1/3

]
, E3 =

[
−2/3 −1/3 0
−2/3 −1/3 0

]
,

M3 =
[−1 0

0 1

]
, H3 =

[−1 0 0
0 0 1

]
.

Let ĥ3
2 (resp. ĥ3

7) be the impulse response from the input
u2 (resp. u7) to r̂3, and let u1

2 (resp. u1
7) denote the input

signal u2 (resp. u7) up to time 1. Because the filters
(F2, E2,M2,H2) and (F3, E3,M3,H3) converge in two
steps, the misbehaving agent can be identified after 2 time
steps. The residual associated with the agent 3 is

r̂3(1) = [ H3C1 M3 ]
[

Ad+ε∆ 0
E3C1 F3

]2 [ x(0)
0

]
+ ĥ3

2 ? u1
2 + ĥ3

7 ? u1
7

or, equivalently,

r̂3(1) = ε [ H3C1 M3 ]
[

Ad∆+∆Ad+ε∆2 ∆B2 ∆B7
E3C1∆ 0 0

] [ x(0)
u2(0)
u7(0)

]
.

Analogously, we have

r̂2(1) = ε [ H2C1 M2 ]
[

Ad∆+∆Ad+ε∆2 ∆B2 ∆B7
E2C1∆ 0 0

] [ x(0)
u2(0)
u7(0)

]
+ [ H2C1 M2 ]

[
AdB2 B2

E2C1B2 0

] [ u2(0)
u2(1)

]
.

The agent 1 is able to identify the misbehaving agent 2 if
it holds ‖r̂2(1)‖∞ > ‖r̂3(1)‖∞ independently of u1

2 and
u1

7. Let the inputs u2 and u7 take value in U = {u :
umin ≤ ‖u‖∞ ≤ umax}. It can be verified that ‖r̂2(1)‖∞ >
‖r̂3(1)‖∞ if

min
u2∈U

∥∥∥[ H2C1 M2 ]
[

AdB2 B2
E2C1B2 0

] [ u2(0)
u2(1)

]∥∥∥
∞

> 11εumax,
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Fig. 2. In Fig. 2(a) a consensus network partitioned into 3 areas. Each agent
identifies the neighboring misbehaving agents by only knowing the topology
of the subnetwork it belongs to. In Fig. 2(b) the smallest magnitude of the
residual associated with a misbehaving agent (dashed line) and the largest
magnitude of the residual associated with a well-behaving agent (solid line)
are plotted as a function of the weak connections ε.

and, after some computation, if umin > 47εumax, in which
case we conclude that the agent 1 correctly identifies the
misbehaving agent 2 when K = {2, 7}. The analysis of the
other pairr of misbehaving agents is done analogously, and
it is not reported here.

As a final remark, note that the larger the consensus
network, the more convenient the proposed approximation
procedure becomes. For instance, consider the network pre-
sented in [15], and here reported in Fig. 2(a). Such a clustered
interconnection structure, in which the edges connecting
different clusters have a small weight, may be preferable
in many applications because much simpler and efficient
protocols can be implemented within each cluster. Assume
that there is a misbehaving agent in each cluster, and con-
sider the residuals computed after 5 steps of the consensus
algorithm. Let ε be the weight of the edges connecting
different clusters, and let the misbehaving inputs take value
in U = {u : 0.1 ≤ u ≤ 3}. Fig. 2(b) shows, as a function of
ε, the smallest magnitude of the residual associated with a
misbehaving agent (dashed line) versus the largest magnitude
of the residual associated with a well-behaving agent (solid
line). If ε is sufficiently small, then our local identification
method allows each well-behaving agent to promptly detect
and identify the misbehaving agents belonging to the same
group, and hence to restore the functionality of the network.

V. HIERARCHICAL ESTIMATION AND DETECTION

The previous section shows how to detect a misbehaving
agent under limited knowledge of the overall system. The
proposed algorithm relies on the key assumption that the
magnitude of the misbehaving signal is within an interval
whose size strictly depends on the parameters of the system.
In this section we present a complementary and alternative
method to remove this constraint while maintaining the
assumption of local knowledge of the network.

We introduce a hierarchical structure that reduces the
decentralization of the network by allowing for the presence
of a subset of nodes with better communication and compu-
tation capabilities. We refer to these nodes as the leaders of
the network. In this Section, before considering the detection
problem, we exploit the presence of this hierarchical structure
for solving the state estimation problem in a linear system
with unknown inputs. In Subsection V-A we propose an

algorithm that allows each leader to recover the state x(0)
in a finite number of steps. In Subsection V-B we modify
the above algorithm to include the detection of misbehaving
agents. While illustrating our algorithms we characterize also
the local knowledge of the network required by each leader
to accomplish the state estimation and the detection goals.

A. Hierarchical unknown input state estimation

Consider the linear network5 x(t + 1) = Ax(t) + Bu(t)
and let G = (V,E) be the graph associated with the matrix
A. Let V (`) = {`1, . . . , `m} ⊆ V denote the subset of the
leaders. We assume the presence of a directed graph G(`) =
(V (`), E(`)), where E(`) ⊆ V (`)×V (`) describes the feasible
communications among the leaders. We assume that G(`) is
strongly connected, and we refer to it as to the leader graph.
Let N

(`)
i denote the set of the neighbors of the leader `i

in G(`). As in Section II, the information of the state x(t)
directly available to the leader `i is given by yi(t) = C`i

x(t),
where C`i is defined according to the neighbors set N`i in
G. The composite information available to the set of leaders
can be conveniently described by the output matrix C(`) =
[CT

`1
· · · CT

`m
]T . We now show how our hierarchical setup

can be conveniently used to solve the unknown input state
estimation problem, in which the input matrix B is known
by the leaders, while the input signal u(t) is unknown and
unmeasurable. For s ∈ Z>0, let

Os
i =


C`i

C`i
A

C`iA
2

...
C`iA

s−1

 , Y s
i =


yi(0)
yi(1)
yi(2)

...
yi(s− 1)

 ,

and

F s
i =



0 0 · · · · · · 0

C`iB 0
. . . . . . 0

C`iAB C`iB
. . . . . .

...
...

. . . . . . . . .
...

C`iA
s−2B C`i

Ani−1B · · · C`i
B 0


.

Finally, let

Os =


Os

1

Os
2

...
Os

m

 , Y s =


Y s

1

Y s
2
...

Y s
m

 , F s =


F s

1

F s
2
...

F s
m

 .

Note that
Y s

1

Y s
2
...

Y s
m

 =


Os

1

Os
2

...
Os

m

x(0) +


F s

1

F s
2
...

F s
m

Us, (6)

where Us contains the input sequence from time 0 up to
time s− 1. From [11] we know that a system is finite-time

5The results presented in this section hold for general linear networks,
i.e., they are not restricted to consensus dynamics.
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unknown input observable (UIO), i.e., the initial state x(0)
can be recovered without knowing the input signal Ud, if
and only if there exists an integer d < |V | such that

Ker(Od) = 0 and Im(Od) ∩ Im(F d) = 0. (7)

In particular conditions (7) imply that x(0) can be computed
as the solution of the system Y d =

[
Od F d

] [
xT UT

]T
.

To see this, let In denote the n-dimensional identity matrix,
and observe that

Ker
[
Od F d

]
⊥ Im

([
In

0

])
= 0, (8)

where, given two subspaces A and B, A ⊥ B denotes the
orthogonal projection of A onto B. Let[

x̂
û

]
:=
[
Od F d

]†
Y d, (9)

where † denotes the pseudo-inverse operation, then it follows
from (8) that x̂ = x(0). Consider the basic algebraic equality

Ker([Od F d]) = ∩m
i=1 Ker([Od

i F d
i ]), (10)

which leads to the useful geometric interpretation of (9) that
is next described. For i ∈ {1, . . . ,m}, let Si =

[
x̂i

ûi

]
+ Vi,

where
[

x̂i

ûi

]
= [Od

i F d
i ]†Y d

i and Vi = Ker([Od
i F d

i ]). Then
x coincides with the projection onto the subspace Im

([
In
0

])
of the intersection of the affine subspaces {S1, . . . ,Sm}. It
follows indeed from (8) and (10) that ∩m

j=1Si ⊥
[

In
0

]
results

in a vector whose first n components coincide with x(0).
Based on the above discussion, in Algorithm 1 we propose
a distributed procedure that allows each leader to estimate x
and that only requires a local knowledge of the network. The
Decentralized state estimation algorithm is briefly described
as follows. For i ∈ {1, . . . ,m}, the i-th leader `i keeps in
memory an estimate zi =

[
x̂i

ûi

]
and an uncertainty subspace

Vi. These variables are initialized as zi(0) = ([Od
i F d

i ])†Y d
i

and Vi = Ker([Od
i F d

i ]). At the t-th iteration, each leader
`i performs the following three actions in order:

(i) receive Sj(t− 1) = zj(t− 1)+Vj from all `j ∈ N
(`)
i ,

(ii) set zi(t) to the orthogonal projection of zi(t − 1)
onto the intersection of the affine subspaces
{Sj(t− 1) : `j ∈ N

(`)
i ∪ {`i}}, and Vi(t) to

the intersection of the uncertainty subspaces
{Vj(t− 1) : `j ∈ N

(`)
i ∪ {`i}},

(iii) transmit zi(t) and Vi(t) to all `j ∈ N
(`)
i .

Let diam(G(`)) denote the diameter of G(`). The convergence
of Algorithm 1 is next stated.

Theorem V.1 (Decentralized UIO) Let (A,B, C(`)) be the
unknown input linear system associated with the graph G
and the leader graph G(`). Assume that

(i) G(`) is strongly connected, and
(ii) there exists an integer d such that Ker(Od) = 0 and

Im(Od) ∩ Im(F d) = 0, and
(iii) each leader i knows the matrices Od

i and F d
i .

The Decentralized state estimation algorithm provides each
leader with the system initial state in diam(G(`)) steps.

Algorithm 1: Decentralized state estimation (leader i)

Input : Od
i , Y d

i , F d
i ;

Require : Ker(Od) = 0, Im(Od) ∩ Im(F d) = 0;

set
[

x̂i

ûi

]
= ([Od

i F d
i ])†Y d

i , Vi = Ker([Od
i F d

i ]);

transmit Si =
[

x̂i

ûi

]
+ Vi;

while Vi ⊥ Im
([

In

0

])
6= 0 do

for `j ∈ N
(`)
i do

receive
[

x̂j

ûj

]
and Vj ;

set
[

x̂i

ûi

]
=
[

x̂i

ûi

]
⊥ (Si ∩Sj), Vi = Vi ∩Vj ;

transmit Si =
[

x̂i

ûi

]
+ Vi;

return x̂i;

Proof: According to the initialization of Algorithm 1,
for i ∈ {1, . . . ,m}, we have that

Si(0) =
[

x̂i(0)
ûi(0)

]
+ Vi(0),

where [ x̂T
i (0) ûT

i (0) ]T = [ Od
i F d

i ]† Yi and Vi(0) =
Ker([ Od

i F d
i ]). For `i, `j ∈ V (`) let d`j ,`i

denote the distance
of the shortest path in G(`) connecting `j to `i. Then, for
i ∈ {1, . . . ,m}, let N

(`)
i,k =

{
`j ∈ V `|d`j ,`i ≤ k

}
. We show

by induction that, for t ∈ Z≥0 and i ∈ {1, . . . ,m}, it holds

Si(t) = ∩
j∈N

(`)
i,t

Sj(0). (11)

Notice that, for t = 0, equation (11) trivially follows from
the fact that N

(`)
i,0 = {`i}. Let t ∈ Z>0, and assume that

equation (11) holds true up to t− 1. Observe that

Si(t) = Si(t− 1) ∩

(
∩

j∈N
(`)
i

Sj(t− 1)

)

=

(
∩

h∈N
(`)
i,t−1

Sh(0)

)
∩

(
∩

j∈N
(`)
i

∩
h∈N

(`)
j,t−1

Sh(0)

)
where the last equality follows from the inductive hypothesis.
Since N

(`)
i,t = ∪j∈N`

i
N

(`)
j,t−1, equation (11) follows from

the above equality. Because G(`) is strongly connected,
we have that Si(diam(G(`))) = ∩j∈{1,...,m} Sj(0) for all
i ∈ {1, . . . ,m}. Because of Assumption (ii), the first n
components of the vector ∩m

j=1Si(0) ⊥
[

In
0

]
coincide with

x(0). We conclude that x̂i(diam(G(`))) = x(0).

Remark 1 The computation of the matrices Od
i , i ∈ V (`),

does not require the knowledge of the entire network model.
Given a graph, let a path be a sequence of vertices, such that
any two consecutive vertices in the sequence are connected
through an edge. Let the length of a path equal the number
of its edges. Let A be the network matrix, and observe that
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Algorithm 2: Decentralized detection (leader i)

Input : Od
i , Y d

i ;
Require : Im(Od) ∩ Im(F d) = 0;

set Si = (Od
i )†Y d

i + Ker(Od
i );

transmit Si;
for diam(G(`)) iterations do

for j ∈ N
(`)
i do

receive Sj ;
set Si = Si ∩ Sj ;

transmit Si;
if Si = ∅ then return 1
else return 0

the (i, j)-th entry of Ak, with k ∈ Z, is nonzero if and only
if there exists a path of length k connecting the agent j to
i. Let Nd

`i
⊆ V denote the set of neighbors within distance

d from the leader `i, i.e., the set of agents connected to `i

through a path of length at most d. It can be shown that the
matrix Od

i can be computed by only knowing the sub-matrix
of A with rows and columns in Nd

`i
.

It should be noticed that Algorithm 1 may converge with
less than diam(G(`)) iterations. In particular, by increasing
the number of measurements d, we have that the number
of iterations for the convergence of the proposed Algorithms
decreases. To see this, note that if the pair (A,C`1) is observ-
able, then, with a sufficiently large number of observations
d, the leader `1 is able to reconstruct the state without
communicating with the other leaders. Note however that
a larger d requires the leaders to know a larger subnetworks,
and, as it is shown in Section VI, it introduces numerical
difficulties in the execution of our algorithms.

B. Hierarchical detection

We consider now the problem of detecting the presence
of the misbehaving agents. Because the misbehaving set is
a priory unknown, the input matrix B and hence the matrix
F d are to be considered unknown as well.

Let Ud = [u(0)T . . . u(d−1)T ]T , and assume that each
leader `i has collected the observations y`i(0), . . . , y`i(d −
1). In Algorithm 2 we propose a procedure that allows the
leaders to detect if F dUd 6= 0 without using the matrix F d.

Theorem V.2 (Decentralized detection) Let (A,B, C(`))
be the unknown input linear system associated with
the graph G and the leader graph G(`). Let u be the
misbehaving input, and let Ud = [u(0)T · · · u(d− 1)T ]T ,
with d ∈ Z. Assume that

(i) G(`) is strongly connected, and
(ii) Im(Od) ∩ Im(F d) = 0, and

(iii) each leader i knows the matrices Od
i .

Then the Decentralized detection algorithm allows each
leader to detect if F dUd 6= 0 in at most diam(G(`)) steps.

Proof: Because Im(Od) ∩ Im(F d) = 0, we have that
the system Y d = Odx is inconsistent if F dUd 6= 0, so

l1 l2 l3

l4 l5 l6

l7 l8 l9

Fig. 3. A grid partitioned into 9 cblocks. Each block is identical and it
contains 9 vertices. The central vertex of a block corresponds to the leader.

that
⋂m

i=1 (x̂i + Vi) = ∅, where x̂i = (Od
i )†Y d

i and Vi =
Ker(Od

i ). Because G(`) is strongly connected, after at most
diam(G(`)) iterations each leader detects if F dUd 6= 0.

The following aspects should be noticed. First, the con-
dition Ker(Od) = 0 is not required by the Decentralized
detection because only the presence of an unknown input
has to be assessed. Second, in order to detect a misbehaving
input that becomes nonzero at an arbitrary instant of time,
the detection algorithm needs to be executed iteratively.
Precisely, at each time t ≥ d − 1, the consistency of the
system Y d

t = Odx(t− d + 1) is checked with the detection
algorithm, where Y d

t = [y(t−d+1)T · · · y(t)T ]T , y(t) =
C(`)x(t), and Ud

t = [u(t − d + 1)T · · · u(t)T ]T . Third
and finally, for the detection to be possible, there must exist
d ∈ Z and t ≥ d − 1 such that F dUd

t 6= 0. Such condition
coincides with the left-invertibility of the linear network,
which has to be assumed by any detection method [11].

VI. AN EXAMPLE OF HIERARCHICAL ESTIMATION AND
DETECTION

We show in this section the advantages of the hierarchical
structure presented in Section V. Let the network G be a two
dimensional lattice with (ab)2 agents, and let the network
be partitioned into b2 identical blocks containing a2 vertices
each. An example with b = 3 and a = 3 is in Fig. 3. Let
A describe the linear algorithm running on G, and assume
that the entries of A have been chosen independently from
each other and uniformly in the interval (0, 1), and then
normalized so that the row sums of A are all 1. Let Vi,
with i ∈ {1, . . . , b2}, denote the set of agents belonging to
the i-th block, and let the central vertex li ∈ Vi represent
the i-th leader. We assume that the leaders li and lj are
connected through an undirected edge if there exists h1 ∈ Vi

and h2 ∈ Vj that are connected in G. We focus on leader
l1 and we analyze the performance of our procedures as a
function of the parameters a and b.

A. State estimation

We compare here the performance of Algorithm 1 with
the method proposed in [10], where the state is recovered by
relying on the observability property of the pair (A,Cl1). We
show that, although theoretically correct, the latter method
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suffers from numerical instability when the dimension of A
grows. Let a = 3 and b = 3, and compute the condition
number6 of the observability matrix of the pair (A,C

(`)
k ),

where C
(`)
k is the composite output matrix associated with

the leaders set V
(`)
k = {l1, . . . , lk}, k = 1, . . . , 9. As we

see from Table I, the condition number rapidly decreases by
increasing the number of leaders. Precisely, in the case of
V

(`)
1 the condition number of the observability matrix is ∼

1014 so that the problem of estimating the state only relying
on the measurements of l1 is very ill-conditioned. When the

TABLE I

Leader Condition number Size (a) Size (b) Measurement (d)
V

(`)
1 ∼ 1014 3 1 2

V
(`)
2 ∼ 107 3 3 3

V
(`)
3 ∼ 105 3 5 3

V
(`)
4 ∼ 104 3 7 3

V
(`)
5 ∼ 104 5 1 6

V
(`)
6 ∼ 103 5 3 7

V
(`)
7 ∼ 103 5 5 7

V
(`)
8 ∼ 102 5 7 7

V
(`)
9 ∼ 102 5 9 7

leaders set is V
(`)
9 , the condition number becomes ∼ 102, so

that each leader can estimate the correct state reliably and
with limited model information by means of Algorithm 1.

We now investigate numerically a scalability property
of Algorithm V.1. Let |V (`)| = b2. Table I contains the
minimum number of measurements d such that Ker(Od) =
0, or, in other words, such that each leader is assured to
estimate the network state. Observe that, when a is fixed and
b grows, the number d remains constant. It follows that the
knowledge about the network model that a leader needs to
possess does not depend upon the cardinality of the network.

B. Detection

We analyze here the performance of Algorithm 2. Let the
agent i ∈ V \V (`) be misbehaving, and let the input sequence
{ui(t), t ∈ Z≥0} be an i.i.d. sequence taking value in the
interval (0, 1). For each a ∈ {3, 5} and each b ∈ {2, . . . , 12}
we consider 20 randomly chosen consensus networks, we
locate b2 leaders (cfr. Fig. 3), and we choose the misbehaving
agent i. The first instant of time in which a leader detects
the presence of i by means of Algorithm 2 is reported in
Fig. 4. Note that the detection time remains constant when
the dimension of the network grows beyond a threshold. It
follows that Algorithm 2 converges before diam(G(`)) iter-
ations, exhibiting therefore desirable scalability properties.

VII. CONCLUSION

The problem of estimating the state of a linear network in
the presence of an unknown input, as well as the problem of
detecting misbehaving parts in a linear network have been
considered. Whereas classical approaches require a complete
knowledge of network model, our methods only assumes

6The condition number equals the ratio of the largest singular value to
the smallest. Large condition numbers indicate a nearly singular matrix.

2 3 4 5 6 7 8 9 10 11 12
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Fig. 4. The figure shows the number of iterations required for the detection
of a misbehaving agent by means of Algorithm 2. Both the cases of a = 3
(squares) and a = 5 (circles) are plotted as a function of b.

partial knowledge of the system structure by the observer
agents. For the unknown input state estimation problem, we
assume the presence of some interconnected leader agents,
and we present a novel iterative algorithm which produces
an exact state estimation. For the detection of misbehaving
agents, we present two different approaches. The first method
exploits the presence of weakly interconnected subnetworks,
and it affords detection and identification when the misbehav-
ing inputs overcome a certain threshold. The second method
relies on our hierarchical leader structure, and it achieves
exact detection independent of the misbehaving inputs.
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