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Abstract

The theory of consensus dynamics is widely employed to study variouar linehaviors in networked con-
trol systems. Moreover, nonlinear phenomena have been obsenatdmal groups, power networks and in other
networked systems. These observations inspire the development inathes pf three novel approaches to define
distributed nonlinear dynamical interactions. The resulting dynamicakmsgs are akin to higher-order nonlinear
consensus systems. Over connected undirected graphs, the redytiagical systems exhibit various interesting
behaviors that we rigorously characterize.

I. INTRODUCTION

Collective behavior in animal groups, such as schools of, fiisitks of birds, and herds of wildebeests, is a
widely studied phenomenon. It has been proposed that thisi@eanaking in such groups is distributed rather
than central: each individual in such a group decides howetwbe based on local information. In particular, some
adjacency-based averaging models have been proposed ta thedobserved behavior in such systems. These
adjacency-based averaging algorithms are called conseaigarithms, and have been widely studied in various
engineering applications.

Of particular interest are recent results in ecology [4]akhéhow that, for small difference in the preferences of
the individuals, the decision making in animal groups islwebdeled using consensus dynamics. For significant
differences in the preferences of individuals, the denisipnamics bifurcate away from consensus. This observation
provides motivation for the development of dynamical systevhich mimic such nonlinear behaviors in engineered
multi-agent systems.

Recently, dynamical systems theory and control theory leen extensively applied to networked systems. In
particular, the consensus problem has been studied inugiiglds, e.g., network synchronization [15], flocking [18]
rendezvous [10], sensor fusion [16], formation contro| [&E; a detailed description is presented in [12], [6]. Some
nonlinear phenomena have been studied in certain classestwbrks. Certain nonlinear protocols to achieve

consensus have been studied [1]. The bifurcation probles be®en studied in neural networks; a Hopf-like
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bifurcation has been observed in a two cell autonomous syge], and pitchfork and Hopf bifurcations have been
studied in artificial neural networks [14], [19]. Some stabifurcations have been studied in load flow dynamics
of power networks [9]. A version of bifurcations in consessietworks has been studied in the opinion dynamics
literature [11]. The models in opinion dynamics problems te interpreted as consensus dynamics on a time
varying graph with no globally reachable node. These modetscomplicated, and are difficult to implement on
an engineered multi-agent network.

In this paper, we propose distributed algorithms to achiewglinear behaviors in a networked system. We
define three frameworks, namely, the absolute nonlinear, flbe relative nonlinear flow, and the disagreement
nonlinear flow to define nonlinear dynamics on a multi-agegttvork. We apply these frameworks to characterize
a pitchfork bifurcation in a multi-agent network. For a gnapith a single node, the proposed dynamics reduce to
scalar nonlinear dynamics. In essence, the proposed dgaame extensions of the scalar nonlinear dynamics to
engineered multi-agent systems. The major contributidresuo work are:

1) We propose generalized frameworks to describe dis&ibabnlinear dynamics in a multi-agent network.

2) For each framework, we generically define the set of finakfme equilibrium configurations.

3) We define the distributed pitchfork bifurcation dynamios networked systems using these frameworks.

4) We present some general tools to study stability of thgsamiics, and utilize them to study stability of the

pitchfork bifurcation dynamics.

5) We present a comprehensive treatment of these dynanridswoorder networks.

The remainder of the paper is organized as following. In teetiSn Il, we elucidate some basics of dynamical
systems and graph theory, which is followed by the developé frameworks to define nonlinear dynamics on
graphs in Section Ill. We use these frameworks to study fot&hbifurcation dynamics on graphs in Section IV.

Finally, our conclusions are in Section V.

Il. PRELIMINARIES
A. Pitchfork bifurcation
The equation

'rt:,yx_x?’a %QTER» (1)

is defined as the normal form for the supercritical pitchfbikircation [17]. The dynamics of (1) are as follows:

1) For~ < 0, there exists a stable equilibrium pointaat= 0, and no other equilibrium point.
2) For~ =0, there exists a critically stable equilibrium pointat= 0.

3) Fory > 0, there exist two stable equilibrium pointsaat= £, /7, and an unstable equilibrium point at= 0.

The pointy = 0 is called the bifurcation point.
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B. Laplacian Matrix of a graph

Given a digraptg = (V, &), whereV = {v1,...,v,} is the set of nodes anflis the set of edges, tHeaplacian
matrix £(G) € R"*" has entries:
-1, if (i,5) € €&,
lij=9qd;, ifi=j,
0, otherwise
whered; is the out-degree of nodg i.e., number of edges emanating from nad@]. The set of nodeg € V,
such that(i, j) € &, is referred to as thadjacencyof the nodei, and is denotedd;(7).
Properties of Laplacian Matrix:
1) The Laplacian matrix is symmetric if and onlydf is undirected.
2) A symmetric Laplacian matrix is positive semidefinite.
3) For a graphg with n nodes and at least one globally reachable node, the rankeofdplacian matrix is
n — 1.
4) The kernel of the Laplacian matrix for a graghof ordern with at least one globally reachable node is
diagR"), i.e. {(z1,...,2,) ER" |21 =+ =z, }.

C. Center manifold theorem
For (z1,22) € R™ x R"2, consider the following system

2 = A1z + g1(21, 22), (2)

22 = A222 + 92(21722)7
where all eigenvalues ofi; € R™**": and A, € R™2*"2 have zero and negative real parts, respectively. The
functionsg; : R™ x R™ — R™, andg, : R™ x R™ — R"2 satisfy the conditions

For the system in equation (2), for small, there exists [7] an invariant center manifdld R — R"2 satisfying

the conditions

h(0) =0, (%L(O) =0, and
Azh(21)+g2(21, h(21)) = %(21)[14121 + g1 (21, h(21))].

The center manifold theorem [7] states that the dynamicshercénter manifold determine the overall asymptotic

dynamics of (2) neafzy, z2) = (0,0), i.e., the overall dynamics are determined by

z1 = Arz1 + g1(21, h(21))- 4)
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D. Laplacian flow

Let G be a undirected connected graph of ordeThe Laplacian flowon R" is defined by
& =—L(G)x.
In components, the Laplacian flow is given by

gi= Y (zj—m), i€{l,...,n}.

jeadj(i)
The vectorL(G)x is called thedisagreement vectoit has been shown in [13] that the solutions to the Laplacian

flow converge to dia@R™) for fixed as well as switching topologies.

II1. DISTRIBUTED NONLINEAR DYNAMICS IN NETWORKS

Before we define distributed nonlinear dynamics in netwovks introduce the following notation. We denote

the set of connected undirected graphs withodes by

T, ={G|L(G) =L(G)", and ranKL(G)) = n — 1}.

A. Absolute nonlinear flow

We call a flowabsolute nonlinear flovif each node transmits a value which is a function of only its1dabel.

For ag € I',,, onR™, such a flow is given by
& =L(G)[f(x),

where f : R™ — R"™ is a smooth function. In components, the absolute nonlifiearis given by
gi= Y (filw:) = fi(z;), Vie{l,... n}.
j€adi(i)

The set of equilibrium points of the absolute nonlinear flew i
{z" | f(z¥) € diagR™)}.

The salient feature of the absolute nonlinear flow formafatis that the set of equilibrium points is an invariant
over the sefl’,,. Moreover, the sum of the states is an invariant over angdtajy of the system, which follows
from the fact thafy_" , @; = 0.

B. Relative nonlinear flow

We call a flowrelative nonlinear flowif each node transmits a value which is determined only bydifference

between the state of the node and the neighboring node. ot &,,, on R™, such a flow is given by

jji: Z f'i(‘ri_ajj)’ Vi€{17"'7n}7
jeadj(i)
wheref; : R — R, i € {1,...,n} are smooth functions.
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C. Disagreement nonlinear flow

We call a flow disagreement nonlinear flowf each node transmits a value which is determined only by

corresponding entry in the disagreement vector. Fgral’,, on R™, such a flow is given by
&= f(L(G)x),

where f : R™ — R™ is some smooth function. In components, the disagreemeniinear flow is given by

jf'i:fi( Z (xi—mj)>, Vie{l,...,n}.

jeadj(i)
A particular case of the disagreement nonlinear flow is whachef; is a polynomial. In this scenario, the

disagreement nonlinear flow is given by
i = (ap +a1D(z) + ...+ an(D(x))")1,,
whereD(x) = diag (£(G)x). In components, this becomes
i =ao+arZ(x;) 4+ ...+ am(Z(z;))™, Vie{l,...,n},
whereZ(z;) = > cagii)(zi — 2;). Let ther < m real roots of the equation
ag+arz+...+a,z" =0

bez;,i € {1,...,r}. The set of equilibrium points of the disagreement nonlirfeav with polynomial nonlinearity
is
(" €R™| (L(G)a"); € {21, 2} Vi€ {1,...,n}},
where (L£(G)x*); represents thé" entry of the vectorZ(G)z*. Here, the equilibrium points depend on the graph
topology.

IV. DISTRIBUTED BIFURCATION DYNAMICS IN NETWORKS

We study a particular class of distributed nonlinear dymamiheref; : R — R, for eachi € {1,...,n}, is

fi(x) = yx — 23, wherey € R is some constant. We refer to such nonlinearity gitehfork nonlinearity

A. Absolute nonlinear flow with pitchfork nonlinearity

Given a connected undirected gra@te I',,, andy € R, the absolute nonlinear flow with pitchfork nonlinearity

is
i =yL(G)x — L(G)diag(x)*1,. (5)
In components, this becomes
di=vy Y (mi—=z)— Y (2} —a)), Vie{l,...n} (6)
jeadi(i) jeadi(i)
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For a given graply € I',,, and a full rank diagonal matri¥’ € R™*™, let us define the@eneralized Laplacian
flow by
i=—L(G)Y . (7)

Lemma 1 (Generalized Laplacian Flow)or the generalized Laplacian flow, the following statersembld:
1) The equilibrium points are given by
E={aY 1, |acR}.

2) The solutions converge to the s&tf and only if T > 0.

Proof: We start by establishing the first statement. The equilibrpoints are given by
Tz € ker(£(G)). (8)

Since Y is full rank, the set in equation (8) is equivalent to the et
To prove the second statement, we start by establishinguffieiency. We consider a Lyapunov functiéf(x) =
2T YL(G)Yx. We note thatl(z) > 0 andV(z) = 0 only if z € £. The Lie derivative of this Lyapunov function

along the generalized Laplacian flow is given by
V = —22"YL(G)YL(G) Yz = —2|| T2 L(G) Y| < 0.

Hence, the Lyapunov function is monotonically non-incnegslong the generalized Laplacian flow. The proof for
convergence to the sétis similar to Exercise 1.25 in [3].
To establish necessity, assume that some entfy & negative. Without loss of generality we assume that the

it" diagonal entry isy; < 0. We observe that
el L(G)Ye; = viel L(G)e; < 0,

wheree; is thei’® element of the canonical basis Bf*. Hence, the matrix-£(G)Y has at least one positive
eigenvalue, which implies that the generalized Laplaciaw fils unstable. We further observe thhtcannot have
a zero entry, since it is a full rank matrix, which concludes proof. [ ]

Before we analyze the absolute nonlinear flow with pitchfodalinearity, we introduce some useful notation.
Giveny € R+, define fo, f1 : [ — \/47/3,/47/3] — R by

fo(B) =B, and f+(3) = —g +4/7— %ﬂ?

Theorem 1 (Absolute nonlinear flow with pitchfork nonlinearityor the absolute nonlinear flow with pitchfork

nonlinearity, the following statements hold:
1) Equilibrium points:

For v < 0, the set of equilibrium points is

. = diag(R™). 9)
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For v > 0, the set of equilibrium points is

& ={y R y1,+ ya € {/-(9) folB), F+(8)} and B € [—/27]3, v/ 3] }

2) Consensus:
For v < 0, each trajectory converges to some point in the&et
3) Bifurcation:

For v > 0, each equilibrium point:* € &, is locally stable if and only in;*Q >« for eachi € {1,...,n}.

Alternative characterization of equilibrium points. Let = be the set ofn-dimensional vectors with entries in

{-,0,+}, whose cardinality i8". Therefore£ € = is ann-dimensional multi-index with indices in alphabet
{—,0,+}. For any¢ € =, define f¢ : [—/47/3, \/47/3] — R™ by

1e(8) = (fer(B), - feu(3)) € R™.

The set&, can be interpreted as the union of three curves in the faligwiay

Ep = Ugez fe([—/47/3,/47/3)).

(Here we letg(A) denote the image of a functign: A — R.) O

Proof: We start by determining the equilibrium points for equat{), which are given by
vz — diag(z)31,, € ker(L(G)),
— yr; — 2 =a, Vic{l,...,n}, anda € R. (20)

We observe that equation (10) is a cubic equation and hemaseathleast one real rogt (say). The other roots of

the equation (10) can be determined in termgiptind are given by

xi:—giwfy—%ﬂQ, Vie{l,...,n}. (112)

We observe that the roots given in equation (11) are complex< 0. Hence, fory < 0, the equilibrium points
are given by the sef.. It follows from equation (11) that foty > 0, &, is the set of equilibrium points.

To establish the second statement, we consider a Lyapunmtida V (z) = 27 £(G)z. We observe that, for
~v < 0, the Lie derivative of this Lyapunov function along the dbs® nonlinear flow with pitchfork nonlinearity

is given by
V(x) = 2v2T £(G)x — 22T £(G)diag(x)*1,, < 2yzT L(G)z < 0,

which establishes the stability of each point in the §etThe proof of convergence is similar to Exercise 1.25
in [3].
To establish the third statement, we linearize the absalotdinear flow with pitchfork nonlinearity about an
equilibrium pointz* to get
i = L(G)(yI — 3diag(z*)?)x =: L(G) Y,
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where Y is a diagonal matrix. From Lemma 1, it follows that each efdim pointz* € &, is locally stable if

and only if T is negative definite, which concludes the proof. [ ]
Remark 1. The results in Theorem 1 hold for any directed graph with asteone globally reachable node.

Conjecture 1 (Completeness)Given avy € R, the union of the basin of attractions of all the stable efuiim

points of the absolute nonlinear flow with pitchfork nonénigy is R™ \ Z, where Z is a measure zero set.

Conjecture 2 (Switching topology) The results in Theorem 1 hold for a network with switchingotogy G, €
I, keN.

Discussion (Absolute nonlinear system with pitchfork nonlinearityye determined the equilibrium points of the
absolute nonlinear flow with pitchfork nonlinearity andadsished their stability in Theorem 1. Now we study this
system on some low order graphs to better understand thelyindedynamics. We start with a graph with two
nodes. Fory < 0, the set of equilibrium points of this system is the 8et= {(z1,22) € R? | 21 = 22}, which are
all stable, while fory > 0, the set of equilibrium points i&; U &, where&s = {(z1, 22) € R? | 22 +a5+x170 = 7}
The set of equilibrium points fory = 1 is shown in Figure 1(a). The subset of the consensu€séelonging

to the convex hull of the sef; is unstable. Asy is decreased, the ellipse of equilibrium points shrinksize,s
disappearing at = 0.

Observe thatr; + zo is an invariant along any trajectory of the system, and it banutilized to reduce the
dimension of the system. For the reduced system+ z, = ¢ is a parameter, and it turns out that a pitchfork
bifurcation is observed at = \/m The corresponding bifurcation diagram for= 1 is shown in Figure 1(b).
For ¢ > /4~/3, the only equilibrium point of the system is at= c/2. For ¢ < \/4+/3, this equilibrium point

loses its stability and two new stable equilibrium pointpegr in the system. This is a pitchfork bifurcation.

15

05 .

-2 -15 -1 -0.5 0 0.5 1 15 2 0 0.5 1 15

(a) Equilibrium points (b) Bifurcation diagram

Fig. 1. Absolute nonlinear flow with pitchfork nonlinearipn a graph with two nodes and = 1. (a) The unstable equilibrium points are
shown as magenta colored dashed line while the stable onehana in blue colored solid lines. (b) The bifurcation degrfor the reduced
system. Notice the pitchfork bifurcation at= 2/+/3.
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We now consider a line graph with three nodes. 6t 0, the set of equilibrium points i€3 = {(x1,x2,x3) €
R3 | 21 = x5 = x3}, which are all stable fory < 0. Fory > 0, the set of equilibrium points i€3 U &3, where
& = {(w1,22,23) € R® | 2 + 2% + x120 = 7, OFr 2% + 23 + z123 = 7, Or 23 + 2% + 2323 = v}; the points
(z,7,7) € & are unstable fofz| < \/v/3 and stable forz| > //3. The set of equilibrium points for = 1
is shown in Figure 2(a). Similar to the two node case+ xz2 + z3 iS an invariant along any trajectory of the
system, and this can be utilized to reduce the dimensioneo$yistem. For the reduced systeqmH- x5 + 23 = ¢ is
a parameter, and very interesting behaviors are observéusaparameter is varied. We note that the equilibrium
at (¢/3,¢/3) corresponds to the consensus state. #et 0 the set of equilibrium points i$0,0) U &,, where
E = {(z1,72) € R? | 22 + 23 + 122 = ~v}. Furthermore, each point in the &t is stable, while the equilibrium
point (0,0) is a source (see Figure 3(a)). As the valuecd$ increased from zero, the reduced system has seven
equilibrium points, three of which are sinks, three are #agbints, and one is a source (see Figure 3(b)). As
the value ofc is further increased, the three saddle points move towdrelsdurce, reaching it at= /3y at an
S3-symmetric transcritical bifurcation [2], [8]. As the sdéddoints cross the source, i.e., for- \/3~, the source
becomes a sink (see Figure 3(c)), and the three saddle puoimte towards the other three sinks. At= 2, /7,
the three saddles meet the three sinks and annihilate eheh iot saddlenode bifurcations. Fer> 2, there is
only one equilibrium point in the system, which is a sink ($égure 3(d)). A bifurcation diagram for = 1 is
shown in Figure 2(b). It can be seen thatat /3, the three saddle points (shown as red color lines with nmediu
thickness) reach the source (shown as magenta color tlg)y Bmd thus convert it into a sink (shown as blue color
thick lines). The annihilation of the saddle points and sitfkrough saddlenode bifurcations can also be seen at
c=2.

15

AY

0 0.5 1 15 2 25
1 c

(a) Equilibrium points (b) Bifurcation diagram

Fig. 2.  Absolute nonlinear flow with pitchfork nonlinearipn a line graph with three nodes and= 1. (a) The equilibrium points are
comprised of three ellipses and a line. (b) The bifurcatiagim for the reduced system. Notice thie-symmetric transcritical bifurcation at
¢ =+/3, and the saddlenode bifurcationscat= 2.

Finally, we consider a ring graph with three nodes. We prawvediheorem 1 that the set of equilibrium points

and their stability properties are invariant over the Bgt but the trajectories and the basins of attraction of
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-1 -1
-15 -15
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>(1 X1
(a) c=0 (b) c=0.5
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1
1 0.95
0.9

0.5
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0.8

0
0.75
-05 o7
0.65

-1

-1 -0.5 0 0.5 1 15 0.7 0.8 0.9 1 11
Xl ><1
(c) c=1.8 (d) c=2.5

Fig. 3. Phase plots for the reduced absolute nonlinear flow tine graph with three nodes and= 1. The stable equilibrium points are
shown in blue. The isolated sinks are shown as blue trianghessources are shown as magenta squares, and the sadd#mwreas red

plus signs. (a) An ellipse is the set of the stable equilipripoints, and the consensus point is the source. (b) Thrée sind three saddles
are present. The consensus point remains a source. (c) THies#&dve crossed the consensus point and turned it intckaasid have moved
further towards the other three sinks. (d) The three saddigs annihilated the three sinks, and the consensus painglisbal sink.

these equilibrium points do change with the graph topoldg\rigure 4, we show the phase plot for the reduced
absolute nonlinear flow with pitchfork nonlinearity on agigraph with three nodes reduced on the hyperplane
x1 +x9 + 23 = 0.5. Observe that the trajectories and the basins of attradfidhe equilibrium points are different

from those for the line graph in Figure 3(b).

B. Relative nonlinear flow with pitchfork nonlinearity

Given a connected undirected gra@he T',,, and~ € R, the relative nonlinear flow with pitchfork nonlinearity,
Vie{l,...,n}, is

b= Y (wi—w)— Y (wi—wxj)’ (12)

jeadj(i) jeadj(i)
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Fig. 4. The reduced absolute nonlinear flow with pitchforklntearity on a ring graph with three nodes= 1, andz; + z2 + x3 = 0.5.
The sinks are shown as blue triangles, the saddles are showedalus signs, and the source is shown as a magenta square.

n .

Note that for the relative nonlinear flow with pitchfork novdarity, > , @:; = 0, which implies thaty_" , z;
is invariant along any trajectory of the system. This systejin general, hard to characterize. In the following
discussion we present this class of dynamics on some low graghs.
Discussion (Relative nonlinear flow with pitchfork nonlinearity). Werdt study the relative nonlinear flow with
pitchfork nonlinearity on a line graph with two nodes. FoK 0, the set of equilibrium points for this system is
the consensus set, i.€; = {(z1,72) € R? | 71 = x5} and each equilibrium point is stable. Fer> 0, the set of
equilibrium points isC, U A,, whereA; = {(z1, x2) | 21 — 22 = £,/7}. Moreover, fory > 0 each point inA; is

stable, while each point if; is unstable. A phase plot of this system is shown in Figure 5.

Fig. 5. Phase plot for relative nonlinear flow with pitchfarknlinearity on a graph with two nodes and= 1. The consensus set (shown as

magenta colored dashed line) is unstable, while two setsvfslas blue colored solid line) are stable.

We now study this system on a line graph with three nodes.yFear 0, the set of equilibrium points of this

system is the consensus set, i®&.,= {(z1,72,73) € R3 | 21 = x5 = 23}, which is stable. Fory > 0, the set of

April 27, 2010 DRAFT



12

equilibrium points isC3 U A3, where

A3:{(c+3\ﬁ7c’c3\ﬁ>7(c+ﬁ7c2\ﬁ7c+\ﬁ>’(c3\ﬁ7c7c+3\ﬁ>7

3 3 3 3 3 3 3 3 3
c—\ﬁ c+2\ﬁ c—\ﬁ c+2\ﬁ c—ﬂ c—\ﬁ c—Q\ﬁ c+\ﬁ c—i—\ﬁ
3 7 3 ’ 3 ’ 3 ’ 3 7 3 ’ 3 ’ 3 7 3 ’
ct\ ctv =2y c—/7 c—\7 ct2/y R
3 3 3 J\T3 T3 T3 )R

These equilibrium points are shown in Figure 6(a). We nowakthe fact that the sum of the states is invariant over
a trajectory to reduce the dimension of the system. The pplasef the reduced system is shown in Figure 6(b).

Notice that the reduced system is comprised of four sinks; $addle points, and a source (consensus point).

0.8
0.6
0.4

0.2

(a) Equilibrium points (b) Phase plot

Fig. 6. The relative nonlinear flow with pitchfork nonlinégron a line graph with three nodes and= 1. (a) The set of equilibrium points
consists of nine lines. (b) The phase plot of the reducedesy$or c = 0. The system is comprised of nine equilibrium points. The eosas
point (shown as magenta square) is a source, four equilibpioimts are sinks (shown as blue triangles), and four eqjiulib points are saddle

points (shown as red plus signs).

Finally, we study this system on a ring graph with three noées v < 0, the set of equilibrium points of this
system is the consensus set, i®&.= {(z1, 72, 23) € R® | 21 = x5 = 23}, which are stable fory < 0. Fory > 0,
the set of equilibrium points i€3 U &1, where

62—

Y
Eeyl = {x1, 22, 23 | o3+ x5 4+ 2129 — €1y — cro + =0, andx; +z2 + 23 = ¢, ¢ € R}.

These equilibrium points are shown in Figure 7(a). Again,itivariance of the sum of the states along a trajectory
is exploited to reduce the dimension of the system. The pplkxdef the reduced system is shown in Figure 7(b).

Note that each point ofy projected on the reduced space is stable, while the consgént is a source.
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(a) Equilibrium points (b) Phase plot

Fig. 7. The relative nonlinear flow with pitchfork nonlinégiron a ring graph with three nodes and= 1. (a) The set of equilibrium points
is an elliptic cylinder (represented in the figure by ringejla line. (b) The phase plot of the reduced systemcfer 0. Each point of the
ellipse is stable, while the consensus point (shown as a negeunare) is a source.

C. Disagreement nonlinear flow with pitchfork nonlinearity

Given a connected undirected graphe T',,, andy € R, the disagreement nonlinear flow with pitchfork

nonlinearity is
i =yL(G)x — (diag(L(G)z))>1,. (13)

In components, the above dynamits,c {1,...,n}, are given by
3

jeadi(i) jeadj(i)
Before we analyze the disagreement nonlinear flow with foighnonlinearity, we introduce the following

notation. We partition the Laplacian matrix in the followimvay:

Lnfl L*,n
E(g) = ) (15)
Ln,* Ln,n
whereL,,_; € R(»—Dx(n-1)
We also construct a transformation matéxe R"*™ in the following way:

Lnfl L*n
P= "ol (16)
1ir 1
The last row of the transformation matriX is chosen to be the basis of the kernel of the Laplacian m&{(@),
for G € I',,. Hence, a coordinate transform through matfixseparates the center manifold and the stable/unstable

manifold. Now, we state some properties of the transforwnathatrix P.

Lemma 2 (Properties of the transformation matrixpiven a graphg € I',,, then for the transformation matri®

defined in equatiorf16), the following statements hold:
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1) The submatrixL,,_; is symmetric positive definite.
2) The transformation matrix’ is full rank.

3) The inverse of the transformation matrix satisfies
1
IZP*1 =el', and P7le, = -1,
n

n?

wheree, =0 ... 0 1]

Proof: We start by establishing the first statement. We define a xnatitby

T I,-1 O 7
171
and note that
Lnfl L*,n
TL(G) =
0 0

The matrixT" is full rank, hence kéfl'£(G)) = ker(£(G)). Moreover, from Theorem 1.37 in [3], we know that
for a connected undirected graph, rafk(G)) = n — 1. Therefore, rankKTL(G)) = n — 1. We also note that
L,_11,-1 = —L,,. Hence,L,,_; must have full rank. Furthermoré,,,_, is a principal minor of the positive
semidefinite matrixC(G). Hence,L,,_1 is positive definite.

To establish the second statement, we construct a matex[£(G) 1,]7. Sincel, € ker(£(G)), T has full

row rank. We also construct a matriX as

I,—1 0 0
T=|17, 1 0|,
0 0 1
and note that
Lp—1 Ly
IT=| o0 0
1ir 1

An argument similar to the one in the proof of the previousesteent establishes the second statement.

To prove the third statement, we note that the inverse ostommation matrixP is given by

pl_ (Ln,1 - L*,nlg—l)_l %1”*1 (]_7)
- 4T o T -1 1
1n_1(Ln—1 L*,nln—l) n

It follows immediately from equation (17) thal,fP*1 =e, and P le, = %LL. This concludes the proof of the

third and the last statement. [ ]

Theorem 2 (Disagreement nonlinear flow with pitchfork nonlinearityjor the disagreement nonlinear flow with
pitchfork nonlinearity, the following statements hold:

Equilibrium points:
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1) For v <0, the set of equilibrium points is
F. = diag(R").
2) For v > 0, the set of equilibrium points is
n—1
F = {P‘ly ly € R y1,- ,yn—1 € {0, —/7,/7}, Yn is arbitrary and Zy’ €{0,—7, ﬁ}}.
i=1

Consensus:
For v < 0, each trajectory converges to some point in the Bgt
Bifurcation:

1) For v > 0, andn even, the set of locally stable equilibrium points is
n—1
Fp = {Pfly ly € R", y1, - ,yn—1 € {=v7: vV}, yn is arbitrary, and Zyi e {-v \ﬁ}}.
=1

Moreover, each equilibrium point* € F, \ F, is unstable.

2) For v > 0, and oddn > 1, each equilibrium point* € F, is unstable.

Proof: We transform the coordinates gp= Pz, and observe that in the new coordinates the equation (13)
transforms to
Y1 — y:f
P ly=x ' : (18)
Yn—1 — yg—l
—1 —1 <
=i v+ (0 )

We construct a matrix) as

In—l 0
Q=1
17 1

and invoke Lemma 2 to observe that

(Lnfl - L*}nlr’{fl)_l %]—nfl
0 1

QP! =

We multiply each side of equation (18) with to get the following:

(0 Y1 — 7
_ . . 1 .
(Lnfl - L*,nlgfl) ! : =7 : - Elnflyna
Un—1 Yn—1— Yoy
n—1 n—1 3
1=1 1=1

The above set of equations is equivalent to the followingatigans
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U1 -y
=Y(Ln-1 — Linll ) : + L nn, (19)

ynfl Yn—1 — yi—l

n—1 n—1 3
gn=—> U+ (Z yi> : (20)
=1 =1
The equilibrium point of the system in equation (19), forkeae {1,...,n — 1}, are given by

{0}, if v <0,
Yy; €
{0, £~} if y>0.

The equilibrium points, thus obtained, should be consisteith the equilibrium condition of equation (20).

Substitution of these equilibrium points into the equat{@f) yields

i: Yi € {0, :t\f’y}

The equilibrium value ofy,, is a free parameter, and can take any value R.
The proof of the stability of the sef, is similar to the Lyapunov function based proof in TheorenTd prove
the local stability of each equilibrium point* € 7, for n even, we shift the origin of (19) and (20), defining new

coordinates as

(CvaQ)T = (Clh o °7<1n717<—2)T =Y — y*v

where P~1y* € F,. In these new coordinates, (19) and (20) become

G | 2L+ L) 0G| @) | 1)
: 0 0 G 92(¢2)

whereg, : R»~! - R* ! andg, : R*~! — R satisfy equation (3).
The dynamics of (21) are similar to the dynamics of (2), gnd= h(¢2) = 0 is the center manifold. Thé,
dynamics on this manifold are neutrally stable. Hence, eaglhilibrium pointz* € 7, is locally stable.

Similarly, for n odd, expressing (19) and (20) in the new coordinates gives

g | (=20 + 1,017 ) 0 G 91(¢1) | 22)
G2 —3y1]_, 0 G2 g2(C2)

where,g; : R*~! — R~} andg, : R"~! — R satisfy the conditions in equation (3). Since, the matrix/ +
171_11,TL_1 has an eigenvalue at— 3, the equilibria are unstable for > 3.

The instability of the setF;, \ F, follows similarly. [ |

Remark 2. The absolute, relative and disagreement nonlinear flows lmstudied with other normal forms for
the bifurcations in scalar systems. For example, one magidenthe transcritical nonlinearityf; : R — R defined

by fi(z) = vr — 2%, for all i € {1,...,n}, and somey € R. It can be shown that, fory > 0, the absolute
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nonlinear flow with transcritical nonlinearity converges ¢consensus under very restrictive conditions, otherwise i

is unstable. The disagreement nonlinear flow with trangaitnonlinearity is unstable fory > 0. O

V. CONCLUSIONS

In this paper, we considered three frameworks which defirstrildiited nonlinear dynamics in multi-agent
networks. We determined the set of equilibria that could bkieved through these dynamics, and examined
their stability. We also described the bifurcation behavio multi-agent networks using these frameworks, and
demonstrated a variety of interesting behaviors that caachi&eved. These models could be used for the development
of distributed protocols to achieve a certain configuratiora robotic network. Moreover, several physical and
ecological systems lie on the category of relative nonlinfdawv, e.g., power network models, and models for
collective animal behavior; the analysis presented in piaiger could be helpful for understanding these systems.
Furthermore, the models presented in this paper could lktosgesign distributed systems with desired properties,
e.g., one could design an artificial biological network thiege certain performance.

A number of extensions to the work presented here are pes$tbr example, the networks considered here are
static. There is a high possibility that the described dyicarpersist for networks with switching topology as well.
Furthermore, the class of functions which yield stable iia is not well understood yet. It remains an open
problem to characterize this. The passivity based appro&¢h] could be helpful in ascertaining the stability for

a general class of nonlinearities.
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