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Abstract. Motivated by recent interest for multi-agent systems and smart grid architectures,
we discuss the synchronization problem for the network-reduced model of a power system with non-
trivial transfer conductances. Our key insight is to exploit the relationship between the power network
model and a first-order model of coupled oscillators. Assuming overdamped generators (possibly due
to local excitation controllers), a singular perturbation analysis shows the equivalence between the
classic swing equations and a non-uniform Kuramoto model. Here, non-uniform Kuramoto oscillators
are characterized by multiple time constants, non-homogeneous coupling, and non-uniform phase
shifts. Extending methods from transient stability, synchronization theory, and consensus protocols,
we establish sufficient conditions for synchronization of non-uniform Kuramoto oscillators. These
conditions reduce to necessary and sufficient tests for the standard Kuramoto model. Combining
our singular perturbation and Kuramoto analyses, we derive concise and purely algebraic conditions
that relate synchronization in a power network to the underlying network parameters.
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1. Introduction. The interconnected power grid is a complex and large-scale
system with rich nonlinear dynamics. Local instabilities arising in such a power
network can trigger cascading failures and ultimately result in wide-spread blackouts.
The detection and rejection of such instabilities will be one of the major challenges
faced by the future “smart power grid.” The envisioned future power generation will
rely increasingly on renewables such as wind and solar power. Since these renewable
power sources are highly stochastic, there will be an increasing number of transient
disturbances acting on an increasingly complex power grid. Thus, an important form
of power network stability is the so-called transient stability, which is the ability of a
power system to remain in synchronism when subjected to large transient disturbances
such as faults or loss of system components or severe fluctuations in generation or load.

Literature Review. In a classic setting the transient stability problem is posed
as a special case of the more general synchronization problem, which is defined over
a possibly longer time horizon, for non-stationary generator rotor angles, and for
generators subject to local excitation controllers aiming to restore synchronism. In
order to analyze the stability of a synchronous operating point of a power grid and
to estimate its region of attraction, various sophisticated algorithms have been de-
veloped. Reviews and survey articles on transient stability analysis can be found
in [8, 10, 32, 38]. Unfortunately, the existing methods do not provide simple formulas
to check if a power system synchronizes for a given system state and parameters. In
fact, an open problem, recognized by [21] and not resolved by classical analysis meth-
ods, is the quest for explicit and concise conditions for synchronization as a function
of the topological, algebraic, and spectral graph properties of the underlying network.

The recent years have witnessed a burgeoning interest of the control community in
multi-agent systems. A basic tasks in a multi-agent system is a consensus of the agents’

∗This work was supported in part by NSF grants IIS-0904501 and CPS-1135819. This document
is a vastly revised and extended version of [15].
†Florian Dörfler and Francesco Bullo are with the Center for Control, Dynamical Systems and

Computation, University of California at Santa Barbara, Santa Barbara, CA 93106, {dorfler,
bullo}@engineering.ucsb.edu

1



2 F. Dörfler and F. Bullo

states to a common value. This consensus problem has been subject to fundamental
research as well as to applications in robotic coordination, distributed computation,
and various other fields including synchronization [7,30,33]. Another set of literature
relevant to our investigation is the synchronization of coupled oscillators [6], in partic-
ular in the classic model introduced by Kuramoto [26]. The synchronization of coupled
Kuramoto oscillators has been widely studied by the physics and the dynamical sys-
tems communities. This vast literature with numerous results and rich applications to
various scientific areas is reviewed in [1,17,35]. Recent works [12,17,23,27] investigate
the close relationship between Kuramoto oscillators and consensus networks.

The three areas of power network synchronization, Kuramoto oscillators, and
consensus protocols are apparently closely related. Indeed, the similarity between the
Kuramoto model and the power network models used in transient stability analysis is
striking. Even though power networks have often been referred to as systems of cou-
pled oscillators, the similarity to a second-order Kuramoto-type model has been men-
tioned only very recently in the power networks community in [18,19,36], where only
qualitative simulation studies for simplified models are carried out. In the coupled-
oscillators literature, second-order Kuramoto models similar to power network models
have been analyzed in simulations and in the continuum limit; see [1, 17] and refer-
ences therein. However, we are aware of only two articles referring to power networks
as possible application [6, 37]. Also in consensus problems the synchronization of
power networks has often been envisioned as possible application [5,22]. In short, the
evident relationship between power network synchronization, Kuramoto oscillators,
and consensus protocols has been recognized, but the gap between the first and the
second two topics has not been bridged yet in a thorough analysis.

Contributions. There are three main contributions in the present paper. As a
first contribution, we present a coupled-oscillator approach to the problem of synchro-
nization and transient stability in power networks. Via a singular perturbation analy-
sis [31], we show that the transient stability analysis of the classic swing equations with
overdamped generators reduces, on a long time-scale, to the problem of synchronizing
non-uniform Kuramoto oscillators with multiple time constants, non-homogeneous
coupling, and non-uniform phase-shifts. Our coupled oscillators and singular pertur-
bation approach is one way to provide a link connecting transient stability analysis
to networked control, a possible link that has been hinted at in [5,6,18,19,21,22,36].

Second, we give novel, simple, and purely algebraic conditions that are sufficient
for synchronization in a power network. To the best of our knowledge these conditions
are the first ones to relate synchronization in a power network directly to the under-
lying network parameters. Our conditions are based on different and possibly less
restrictive assumptions than those obtained by classic analysis methods [8,10,32,38].
We consider a network-reduced power system model, we do not require relative angu-
lar coordinate formulations accompanied by a uniform damping assumption, and we
do not require the transfer conductances to be “sufficiently small” or even negligible.
On the other hand, our results are based on the assumption that each generator is
strongly overdamped, possibly due to internal excitation control. This assumption
allows us to perform a singular perturbation analysis and study a dimension-reduced
system. Due to topological equivalence, our synchronization conditions hold locally
even if generators are not overdamped, and in the application to real power networks
the approximation via the dimension-reduced system is theoretically well-studied and
also applied in practice. Compared to classic analysis methods [8, 10, 32, 38], our
analysis does not aim at providing best estimates of the basin of attraction of syn-
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chronous equilibria or the critical clearing time, possibly relying on numerical proce-
dures. Rather, we pursue an analytic approach to the open problem [21] of relating
synchronization to the underlying network structure. For this problem, we derive
sufficient and purely algebraic conditions that can be interpreted as “the network
connectivity has to dominate the network’s non-uniformity and the network’s losses.”

Third and finally, we perform a synchronization analysis of non-uniform Kuramoto
oscillators, as an interesting mathematical problem in its own right. Our analysis is
based on methods from consensus protocols and synchronization theory. As an out-
come, purely algebraic conditions on the network parameters establish the admissible
initial and ultimate phase cohesiveness, frequency synchronization, and phase syn-
chronization of the non-uniform Kuramoto oscillators. We emphasize that our results
do not hold only for non-uniform network parameters but also for non-complete cou-
pling topologies. When our results are specialized to classic Kuramoto oscillators,
they reduce to necessary and sufficient synchronization conditions.

Paper Organization. The remainder of this section introduces some notation
and recalls some preliminaries. Section 2 reviews the consensus, Kuramoto, and power
network models, introduces the non-uniform Kuramoto model, and presents the main
synchronization result. Section 3 relates these models via a singular perturbation anal-
ysis, and Section 4 analyses the non-uniform Kuramoto model. Section 5 illustrates
these results with simulations. Finally, some conclusions are drawn in Section 6.

Preliminaries and Notation. Given an n-tuple (x1, . . . , xn), diag(xi) ∈ Rn×n
is the associated diagonal matrix, x ∈ Rn is the associated vector, xmax and xmin

are the maximum and minimum elements, and ‖x‖2 and ‖x‖∞ are the 2-norm and
the ∞-norm. Let 1n and 0n be the n-dimensional vectors of unit and zero entries.
Given two non-zero vectors x, y ∈ Rn the angle ∠(x, y) ∈ [0, π] is defined uniquely via
cos(∠(x, y))=xT y/(‖x‖2 ‖y‖2). Given a nonnegative matrix A ∈ Rn×n with non-zero
entries aij > 0 for (i, j) ∈ E , let diag(aij) denote the diagonal matrix diag({aij}(i,j)∈E).

A weighted directed graph is a triple G = (V, E , A), where V = {1, . . . , n} is the set
of nodes, E ⊂ V×V is the set of directed edges, and A ∈ Rn×n is the adjacency matrix.
The entries of A satisfy aij > 0 for each directed edge (i, j) ∈ E and are zero otherwise.
Any nonnegative matrix A induces a weighted directed graph G. The Laplacian of G
is the n×n matrix L(aij) , diag(A1n)−A. In the following, we assume that A = AT ,
that is, G is undirected. In this case, if a number k ∈ {1, . . . , |E|} is assigned to any
edge (i, j) with i > j, then the incidence matrix B ∈ Rn×|E| is defined component-wise
as Blk = 1 if node l is the sink node of edge k and as Blk = −1 if node l is the source
node of edge k; all other elements are zero. The Laplacian equals then the symmetric
matrix L(aij) = BT diag(aij)B. If G is connected, then ker(BT ) = ker(L(aij)) =
span(1n), all n− 1 remaining non-zero eigenvalues of L(aij) are strictly positive, and
the second-smallest eigenvalue λ2(L(aij)) is called the algebraic connectivity of G.

The torus is the set T1 = [0, 2π], where 0 and 2π are associated with each other, an
angle is a point θ ∈ T1, and an arc is a connected subset of T1. The product set Tn is
the n-dimensional torus. With slight abuse of notation, let |θ1−θ2| denote the geodesic
distance between two angles θ1 ∈ T1 and θ2 ∈ T1. For γ ∈ [0, π], let ∆(γ) ⊂ Tn be
the set of angle arrays (θ1, . . . , θn) with the property that there exists an arc of length
γ containing all θ1, . . . , θn in its interior. Thus, an angle array θ ∈ ∆(γ) satisfies
maxi,j∈{1,...,n} |θi − θj | < γ. For γ ∈ [0, π], we also define ∆̄(γ) to be the union of
the phase-synchronized set {θ ∈ Tn | θi = θj , i, j ∈ {1, . . . , n}} and the closure of
the open set ∆(γ). Hence, θ ∈ ∆̄(γ) satisfies maxi,j∈{1,...,n} |θi − θj | ≤ γ, and the
case θ ∈ ∆̄(0) corresponds simply to identical angles θ. For a rigorous definition of
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the difference between angles, we restrict our attention to an open half-circle: for
angles θ1, θ2 with |θ1 − θ2| < π, the difference θ1 − θ2 is the number in ]−π, π[ with
magnitude equal to the geodesic distance |θ1 − θ2| and with positive sign if and only
if the counter-clockwise path length connecting θ1 and θ2 on T1 is smaller than the
clockwise path length. Finally, we define the multivariable sine sin : Tn → [0, 1]n by
sin(x) = (sin(x1), . . . , sin(xn)) and the function sinc : R→ R by sinc(x) = sin(x)/x.

2. Models, Problem Setup, and Main Synchronization Result.

2.1. The Consensus Protocol and the Kuramoto Model. In a system of n
autonomous agents, each characterized by a state variable xi ∈ R1, a basic task is to
achieve a consensus on a common state, that is, all xi(t) should converge to a common
value x∞ ∈ R as t → ∞. Given a graph G with adjacency matrix A describing the
interaction between agents, this objective can be achieved by the consensus protocol

ẋi = −
∑n

j=1
aij(xi − xj), i ∈ {1, . . . , n} . (2.1)

In vector notation the consensus protocol (2.1) takes the form ẋ = −L(aij)x, which
directly reveals the dependence of the consensus protocol to the underlying graph G.
Finally, notice that the consensus protocol (2.1) is invariant under translation of the
variable x, that is, the translation x+ c1n, where c ∈ R, does not alter the dynamics.

If the graph G is symmetric and connected, then L = LT has n − 1 positive
eigenvalues and a zero eigenvalue with eigenvector 1n. It follows that the consensus
subspace 1n is exponentially stable, the consensus value is the average of the initial
values x∞ = (1Tnx(0)/n)1n, and the rate of convergence is no worse than λ2(L(aij)),
that is, ‖x(t) − x∞‖2 ≤ ‖x(0) − x∞‖2 e−λ2(L(aij))t for all t ≥ 0 [30, 33]. By means
of the contraction property [7, 27, 29] consensus can also be established for directed
graphs with time-varying weights aij(t) ≥ 0. In particular, assume that each weight
aij : R≥0 → R≥0 is a bounded and piecewise continuous function of time and there

is T > 0 such that for each t ≥ 0 the union graph induced by Ā =
∫ t+T
t

A(τ)dτ has a
globally reachable node, where all weights āij are assumed to be non-degenerate,
that is, there is ε > 0 such that either āij > ε is strictly positive or otherwise
āij = 0. Under this joint connectivity assumption, the time-varying consensus pro-
tocol ẋ(t) = −L(aij(t))x(t) features the uniformly exponentially stable equilibrium
subspace 1n, the convex hull of all states xi(t) is non-increasing, and all states xi(t)
will exponentially reach a consensus value x∞ ∈ [xmin(0) , xmax(0)].

A prototypical model for the synchronization among coupled oscillators is the
Kuramoto model, which considers n ≥ 2 coupled phase oscillators with the dynamics

θ̇i = ωi −
K

n

∑n

j=1
sin(θi − θj), i ∈ {1, . . . , n} , (2.2)

where θi ∈ T1 and ωi ∈ R1 are the phase and the natural frequency of oscillator
i, and K is the coupling strength. Analogously to the consensus protocol (2.1),
the Kuramoto model (2.2) features an important symmetry, namely the rotational
invariance of the angular variable θ. Unlike for the consensus protocol (2.1), different
levels of consensus or synchronization can be distinguished for the Kuramoto model
(2.2). The case when all angles θi(t) converge to a common angle θ∞ ∈ T1 as t→∞
is referred to as phase synchronization and can only occur if all natural frequencies
are identical. If the natural frequencies are non-identical, then each phase difference
θi(t)−θj(t) can converge to a constant value, but this value is not necessarily zero. A
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solution θ : R≥0 → Tn to the Kuramoto model (2.2) is phase cohesive if there exists
a length γ ∈ [0, π[ such that θ(t) ∈ ∆̄(γ) for all t ≥ 0, that is, at each time t there
exists an arc of length γ containing all angles θi(t). A solution θ : R≥0 → Tn achieves

exponential frequency synchronization if all frequencies θ̇i(t) converge exponentially
fast to a common frequency θ̇∞ ∈ R1 as t → ∞. Finally, a solution θ : R≥0 → Tn
achieves synchronization if it is phase cohesive and it achieves exponential frequency
synchronization. In this case, all phases become constant in a rotating coordinate
frame, and hence the terminology phase locking is sometimes also used, see [17].

2.2. Synchronization in Network-Reduced Power System Models. We
briefly present the network-reduced power system model and refer to [34, Chapter 7] for
detailed derivation from first principles. Consider a power network with n ≥ 0 genera-
tors and reduced admittance matrix Y = Y T ∈ Cn×n, where Yii is the self-admittance
of generator i and <(−Yij) ≥ 0 and =(−Yij) < 0 are the transfer conductance and
(inductive) transfer susceptance between generator i and j. We associate to each
generator its internal voltage Ei > 0, its real power output Pe,i, its mechanical power
input Pm,i > 0, its inertia Mi > 0, its damping constant Di > 0, and its rotor angle

θi ∈ T1 and frequency θ̇i ∈ R1. The rotor dynamics of generator i are then given by
the classic constant-voltage behind reactance model of interconnected swing equations

Miθ̈i +Diθ̇i = ωi −
∑n

j=1
aij sin(θi − θj − ϕij) , (2.3)

where the phase shift ϕij , − arctan(<(Yij)/=(Yij)) ∈ [0, π/2[ depicts the energy loss

due to the transfer conductance <(Yij), the natural frequency ωi , Pm,i − E2
i <(Yii)

is effective power input to generator i, and the coupling weight aij , EiEj |Yij | is the
maximum power transferred between generators i and j with aii = 0 for i ∈ {1, . . . , n}.

It is commonly agreed that the swing equations (2.3) capture the power system
dynamics sufficiently well during the first swing. Thus, we omit higher order dynam-
ics and control effects and assume they are incorporated into the model (2.3). For
instance, electrical and flux dynamics as well as the effects of generator excitation con-
trol can be reduced into an augmented damping term Di [4,34]. All of our results are
also valid if Ei = Ei(t) is a smooth, bounded, and positive time-varying parameter.

A frequency equilibrium of (2.3) is characterized by θ̇ = 0n and zero power flow

Pi(θ) , ωi −
∑n

j=1
aij sin(θi − θj − ϕij) ≡ 0, i ∈ {1, . . . , n} . (2.4)

More general, the generators are said to be in a synchronous equilibrium if all angular
distances |θi− θj | are bounded and all frequencies are identical θ̇i = θ̇j . Synchroniza-
tion is then understood as defined before for the Kuramoto model (2.2).

In order to analyze synchronization, system (2.3) is usually formulated in relative
coordinates. To render the resulting dynamics self-contained, uniform damping is
sometimes assumed, that is, Di/Mi is constant. Some other times, the existence of
an infinite bus (a stationary generator) as reference is postulated [11,38]. We remark
that both of these assumptions are not physically justified but are mathematical sim-
plifications to reduce the synchronization problem to a stability analysis. Classically,
transient stability analysis deals with a special case of the synchronization problem,
namely the stability of a frequency equilibrium of (2.3) arising after a change in the
network parameters or topology. To answer this question various sophisticated ana-
lytic and numeric methods have been developed [3,10,32,38], which typically employ
the Hamiltonian structure of system (2.3). Since in general a Hamiltonian function for
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model (2.3) with non-trivial network conductance <(Yij) > 0, or equivalently ϕij > 0,
does not exist, early analysis approaches neglect the phase shifts ϕij [11, 38]. In this
case, the power network dynamics (2.3) can be (locally) rewritten as

M θ̈ +Dθ̇ = −∇U(θ)T , (2.5)

where ∇ is the gradient and U : [0, 2π[n→ R is the potential energy given by

U(θ) = −
∑n

i=1

(
ωiθi +

∑n

j=1
aij
(
1− cos(θi − θj)

))
. (2.6)

When system (2.5) is formulated in relative or reference coordinates, the energy func-
tion (θ, θ̇) 7→ (1/2) θ̇TMθ̇+U(θ) serves (locally) as a Lyapunov function which yields
convergence to θ̇ = 0n and the largest invariant zero level set of ∇U(θ). Alternative
analyses such as PEBS [11] or BCU [9] consider the associated gradient flow

θ̇ = −∇U(θ)T . (2.7)

Then (θ∗,0) is a hyperbolic type-k equilibrium of (2.5), that is, the Jacobian has k
stable eigenvalues, if and only if θ∗ is a hyperbolic type−k equilibrium of (2.7), and if a
generic transversality condition holds, then the regions of attractions of both equilibria
are bounded by the stable manifolds of the same unstable equilibria [11, Theorems
6.2-6.3]. This topological equivalence between (2.5) and (2.7) can also be extended
for “sufficiently small” phase shifts ϕij [9, Theorem 5.7]. For further interesting
relationships among the systems (2.5) and (2.7), we refer to [9–11, 17]. Based on
these results computational methods were developed to approximate the stability
boundaries of (2.5) by level sets of energy functions and separatrices of (2.7).

To summarize the shortcomings of the classical transient stability analysis meth-
ods, they consider simplified models formulated in reference or relative coordinates
and result mostly in numerical procedures rather than in concise and simple condi-
tions. For lossy power networks the cited articles consider either special benchmark
problems or networks with “sufficiently small” transfer conductances. To the best
of our knowledge there are no results quantifying this smallness of ϕij . Moreover,
from a network perspective the existing methods do not result in explicit and concise
conditions relating synchronization to the network’s state, parameters, and topology.

2.3. The Non-Uniform Kuramoto Model. As we have already mentioned,
there is a striking similarity between the power network model (2.3) and the Kuramoto
model (2.2). To study this similarity, we define the non-uniform Kuramoto model by

Di θ̇i = ωi −
∑n

j=1
aij sin(θi − θj − ϕij), i ∈ {1, . . . , n} , (2.8)

where Di > 0, ωi ∈ R, aij = aji > 0, and ϕij = ϕji ∈ [0, π/2[, for distinct i, j ∈
{1, . . . , n}, and, by convention, aii = 0 and ϕii = 0. System (2.8) may be regarded as
a generalization of the classic Kuramoto model (2.2) with multiple time-constants Di,
non-homogeneous but symmetric coupling terms aij , and non-uniform phase shifts
ϕij . The non-uniform Kuramoto model (2.8) will serve as a link between the power
network model (2.3), the Kuramoto model (2.2), and the consensus protocol (2.1).

Notice the analogy between the non-uniform Kuramoto model (2.8) and the
dimension-reduced gradient system (2.7) studied in classic transient stability anal-
ysis [9, 11, 38]. Both models are of first order, have the same right-hand side, and
differ only in the time constants Di. The reduced system (2.7) is formulated as a
gradient-system to study the stability of the equilibria of (2.7) (possibly in relative
coordinates). The non-uniform Kuramoto model (2.8), on the other hand, can be
directly used to study synchronization and reveals the underlying network structure.
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2.4. Main Synchronization Result. We can now state our main result on the
power network model (2.3) and the non-uniform Kuramoto model (2.8).

Theorem 2.1. (Main synchronization result) Consider the power network
model (2.3) and the non-uniform Kuramoto model (2.8). Assume that the minimal
lossless coupling of any oscillator to the network is larger than a critical value, that is,

Γmin , nmin
i 6=j

{
aij
Di

cos(ϕij)

}
> Γcritical ,

1

cos(ϕmax)

(
max
i 6=j

∣∣∣∣ ωiDi
− ωj
Dj

∣∣∣∣+ 2 max
i∈{1,...,n}

∑n

j=1

aij
Di

sin(ϕij)
)
. (2.9)

Accordingly, define γmin ∈ [0, π/2− ϕmax[ and γmax ∈ ]π/2, π] as unique solutions to
the equations sin(γmin) = sin(γmax) = cos(ϕmax) Γcritical/Γmin.

For the non-uniform Kuramoto model,
1) phase cohesiveness: the set ∆̄(γ) is positively invariant for every γ ∈

[γmin, γmax], and each trajectory starting in ∆(γmax) reaches ∆̄(γmin); and
2) frequency synchronization: for every θ(0) ∈ ∆(γmax), the frequencies

θ̇i(t) synchronize exponentially to some frequency θ̇∞ ∈ [θ̇min(0), θ̇max(0)].
For the power network model, for all θ(0) ∈ ∆(γmax) and initial frequencies θ̇i(0),

3) approximation errors: there exists a constant ε∗ > 0 such that, if ε ,
Mmax/Dmin < ε∗, then the solution (θ(t), θ̇(t)) of (2.3) exists for all t ≥ 0,
and it holds uniformly in t that(
θi(t)− θn(t)

)
=
(
θ̄i(t)− θ̄n(t)

)
+O(ε), ∀t ≥ 0, i ∈ {1, . . . , n− 1},

θ̇(t) = D−1P (θ̄(t)) +O(ε), ∀t > 0 ,
(2.10)

where θ̄(t) is the solution to the non-uniform Kuramoto model (2.8) with
initial condition θ̄(0) = θ(0), D = diag(Di) is the diagonal matrix of damping
coefficients, and P (θ̄) is the real power flow (2.4); and

4) asymptotic approximation errors: there exists ε and ϕmax sufficiently
small, such that the O(ε) errors in equation (2.10) converge to zero as t→∞.

We discuss the assumption that the perturbation parameter ε needs to be small
separately in the next subsection and state the following remarks to Theorem 2.1:

remark 2.2 (Physical interpretation and refinement of Theorem 2.1:).
The right-hand side of condition (2.9) states the worst-case non-uniformity in natural
frequencies (the difference in effective power inputs) and the worst-case lossy coupling
of a generator to the network (aij sin(ϕij)=EiEj<(−Yij) is the transfer conductance),
both of which are scaled with the rates Di. The term cos(ϕmax) = sin(π/2 − ϕmax)
corresponds to phase cohesiveness in ∆(π/2−ϕmax), which is necessary for the latter
consensus-type analysis. These negative effects have to be dominated by the left-hand
side of (2.9), which is a lower bound for mini

{∑n
j=1

(
aij cos(ϕij)/Di

)}
, the worst-

case lossless coupling of a node to the network. The multiplicative gap Γcritical/Γmin

between the right- and the left-hand side in (2.9) can be understood as a robustness
margin that additionally gives a practical stability result determining the admissible
initial and the possible ultimate lack of phase cohesiveness in ∆̄(γmin) and ∆̄(γmax).

In summary, the conditions of Theorem 2.1 read as “the network connectivity has
to dominate the network’s non-uniformity and the network’s losses.” In Theorem 2.1
we present the scalar synchronization condition (2.9), the estimate for the region of
attraction ∆(γmax), and the ultimate phase cohesive set ∆̄(γmin). In the derivations
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leading to Theorem 2.1 it is possible to trade off a tighter synchronization condition
against a looser estimate of the region of attraction, or a single loose scalar condition
against n(n − 1)/2 tight pairwise conditions. These tradeoffs are explored in [15].
We remark that the coupling weights aij in condition (2.9) are not only the reduced
power flows but reflect for uniform voltages Ei and phase shifts ϕij also the effective
resistance of the original (non-reduced) network topology [16]. Moreover, condition
(2.9) indicates at which generator the damping torque has to be changed (via local
power system stabilizers) in order to meet the sufficient synchronization condition.

The power network model (2.3) inherits the synchronization condition (2.9) in
the (well-posed) relative coordinates θi− θn and up to the approximation error (2.10)
which is of order ε and eventually vanishes for ε and ϕmax sufficiently small.

Theorem 2.1 can also be stated for 2-norm bounds on the parameters involving
the algebraic connectivity (see Theorem 4.4). For a lossless network, explicit values
for the synchronization frequency and the exponential synchronization rate as well as
conditions for phase synchronization can be derived (see Theorems 4.1 and 4.8). When
specialized to the classic (uniform) Kuramoto model (2.2), the sufficient condition
(2.9) reduces to the bound K > Kcritical , ωmax − ωmin, which is a necessary and
sufficient condition [17, Theorem 4.1] for synchronization of Kuramoto oscillators. �

The proof of Theorem 2.1 will be developed in the subsequent sections. In the
following we give a detailed outline of our technical approach leading to Theorem 2.1.

In a first step, the power network model (2.3) and the non-uniform Kuramoto
model (2.8) are related to another through a singular perturbation analysis in Section
3. In order to apply the analysis by Tikhonov’s method [24,31], both models need to
be written in the so-called grounded coordinates θi(t)−θn(t), respectively, θ̄i(t)−θ̄n(t).
Under certain technical conditions it can be shown that the grounded coordinates are
well-posed, and exponential synchronization is equivalent to exponential stability in
grounded coordinates, see Lemma 3.1. If the non-uniform Kuramoto model (2.8) is
exponentially stable in grounded coordinates and if the perturbation parameter ε is
sufficiently small, then the power network model (2.3) and the non-uniform Kuramoto
model (2.8) can be related via singular perturbation methods, see Theorem 3.2.

In a second step, we analyze synchronization of the non-uniform Kuramoto model
(2.8) in Section 4. In particular, we establish conditions on the initial conditions and
system parameters that guarantee frequency synchronization (see Theorem 4.1), phase
cohesiveness (see Lemma 4.2, Theorem 4.3, and Theorem 4.4), and phase synchro-
nization (see Theorem 4.8) of non-uniform Kuramoto oscillators (2.8). For the sake
of generality, our synchronization analysis of the non-uniform Kuramoto model (2.8)
does neither assume completeness nor symmetry of the underlying coupling graph.

In a third and final step, we combine our singular perturbation and Kuramoto
analyses and their respective assumptions to prove Theorem 2.1, see page 22.

2.5. Discussion of the Perturbation Assumption. The assumption that
each generator is strongly overdamped is captured by the smallness of the perturba-
tion parameter ε = Mmax/Dmin. This choice of the perturbation parameter and the
subsequent singular perturbation analysis (in Section 3) is similar to the analysis of
Josephson arrays [39], coupled overdamped mechanical pendula [14], flocking mod-
els [20], and also classic transient stability analysis [11, Theorem 5.2], [36]. In the
linear case, this analysis resembles the well-known overdamped harmonic oscillator,
which features one slow and one fast eigenvalue. The overdamped harmonic oscillator
exhibits two time-scales and the fast eigenvalue corresponding to the frequency damp-
ing can be neglected in the long-term phase dynamics. In the non-linear case these
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distinct time-scales are captured by a singular perturbation analysis [31]. In short, this
reduction of a coupled-pendula system corresponds to the assumption that damping
to a synchronization manifold and synchronization itself occur on separate time scales.

In the application to realistic generator models one has to be careful under
which operating conditions ε is indeed a small physical quantity. Typically, Mi ∈
[2s, 12s]/(2πf0) depending on the type of generator and the damping is poor: Di ∈
[1, 3]/(2πf0). However, for the synchronization problem also the generator’s inter-
nal excitation control have to be considered, which increases the damping torque to
Di ∈ [10, 35]/(2πf0) depending on the system load [4,25,34]. In this case, ε ∈ O(0.1)
is indeed a small quantity and a singular perturbation approximation is accurate.
In fact, the recent power systems literature discusses the need for sufficiently large
damping to enhance transient stability, see [2, 13] and references therein.

We note that simulation studies show an accurate approximation of the power
network by the non-uniform Kuramoto model also for values of ε ∈ O(1), which indi-
cate that the threshold ε∗ may be sizable. The theoretical reasoning is the topological
equivalence between the power network model (2.3) and the non-uniform Kuramoto
model (2.8), as discussed in [11, Theorems 3.1-3.4], [9, Theorem 5.7], and [17, Theorem
4.1]. The synchronization condition (2.9) on the non-uniform Kuramoto model (2.8)
guarantees exponential stability of the non-uniform Kuramoto dynamics formulated
in relative coordinates θi − θn, which again implies local exponential stability of the
power network model (2.3) in relative coordinates. These arguments are elaborated
in detail in the next section. Thus, from the viewpoint of topological equivalence,
Theorem 2.1 holds locally completely independent of ε > 0, and the magnitude of ε
gives a bound on the approximation errors (2.10) during transients.

The analogies between the power network model (2.3) and the reduced model
(2.7), corresponding to the non-uniform Kuramoto model (2.8), are directly employed
in the PEBS [11] and BCU algorithms [9]. These algorithms are not only scholastic
but applied by the power industry [8], which additionally supports the validity of the
approximation of the power network model by the non-uniform Kuramoto model.

3. Singular Perturbation Analysis of Synchronization. We put the ap-
proximation of the power network model by the non-uniform Kuramoto model on solid
mathematical ground via a singular perturbation analysis. The analysis by Tikhonov’s
method [24, 31] requires a system evolving on Euclidean space and an exponentially
stable fixed point. In order to satisfy these assumptions, we introduce two concepts.

As first concept, we introduce a smooth map from a suitable subset of Tn to a
compact subset of the Euclidean space Rn−1. For γ ∈ [0, π[, define the grounded map

grnd : ∆(γ)→ ∆grnd(γ) , {δ̄ ∈ Rn−1 | |δ̄i| < γ, max
i,j
|δ̄i−δ̄j | < γ, i, j ∈ {1, . . . , n−1}}

that associates to the array of angles (θ1, . . . , θn) ∈ ∆(γ) the array of angle differences
δ̄ with components δ̄i = θi − θn, for i ∈ {1, . . . , n− 1}. This map is well defined, that
is, δ̄ ∈ ∆grnd(γ), because each |δ̄i| = |θi − θn| < γ and |δ̄i − δ̄j | = |θi − θj | < γ for all
distinct i, j ∈ {1, . . . , n − 1}. Also, this map is smooth because γ < π implies that
all angles take value in an open half-circle and their pairwise differences are smooth
functions. In the spirit of circuit theory, we refer to the angle differences δ̄ as grounded
angles. The map θ 7→ δ̄ = grnd(θ) is illustrated in Figure 3.1.

As second concept, by formally computing the difference between the angles θ̇i
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θn

θi θj

∆(γ)
0

+ γ− γ

δ̄j = grnd(θj)δ̄i = grnd(θi)

∆grnd(γ)
S1

grnd

R1

Fig. 3.1. Illustration of the map grnd : ∆(γ) → ∆grnd(γ). The map grnd can be thought of as
as a symmetry-reducing projection from ∆(γ) (illustrated as subset of S1) to ∆grnd(γ) (illustrated
as subset of R1), where θn is projected to the origin 0. The set ∆(γ) and the map grnd are invariant
under translations on Tn that is, under maps of the form (θ1, . . . , θn) 7→ (θ1 + α, . . . θn + α).

and θ̇n, we define grounded Kuramoto model with state δ ∈ Rn−1 by

δ̇i =
ωi
Di
− ωn
Dn
−
∑n−1

j=1,j 6=i

(aij
Di

sin(δi − δj − ϕij) +
anj
Dn

sin(δj + ϕjn)
)

−
(ain
Di

sin(δi − ϕin) +
ain
Dn

sin(δi + ϕin)
)
, i ∈ {1, . . . , n− 1} . (3.1)

The grounded Kuramoto model (3.1) with solution δ(t) and the non-uniform Ku-
ramoto model (2.8) with solution θ(t) appear to be directly related via δ(t) = grnd(θ(t))
– provided that the grounded map (involving angular differences) is indeed well-
defined for all t ≥ 0. The following lemma shows that the equality δ(t) = grnd(θ(t))
holds under a phase cohesiveness assumption. Furthermore, the lemma establishes
the equivalence of exponential synchronization in the non-uniform Kuramoto model
(2.8) and exponential stability of equilibria in the grounded Kuramoto model (3.1).
These equivalences will put us in a convenient position to apply Tikhonov’s theorem.

Lemma 3.1 (Properties of grounded Kuramoto model). Let γ ∈ [0, π[ and
let θ : R≥0 → Tn be a solution to the non-uniform Kuramoto model (2.8) satisfying
θ(0) ∈ ∆(γ). Let δ : R≥0 → Rn−1 be the solution to the grounded Kuramoto model
(3.1) with initial condition δ(0) = grnd(θ(0)) ∈ ∆grnd(γ). Then, δ(t) = grnd(θ(t)) for
all t ≥ 0, if any one of the two following equivalent conditions holds:

1) phase cohesiveness: the angles θ(t) take value in ∆(γ) for all t ≥ 0; and
2) well-posedness: the grounded angles δ(t) take value in ∆grnd(γ) for all t≥0.

Moreover, the following two statements are equivalent for any γ ∈ [0, π[:
3) exponential frequency synchronization: every trajectory of the non-

uniform Kuramoto model satisfying the phase cohesiveness property 1) achieves
exponential frequency synchronization; and

4) exponential convergence to equilibria: each trajectory of the grounded
Kuramoto model satisfying the well-posedness property 2) converges exponen-
tially to an equilibrium point.

Finally, each trajectory of the grounded Kuramoto model as in 4) satisfying property 2)
with γ ∈ [0, π/2− ϕmax] converges to an isolated exponentially stable equilibrium point.

Proof. Since both vector fields (2.8) and (3.1) are locally Lipschitz, existence
and uniqueness of the corresponding solutions follow provided that the corresponding



Synchronization in Power Networks and Non-Uniform Kuramoto Oscillators 11

evolutions are bounded. Now, assume that 1) holds, that is, θ(t) ∈ ∆(γ) (bounded)
for all t ≥ 0. Therefore, δ̄(t) = grnd(θ(t)) ∈ ∆grnd(γ) for all t ≥ 0. Also recall that
the map grnd is smooth over ∆(γ). These facts and the definition of the grounded
Kuramoto model (3.1) imply that d

dt grnd(θ(t)) is well defined and identical to δ̇(t) for
all t ≥ 0. In turn, this implies that δ(t) = grnd(θ(t)) ∈ ∆grnd(γ) holds for all t ≥ 0.

Conversely, assume that 2) holds, that is, δ(t) ∈ ∆grnd(γ) (bounded) for all t ≥ 0.
Due to existence and uniqueness and since δ(0) = grnd(θ(0)) with θ(0) ∈ ∆(γ), a set of
angles θ(t) ∈ ∆(γ) can be associated to δ(t) ∈ ∆grnd(γ) such that δ(t) = grnd(θ(t)) for
all t ≥ 0. By construction of the grounded Kuramoto model (3.1), we have that θ(t) is
identical to the solution to the non-uniform Kuramoto model (2.8). Thus, statement
2) implies statement 1) and δ(t) = grnd(θ(t)) for all t ≥ 0. Having established the
equivalence of 1) and 2), we do not further distinguish between δ(t) and grnd(θ(t)).

Assume that 3) holds, that is, all θ̇i(t) converge exponentially fast to some θ̇∞ ∈ R.
It follows that each δ̇i(t) = θ̇i(t)−θ̇n(t) converges exponentially fast to zero, and δ(t) =

δ(0) +
∫ t
0
δ̇(τ)dτ converges exponentially fast to some δ∞ ∈ ∆grnd(γ) due to property

2). Since the vector field (3.1) is continuous and limt→∞
(
δ(t), δ̇(t)

)
= (δ∞,0n−1), the

vector δ∞ is necessarily an equilibrium of (3.1), and property 4) follows.

Assume that 4) holds, that is, all angular differences δi(t) = θi(t)−θn(t) converge
exponentially fast to constant values δi,∞ for i ∈ {1, . . . , n − 1}. This fact and the
continuity of the vector field in equation (3.1) imply that the array with entries δi,∞
is an equilibrium for (3.1) and that each frequency difference δ̇i(t) = θ̇i(t) − θ̇n(t)
converges to zero. Moreover, because the vector field in equation (3.1) is analytic and
the solution converges exponentially fast to an equilibrium point, the right-hand side
of equation (3.1) converges exponentially fast to zero and thus also the time-derivative
of the solution, that is, the array of frequency differences, converges exponentially fast.

To prove the final statement, assume that the non-uniform Kuramoto model (2.8)
achieves frequency synchronization with synchronization frequency θ̇sync ∈ R1 and
phase cohesiveness in ∆(π/2−ϕmax). Thus, when formulated in a rotating coordinate
frame with zero synchronization frequency, all trajectories θi(t) − θ̇sync · t (mod 2π)
necessarily converge to an equilibrium point θ∗ ∈ ∆(π/2−ϕmax). Due to the rotational
symmetry of the non-uniform Kuramoto model (2.8), the equilibrium point θ∗ is part
of a connected one-dimensional equilibrium manifold (a circle arising from rotating
all angles θ∗i by the same amount) contained in ∆(π/2 − ϕmax). In the following we
establish local exponential stability of this equilibrium manifold, respectively local
transversal stability of each point θ∗ ∈ ∆(π/2− ϕmax) on the equilibrium manifold.

Notice that the negative Jacobian of the non-uniform Kuramoto model evaluated
at θ∗ is given by the Laplacian matrix with weights bij(θ

∗) = (aij/Di) cos(θ∗i − θ∗j −
ϕij). Since the weights aij = aji induce a complete graph, it follows, for θ∗ ∈ ∆(π/2−
ϕmax), that the weights bij(θ

∗) induce a complete (but not necessarily symmetric)

graph. Hence, the linearization obeys the consensus dynamics θ̇ = −L(bij(θ
∗))θ with

complete interaction graph, and the contraction property [29, Theorem 1] guarantees
exponential stability of the zero eigenvector 1n. Since the subspace 1n is exponentially
stable for the linearized dynamics, the corresponding one-dimensional equilibrium
manifold in ∆(π/2 − ϕmax) is locally exponentially stable with respect to the non-
uniform Kuramoto dynamics (2.8), respectively, the equilibrium point θ∗ ∈ ∆(π/2−
ϕmax) is exponentially stable with one-dimensional center manifold.

Due to local exponential stability of θ∗ (with one-dimensional center manifold)
and due to property 4), the corresponding point δ∗ = grnd(θ∗(t)) ∈ ∆grnd(π/2−ϕmax)
(the rotational symmetry is removed by the grounded map) is an exponentially stable
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(and thus isolated) equilibrium point of the grounded Kuramoto dynamics (3.1).
System (2.8) may be seen as a long-time approximation of (2.3), or spoken differ-

ently, it is the reduced system obtained by a singular perturbation analysis. A phys-
ically reasonable singular perturbation parameter is the worst-case choice of Mi/Di,
that is, ε = Mmax/Dmin. The dimension of ε is in seconds, which makes sense since
time still has to be normalized with respect to ε. If we reformulate the power network
model (2.3) in grounded angular coordinates with the state (δ, θ̇) ∈ Rn−1 × Rn, then
we obtain the following system in singular perturbation standard form

d

d t
δi =fi(θ̇) , θ̇i − θ̇n , i ∈ {1, . . . , n− 1} , (3.2)

ε
d

d t
θ̇i =gi(δ, θ̇) , −Fi θ̇i +

Fi
Di

(
ωi −

∑n

j=1
aij sin(δi − δj − ϕij)

)
, i ∈ {1, . . . , n} ,

(3.3)

where Fi = (Di/Dmin)/(Mi/Mmax) and δn = 0 in equation (3.3). For ε sufficiently
small, the long-term dynamics of (3.2)-(3.3) can be approximated by the grounded
Kuramoto model (3.1) and the power flow (2.4), where the approximation error is of
order ε and Fi determines its convergence rate in the fast time-scale.

Theorem 3.2. (Singular perturbation approximation) Consider the power
network model (2.3) written as the singular perturbation problem (3.2)-(3.3) with
bounded initial conditions (δ(0), θ̇(0)), and the grounded non-uniform Kuramoto model
(3.1) with initial condition δ(0) and solution δ̄(t). Assume that there exists an expo-
nentially stable fixed point δ∞ of (3.1) and δ(0) is in a compact subset Ωδ of its region
of attraction. Then, for each Ωδ

1) there exists ε∗ > 0 such that for all ε < ε∗, the system (3.2)-(3.3) has a unique
solution (δ(t, ε), θ̇(t, ε)) for t ≥ 0, and for all t ≥ 0 it holds uniformly in t that

δ(t, ε)− δ̄(t) = O(ε), and θ̇(t, ε)− h(δ̄(t))− y(t/ε) = O(ε) , (3.4)

where yi(t/ε) , (θ̇i(0)−hi(δ(0))) e−Fit/ε and hi(δ) , Pi(δ)/Di, i ∈ {1, . . . , n}.
2) For any tb>0, there exists ε∗≤ε∗ such that for all t≥ tb and whenever ε<ε∗

it holds uniformly that

θ̇(t, ε)− h(δ̄(t)) = O(ε) . (3.5)

3) Additionally, there exist ε and ϕmax sufficiently small such that the approxi-
mation errors (3.4)-(3.5) converge exponentially to zero as t→∞.

Proof. To prove statements 1) and 2) we will follow Tikhonov’s theorem [24,
Theorem 11.2] and show that the singularly perturbed system (3.2)-(3.3) satisfies all
assumptions of [24, Theorem 11.2] when analyzing it on Rn−1 × Rn.

Exponential stability of the reduced system: The quasi-steady-state of (3.2)-(3.3)
is obtained by solving gi(δ, θ̇) = 0 for θ̇, resulting in the unique (and thus isolated)
root θ̇i = hi(δ) = Pi(δ)/Di, i ∈ {1, . . . , n}. The reduced system is obtained as
δ̇i = fi(h(δ)) = hi(δ)− hn(δ), i ∈ {1, . . . , n− 1}, which is equivalent to the grounded
non-uniform Kuramoto model (3.1). The reduced system is smooth, evolves on Rn−1,
and by assumption its solution δ̄(t) is bounded and converges exponentially to the
stable equilibrium δ∞. Define the error coordinates x(t) , δ̄(t)−δ∞ and the resulting
system ẋ = f(h(x+δ∞)) with state in Rn−1 and initial value x(0) = δ(0)−δ∞. Notice
that x(t) is bounded and converges exponentially to the stable equilibrium x = 0n−1.

Exponential stability of the boundary layer system: Consider the error coordinate
yi = θ̇i − hi(δ), which shifts the error made by the quasi-stationarity assumption
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θ̇i(t) ≈ hi(δ(t)) to the origin. After stretching time to the dimensionless variable
τ = t/ε, the quasi-steady-state error obeys the dynamics

d

d τ
yi = gi(δ, y + h(δ))− ε∂hi

∂δ
f(y + h(δ)) = −Fi yi − ε

∂h

∂δ
fi(y + h(δ)) , (3.6)

where yi(0) = θ̇i(0)− hi(δ(0)). For ε = 0, (3.6) reduces to the boundary layer model

d

d τ
yi = −F yi , yi(0) = θ̇i(0)− hi(δ(0)) . (3.7)

The boundary layer model (3.7) is globally exponentially stable with solution yi(t/ε) =
yi(0)e−Fit/ε and bounded yi(0). In summary, the singularly perturbed system (3.2)-
(3.3) is smooth on Rn−1×Rn, and the origins of the reduced system (in error coordi-
nates) ẋ = f(h(x+ δ∞)) and the boundary layer model (3.7) are exponentially stable
(Lyapunov functions are readily existent by converse arguments [24, Theorem 4.14]).
Thus, all assumptions of [24, Theorem 11.2] are satisfied and statements 1)-2) follow.

To prove statement 3), note that δ̄(t) converges to an exponentially stable equilib-
rium point δ∞, and (δ(t, ε), θ̇(t, ε)) converges to an O(ε) neighborhood of

(
δ∞, h(δ̄∞)

)
,

where h(δ̄∞) = 0n. We now invoke topological equivalence arguments [9,11]. Both the
second-order system (3.2)-(3.3) as well as the reduced system δ̇ = f(h(δ)) correspond
to the perturbed Hamiltonian system (8)-(9) in [9] and the perturbed gradient system
(10) in [9], where the latter is considered with unit damping Di = 1 in [9]. Consider
for a moment the case when all ϕij = 0. In this case, the reduced system has a locally
exponentially stable fixed point δ∞ (for any Di > 0 due to [11, Theorem 3.1]), and
by [9, Theorem 5.1] we conclude that (δ∞,0n) is also a locally exponentially stable
fixed point of the second order system (3.2)-(3.3). Furthermore, due to structural sta-
bility [9, Theorem 5.7, R1], this conclusion holds also for sufficiently small ϕij . Thus,
for sufficiently small ε and ϕmax, the solution of (3.2)-(3.3) converges exponentially
to (δ∞,0n). In this case, the approximation errors δ(t, ε)− δ̄(t) and θ̇(t, ε)− h(δ̄) as
well as the boundary layer error y(t/ε) vanish exponentially.

4. Synchronization of Non-Uniform Kuramoto Oscillators. This section
combines and extends methods from the consensus and Kuramoto literature to analyze
the non-uniform Kuramoto model (2.8). The role of the time constants Di and the
phase shifts ϕij is immediately revealed when expanding the right-hand of (2.8) side as

θ̇i =
ωi
Di
−

n∑
j=1,j 6=i

(
aij
Di

cos(ϕij) sin(θi − θj)−
aij
Di

sin(ϕij) cos(θi − θj)
)
. (4.1)

The difficulties in the analysis of system (2.8) are the phase shift-induced lossy cou-
pling (aij/Di) sin(ϕij) cos(θi − θj) inhibiting synchronization and the non-symmetric
coupling between an oscillator pair {i, j} via aij/Di on the one hand and aij/Dj on
the other. Since the non-uniform Kuramoto model (2.8) is derived from the power
network model (2.3), the underlying graph induced by A is complete and symmetric,
that is, the off-diagonal entries of A are fully populated and symmetric. For the sake
of generality, this section considers the non-uniform Kuramoto model (2.8) under the
assumption that the graph induced by A is neither complete nor symmetric.

4.1. Frequency Synchronization of Phase-Cohesive Oscillators. For co-
hesive phases, the classic Kuramoto model (2.2) achieves frequency synchronization.
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An analogous result guarantees frequency synchronization of non-uniform Kuramoto
oscillators (2.8) whenever the graph induced by A has a globally reachable node.

Theorem 4.1. (Frequency synchronization) Consider the non-uniform Ku-
ramoto model (2.8) where the graph induced by A has a globally reachable node. As-
sume that there exists γ ∈ [0, π/2 − ϕmax[ such that the (non-empty) set of bounded
phase differences ∆̄(γ) is positively invariant. Then for every θ(0) ∈ ∆̄(γ),

1) the frequencies θ̇i(t) synchronize exponentially to θ̇∞ ∈ [θ̇min(0), θ̇max(0)]; and
2) if ϕmax = 0 and A = AT , then θ̇∞ = Ω ,

∑
i ωi/

∑
iDi and the exponential

synchronization rate is no worse than

λfe , −λ2(L(aij)) cos(γ) cos(∠(D1,1))2/Dmax. (4.2)

In the definition of the convergence rate λfe in (4.2), the factor λ2(L(aij)) is the
algebraic connectivity of the graph induced by A = AT , the factor 1/Dmax is the
slowest time constant of the non-uniform Kuramoto system (2.8), the proportionality
λfe ∼ cos(γ) reflects the phase cohesiveness in ∆̄(γ), and the proportionality λfe ∼
cos(∠(D1,1))2 reflects the fact that the error coordinate θ̇ − Ω1 is for non-uniform
damping terms Di not orthogonal to the agreement vector Ω1. For non-zero phase
shifts a small signal analysis of the non-uniform Kuramoto model (4.1) reveals that
the natural frequency of each oscillator increases as ωi+

∑
j 6=i aij sin(ϕij). In this case,

and for symmetric coupling A = AT , the synchronization frequency θ̇∞ in statement
1) will be larger than θ̇∞ = Ω in statement 2). When specialized to classic Kuramoto
oscillators (2.2), statement 2) reduces to [12, Theorem 3.1] and [17, Theorem 4.1].

Proof of Theorem 4.1: By differentiating the non-uniform Kuramoto model (2.8),
we obtain the following dynamical system describing the evolution of the frequencies

d

d t
Diθ̇i = −

∑n

j=1
aij cos(θi − θj − ϕij) (θ̇i − θ̇j) . (4.3)

Consider the directed and weighted graph induced by the matrix with elements
bij(t) , (aij/Di) cos(θi(t) − θj(t) − ϕij). By assumption, θ(t) ∈ ∆̄(γ) for all t ≥ 0.
Consequently, for all t ≥ 0 the weights bij(t) are bounded continuous, and nonnega-
tive functions of time which are zero if aij = 0 and strictly positive otherwise. Note
also that system (4.3) evolves on the tangent space of Tn, that is, the Euclidean space
Rn. Thus, the dynamics (4.3) can be analyzed as the linear time-varying consensus

d

d t
θ̇ = −L(bij(t)) θ̇ . (4.4)

Since the graph induced by aij has a globally reachable node, the graph induced by
bij(t) features the same property for each t ≥ 0. Hence, we can invoke the contraction

property [29, Theorem 1] to conclude that each frequency θ̇i(t) ∈ [θ̇min(0), θ̇max(0)] for
all t ≥ 0 and θ̇i(t) converges exponentially to θ̇∞. This proves statement 1).1

For zero shifts and symmetric coupling A = AT the frequency dynamics (4.4) can
be reformulated as a symmetric consensus protocol with multiple rates D as

d

d t
Dθ̇ = −L(wij(t)) θ̇ , (4.5)

1We remark that in the case of smoothly time-varying natural frequencies ωi(t) an additional
term ω̇(t) appears on the right-hand side of the frequency dynamics (4.4). If the natural frequencies
are non-identical or not exponentially convergent to identical values, the oscillators clearly cannot
achieve frequency synchronization and the proof of Theorem 4.1 fails. See also [17, Subsection 4.2.2].
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1n
D1n

δ

δ⊥

∠(D1n,1n)

Fig. 4.1. Illustration of the disagreement eigenspace and the orthogonal complement of 1n

where L(wij(t)) is a symmetric time-varying Laplacian corresponding to a connected
graph with strictly positive weights wij(t) = aij cos(θi−θj). It follows from statement

1) that the oscillators synchronize exponentially to some frequency θ̇∞. Since L(wij)

is symmetric, 1Tn
d
d t Dθ̇(t) = 0. If we apply this argument again at θ̇∞, then we obtain∑

iDiθ̇i(t) =
∑
iDiθ̇∞. Equivalently, the frequencies synchronize to θ̇∞ = Ω.

In order to derive an explicit synchronization rate, consider the weighted disagree-
ment vector δ , θ̇−Ω1n, as an error coordinate satisfying 1TnDδ = 1TnDθ̇−1TnDΩ1n =
0, that is, δ lives in the weighted disagreement eigenspace of co-dimension 1 and with
normal vector D 1n. Since Ω is constant and ker(L(wij)) = span(1n), the weighted
disagreement dynamics are obtained from (4.5) in δ-coordinates as

d

d t
Dδ = −L(wij(t)) δ . (4.6)

Consider the weighted disagreement function δ 7→ δTDδ and its derivative along the
dynamics (4.6) given by d

d t δ
TDδ = −2 δTL(wij(t))δ. Since δTD1n = 0, it follows

that δ can be decomposed into orthogonal components as δ = (1Tn δ/n) 1n+δ⊥, where
δ⊥ is the orthogonal projection of δ on the subspace orthogonal to 1n. By the Courant-
Fischer Theorem [28], the time derivative of the weighted disagreement function can
be upper-bounded (point-wise in time) with the algebraic connectivity λ2(L(aij)):

d

d t
δTDδ = −2 δT⊥L(wij(t))δ⊥ = −(BT δ⊥)T diag(aij cos(θi − θj))(BT δ⊥)

≤ − min
{i,j}∈E

{cos(θi−θj) : θ ∈ ∆̄(γ)}·δT⊥L(diag(aij))δ⊥ ≤ −λ2(L(aij)) cos(γ)‖δ⊥‖22 .

In the sequel, ‖δ⊥‖ will be bounded by ‖δ‖. In order to do so, let 1⊥ = (1/ ‖δ⊥‖) δ⊥
be the unit vector that δ is projected on (in the subspace orthogonal to 1n). The norm
of δ⊥ can be obtained as ‖δ⊥‖ =

∥∥δT1⊥
∥∥ = ‖δ‖ cos(∠(δ,1⊥)). The vectors δ and 1⊥

each live on (n− 1)-dimensional linear hyperplanes with normal vectors D1n and 1n,
respectively, see Figure 4.1 for an illustration. The angle ∠(δ,1⊥) is upper-bounded
by maxδ ∠(δ,1⊥), which is said to be the dihedral angle and its sine is the gap between
the two subspaces [28]. Since both hyperplanes are of co-dimension 1, we obtain the
dihedral angle as the angle between the normal vectors D1n and 1n, and it follows that
∠(δ,1⊥) ≤ ∠(D1n,1n). In summary, we have ‖δ‖ ≥ ‖δ⊥‖ ≥ ‖δ‖ cos(∠(D1n,1n)).

Finally, given Dmin ‖δ‖2 ≤ δTDδ ≤ Dmax ‖δ‖2 and λfe as stated in equation (4.2),
we obtain for the derivative of the disagreement function d

d t δ
TDδ ≤ −2λfeδ

TDδ. An

application of the Bellman-Gronwall Lemma yields δ(t)TDδ(t) ≤ δ(0)TDδ(0) e−2λfe(t)

for all t ≥ 0. After reusing the bounds on δTDδ, we obtain that the disagreement
vector δ(t) satisfies ‖δ(t)‖ ≤

√
Dmax/Dmin ‖δ(0)‖ e−λfe(t) for all t ≥ 0.
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4.2. Phase Cohesiveness. The key assumption in Theorem 4.1 is that the
angular distances are bounded in the set ∆(π/2 − ϕmax). This subsection provides
two different approaches to deriving conditions for this phase cohesiveness assumption
- the contraction property and ultimate boundedness arguments with a quadratic
Lyapunov function. The dynamical system describing the evolution of the phase
differences for the non-uniform Kuramoto model (2.8) reads as

θ̇i−θ̇j =
ωi
Di
− ωj
Dj
−
∑n

k=1

(
aik
Di

sin(θi − θk − ϕik)− ajk
Dj

sin(θj − θk − ϕjk)

)
, (4.7)

where i, j ∈ {1, . . . , n}. Since sin(x) is bounded in [−1, 1], equation (4.7) cannot have
a fixed point of the form θ̇i(t) = θ̇j(t), t ≥ 0, if the following condition is not met.

Lemma 4.2 (Necessary synchronization condition). Consider the non-
uniform Kuramoto model (2.8). There exists no frequency-synchronized solution if∣∣∣∣ ωiDi

− ωj
Dj

∣∣∣∣ > n∑
k=1

(aik
Di

+
ajk
Dj

)
, i, j ∈ {1, . . . , n} . (4.8)

Condition (4.8) can be interpreted as “the coupling between oscillators i and
j needs to dominate their non-uniformity,” For the classic Kuramoto model (2.2)
condition (4.8) reduces toK < n/(2(n−1))·|ωi−ωj |, a necessary condition derived also
in [12, 23]. We remark that condition (4.8) is only a loose bound for synchronization
since it does take into account the effect of lossy coupling induced by the phase shift
ϕij . Nevertheless, condition (4.8) indicates that the coupling needs to dominate the
non-uniformity and possibly also disadvantageous effects of the lossy coupling.

In order to show the phase cohesiveness θ(t) ∈ ∆(π/2 − ϕmax), the Kuramoto
literature provides various methods, which we reviewed in [17]. Due to the non-
symmetric coupling aij/Di and the phase shifts ϕij none of these methods appears to
be easily applicable to the non-uniform Kuramoto model (2.8). A different approach
from the literature on consensus protocols [27,29] is based on the contraction property
and aims to show that the arc in which all phases are contained is of non-increasing
length. A modification of this approach turns out to be applicable to non-uniform
Kuramoto oscillators with a complete coupling graph.

Theorem 4.3. (Synchronization condition I) Consider the non-uniform
Kuramoto-model (2.8), where the graph induced by A = AT is complete. Assume
that the minimal lossless coupling of any oscillator to the network is larger than a
critical value, that is,

Γmin , nmin
i 6=j

{
aij
Di

cos(ϕij)

}
> Γcritical ,

1

cos(ϕmax)

(
max
i 6=j

∣∣∣∣ ωiDi
− ωj
Dj

∣∣∣∣+ 2 max
i∈{1,...,n}

∑n

j=1

aij
Di

sin(ϕij)
)
. (4.9)

Accordingly, define γmin ∈ [0, π/2− ϕmax[ and γmax ∈ ]π/2, π] as unique solutions to
the equations sin(γmin) = sin(γmax) = cos(ϕmax) Γcritical/Γmin. Then

1) phase cohesiveness: the set ∆̄(γ) is positively invariant for every γ ∈
[γmin, γmax], and each trajectory starting in ∆(γmax) reaches ∆̄(γmin); and

2) frequency synchronization: for every θ(0) ∈ ∆(γmax), the frequencies
θ̇i(t) synchronize exponentially to some frequency θ̇∞ ∈ [θ̇min(0), θ̇max(0)].



Synchronization in Power Networks and Non-Uniform Kuramoto Oscillators 17

The interpretation of condition (4.9) and its reduction to classic (uniform) Ku-
ramoto is thoroughly discussed in Remark 2.2. Throughout the proof we comment on
different possible branches leading to slightly different conditions than (4.9).

Proof of Theorem 4.3: By assumption, the angles θi(t) belong to the set ∆̄(γ)
at time t = 0, that is, they are all contained in an arc of length γ ∈ [0, π]. We start
by proving the positive invariance of ∆̄(γ) for γ ∈ [0, π]. Recall the geodesic distance
between two angles on T1 and define the non-smooth function V : Tn → [0, π] by

V (ψ) = max{|ψi − ψj | | i, j ∈ {1, . . . , n}}.
Since θ(0) ∈ ∆̄(γ), V (ψ) can equivalently be written as maximum over a set of
differentiable functions, that is, V (ψ) = max{ψi − ψj | i, j ∈ {1, . . . , n}}. The arc
containing all angles has two boundary points: a counterclockwise maximum and a
counterclockwise minimum. If we let Imax(ψ) (respectively Imin(ψ)) denote the set
indices of the angles ψ1, . . . , ψn that are equal to the counterclockwise maximum
(respectively the counterclockwise minimum), then we may write

V (ψ) = ψm′ − ψ`′ , for all m′ ∈ Imax(ψ) and `′ ∈ Imin(ψ).

We aim to show that all angles remain in ∆̄(γ) for all subsequent times t > 0. Note
that θ(t) ∈ ∆̄(γ) if and only if V (θ(t)) ≤ γ. Therefore, ∆̄(γ) is positively invariant if
and only if V (θ(t)) does not increase at any time t such that V (θ(t)) = γ. The upper
Dini derivative of V (θ(t)) along the dynamical system (4.7) is given by [27, Lemma 2.2]

D+V (θ(t)) = lim
h↓0

sup
V (θ(t+ h))− V (θ(t))

h
= θ̇m(t)− θ̇`(t) ,

where m ∈ Imax(θ(t)) and ` ∈ Imin(θ(t)) are indices with the properties that

θ̇m(t) = max{θ̇m′(t) | m′ ∈ Imax(θ(t))}, and θ̇`(t) = min{θ̇`′(t) | `′ ∈ Imin(θ(t))}.
Written out in components (in the expanded form (4.1)), D+V (θ(t)) takes the form

D+V (θ(t)) =
ωm
Dm
− ω`
D`
−
∑n

k=1

(
αmk sin(θm(t)− θk(t)) + α`k sin(θk(t)− θ`(t))

)
+
∑n

k=1

(
βmk cos(θm(t)− θk(t))− β`k cos(θ`(t)− θk(t))

)
, (4.10)

where we used the abbreviations αik , aik cos(ϕik)/Di and βik , aik sin(ϕik)/Di.
The equality V (θ(t)) = γ implies that, measuring distances counterclockwise and
modulo additional terms equal to multiples of 2π, we have θm(t) − θ`(t) = γ, 0 ≤
θm(t)−θk(t) ≤ γ, and 0 ≤ θk(t)−θ`(t) ≤ γ. To simplify the notation in the subsequent
arguments, we do not aim at the tightest and least conservative bounding of the two
sums on the right-hand side of (4.10) and continue as follows.2 Since both sinusoidal
terms on the right-hand side of (4.10) are positive, they can be lower-bounded as

αmk sin(θm(t)− θk(t)) + α`k sin(θk(t)− θ`(t))

≥ 2 min {αmk, α`k} sin

(
θm(t)− θ`(t)

2

)
cos

(
θm(t) + θ`(t)

2
− θk(t)

)
≥ 2 min {αmk, α`k} sin(γ/2) cos(γ/2) = min {αmk, α`k} sin(γ) ,

2Besides tighter bounding of the right-hand side of (4.10), the proof can alternatively be continued
by adding and subtracting the coupling with zero phase shifts in (4.10) or by noting that the right-
hand side of (4.10) is a convex function of θk ∈ [θ`, θm] that achieves its maximum at the boundary
θk ∈ {θ`, θm}. If the analysis is restricted to γ ∈ [0, π/2], the term βmk can be dropped.
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where we applied the trigonometric identities sin(x) + sin(y) = 2 sin(x+y2 ) cos(x−y2 )
and 2 sin(x) cos(y) = sin(x− y) + sin(x+ y). The cosine terms in (4.10) can be upper
bounded in ∆̄(γ) as βmk cos(θm(t) − θk(t)) − β`k cos(θ`(t) − θk(t)) ≤ βmk + β`k. In
summary, D+V (θ(t)) in (4.10) can be upper bounded by

D+V (θ(t)) ≤ ωm
Dm
− ω`
D`
−
∑n

k=1
min {αmk, α`k} sin(γ) +

∑n

k=1
βmk +

∑n

k=1
β`k

≤ max
i 6=j

∣∣∣∣ ωiDi
− ωj
Dj

∣∣∣∣− nmin
i 6=j

{
aij
Di

cos(ϕij)

}
sin(γ) + 2 max

i∈{1,...,n}

∑n

j=1
βij ,

where we maximized the coupling terms and the differences in natural frequencies
over all pairs {m, `}. It follows that V (θ(t)) is non-increasing for all θ(t) ∈ ∆̄(γ) if

Γmin sin(γ) ≥ cos(ϕmax) Γcritical , (4.11)

where Γmin and Γcritical are defined in (4.9). The left-hand side of (4.11) is a strictly
concave function of γ ∈ [0, π]. Thus, there exists an open set of arc lengths γ including
γ∗ = π/2 − ϕmax satisfying inequality (4.11) if and only if inequality (4.11) is true
at γ∗ = π/2 − ϕmax with the strict inequality sign, which corresponds to condition
(4.9). Additionally, if these two equivalent statements are true, then V (θ(t)) is non-
increasing in ∆̄(γ) for all γ ∈ [γmin, γmax], where γmin ∈ [0, π/2− ϕmax[ and γmax ∈
]π/2, π] are given as unique solutions to inequality (4.11) with equality sign. Moreover,
V (θ(t)) is strictly decreasing in ∆̄(γ) for all γ ∈ ]γmin, γmax[. This concludes the proof
of statement 1) and ensures that for every θ(0) ∈ ∆(γmax), there exists T ≥ 0 such
that θ(t) ∈ ∆̄(π/2− ϕmax) for all t ≥ T . Thus, the positive invariance assumption of
Theorem 4.1 is satisfied, and statement 2) follows from Theorem 4.1.

The sufficient synchronization (4.9) is a worst-case bound, both on the parameters
and on the initial angles. In the remainder of this section, we aim at deriving a 2-
norm type bound and require only connectivity of the graph induced by A = AT and
not necessarily completeness. The following analysis is formally carried out for the
complete graph, but, without loss of generality, we assume that some weights aij = aji
can be zero and the non-zero weights A = AT induce a connected graph. Let Bc ∈
Rn×n(n−1)/2 be the incidence matrix of the complete graph with n nodes and recall
that for a vector x ∈ Rn the vector of all difference variables is BTc x = (x2 − x1, . . . ).
The phase difference dynamics (4.7) (with the sinusoidal coupling expanded as in
(4.1)) can be reformulated in a compact vector notation as

d

d t
BTc θ = BTc D

−1ω −BTc D−1B diag(aij cos(ϕij)) sin(BTc θ) +BTc X , (4.12)

where X ∈ Rn is the vector of lossy couplings Xi =
∑n
j=1(aij/Di) sin(ϕij) cos(θi−θj).

The differential equation (4.12) is well defined on Tn: the left-hand side of (4.12) is
the vector of frequency differences BTc θ̇ = (θ̇2 − θ̇1, . . . ) taking values in the tangent
space to Tn, and the right-hand side of (4.12) is a well-posed function of θ ∈ Tn.

With slight abuse of notation, we denote the 2-norm of the vector of all geodesic
distances by

∥∥BTc θ∥∥2 = (
∑
i

∑
j |θi − θj |2)1/2, and aim at ultimately bounding the

evolution of
∥∥BTc θ(t)∥∥2. Following a classic Kuramoto analysis, we note that an anal-

ysis of (4.12) by Hamiltonian arguments is possible, but results in very conservative
conditions. In the recent Kuramoto literature [12, 23], a different Lyapunov function

considered for the uniform Kuramoto model (2.2) is simply
∥∥BTc θ∥∥22. Unfortunately, in
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the case of non-uniform rates Di this function’s Lie derivative is sign-indefinite. How-
ever, it is possible to identify a similar Lyapunov function that has a Lie derivative
with symmetric coupling. Consider the function W : Tn → R defined by

W(θ) =
1

4

∑n

i=1

∑n

j=1
DiDj |θi − θj |2 . (4.13)

A Lyapunov analysis of system (4.12) via the functionW leads to the following result.
Theorem 4.4. (Synchronization condition II) Consider the non-uniform

Kuramoto model (2.8), where the graph induced by A = AT is connected. Let Bc ∈
Rn×n(n−1)/2 be the incidence matrix of the complete graph and assume that the alge-
braic connectivity of the lossless coupling is larger than a critical value, that is,

λ2(L(aij cos(ϕij))) > λcritical

,

∥∥BTc D−1ω∥∥2 +
√
n
∣∣∣∣∣∣[∑n

j=1
P1j

D1
sin(ϕ1j), . . . ,

∑n
j=1

Pnj

Dn
sin(ϕnj)

]∣∣∣∣∣∣
2

cos(ϕmax)(κ/n)α/maxi 6=j{DiDj}
, (4.14)

where κ =
∑n
k=1Dk and α =

√
mini6=j{DiDj}/maxi 6=j{DiDj}. Accordingly, define

γmax ∈ ]π/2− ϕmax, π] and γmin ∈ [0, π/2− ϕmax[ as unique solutions to the equations
sinc(γmax)/sinc(π/2−ϕmax)=sin(γmin)/cos(ϕmax)=λcritical/λ2(L(aij cos(ϕij))). Then

1) phase cohesiveness: the set
{
θ ∈ ∆(π) : ‖BTc θ‖2 ≤ γ

}
is positively invari-

ant for every γ ∈ [γmin, αγmax], and each trajectory starting in
{
θ ∈ ∆(π) :∥∥BTc θ(0)

∥∥
2
< αγmax

}
reaches

{
θ ∈ ∆(π) : ‖BTc θ‖2 ≤ γmin

}
; and

2) frequency synchronization: for every θ(0) ∈ ∆(π) with
∥∥BTc θ(0)

∥∥
2
<

αγmax the frequencies θ̇i(t) synchronize exponentially to some frequency θ̇∞ ∈
[θ̇min(0), θ̇max(0)]. Moreover, if ϕmax = 0, then θ̇∞ = Ω and the exponential
synchronization rate is no worse than λfe, as defined in equation (4.2).

remark 4.5. (Interpretation and reduction to classic Kuramoto oscil-
lators:) In condition (4.14), the term

∣∣∣∣[. . . ,∑n
j=1

aij
Di

sin(ϕij), . . .
]∣∣∣∣

2
is the 2-norm of

the vector containing the lossy coupling,
∥∥BTc D−1ω∥∥2 =‖(ω2/D2 − ω1/D1, . . . )‖2 cor-

responds to the non-uniformity in the natural frequencies, λ2(L(aij cos(ϕij))) is the
algebraic connectivity induced by the lossless coupling, cos(ϕmax) = sin(π/2− ϕmax)
reflects again the phase cohesiveness in ∆(π/2− ϕmax), and (κ/n)α/maxi6=j{DiDj}
weights the non-uniformity in the time constants Di. The gap in condition (4.14)
yields again practical stability result determining the initial and ultimate phase cohe-
siveness. Condition (4.14) can be extended to non-reduced power system models [16].

For classic Kuramoto oscillators (2.2), condition (4.14) reduces to K > K∗critical ,∥∥BTc ω∥∥2, and the Lyapunov function W(θ) reduces to the one used in [12, 23]. It

follows that the oscillators synchronize for
∥∥BTc θ(0)

∥∥
2
< γmax and are ultimately

phase cohesive in
∥∥BTc θ∥∥2 ≤ γmin, where γmax ∈ ]π/2, π] and γmin ∈ [0, π/2[ are

the unique solutions to (π/2) sinc(γmax) = sin(γmin) = K∗critical/K. The condition
K >

∥∥BTc ω∥∥2 is more conservative than the bound K > ωmax − ωmin obtained from
condition (4.9), but it holds for arbitrary connected network topologies. �

Before stating the proof of Theorem 4.4, we develop some identities to simplify the
Lie derivative Ẇ(θ). Recall that angular differences are well defined for θ ∈ ∆(π), and
the vector of phase differences is BTc θ = (θ2− θ1, . . . ) ∈ Rn(n−1)/2. Thus, the function
W defined in (4.13) can be rewritten as the function BTc θ 7→W (BTc θ) defined by

W(θ) =
1

4

n∑
i=1

n∑
j=1

DiDj |θi − θj |2 =
1

2
(BTc θ)

T diag(DiDj)(B
T
c θ) ,W (BTc θ) . (4.15)
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The derivative of W (BTc θ) along trajectories of system (4.12) is then given by

Ẇ (BTc θ) = (BTc θ)
T diag(DiDj)B

T
c D
−1ω + (BTc θ)

T diag(DiDj)B
T
c X

− (BTc θ)
T diag(DiDj)B

T
c D
−1Bc diag(aij cos(ϕij)) sin(BTc θ) . (4.16)

The last term on the right-hand side of (4.16) can be reduced to a diagonal expression.
Lemma 4.6. Let A=AT ∈ Rn×n, θ ∈ ∆(π), and κ =

∑n
k=1Dk. Then it holds that

(BTc θ)
T diag(DiDj)B

T
c D
−1Bc diag(aij cos(ϕij)) sin(BTc θ)

= κ(BTc θ)
T diag(aij cos(ϕij)) sin(BTc θ) . (4.17)

Proof. The left-hand side of equation (4.17) reads component-wise as

n∑
i,j,k=1

(θi−θj)(aik cos(ϕik)Dj) sin(θi−θk)+

n∑
i,j,k=1

(θi−θj)(ajk cos(ϕjk)Di) sin(θk−θj).

An manipulation of the indices in both sums yields

n∑
i,k,j=1

(θi− θk)(aij cos(ϕij)Dk) sin(θi− θj) +

n∑
k,j,i=1

(θk− θj)(aij cos(ϕij)Dk) sin(θi− θj).

Finally, the two sums can be added and simplify to
∑n
i,j,k=1(aij cos(ϕij)Dk)(θi −

θj) sin(θi − θj), which equals the right-hand side of equation (4.17).

The next lemma enables us to upper-bound Ẇ (BTc θ) by the algebraic connectivity.
Lemma 4.7. Consider a connected graph with n nodes induced by A = AT ∈ Rn×n

with incidence matrix B ∈ Rn×|E| and Laplacian matrix L(aij). For any x ∈ Rn, it
holds that (BTx)T diag(aij)(B

Tx) ≥ (λ2(L(aij))/n)‖BTx‖22.
Proof. The Laplacian of the complete graph with uniform weights is given by

(n · In − 1n1Tn ) = BcB
T
c , and the projection of x ∈ Rn on the subspace orthogonal to

1n is x⊥ = (In − (1/n)1n1Tn )x = (1/n)BcB
T
c x. Consider now the inequality

(BTx)T diag(aij)(B
Tx) = xTB diag(aij)B

Tx = xTL(aij)x

≥ λ2(L(aij)) ‖x⊥‖22 =
λ2(L(aij))

n2
∥∥BcBTc x∥∥22 =

λ2(L(aij))

n2
(BTc x)TBTc Bc(B

T
c x) .

In order to continue, first note that BTc Bc and the complete graph’s Laplacian BcB
T
c

have the same eigenvalues, namely n and 0. Second, range(BTc ) and ker(Bc) are
orthogonal complements. It follows that (BTc x)TBTc Bc(B

T
c x) = n‖BTc x‖22. Finally,

note that ‖BTc x‖22 ≥ ‖BTx‖22 and the lemma follows.
Given Lemma 4.6 and Lemma 4.7 about the time derivative of W (BTc θ), we are

now in a position to prove Theorem 4.4 via ultimate boundedness arguments.
Proof of Theorem 4.4: Assume that θ(0) ∈ S(ρ) , {θ ∈ ∆(π) : ‖BTc θ‖2 ≤ ρ} for

some ρ ∈]0, π[. In the following, we will show under which conditions and for which
values of ρ the set S(ρ) is positively invariant. For θ ∈ S(ρ) and since ‖BTc θ‖∞ ≤
‖BTc θ‖2, it follows that θ ∈ ∆̄(ρ) and 1 ≥ sinc(θi − θj) ≥ sinc(ρ). Thus, for θ ∈ S(ρ),
the inequality (θi − θj) sin(θi − θj)≥(θi − θj)2 sinc(ρ) and Lemma 4.6 yield an upper
bound on the right-hand side of (4.16):

Ẇ (BTc θ) ≤(BTc θ)
Tdiag(DiDj)B

T
c D
−1ω + (BTc θ)

Tdiag(DiDj)B
T
c X

− κ sinc(ρ)(BTc θ)
Tdiag(aij cos(ϕij))(B

T
c θ) .
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Due to the upper bound ‖BTc X‖22 = XTBcB
T
c X ≤ λmax(BcB

T
c ) ‖X‖2 = n ‖X‖22 and

Lemma 4.7, we obtain the following upper bound on Ẇ (BTc θ):

Ẇ (BTc θ) ≤‖BTc θ‖2 maxi 6=j{DiDj}
(∥∥BTc D−1ω∥∥2 +

√
n‖X‖2

)
− (κ/n) sinc(ρ)λ2(L(aij cos(ϕij))‖BTc θ‖22 . (4.18)

Note that the right-hand side of (4.18) is strictly negative for

‖BTc θ‖2 > µc ,
maxi 6=j{DiDj}

(∥∥BTc D−1ω∥∥2 +
√
n‖X‖2

)
(κ/n) sinc(ρ)λ2(L(aij cos(ϕij)))

.

In the following we regard BTc D
−1ω and BTc X as external disturbances affecting the

otherwise stable phase difference dynamics (4.12), and we apply standard Lyapunov,
input-to-state stability, and ultimate boundedness arguments. Pick µ ∈]0, ρ[. If

µ > µc =
maxi 6=j{DiDj}(

∥∥BTc D−1ω∥∥2 +
√
n‖X‖2)

(κ/n) sinc(ρ)λ2(L(aij cos(ϕij)))
, (4.19)

then for all ‖BTc θ‖2 ∈ [µ, ρ], the right-hand side of (4.18) is upper-bounded by

Ẇ (BTc θ) ≤ −
(
1− (µc/µ)

)
· (κ/n) sinc(ρ)λ2(L(aij cos(ϕij)))‖BTc θ‖22 .

Note that W (BTc θ) is upper and lower bounded by constants multiplying
∥∥BTc θ∥∥22 :

mini 6=j{DiDj}‖BTc θ‖22 ≤ 2 ·W (BTc θ) ≤ maxi6=j{DiDj}‖BTc θ‖22 . (4.20)

To guarantee the ultimate boundedness of BTc θ, two sublevel sets of W (BTc θ) have
to be fitted into the set {BTc θ : ‖BTc θ‖2 ∈ [µ, ρ]} where Ẇ (BTc θ) is strictly negative.
This is possible under the following condition [24, equation (4.41)]:

µ <
√

mini6=j{DiDj}/maxi 6=j{DiDj} · ρ = αρ . (4.21)

Ultimate boundedness arguments [24, Theorem 4.18] imply that, for ‖BTc θ(0)‖2 ≤ αρ,
there is T ≥ 0 such that ‖BTc θ(t)‖2 is exponentially decreasing for t ∈ [0, T ] and
‖BTc θ(t)‖2 ≤ µ/α for all t ≥ T . If we choose µ = αγ with γ ∈]0, π/2 − ϕmax], then
equation (4.21) reduces to ρ > γ and (4.19) reduces to the condition

λ2(L(aij cos(ϕij))) > λcritical
cos(ϕmax)

γ sinc(ρ)
, (4.22)

where λcritical is as defined in equation (4.14). Now, we perform a final analysis of
the bound (4.22). The right-hand side of (4.22) is an increasing function of ρ and
decreasing function of γ that diverges to ∞ as ρ ↑ π or γ ↓ 0. Therefore, there exists
some (ρ, γ) in the convex set Λ , {(ρ, γ) : ρ ∈]0, π[ , γ ∈]0, π/2 − ϕmax] , γ < ρ}
satisfying equation (4.22) if and only if equation (4.22) is true at ρ = γ = π/2−ϕmax,
where the right-hand side of (4.22) achieves its infimum in Λ. The latter condition is
equivalent to inequality (4.14). Additionally, if these two equivalent statements are
true, then there exists an open set of points in Λ satisfying (4.22) , which is bounded by
the unique curve that satisfies equation (4.22) with the equality sign, namely f(ρ, γ) =
0, where f : Λ → R, f(ρ, γ) = γ sinc(ρ)/ cos(ϕmax) − λcritical/λ2(L(aij cos(ϕij))).
Consequently, for every (ρ, γ) ∈ {(ρ, γ) ∈ Λ : f(ρ, γ) > 0}, it follows for ‖BTc θ(0)‖2 ≤
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αρ that there is T ≥ 0 such that ‖BTc θ(t)‖2 ≤ γ for all t ≥ T . The supremum value for
ρ is given by ρmax ∈ ]π/2− ϕmax, π] solving the equation f(ρmax, π/2−ϕmax) = 0 and
the infimum value of γ by γmin ∈ [0, π/2− ϕmax[ solving the equation f(γmin, γmin)=0.

This proves statement 1) (where we replaced ρmax by γmax) and shows that there
is T ≥ 0 such that ‖BTc θ(t)‖∞≤‖BTc θ(t)‖2 < π/2− ϕmax for all t ≥ T . Statement 2)
on frequency synchronization follows then immediately from Theorem 4.1.

4.3. Phase Synchronization. For identical natural frequencies and zero phase
shifts, the practical stability results in Theorem 4.3 and Theorem 4.4 imply γmin ↓ 0,
that is, phase synchronization of the non-uniform Kuramoto oscillators (2.8).

Theorem 4.8 (Phase synchronization). Consider the non-uniform Kuramoto
model (2.8), where the graph induced by A has a globally reachable node, ϕmax = 0,
and ωi/Di = ω̄ for all i ∈ {1, . . . , n}. Then for every θ(0) ∈ ∆̄(γ) with γ ∈ [0, π[,

1) the phases θi(t) synchronize exponentially to θ∞(t)∈ [θmin(0), θmax(0)]+ω̄t; and
2) if A = AT , then the phases θi(t) synchronize exponentially to the weighted

mean angle θ∞(t) =
∑
iDiθi(0)/

∑
iDi + ω̄t at a rate no worse than

λps = −λ2(L(aij)) sinc(γ) cos(∠(D1,1))2/Dmax . (4.23)

The worst-case phase synchronization rate λps can be interpreted similarly as the
terms in (4.2). For classic Kuramoto oscillators (2.2), statements 1) and 2) reduce to
the Kuramoto results found in [27], [23, Theorem 1], and [17, Theorem 4.1].

Proof of Theorem 4.8: Consider again the Lyapunov function V (θ(t)) from the
proof of Theorem 4.3. The Dini derivative, for the case ϕmax = 0 and ωi/Di = ω̄, is

D+V (θ(t)) = −
∑n

k=1

(amk
Dm

sin(θm(t)− θk(t)) +
a`k
D`

sin(θk(t)− θ`(t))
)
.

Both sinusoidal terms are positive for θ(t) ∈ ∆̄(γ), γ ∈ [0, π[. Thus, V (θ(t) is non-
increasing, and ∆̄(γ) is positively invariant. After changing to a rotating frame (via
the coordinate transformation θ 7→ θ−ω̄ t) the non-uniform Kuramoto model (2.8) can
be written as the time-varying consensus protocol Dθ̇ = −L(bij(t)) θ with multiple
rates Di and time-varying weights bij(t) = aij sinc(θi(t) − θj(t)) for all t ≥ 0. The
theorem then follows directly along the lines of the proof of Theorem 4.1.

We are now in a position to prove the main result Theorem 2.1.
Proof of Theorem 2.1: The assumptions of Theorem 2.1 correspond exactly to

the assumptions of Theorem 4.3 and statements 1) and 2) follow from Theorem 4.3.
Since the non-uniform Kuramoto model synchronizes exponentially and achieves

phase cohesiveness in ∆̄(γmin) ( ∆(π/2− ϕmax), it follows from Lemma 3.1 that the
grounded non-uniform Kuramoto dynamics (3.1) converge exponentially to a stable
fixed point δ∞. Moreover, δ(0) = grnd(θ(0)) is bounded and thus necessarily in a
compact subset of the region of attraction of the fixed point δ∞. Thus, the assump-
tions of Theorem 3.2 are satisfied. Statements 3) and 4) of Theorem 2.1 follow from
Theorem 3.2, where we made the following changes: the approximation errors (3.4)-
(3.5) are expressed as the approximation errors (2.10) in θ-coordinates, we stated only
the case ε < ε∗ and t ≥ tb > 0, we reformulated h(δ̄(t)) = D−1P (θ̄(t)), and weakened
the dependence of ε on Ωδ to a dependence on θ(0).

5. Simulation Results. Figure 5.1 shows a simulation of the power network
model (2.3) with n = 10 generators and the corresponding non-uniform Kuramoto
model (2.8), where all initial angles θ(0) are clustered with exception of the first one
(red dashed curves) and the initial frequencies are chosen as θ̇(0) ∈ uni(−0.1, 0.1) rad/s,
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(a) Weakly damped simulation with ε = 0.58 s
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(b) Strongly damped simulation with ε = 0.18 s

Fig. 5.1. Simulation of the power network model (2.3) and the non-uniform Kuramoto model (2.8).

that is, randomly from a uniform distribution over [−0.1, 0.1]. Additionally, at two-
third of the simulation interval a transient high frequency disturbance is introduced at
ωn−1 (yellow dotted curve). For illustration, relative angular coordinates are defined
as δi(t) = θi(t) − θn(t), i ∈ {1, . . . , n − 1}. The parameters satisfy ωi ∈ uni(−5, 5),
aij ∈ uni(0.7, 1.2), and tan(ϕij) ∈ uni(0, 0.25) matching data found in [4, 25,32].

For the simulation in Figure 5.1(a), we chose f0 = 60Hz, Mi ∈ uni(2, 12)/(2πf0),
and Di ∈ uni(20, 30)/(2πf0) resulting in the rather large perturbation parameter
ε = 0.58. The synchronization conditions of Theorem 2.1 are satisfied, and the an-
gles δ̄(t) of the non-uniform Kuramoto model synchronize very fast from the non-
synchronized initial conditions (within 0.05 s), and the disturbance around t = 2s
does not severely affect the synchronization dynamics. The same findings hold for
the quasi-steady state h(δ̄(t)) depicting the frequencies of the non-uniform Kuramoto
model, where the disturbance acts directly without being integrated. Since ε is large
the power network trajectories (δ(t), θ̇(t)) show the expected underdamped behav-
ior and synchronize with second-order dynamics. As expected, the disturbance at
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t = 2 s does not affect the second-order power network δ-dynamics as much as the
first-order non-uniform Kuramoto δ̄-dynamics. Nevertheless, after the initial and mid-
simulation transients the singular perturbation errors δ(t) − δ̄(t) and θ(t) − h(δ̄(t))
quickly become small and ultimately converge. Figure 5.1(b) shows the exact same
simulation as in Figure 5.1(a), except that the simulation time is halved, the inertia
are Mi ∈ uni(2, 6)/(2πf0), and the damping is chosen uniformly as Di = 30/(2πf0),
which gives the small perturbation parameter ε=0.18 s. The resulting power network
dynamics (δ(t), θ̇(t)) are strongly damped (note the different time scales), and the
non-uniform Kuramoto dynamics δ̄(t) and the quasi-steady state h(δ̄(t)) have smaller
time constants. As expected, the singular perturbation errors remain smaller during
transients and converge faster than in the weakly damped case in Figure 5.1(a).

Further simulation studies indicate that the quality of the singular perturbation
approximation apparently depends solely on the inertial and damping coefficients as
well as the distance of the trajectories from the post-disturbance steady state. This
dependence confirms the results in [2,13] showing that the regions of attractions of the
first and the second-order model are aligned for large damping as well as the results
in [9,11,17] showing the local topological equivalence of both models near equilibria.

6. Conclusions. We studied the synchronization and transient stability prob-
lem for a power network. A novel approach leads to purely algebraic conditions, under
which a network-reduced power system model synchronizes depending on the network
parameters. Our technical approach is based on the assumption that each generator
is highly overdamped. The resulting singular perturbation analysis leads to the suc-
cessful marriage of transient stability in power networks, Kuramoto oscillators, and
consensus protocols. As a result, the transient stability analysis of a power network
model reduces to the synchronization analysis of a non-uniform Kuramoto model. The
study of the latter coupled oscillator model is an interesting mathematical problem in
its own right and was tackled by combining methods from all three mentioned areas.

The presented approach to synchronization in power networks provides easily
checkable conditions and an entirely new perspective on the transient stability prob-
lem. The authors are aware that the derived conditions are not yet competitive with
the sophisticated numerical algorithms developed by the power systems community.
To render our results applicable to real power systems, tighter conditions have to be
developed, the region of attraction has to be characterized more accurately, and more
realistic models have to be considered. Our ongoing work addresses the last point and
extends the presented analysis to structure-preserving power network models [16].

REFERENCES

[1] J. A. Acebrón, L. L. Bonilla, C. J. P. Vicente, F. Ritort, and R. Spigler, The Kuramoto
model: A simple paradigm for synchronization phenomena, Reviews of Modern Physics,
77 (2005), pp. 137–185.

[2] L. F. C. Alberto and N. G. Bretas, Required damping to assure multiswing transient sta-
bility: the SMIB case, International Journal of Electrical Power & Energy Systems, 22
(2000), pp. 179–185.

[3] L. F. C. Alberto, F. H. J. R. Silva, and N. G. Bretas, Direct methods for transient sta-
bility analysis in power systems: state of art and future perspectives, in IEEE Power Tech
Proceedings, Porto, Portugal, Sept. 2001.

[4] P. M. Anderson and A. A. Fouad, Power System Control and Stability, Iowa State University
Press, 1977.

[5] M. Arcak, Passivity as a design tool for group coordination, IEEE Transactions on Automatic
Control, 52 (2007), pp. 1380–1390.



Synchronization in Power Networks and Non-Uniform Kuramoto Oscillators 25

[6] A. Arenas, A. D́ıaz-Guilera, J. Kurths, Y. Moreno, and C. Zhou, Synchronization in
complex networks, Physics Reports, 469 (2008), pp. 93–153.

[7] F. Bullo, J. Cortés, and S. Mart́ınez, Distributed Control of Robotic Networks,
Applied Mathematics Series, Princeton University Press, 2009. Available at
http://www.coordinationbook.info.

[8] H.-D. Chiang, Direct Methods for Stability Analysis of Electric Power Systems, Wiley, 2011.
[9] H.-D. Chiang and C. C. Chu, Theoretical foundation of the BCU method for direct stability

analysis of network-reduction power system models with small transfer conductances, IEEE
Transactions on Circuits and Systems I: Fundamental Theory and Applications, 42 (1995),
pp. 252–265.

[10] H.-D. Chiang, C. C. Chu, and G. Cauley, Direct stability analysis of electric power systems
using energy functions: theory, applications, and perspective, Proceedings of the IEEE, 83
(1995), pp. 1497–1529.

[11] H.-D. Chiang, F. F. Wu, and P. P. Varaiya, Foundations of the potential energy boundary
surface method for power system transient stability analysis, IEEE Transactions on Circuits
and Systems, 35 (1988), pp. 712–728.

[12] N. Chopra and M. W. Spong, On exponential synchronization of Kuramoto oscillators, IEEE
Transactions on Automatic Control, 54 (2009), pp. 353–357.

[13] C.C. Chu and H.D. Chiang, Boundary properties of the BCU method for power system tran-
sient stability assessment, in IEEE Int. Symposium on Circuits and Systems, Paris, France,
May 2010, pp. 3453–3456.

[14] R. De Luca, Strongly coupled overdamped pendulums, Revista Brasileira de Ensino de F́ısica,
30 (2008), pp. 4304–4304.

[15] F. Dörfler and F. Bullo, Synchronization and transient stability in power networks and
non-uniform Kuramoto oscillators, in American Control Conference, Baltimore, MD, USA,
June 2010, pp. 930–937. Extended version available at http://arxiv.org/abs/0910.5673.

[16] , Kron reduction of graphs with applications to electrical networks, IEEE Transactions
on Circuits and Systems, (2011). Submitted.

[17] , On the critical coupling for Kuramoto oscillators, SIAM Journal on Applied Dynamical
Systems, 10 (2011), pp. 1070–1099.

[18] G. Filatrella, A. H. Nielsen, and N. F. Pedersen, Analysis of a power grid using a
Kuramoto-like model, The European Physical Journal B, 61 (2008), pp. 485–491.

[19] V. Fioriti, S. Ruzzante, E. Castorini, E. Marchei, and V. Rosato, Stability of a distributed
generation network using the Kuramoto models, in Critical Information Infrastructure Se-
curity, Lecture Notes in Computer Science, Springer, 2009, pp. 14–23.

[20] S.Y. Ha, C. Lattanzio, B. Rubino, and M. Slemrod, Flocking and synchronization of particle
models, Quarterly Applied Mathematics, 69 (2011), pp. 91–103.

[21] D. J. Hill and G. Chen, Power systems as dynamic networks, in IEEE Int. Symposium on
Circuits and Systems, Kos, Greece, May 2006, pp. 722–725.

[22] D. J. Hill and J. Zhao, Global synchronization of complex dynamical networks with non-
identical nodes, in IEEE Conf. on Decision and Control, Cancún, México, Dec. 2008,
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