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Abstract

This paper studies prototypical strategies to sequentially aggregate mtgpelecisions. We consider a collection
of agents, each performing binary hypothesis testing and each obtairdegision over time. We assume the agents
are identical and receive independent information. Individual dewsare sequentially aggregated via a threshold-
based rule. In other words, a collective decision is taken as soon a&ifieh number of agents report a concordant
decision (simultaneous discordant decisions and no-decision out@mesdso handled).

We obtain the following results. First, we characterize the probabilities afcband wrong decisions as a
function of time, group size and decision threshold. The computatiogalresnents of our approach are linear in the
group size. Second, we consider the so-called fastest and majorisy coleesponding to specific decision thresholds.
For these rules, we provide a comprehensive scalability analysis ofdeectiracy and decision time. In the limit of
large group sizes, we show that the decision time for the fastest rulergassto the earliest possible individual time,
and that the decision accuracy for the majority rule shows an exponanpiabvement over the individual accuracy.
Additionally, via a theoretical and numerical analysis, we characterideusspeed/accuracy tradeoffs. Finally, we
relate our results to some recent observations reported in the cognftwenation processing literature.

|. INTRODUCTION
A. Problem setup

Interest in group decision making spans a wide variety of @lam Be it in electoral votes in politics, detection
in robotic and sensor networks, or cognitive data procgssirthe human brain, establishing the best strategy or
understanding the motivation behind an observed strategg/,been of interest for many researchers. This work
aims to understand how grouping individual sequentialsienimakers affects the speed and accuracy with which
these individuals reach a collective decision. This cldsproblems has a rich history and some of its variations
are studied in the context of distributed detection in semsdworks and Bayesian learning in social networks.

In our problem, a group of individuals independently dechli#ween two alternative hypothesis, and each
individual sends its local decision to a fusion center. Theidn center decides for the whole group as soon
as one hypothesis gets a number of votes that crosses atprezoied threshold. We are interested in relating the
accuracy and decision time of the whole population, to trmugry and decision time of a single individual. We
assume that all individuals are independent and idenfitet is, we assume that they gather information corrupted
by i.i.d. noise and that the same statistical test is usedalsi éndividual in the population. The setup of similar
problems studied in the literature usually assumes thandividual decisions need to be available to the fusion
center, before the latter can reach a final decision. The wmekented here relaxes this assumption and the fusion
center might provide the global decision much earlier thenatl individuals in the group. Researchers in behavioral
studies refer to decision making schemes where everyongeda gn equal amount of time to respond as the “free
response paradigm.” Since the speed of the group’s decisione of our main concerns, we adjust the analysis
in a way that makes it possible to compute the joint probidsliof each decision at each time instant. Such a
paradigm is referred to as the “interrogation paradigm.”

B. Literature review

The framework we analyze in this paper is related to the omsidered in many papers in the literature, see for
instance [1], [2], [3], [4], [5], [6], [7], [8], [9] and refeences therein. The focus of these works is mainly two-fold.
First, researchers in the fields aim to determine which tyfp@formation the decision makers should send to the
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fusion center. Second, many of the studies concentrate mputing optimal decision rules both for the individual
decision makers and the fusion center where optimalityrsetfie maximizing accuracy. One key implicit assumption
made in numerous works, is that the aggregation rule is eggdy the fusion center only after all the decision
makers have provided their local decisions.

Tsitsiklis in [1] studied the Bayesian decision problemhwé fusion center and showed that for large groups
identical local decision rules are asymptotically optimérshney in [2] proved that when the fusion rules at the
individuals level are non-identical, threshold rules & @ptimal rules at the individual level. Additionally, \&aney
proved that setting optimal thresholds for a class of fusigdes, where a decision is made as soon as a certain
numberq out of the N group members decide, requires solving a number of equatltat grows exponentially
with the group size. The fusion rules that we study in thiskafail under theq out of N class of decision rules.
Finally, Varshney proved that this class of decision rutesptimal for identical local decisions.

C. Contributions

The contributions of this paper are three-folds. First, woduce a recursive approach to characterize the
probabilities of correct and wrong decisions for a groupeaxfugential decision makers (SDMs). These probabilities
are computed as a function of time, group size and decisicgsliold. The key idea is to relate the decision
probability for a group of sizéV at each time, to the decision probability of an individual SDM up to thahé ¢,
in a recursive manner. Our proposed method has many adesntBgst, our method has a numerical complexity
that grows only linearly with the number of decision make3econd, our method is independent of the specific
decision making test adopted by the SDMs and requires kmiggl®f only the decision probabilities of the SDMs
as a function of time. Third, our method allows for asynclos decision times among SDMs. To the best of our
knowledge, the performance of sequential aggregationnsebdor asynchronous decisions has not been previously
studied.

Second, we consider the so-callagtestandmajority rules corresponding, respectively, to the decision tholesh
g =1andq = [N/2]. For these rules we provide a comprehensive scalabilitlysisaof both accuracy and decision
time. Specifically, in the limit of large group sizes, we pi® exact expressions for the expected decision time and
the probability of wrong decision for both rules, as a fuoctbf the decision probabilities of each SDM. For the
fastestrule we show that the group decision time converges to thigestpossible decision time of an individual
SDM, i.e., the earliest time for which the individual SDM hashon-zero decision probability. Additionally, the
fastestrule asymptotically obtains the correct answer almostlgupeovided the individual SDM is more likely to
make the correct decision, rather than the wrong decisibtheaearliest possible decision time. For thejority
rule we show that the probability of wrong decision converggponentially to zero if the individual SDM has a
sufficiently small probability of wrong decision. Additiatly, the decision time for thenajority rule is related to
the earliest time at which the individual SDM is more likety give a decision than to not give a decision. This
scalability analysis relies upon novel asymptotic and ntomigity results of certain binomial expansions.

As third main contribution, using our recursive method, wesgnt a comprehensive numerical analysis of
sequential decision aggregation based ongloat of N rules. As model for the individual SDMs, we adopt the
sequential probability ratio test (SPRT), which we chagdze as an absorbing Markov chain. First, for fastest
and majority rules, we report how accuracy and decision time vary as atibmof the group size and of the
SPRT decision probabilities. Second, in the most genetapsave report how accuracy and decision time vary
monotonically as a function of group size and decision thokls Additionally, we compare the performance of
fastest versus majority rules, at fixed group accuracy. Vdevstihat the best choice between the fastest rule and
the majority rule is a function of group size and group accur®ur numerical results illustrate why the design of
optimal aggregation rules is a complex task [10]. Finallg @discuss possible relationships between our analysis
of sequential decision aggregation and mental behaviourdeated in the cognitive psychology and neuroscience
literature [11], [12], [13], [14].

Finally, we draw some qualitative lessons about sequetéiaision aggregation from our mathematical analysis.
Surprisingly, our results show that the accuracy of a graupdt necessarily improved over the accuracy of an
individual. In aggregation based on thaajority rule, it is true that group accuracy is (exponentially) éethan
individual accuracy; decision time, however, convergea tmnstant value for large group sizes. Instead, if a quick
decision time is desired, then tlia@stestrule leads, for large group sizes, to decisions being madkeaearliest
possible time. However, the accuracy of fastest aggragagiamot determined by the individual accuracy (i.e., the
time integral of the probability of correct decision ované), but is rather determined by the individual accuracy at
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a specific time instant, i.e., the probability of correctidiemn at the earliest decision time. Accuracy at this specia
time might be arbitrarily bad especially for "asymmetricdaision makers (e.g., SPRT with asymmetric thresholds).
Arguably, these detailed results ftastestand majority rules,q = 1 andq = | N/2| respectively, are indicative of
the accuracy and decision time performance of aggregatil@s for small and large thresholds, respectively.

D. Decision making in cognitive psychology

An additional motivation to study sequential decision &ggtion is our interest in sensory information processing
systems in the brain. There is a growing belief among neienssts [12], [13], [14] that the brain normally
engages in an ongoing synthesis of streams of informatitmyl) from multiple sensory modalities. Example
modalities include vision, auditory, gustatory, olfagt@nd somatosensory. While many areas of the brain (e.g., the
primary projection pathways) process information fromray sensory modality, many nuclei (e.g., in the Superior
Colliculus) are known to receive and integrate stimuli fromltiple sensory modalities. Even in these multi-modal
sites, a specific stimulus might be dominant. Multi-moda¢gnation is indeed relevant when the response elicited
by stimuli from different sensory modalities is statistigalifferent from the response elicited by the most effeeti
of those stimuli presented individually. (Here, the resgmois quantified in the number of impulses from neurons.)
Moreover, regarding data processing in these multi-moies,sthe procedure with which stimuli are processed
changes depending upon the intensity of each modalityfspstimulus.

In [12], Werner et al. study a human decision making probleith wultiple sensory modalities. They present
examples where accuracy and decision time depend uponrémggt of the audio and visual components in audio-
visual stimuli. They find that, for intact stimuli (i.e., rs@less signals), the decision time improves in multi-modal
integration (that is, when both stimuli are simultaneoustgsented) as compared with uni-sensory integration.
Instead, when both stimuli are degraded with noise, mutttkah integration leads to an improvement in both
accuracy and decision time. Interestingly, they also ifiectrcumstances for which multi-modal integration leads
to performance degradation: performance with an intaotudtis together with a degraded stimulus is sometimes
worse than performance with only the intact stimulus.

Another point of debate among cognitive neuroscientistsois to characterize uni-sensory versus multi-modal
integration sites. Neuro-physiological studies haveiti@hlly classified as multi-modal sites where stimuli are
enhanced, that is, the response to combined stimuli isddhg® the sum of the responses to individual stimuli.
Recent observations of suppressive responses in multéhsites has put this theory to doubt; see [13], [14] and
references therein. More specifically, studies have shdwh by manipulating the presence and informativeness
of stimuli, one can affect the performance (accuracy andsaectime) of the subjects in interesting, yet not well
understood ways. We envision that a more thorough theataticderstanding of sequential decision aggregation
will help bridge the gap between these seemingly contradjatharacterization of multi-modal integration sites.

As a final remark about uni-sensory integration sites, itél wnown [15] that the cortex in the brain integrates
information inneural groupsby implementing arift-diffusion model This model is the continuous-time version of
the so-called sequential probability ratio test (SPRT)Himary hypothesis testing. We will adopt the SPRT model
for our numerical results.

E. Organization

We start in Section Il by introducing the problem setup. let®a Il we present the numerical method that allows
us to analyze the decentralized Sequential Decision Aggiey(SDA) problem; We analyze the two proposed rules
in Section IV. We also present the numerical results in $acti. Our conclusions are stated in Section VI. The
appendices contain some results on binomial expansion®mitide SPRT.

Il. MODELS OF SEQUENTIAL AGGREGATION AND PROBLEM STATEMENT

In this section we introduce the model of sequential agdi@gand the analysis problem we want to address.
Specifically in Subsection II-A we review the classical sempial binary hypothesis testing problem and the notion
of sequential decision makein Subsection II-B we define thg out of N sequential decisions aggregaticetting
and, finally, in Subsection II-C, we state the problem we ainsdlve.
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A. Sequential decision maker

The classical binary sequential decision problem is posefbléows.

Let H denote a hypothesis which takes on valués and H;. Assume we are given an individual (called
sequential decision maker (SDMgreafter) who repeatedly observes at titne 1,2,..., a random variableX
taking values in some set with the purpose of deciding betwedil, and H,. Specifically the SDM takes the
observations:(1), z(2), z(3), . .., until it provides its final decision at time, which is assumed to be a stopping time
for the sigma field sequence generated by the observatindsnakes a final decisiof based on the observations
up to timer. The stopping rule together with the final decision rule espnt the decision policy of the SDM. The
standing assumption is that the conditional joint distidms of the individual observations under each hypothesis
are known to the SDM.

In our treatment, we do not specify the type of decision gotidopted by the SDM. A natural way to keep our
presentation as general as possible, is to refer to a piat@biramework that conveniently describes the seqaénti
decision process generated by any decision policy. Spaltyfigiven the decision policyy, let X”) and XY) be
two random variables defined on the sample spé&ce{0, 1} U {7} such that, fori, j € {0,1},

. {X("’) (t,i)} represents the event that the individual decides in favoHpfat time ¢ given that the true
hypotheS|s isH;; and

{X("’) =7} represents the event that the individual never reaches aiateqiven thatH; is the correct
hypothesis
Accordingly, deflnep(”)( t) and pr(]g‘)j to be the probabilities that, respectively, the ev V) — = (t,4)} and
() =23 oceur, e,
p @) =P = (0] and  ply. =PR =7

Then the sequential decision process induced by the degisiicy v is completely characterized by the following
two sets of probabilities

{PRu{fosiio} - ad G ubilesio) (1)

where, clearlyp")) ndo T 2iet (png( )—l—pi?&( )) =1 andp,(&l)1 + >, (p(()‘vl)( )+p§‘71)( )) = 1. In what follows,
while referring to a SDM running a sequential distributegdihesis test with a pre-assigned decision policy, we will

assume that the above two probabilities sets are known. Rawnon, for simplicity, we will drop the superscript

(7)-

Together with the probability of no-decision, fgre {0, 1} we introduce also the probability of correct decision
pe; := P[say H; | H;] and the probability of wrong decisiomy; := P[say H;, i # j | H;], that is,

o0 o0
pg; =Y o) and  pu; = pi(t)
t=1 t=1
It is worth remarking that in most of the binary sequentiatisien making literaturep,,; andpy,, are referred
as, respectively, thenis-detectiorand false-alarmprobabilities of error.

Below, we provide a formal definition of two properties thiaé tSDM might or might not satisfy.

Definition 1.1 For a SDM with decision probabilities as ifl), the following properties may be defined:
(i) the SDM hasalmost-sure decision$ for j € {0, 1},

Z poy; (t) +p1j;(t)) =1, and
=1

(i) the SDM hadinite expected decision timé for j € {0,1},

Zt po‘] +p1\]( )) < 0.

One can show that the finite expected decision time implie®st-sure decisions.
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We conclude this section by briefly discussing examples qfisetial decision makers. The classic model is the
SPRT model, which we discuss in some detail in the examplewbahnd in Section V. Our analysis, however,
allows for arbitrary sequential binary hypothesis tesishsas the SPRT with time-varying thresholds [16], constant
false alarm rate tests [17], and generalized likelihoodregsts. Response profiles arise also in neurophysiology,
e.g., [18] presents neuron models with a response thatsvliden unimodal to bimodal depending on the strength
of the received stimulus.

Example 11.2 (Sequential probability ratio test (SPRT)) In the case the observations taken are independent,
conditioned on each hypothesis, a well-known solution te #fbove binary decision problem is the so-called
sequential probability ratio test (SPRThat we review in Section V. A SDM implementing the SPRT tea$ h
both thealmost-sure decisionand finite expected decision timgoperties. Moreover the SPRT test satisfies the
following optimality property: among all the sequentiastee having pre-assigned valuesnois-detectiorandfalse-
alarm probabilities of error, the SPRT is the test that requiresstinallest expected number of iterations for providing
a solution.

In Appendices B.1 and B.2 we review the methods proposeddompating the probabilitie&{pm(t)}tEN when
the SPRT test is applied, both in the cagas a discrete random variable and in the casé a continuous random
variable. For illustration purposes, we provide in Figuréhé probabilitiesp; ;(t) whenj = 1 for the case when
X is a continuous random variable with a continuous distidiou{Gaussian). We also note that;(¢) might have
various interesting distributions.

- w|0: pw|1: 0.01
_ 0.1 e Pyyo = Pypy= 0-02
= 01 Py Pypy= 005
o
0.0
0 | | + - 4 n |
0 5 10 15 35 40 45 50

20 25 30
Number of observations (t)

2%
——"w|0 = pw|1: 0.01
= 3 - W|0= pw|1: 0.02
‘;g 2 ——Py0 = Ryp= 005
1
O | | T - -+ 4 4 & |

0 5 10 15 20 25 30 35 40 45 50
Number of observations (t)

Fig. 1. This figure illustrates a typical unimodal set of dicisprobabilities{p; |, (t) }+en and{pg; (t) }+en. Here the SDM is implementing
the sequential probability ratio test with three differasturacy levels (see Section V for more details).

B. Thegq out of N decentralized hypothesis testing

The basic framework for the binary hypothesis testing @oblve analyze in this paper is the one in which there
are N SDMs and one fusion center. The binary hypothesis is dertoted and it is assumed to take on valudg
and H,. Each SDM is assumed to perform individually a binary setjgetest; specifically, fori € {1,..., N},
at timet¢ € N, SDM i takes the observation;(¢) on a random variablé;, defined on some set;, and it keeps
observingX; until it provides its decision according to some decisiotigyoy;. We assume that

(i) the random variable$X;} , are identical and independent;

(i) the SDMs adopt the same decision poligythat is,v; =~ for all i € {1,...,N};
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(iii) the observations taken, conditioned on either hypsth, are independent from one SDM to another;

(iv) the conditional joint distributions of the individualbservations under each hypothesis are known to the
SDMS.

In particular assumptions (i) and (ii) imply that thé decision processes induced by tNeSDMs are all described

by the same two sets of probabilities

{Pngo} U {P0|0(t),P1|o(t)}teN and {Pnan } U {p0|1(t)’p1|1(t)}teN’ 2

We refer to the above property asmogeneityamong the SDMs.

Once a SDM arrives to a final local decision, it communicatde the fusion center. The fusion center collects
the messages it receives keeping track of the number ofidesign favor of H, and in favor of H;. A global
decision is provided according to @out of N counting rule: roughly speaking, as soon as the hypoth&sis
receivesg local decisions in its favor, the fusion center globally ides in favor of H;. In what follows we refer
to the above framework agout of N sequential decision aggregatiamith homogeneous SDMs (denoted @sut
of N SDA for simplicity).

We describe our setup in more formal terms. Dédenote the size of the group of SDMs andddie a positive
integer such that < ¢ < N, then theq out of N SDAwith homogeneous SDMs is defined as follows:

SDMs iteration : For each € {1,..., N}, thei-th SDM keeps observing,, taking the observations;(1), z;(2), .. .,
until time 7; where it provides its local decisiof; € {0,1}; specificallyd; = 0 if it decides in favor ofH,
andd; = 1 if it decides in favor ofH;. The decisiond; is instantaneously communicated (i.e., at timgto
the fusion center.

Fusion center state: The fusion center stores in memory the varialilesint, and Count,, which are initialized
to 0, i.e., County(0) = Count;(0) = 0. If at time ¢t € N the fusion center has not yet provided a global
decision, then it performs two actions in the following arde
(1) it updates the variable§'ount, and Count,, according toCounty(t) = Counto(t — 1) + no(t) and
County(t) = Counti(t — 1) + ny(t) whereny(t) and n,(t) denote, respectively, the number of decisions
equal to0 and 1 received by the fusion center at time
(2) it checks if one of the following two situations is verdie

~ | County(t) > County(t), [ County(t) < Counto(t).
(@) { Counti(t) >q, ’ (4) { Count(l)(t) >q. ’ (3)

If (i) is verified the fusion center globally decides in favBi, while if (i) is verified the fusion center
globally decides in favor of{,. Once the fusion center has provided a global decisiorytbat of N SDA
algorithm stops.

Remark 11.3 (Notes about SDA) (i) Each SDM has in general a non-zero probability of notrmgva decision.

In this case, the SDM might keep sampling infinitely withoub\pding any decision to the fusion center.
(i) The fusion center does not need to wait until all the SDaM/é provided a decision before a decision is reach

on the group level, as one of the two conditigig or (i7) in equation 3 might be satisfied much before the
N SDM provide their decisions.

(i) While we study in this manuscript the case when a fusienter receives the information from all SDM, we
note that a distributed implementation of the SDA algoritisrpossible. Analysis similar to the one presented
here is possible in that case. |

C. Problem formulation

We introduce now some definitions that will be useful thramghthis paper. Given a group &f SDMs running
the ¢ out of N SDAalgorithm,1 < ¢ < N, we denote

(i) by T the random variable accounting for the number of iterati@tgiired to provide a decision
T =min{t | eithercase(i) or case(ii) in equation (3) is satisfied
(i) by p;;(t; N, q) the probability of deciding, at time, in favor of H; given thatH; is correct, i.e.,
pi|;(t; N, q) := P[Group of N SDMs saysH; | H;,q,T = t]; 4)
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(iii) by pej;(N,q) andpy;(N,q) the probability of correct decision and of wrong decisioespectively, given
that [, is the correct hypothesis, i.e.,

poi(N,q) =Y pji(tNoq)  and  pw(N,q) = pi(t N, q), i # 5 ()
t=1 t=1
(iv) by png;(NV,q), 7 € {0,1}, the probability of no-decision given thaf; is the correct hypothesis, i.e.,
Prai (N ) = 1= (po;(t; N, ) + prj;(t: N, q)) = 1 = puy; (N, ) — pe; (N, q); (6)
t=1

(v) by E[T|H,, N,q] the average number of iterations required by the algoritprovide a decision, given that
Hj is the correct hypothesis, i.e.,

. (7
400, if pna; (N, q) > 0.

E[T|H;,N,q] := {
Observe thatp;;(t;1,1) coincides with the probability;;(¢) introduced in (1). For ease of notation we will
continue using;;(t) instead ofp;;(¢;1,1).
We are now ready to formulate the problem we aim to solve is plaper.

Problem 11.4 (Sequential decision aggregation)Consider a group ofV homogeneous SDMs with decision prob-
abilities {pnajo } U {pojo(t), p10(t) } e @ {pnapr } U {poj2 (1), p112 (1) }, - Assume theV SDMs run theg out

of N SDA algorithm with the purpose of deciding between the hypahHs and H,. For j € {0,1}, compute
the distributions{pi‘j(t; N, q)}tEN as well as the probabilities of correct and wrong decisias,,ip¢; (N, ¢) and
pw|; (N, q), the probability of no-decisiop,g;(V, ¢) and the average number of iterations required to provide a
decision, i.e.E [T|H;, N, q|.

We will focus on the above problem in the next two Sectionghlibrough theoretical and numerical results.
Moreover, in Section IV, we will concentrate on two parteuValues of;, specifically forg = 1 andg = | N/2|+1,
characterizing the tradeoff between the expected dectsiog the probabilities of correct and wrong decision and
the size of the group of SDMs. When= 1 andq = [N/2], we will refer to theq out of N rule as thefastest
rule and themajority rule respectively. In this case we will use the following natas

f f
pf;ﬁ-(N) 1= pqlj(N;q = 1), pév‘)j(N) = pw; (N;¢=1)
and
m m
PV (N) = po;(Nig = [N/2) +1),  p{(N) = puyy (N = [N/2] +1).

We end this Section by stating two propositions charadteyithe almost-surely decisionand finite expected
decision timeproperties for the group of SDMs.

Proposition 1.5 Consider a group ofV SDMs running the out of N SDA algorithm. Let the decision-probabilities
of each SDM be as itf2). For j € {0,1}, assume there exists at least one time instaneé N such that both
probabilities pg; (t;) and py);(t;) are different from zero. Then the group of SDMs has dhmost-sure decision
property if and only if

(i) the single SDM has thalmost-sure decisioproperty;

(i) N is odd; and

(iii) ¢ is such thatl < ¢ < [N/2].

Proof: First we prove that if the group of SDMs has thienost-sure decisioproperty, then properties (i), (ii)
and (iii) are satisfied. To do so, we show that if one betweerptioperties (i), (i) and (iii) fails then there exists an
event of probability non-zero that leads the group to novici® a decision. First assume that the single SDM does
not have thealmost-sure decisioproperty, i.e.,phg; > 0, j € {0,1}. Clearly this implies that the everiall the
SDMs of the group do not provide a decisiohas probability of occurring equal tpﬁj‘j which is strictly greater
than zero. Second assume tt¥tis even and consider the evélt time ¢;, N/2 SDMs decide in favor ofi
and N/2 SDMs decide in favor off;” . Simple combinatoric and probabilistic arguments show the probability
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of this event is(N]\;Q) pf)\lfj/.z pf"f, which is strictly greater than zero because of the assompj;(¢;) # 0 and

p11;(tj) # 0. Third assume that > | N/2] + 1. In this case we consider the evéat time ¢;, [N/2] SDMs decide
in favor of Hy and | N/2] SDMs decide in favor off,” that, clearly, leads the group of SDMs to not provide a

global decision for any; > | N/2| + 1. Similarly to the previous case, we have that the probghbiftthis event
is ([N]\/[ T) Tf\f/?]pL'N/?J )
2 0|y 1| )

We prove now that if properties (i), (i) and (iii) are satéfithen the group of SDMs has taknost-sure decision

property. Observe that, since each SDM hasaineost-sure decisioproperty, there exists almost surely\atuple
(t1,...,tn) € NV such that thei-th SDM provides its decision at timg. Let ¢ := max{t; | i € {1,...,N}}.
Since N is odd, thenCounty (t) # County(t). Moreover since; < |N/2] + 1 and County(t) + Counto(t) = N,
either Count, (t) > q or Count(t) > ¢ holds true. Hence the fusion center will provide a globalisien not later
than timet. [

Proposition 11.6 Consider a group ofV SDMs running the out of N SDA algorithm. Let the decision-probabilities
of each SDM be as itf2). For j € {0,1}, assume there exists at least one time instané N such that both
probabilitiesp;;(t;) andp,;(t;) are different from zero. Then the group of SDMs hasfihite expected decision
time property if and only if

(i) the single SDM has thinite expected decision timgroperty;

(i) N is odd; and

(iii) ¢ is such thatl < ¢ < [N/2].

Proof: The proof follows the lines of the proof of the previous prsition. |

Remark 11.7 The existence, foy € {0, 1}, of a timet; such thatp,;(¢;) # 0 andp,;(t;) # 0, is necessary only
for proving the "if” side of the previous propositions. Inhet words the validity of properties (i), (i) and (iii) in
Proposition 11.5 (resp. in Prop. 11.6) guarantees that tteug of SDMs possesses thBnost-sure decisioproperty
(resp. thefinite expected decision tinproperty.) O

I1l. RECURSIVE ANALYSIS OF THEg-OUT-OF-IN SEQUENTIAL AGGREGATION RULE

The goal of this section is to provide an efficient method tmpate the probabilitieg; ;(t; N, q), i, j € {0, 1}.
These probabilities, using equations (5), (6) and (7) witva us to estimate the probabilities of correct decision,
wrong decision and no-decision, as well as the expected aupofliterations required to provide the final decision.

We first consider in subsection IlI-A the case whéerel ¢ < | N/2]; in subsection IlI-B we consider the case
where |[N/2] +1<¢g < N.

A. Casel < g < |N/2]

To present our analysis method, we begin with an informatiieson of the decision events characterizing
the ¢ out of N SDA algorithm. Assume that the fusion center provides itsisien at timet. This fact implies
that neither case (i) nor case (ii) in equation (3) has hagpet any time before. Moreover, two distinct set
of events may precede time depending upon whether the values of the counéssnt, and Count, at time
t — 1 are smaller thary or not. In a first possible set of events, say the “simple 8dnd the counters satisfy
0 < County(t — 1),County(t — 1) < ¢ — 1 and, hence, the time is the first time that at least one of the two
counters crosses the threshaldin a second possible set of events, say the “cancelingtisitifathe counters
Counto(t — 1) and Count, (t — 1) are greater thag and, therefore, equal. In the canceling situation, therstmu
exist a time instant < ¢ — 1 such thatCount (7 — 1) < q, Count1 (7 — 1) < g andCounto(r) = Count1(1) > ¢
forall 7 € {7+1,...,t—1}. In other words, both counters cross the threslhcdd the same time instaftreaching
the same value, that i§/ount(7) = Count1(7), and, for timer € {7+1,...,t—1}, the numbem(r) of SDMs
deciding in favor ofH, at timer and the numben, () of SDMs deciding in favor offf; at timer cancel each
other out, that isng(7) = n (7).

In what follows we study the probability of the simple and celing situations. To keep track of both possible
set of events, we introduce four probability functions,3, &, 3. The functionsa and 8 characterize the simple
situation, whilea and 5 characterize the canceling situation. First, for the sevgituation, define the probability
functiona : N x {0,...,¢ — 1} x {0,...,¢ — 1} — [0,1] as follows: given a group af, + s; SDMSs, a(t, so, s1)
is the probability that
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(i) all the sy + s; SDMs have provided a decision up to tinteand
(i) considering the variable§€'ount, and Count; restricted to this group ofy + s; SDMs , County(t) = so
and County (t) = s;.
Also, define the probability functiom,|; : N x {0,...,¢—1} x {0,...,¢ —1} — [0,1], j € {0,1} as follows:
given a group ofN — (so + s1) SDMS, 3,;(t, s0, s1) is the probability that
(i) no SDMs have provided a decision up to time 1; and
(i) considering the variable€'ount, and Count; restricted to this group oV — (so + s1) SDMs, Count(t) +
so < County(t) + s1, andCounty (t) + s1 > g.
Similarly, it is straightforward to define the probabilgig,;, j € {0, 1}.
Second, for the canceling situation, define the probabilityctiona : N x {¢, ..., |N/2|} — [0, 1] as follows:
given a group oR2s SDMs, a(t, s) is the probability that
(i) all the 2s SDMs have provided a decision up to tinteand
(i) there existsT < t such that, considering the variablé®unt, and Count; restricted to this group o2s
SDMs
o Counto(T —1) < g andCounty (T — 1) < ¢;
o County(t) = County(7) > ¢ for all 7 > 7.
Also, define the probability functiod;; : N x {q,...[N/2|} — [0,1], j € {0,1} as follows: given a group of
N — 25 SDMs, $31;(t, s) is the probability that
(i) no SDMs have provided a decision up to tirhe 1; and
(ii) at timet the number of SDMs providing a decision in favor f is strictly greater of the number of SDMs
providing a decision in favor ofi.
Similarly, it is straightforward to define the probabil'BiéOU, je{0,1}. B
Note that, for simplicity, we do not explicitly keep track tife dependence of the probabiliti§sand 5 upon
the numbersV andq. The following proposition shows how to compute the prolids {p“j(t; N, q)} i,] €
{0, 1}, starting from the above definitions.

0o
t=1’

Proposition Ill.1 (¢ out of N: a recursive formula) Consider a group ofV SDMs, running the out of N SDA
algorithm. Without loss of generality, assurfig is the correct hypothesis. Then, foe {0,1}, we have, for = 1,

pin(L; N, q) = Bij(1,0,0), (8)
and, fort > 2,
q—1 q— [N/2] N -
pi1(t = z_: Z (31 -I-So) (t —1,50,51)Bi1(t; 50, 51) + SZ_;Z (QS)@(t—l,s)BH(Ls). )

Proof: The proof that formulas in (8) hold true follows triviallyrim the definition of the quantitie; |, (1,0,0)
and fy/1(1,0,0). We start by providing three useful definitions.
First, let £, denote the event that the SDA with theout of N rule provides its decision at timein favor of
Hi.
Second, forsg ands; such thatd < sp,s; < ¢ — 1, let E, , + denote the event such that
(i) there ares; SDMs that have decided in favor éf, up to timet — 1;
(i) there ares; SDMs that have decided in favor éf; up to timet — 1;
(i) there exist two positive integer numbes andr; such that
e Sog+19g<S81+711 ands; +r; > q.
o at timet, rp SDMs decides in favor off; while r; SDMs decides in favor ofi;

Third, for ¢ < s < |N/2], let E,, denote the event such that
(i) 2s SDMs have provided their decision up to time- 1 balancing their decision, i.e., there exists< ¢t — 1
with the properties that, considering the variablésunt  and Count restricted to thes@s SDMs
o County(7) < q, County(1) < ¢, for1 <7 <7-—1;
o Counto(t) = County(7) for 7 <7 <t —1;
e Counto(t —1) = County(t — 1) = s.
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(i) at time ¢t the number of SDMs providing their decision in favor i is strictly greater than the number of
SDMs deciding in favor off.

Observe that
b= (OSSO,gSq—lESO’Sl’t) U (qssgLme Es’t) '

SinceE, 5,4, 0 < 0,51 <¢—1,andE,,, ¢ < s < [N/2] are disjoint sets, we can write

PIE]= Y  PlEqgad+ Y. PE. (10)
0<s0,51<q—1 a<s<|N/2]
Observe that, according to the definitions coft — 1, s¢,51), a(t — 1,s), B1)1(t, s0,51) and Bm(t, s), provided
above,

N
]P)[ES(),Sl,t] = (31 + so)a(t - 1730,51)51\1(@80781) (11)

and that N
P [Es,t] = (QS)a(t -1 5)61\1(757 8)' (12)

Plugging equations (11) and (12) into equation (10) coreduithe proof of the Theorem. |
Formulas, similar to the ones in (8) and (9) can be provideadonputing also the probabilitie{spi‘o(t; N, q)}zl,
ie{0,1}.

As far as the probabilities(t, s, 51), @(t,s), B;;(t, 0, 51), Bi‘j(t,s), i,7 € {0,1}, are concerned, we now
provide expressions to calculate them.

Proposition 111.2 Consider a group ofN SDMs, running the; out of N SDA algorithm for1 < ¢ < |N/2].

Without loss of generality, assunié, is the correct hypothesis. Farc {0,1}, let 7;; : N — [0,1] denote the
cumulative probability up to time that a single SDM provides the decisidd;, given thatH, is the correct
hypothesis, i.e.,

() = 3 pi (8): (13)

Fort € N, sg,81 € {1,...,¢ — 1}, s € {q,..., | N/2]}, the probabilitiesa(t, so, 51), a(t,s), Bu|1(t, s0,51), and
P11 (2, s) satisfy the following relationships (explicit fer, 3, 3 and recursive fora):

So + 81 N .
attsosn) = (1) mip (O 0,

L 2s 25 — 50— §
— 20 7T 21 s—s s—s1
(20 Jate = Loso. s 05,7 (0
0s1=0

q

a(t,s) =

S0 +31 S — Sg
- 2s 25 — 2h\ _ - .
" ;LE: (2h> < s—h )a(t — L h)pg " (Opi" (1),
=q

N—s ~ m B )
Bin(t,so,81) = > <Nh1 S)p?lll(t) lz <N *;Of h1>pglol(t) (1= myp(t) - 7T()ll(lt))Nshohl] 7

hi=q—s1 ho=0

Sp=

N-—2s m
7 N —2s N—2s—h e hoi
= 2. ( I )pﬁl“) LZ ( ho 1)?’3&@)(1 = ma(8) = mop (£) V20 ] ,
11=1 10=0
wheres = sgp+s1, m = min{h; +s1 —sg—1, N — (:90 +51)—h1} andm = min{h; —1, N —2s— hy }. Moreover,
corresponding relationships fofy, (¢, so, s1) and 3y1(t, s) are obtained by exchanging the roles jof; (¢) with
poj1(t) in the relationships for3, | (t, so, s1) and By, (t, s).

Proof: The evaluation ofx(¢, s, s1) follows from standard probabilistic arguments. Indeedsesiee that,
given a first group ofsy SDMs and a second group ef SDMs, the probability that all the SDMs of the first
group have decided in favor df, up to timet¢ and all the SDMs of the second group have decided in favor of
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H, up to timet is given bywo o () 1‘1( ). The desired result follows from the fact that there ét“r]g;s“) ways of
dividing a group ofsg + s SDMs into two subgroups of, ands; SDMs.
Consider nowa(t, s). Let E5(; ;) denote the event of which(t, s) is the probability of occurring, that is, the
event that, given a group @fs SDMs,
(i) all the 2s SDMs have provided a decision up to tinteand
(i) there existst < ¢ such that, considering the variablé®unt, and Count; restricted to this group ofs
SDMs
e Counto(7 — 1) < g andCounty (7 — 1) < ¢;
o County(t) = County(r) > ¢ for all 7 > 7.
Now, for a group of2s SDMs, for0 < sg,s; < ¢ — 1, let E,_; 4., denote the event that
(i) so (resp.s1) SDMs have decided in favor dfly (resp.H;) up to timet — 1;
(i) s —sg (resp.s — s;) SDMs decide in favor of, (resp.H;) at timet.
Observing that forsg + s; assigned SDMs the probability that fact (i) is verified isegivby a(t — 1, so, s1) we

can write that 5 5
S §—8)— 851 s—s0 5—51
P[Etfl’SoA,Sl] = (50 + 51) ( s — s )a(t - 1780751)p0|1 ( )p1|1 ( )

Consider again a group @k SDMs and forg < h < s let E;_; 5, denote the event that
(i) 2h SDMs have provided a decision up to time- 1;
(i) there existst <t — 1 such that, considering the variabl€®unt, and Count; restricted to the group dfh
SDMs that have already provided a decision,
e Counto(T — 1) < g andCounty (7 — 1) < ¢;
o County(r) = County(1) > ¢ for all 7 > 7; and
o County(t —1) = County(t — 1) = h;
(iii) at time instantt, s — h SDMs decide in favor of{, ands — h SDMs decide in favor of{;.
Observing that foRh assigned SDMs the probability that fact (i) and fact (ii) aegified is given bya(t — 1, h),

we can write that ) ) on
_ s s — _ s— s—
P[Ethh] = <2h> ( s—h >a(t -1, h)p0|1h(t)p1|1h(t)'

Observe that

S0 0 31—0

IN/2)
Ets)(U UEt 15051>U UEt—l,h
h=q

Since the event#’;_ 5, s,, 0 < 50,51 < g and Et_l ny ¢ < h < |N/2], are all disjoint we have that

—L 49—

q s
P[Ea(t,s)] Z PlEi—1,59,5,) + Z PlE;—1,1]-
s1=0 h=q

sp=0

Plugging the expressions #E;_; , s,] andP[E;_; ;] in the above equality gives the recursive relationship for
computinga(t, s).

Consider now the probability|, (¢, so, s1). Recall that this probability refers to a group &f— (so +s1) SDMs.
Let us introduce some notations. Lt |z s,.s,) denote the event of which |, (¢, so, s1) represents the probability
of occurring and letEy,,,, s, n,,s, denote the event that, at tinte

e hi1 SDMs decides in favor offy;

e ho SDMs decides in favor ofy;

o the remainingNV — (so + s1) — (ho + h1) do not provide a decision up to tinme
Observe that the above event is well-defined if and onljtgif+ 1 < N — (sg + s1). Moreover Ey.p,, s, ho.s0
contributes t03,; (t, so, 51), i.€., Et;hy s1,h0,50 © Egm(t_yst)’sl) if and only if hy > g — sy andhg < hy + s1 — sg
(the necessity of these two inequalities follows directiynfi the definition of3, (¢, so, s1)). Considering the three
inequalitieshg + h1 < N — (so + $1), h1 > ¢ — s1 andhg < hy + s1 — sg, it follows that

E51\1(t,50781) - U {Et;h1751,h0750 | q—s51<h <N - (30 + 51) and hg < m},
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wherem = min{h; +s; —so—1, N —(so+s1)—h1 }. To conclude it suffices to observe that the evaits, s, n,.so
for g —s1 < hy < N —(sg+s1) andhy < m are disjoint events and that

N —35 N-—-5—Mh N—5—ho—h
P[Et;hl,sl,ho,so] = < ] >p}f|11 (t)( h() >pg|01 (t) (1 — 771|1(t) - 7T0|1(t)) o )

wheres = sg + s1.

The probabilitme(t, s) can be computed reasoning similarly 49, (¢, so, s1). [ ]

Now we describe some properties of the above expressionsdier ®o assess the computational complexity
required by the formulas introduced in Proposition 1l loiler to compute{ p;; (¢; IV, q)}toil, i,j €{0,1}. From
the expressions in Proposition II1.2 we observe that

o a(t,so,s1) is a function ofmg () and |1 (t);

« a(t,s) is a function ofa(t — 1, s0,51), 0 < s0,51 < q— 1, po1(t), p11(t) anda(t — 1,h), ¢ < h < s;

e Bijr(t,s0,51), Bip, i € {0,1}, are functions ofg (¢), pujr(t), mop (t) andmyp ().
Moreover from equation (13) we have that;(t) is a function ofr; ;(t — 1) andp;;(t).

Based on the above observations, we deducepthatt; N, q) and py|;(¢; IV, q) can be seen as the output of a
dynamical system having thg N/2] — ¢ + 3)-th dimensional vector with components the variabtgg (¢ — 1),
T (t — 1), a(t — 1,s), ¢ < h < [N/2] as states and the two dimensional vector with compongg)tst),
p1)1(t), as inputs. As a consequence, it follows that the iteratie¢hod we propose to compu{@”j(t; N, ‘J)}Zr
i,7 € {0,1}, requires keeping in memory a number of variables which grbmearly with the number of SDMs.

B. Case|N/2|+1<¢<N

The probabilitiesp; ; (¢; N, ¢), i, j € {0,1} in the case wher¢N/2] +1 < ¢ < N can be computed according
to the expressions reported in the following Proposition.

Proposition 111.3 Consider a group ofV SDMs, running the; out of N SDA algorithm for | N/2| +1 < ¢ < N.
Without loss of generality, assuni¢, is the correct hypothesis. Fare {0,1}, let 7;; : N — [0,1] be defined
as (13). Then, fori € {0,1}, we have fort = 1

N

pinas) =3 (5 )0 (= )™ (14)

h=q

and fort > 2

q N—k
puu(t:N,q) Z( Jatie=0 3 (Yol (- mate) (15)

h=q—k

Proof: Lett = 1. Sinceq > N/2, the probability that the fusion center decides in favorFffat timet = 1

is given by the probability that al leagt SDMs decide in favor ofH; at time 1. From standard combinatoric
arguments this probability is given by (14).

If t > 1, the probability that the fusion center decides in favorFfat timet is given by the probability that
h SDMs, 0 < h < ¢, have decided in favor off; up to timet — 1, and that at leasj — » SDMs decide in favor
of H; at timet. Formally IetEt(” denote the event that the fusion center provides its decisidavor of H; at
time ¢ and IetE,(f;;k_t_1 denote the event that SDMs have decided in favor off; up to timet — 1 and SDMs
decide in favor ofH; at timet. Observe that

qg—1 —
B = U Efio1-

k=0 h=q—k
SmceE,(l)tk +_ are disjoint sets it follows that
g—1 N-—k @)
P9 =5 3 PlEO..].
k=0 h=q—k
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The proof is concluded by observing that

P [En] = (3 )t = (Y, )0 0 mn)

]
Regarding the complexity of the expressions in (15) it isyet@ssee that the probabilities; ;(t; N, q), i,j €
{0,1} can be computed as the output of a dynamical system havingvithelimensional vector with components
moi1(t — 1), 71 (t — 1) as state and the two dimensional vector with componggtgt), p1j:(t) as input. In this
case the dimension of the system describing the evolutidheoflesired probabilities is independent/6f

IV. SCALABILITY ANALYSIS OF THE FASTEST AND MAJORITY SEQUENTIAL AGGREGATION RULES

The goal of this section is to provide some theoretical testhiaracterizing the probabilities of being correct and
wrong for a group implementing thg-out-of-N SDA rule. We also aim to characterize the probability withicth
such a group fails to reach a decision in addition to the titntakes for this group to stop running any test. In
Sections IV-A and IV-B we consider the fastest and the mgjatiles, namely the thresholds= 1 andg = [N/2],
respectively; we analyze how these two counting rules betiar increasing values alV. In Section IV-C, we
study how these quantities vary with arbitrary valgeand fixed values ofV.

A. The fastest rule for varying values of

In this section we provide interesting characterizatiohaczuracy and expected time under fhstestrule, i.e.,
the counting rules with thresholgd= 1. For simplicity we restrict to the case where the group hasatmost-sure
decision property. In particular we assume the following fvoperties.

Assumption IV.1 The numberN of SDMs is odd and the SDMs satisfy @ilenost-suredecision property.

Here is the main result of this subsection. Recall ]zlifvag(N) is the probability of wrong decision by a group of
N SDMs implementing the fastest rule (assumifig is the correct hypothesis).

Proposition IV.1 (Accuracy and expected time under the fasist rule) Consider they out of N SDA algorithm
under Assumption IV.1. Assume- 1, that is, adopt thdastestSDA rule. Without loss of generality, assuifig is
the correct hypothesis. Define tlearliest possible decision time

t:= mln{t eN | Eitherpl‘l(t) 7é 0 or p0|1(t) 7& O} (16)
Then the probability of error satisfies
0, if p11(t) > poj1(t),
Jim pl (M) =31, i pya(B) < pop (D), (17)
%7 if pl\l({):p0|1(£)7

and the expected decision time satisfies
NIEHOOE [T|Hy,N,q=1] =1. (18)
Proof: We start by observing that in the case where the fastest su@plied, formulas in (9) simplifies to
p11(t; N,g=1) = B (t,0,0), for all t € N.
Now, sincep; 1 (t) = poj1(t) = 0 for t < £, it follows that
pin(t;N,g=1) = B11(¢,0,0) =0,  t <L
Moreover we haver |, (t) = pyj1 () andmo1 (f) = poj1 (f). According to the definition of the probabilityy |, (, 0,0),

we write

m

B111(t,0,0) Z ( )p11 (t) {Z <N;j)pé1(f) (1 —pin(D) —po|1(f))N_i_j} ;

= =0
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wherem = min {j — 1, N — j}, or equivalently

B11(£,0,0) = ng (zjv)pll@{ ( >p01 (1 -pip(d _pou(a)]v_i_j}
o fE (om0 o)

i=TN/2] 0
]-VZ < )p“ ® {ji: (Nij>pél® (1 =pip(®) pou@)N”}
+J [zwjm( >p1“ O (@ —pn@)"- (19)

An analogous expression fof;(¢,0,0) can be obtained by exchanging the rolesgf; (t) and po(f) in
equation (19). The rest of the proof is articulated as falowirst, we prove that

A}gn (pip(EN,g=1)+popu (5 N,q=1)) = ngnoo (B11(£,0,0) + Boj1(£,0,0)) = 1. (20)

This fact implies that equation (18) holds and thatyiif () = po(1 (%), thenlimy_, pxl)l (N) =1/2. Indeed

Jim E[T|Hj, N.q=1] = ngnoo; t(poj;(t; Nyg = 1) +pifj(t; Nog = 1)) = ¢
Moreover, ifpy|1(t) = poj1(t), then also(3y1(£,0,0) = fo1(t,0,0).

Second, we prove that |, () > pop(t) implies limy .o o1 (,0,0) = 0. As a consequence, we have that
limy o0 B1)1(£,0,0) = 1 or equivalently thatimy . pév‘)l(N) 0.

To show equation (20), we consider the evét# group is not giving the decision at timeWe aim to show
that the probability of this event goes to zero/ds— co. Indeed we have that

PIT#8=P[T>1t =1~ (pi1(t,N) +pon(t,N)),
and, henceP [T > {] =0 implie5p1|1(f, N) 4+ po1(t,N) = 1. Observe that

PT>#= Z <2J> (J )pz|1({)jp01(i>j (1 —pin(t) — pou@) .

For simplicity of notation, let us denote:= p,|,(t) andy := pg|1 (t). We distinguish two cases, () # y and (ii)
Tr=1y.
Casex # y. We show that in this case there exists- 0, depending only o andy, such that

24 o )
(jj)x]yﬂ <(z4+y—eY, forallj>1. (21)

First of all observe that, sinc(c?ji)xfy-j is just one term of the Newton binomial expansion(of+ y)2j, we know

that (Qj)xjyj < (x4 y)¥ forall j € N. Definee(j) := z+y— ( 7) N zy and observe that proving equation (21)

is equwalent to provindim;_, €(j) > 0. This also makes it possible to defiae= inf;cye(j). To prove the
inequalitylim;_, « €(j) > 0, let us computéim;_, (2;)1/(27). By applylng Stirling’s formula we can write

\ 1/2) I (X 1/(24)
lim (2:7> — Iim | Y2 (e). - (,/ L 223) —2
=\ J j—oo 2 (%) % 752
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and, in turnlim; . €(j) = « + y — 2,/zy. Clearly, if z # y, thenz +y — 2,/zy > 0. Defining € := inf v (),
we can write
L) N (2 L7 N
. Jod (1 — 4 — NV"20 < 15 . N2 1 \N-2j
R 2 <2j) <j >x y (1—z—y) < ngnoo;) <2j> (+ty—-e~ (1-z-y)

IN

J&E%oi (JD @ty =& 1=z —y)™

Jj=0

= lim (1-&" =0,
N— 00

which implies alsdimy_,o, P[T' > ] = 0.
Casex = y. To study this case, lej = « + £ and let¢ — 0. In this case, the probability of the decision time

exceedingt becomes

M)

=0
Considerlim¢_,¢ f(z, N, €). We have that
L L%]

N 2j) 25 N-—2j <N) 2425 N—2j
) Ta® (1 -2z < )2¥a% (1 — 22 T <1,
= <2J>(J ( ) 2 2j ( )

Jj=0

w|Z
vz

lim /(2. N.€) =

where the first inequality follows frort?/) < 3272, (%) = 2%, and the second inequality follows froﬁiﬁoJ (39 (22)% (1 = 22)"
Zé\g:o (%)(295)” (1 —22)""% = 1. Solim¢_,¢ f(z, N, £) exists, and since we know that alémy ., f(z, N, )
exists, the limits are exchangeablelimy_, o lim¢_.o f(z, NV, &) and

lim lim f(xz, N,e) = lim lim f(z, N,£) =0.
£—0 N—=oo

N—00£—0

This concludes the proof of equation (20).
Assume now thapy i (t) > popi(f). We distinguish between the case where (1) > 1 and the case where

2
poj1 (1) < p1j1(?) < 3.
If p11(f) > 3, then Lemma .1 implies

N

. N\ N
J=[N/2]
. . - . i N—j —
and, sincéimy o0 B111(£,0,0) > limy o Z;V:[Nm (J]\,’)pjlll(ﬂ (1 —piu(8)" 7, we have also thdtm v, B/1(Z,0,0) =
1

The casepg; () < p11(f) < & is more involved. We will see that in this casieny_,o So/1(Z,0,0) = 0. We
start by observing that, from Lemma .1,

N

. N\ .
= j_ZN (j>pl|1({) ([1—p1|1(f)) =0,

and in turn

N—oc0

Jim s 60.0) = i 37 (7)ol ) ( (77 )@@ -ma@] )
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The above expression can be written as follows

s niion - g 55 5 () Dr0n) (1= i)

N —o00
=511

:A}gn“]::(z;j) Xh: (?)p}f“J(BPOH(Q( — p1ja(t) — poja E))N_h

J=|%]|+1
where, for obtaining the second equality we used the @Q) ],‘{jj) =(}) (’;) Similarly,
N-—-2 N h N—h
hm /5’0|1(t 0,0) = ngnoo ; (h) j_%H (])Pm {)Pm Lt)( —pip(t) —P01(t_>> :

We prove now thatim . Soj1(Z,0,0) = 0. To do so we will show that there existsdepending only omyy; ()
andp; (t) such that

M=

G)p'&?(f)p{l(f) < (pm@ T rn() - €>h'

r_
N

i=| 45|+t

To do so, let

h
h o .
(i) =pon @ +mn® = 1| Y (4)ehi @l 0
=5+
Becausé: is bounded, one can see thék) > 0 as the sum inside the root is always smaller thap (£)+p1: (£))".
We show below that Lemma .1 implies tHan inf;, ., €(h) > 0. In fact, with the notation in Lemma .1 and with

x = po|1(t) andc = po|1 () + p)1 (t),

and, using Lemma .1,

S(h;e, ) _ [h/ﬂ(“f/bﬂ)xfh/ﬂ (c — z)Lh/2]

h h

C C

From the above, we know that

e(h) > c— \/ h)2] ((h’}ﬂ)wm (c— 2)lh/2).

We now takelim inf},_,, ¢(h) and obtain

h
Th/2
h

The last equality is true becauken,, , o, (h/QP/h(Mm)l/h = 2. In order to complete the proof, we need to show
thatc —22'/2(c—x)'/? > 0, indeedc — 22'/?(c — x)'/? has the same sign @8 —4x(c— ) = (c—2x)%. Since we
are studying the case whepg (f) < py)1(%), it follows that0 < z < § making the term of interest always strictly
positive. This fact implies thafim inf,_, . €(h) is strictly positive and that, along with the fact thdh) > 0 for

all finite 4 by definition, inf,cy e(h) > 0.

h— o0

1/h
liminf e(h) Zc—hlim [h/ﬂl/h( ]) (xTh/ 2N (e — )20 — ¢ 9g1/2(¢ — 1)1/,
—00
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By letting € := infjen €(h), we conclude that

N-2
hm ﬁo|1t00 SZ(
h;l N—h

];0 ( ) (Pm t) + pop (t) — > (1 —pij(t) —pou(f)) =(1-e" =0

This concludes the proof. [ ]

><p11 t) 4+ pop (t) — )(1—p11(ﬂ—p01(ﬂ>N_h

Remark 1V.2 The earliest possible decision timelefined in (16) is the best performance that the fastest are ¢
achieve in terms of number of iterations required to proviue final decision. |

B. The majority rule for varying values a¥

We consider now thenajority rule, i.e., the counting rule with threshold= |N/2] + 1. We start with the
following result about the accuracy. Recall thgt, is the probability of wrong decision by a single SDM and that
p\sle)(N) is the probability of wrong decision by a group &f SDMs implementing the majority rule (assuming
H, is the correct hypothesis).

Proposition IV.3 (Accuracy under the majority rule) Consider the; out of N SDA algorithm under Assumption
IV.1. Assume = | N/2] +1, i.e., themajority rule is adopted. Without loss of generality, assufieis the correct
hypothesis. Then the probability of error satisfies

N
N\ N_j
CHOIEEDS ( .)pim (1—pup)” . (22)
—INj2)+1 N
According to(22), the following characterization follows:
(i) if 0 <pup <1/2, thenpSVTl)(N) is a monotonic decreasing function of that approache$) asymptotically,
that is,
Pyl (N) > py (N +2)  and i I (N) = 0;

w1l

(i) if 1/2 < pyp <1, thenpm(N) is a monotonic increasing function & that approached asymptotically,
that is,

pSVTl)(N) < pévrrl)(N—l— 2) and hm pévu)(N) =1;
(iii)y if py = 1/2, thenp |1( )=1/2;
(iv) if py1 < 1/4, then

Puli (V) = <[ 1) Py o (sl ) = VN/@m) () ¥ + o0 ((4pu)137). (23)
2
Proof: We start by observing that
t N N 4 N
ZPOM(SQN,Q = |[N/2|+1) = Z < ,)m)l(t)J (1 —mo1(t)) 7.
s=1 j=INy2)+1 N

Sincep‘EVTl)(N) =Y o2 poji(s;N,q = [N/2] + 1), taking the limit fort — oo in the above expression leads to

N .
p\Ele)(N) = Z <N)p3\,|1 (1 _pw|1)N7j .
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Facts (i), (i), (iii) follow directly from Lemma .1 in Appeatix A applied to equation (22). Equation (23) is a
consequence of the Taylor expansion of (22):

j_i:: (];[>p5v1(1—pw1)N_j ZN: (N)pgvll(l—(N—j)pwl1+o(pwl))

1 J=1%1
[41 [51+1
H) i o (i)

Finally, Stirling’s Formula impliedimy (@]) = /2N/x 2N and, in turn, the final expansion follows from
2N = 4IN/21 /3, ]

We discuss now the expected time required by the collectd@ Slgorithm to provide a decision when the
majority rule is adopted. Our analysis is based again on Assumptidndkd on the assumption thaf; is the
correct hypothesis. We distinguish four cases based oer€iff properties that the probabilities of wrong and carrec
decision of the single SDM might have:

(A1) the probability of correct decision is greater than gnebability of wrong decision, i.ep¢j1 > pwi;

(A2) the probability of correct decision is equal to the pablity of wrong decision, i.e.pe; = pw1 = 1/2 and
there existty andt; such thatrg,(to) = 1/2 and w1 (t1) = 1/2;

(A3) the probability of correct decision is equal to the pablity of wrong decision, i.e.p¢; = pw1 = 1/2 and
there existst; such thatr |, (t:) = 1/2, while 7o), (t) < 1/2 for all t € N andlim;_, o mo)1(t) = 1/2;

(A4) the probability of correct decision is equal to the pablity of wrong decision, i.e.p¢1 = pw1 = 1/2, and
7T0|1(t) < ]./2, T‘—l\l(t) < ]./2 forallt e N andlimtﬁoo To|l1 = llmt*)oo 7T1|1(t) = ]./2

Note that, since Assumption IV.1 implies|; +py1 = 1, the probability of correct decision in case (Al) satisfies
pej1 > 1/2. Hence, in case (A1) and under Assumption IV.1, we define := max{t € N | m;(¢) < 1/2} and
ts1 =min{t € N | my1(¢) > 1/2}.

w2

Proposition IV.4 (Expected time under themajority rule) Consider theq out of N SDA algorithm under As-
sumption IV.1. Assume= | N/2| + 1, that is, adopt themajority rule. Without loss of generality, assunif is
the correct hypothesis. Define the SDM properties (A1)-@) the decision times, i1, {1 andt. . as above.
Then the expected decision time satisfies

t<% + t>% +1 )
—_ if the SDM has the property (Al),

]VIEnOOE[T|H1,N,q = [N/2H = #, if the SDM has the property (A2),
+00, if the SDM has the property (A3) or (A4).

Proof: We start by proving the equality for case (Al). Since, in ttase we are assuming,; > py;, the
definitions oft_, andt. . implies thatm,(t) = 1/2 forall t_, <t <t... Observe that

S pn(siNg= V2 41 = 3 (5 )t (1- 7r1|1(t)>Nh-

= =)

Hence Lemma .1 implies

. 0, if t<t.s,
ngnooglpm(s;fv,q: IN/2) +1) = 11, it t=t.y,
5= 5 ifio1 <t<t,i,

and, in turn, that

1/2, if t:t<%+1 andt:t%,

lim pyy (6N, g = |[N/2| +1) = _
N—>oop1‘1( ¢=N/2]+1) {0, otherwise
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It follows

Jim E[T1H, N, q = [N/2] +1] = Iggllw;t(pou(t;i\f,q = [N/2] + 1) + pi1(t N, g = [N/2] + 1))

1
=g (ta+ieny).

This concludes the proof of the equality for case (Al).
We consider now the case (A2). Reasoning similarly to theipus case we have that

im py(t; N, = [N/2) +1)=1/2  and  lim poi(to; N, ¢ = [N/2] +1) = 1/2,
N—oo N—oo

from which it easily follows thatimy . E [T'|H1, N,q = [N/2] +1] = 3 (to + t1).

For case (A3), it suffices to note the following implicatiof lemma .1: if, for a giveni € {0,1}, we have
w1 (t) < 1/2 for all t € N, thenlimy oo psj1(t; N,q¢ = [IN/2] + 1) = 0 for all t € N. The analysis of the case
(A4) is analogous to that of case (A3). ]

Remark IV.5 The cases wherg,; > p1 and where there existg such thatr; (to) = 1/2 while 7y, (t) < 1/2
for all t+ € N andlim;, 7)1 (t) = 1/2, can be analyzed similarly to the cases (A1) and (A3). Moggothe
most recurrent situation in applications is the one wheegetfexists a time instartsuch thatr, |, (t) < 1/2 and
71 (t + 1) > 1/2, which is equivalent to the above case (Al) with, =7_1 + 1. In this situation we trivially
havelimy o E[T|H1, N,q = [N/2]] = t. 1. O

C. Fixed N and varyinggq
We start with a simple result characterizing the expectetgisdm time.

Proposition V.6 Given a group ofNV SDMs running the; out of N SDA, for j € {0, 1},

The above proposition states that the expected number ratides required to provide a decision constitutes
a nondecreasing sequence for increasing valug. @imilar monotonicity results hold true also fog;(V, q),
Pw|; (N, @), Pnd; (N, q) even though restricted only taV/2] +1 < ¢ < N.

Proposition 1V.7 Given a group ofN SDMs running they out of N SDA, for j € {0,1},
peji(N.qg = [N/2] + 1) > pgj(N,q = [N/2] +2) > -+ > pg;(N.g = N),
Pulj(N.q = [N/2] +1) = pw;(N, ¢ = [N/2] +2) = -+ > pwj;(N,q = N),
Prdi(N,q = [N/2] +1) < pngj (N, g = [N/2] +2) < < ppg(N, g = N).

We believe that similar monotonic results hold true alsolfet ¢ < | N/2]. In particular, here is our conjecture:
if N is odd, the single SDM has themost-suredecision and the single SDM is more likely to provide the eotr
decision than the wrong decision, that jig,; + pw; = 1 andpg; > py;, then

P (N,g=1) <pgj(N,g=2) <--- < pg;(N,qg = |[N/2] + 1),
Pulj (N, g =1) > py)j(N,g=2) > --- > py;(N,q = [N/2] + 1).
These chains of inequalities are numerically verified in s@ramples in Section V.
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V. NUMERICAL ANALYSIS

The goal of this section is to numerically analyze the modeld methods described in previous sections. In all
the examples, we assume that the sequential binary testyr@adh SDMs is the classical sequential probability
ratio test (SPRT) developed in 1943 by Abraham Wald. To fix esoratation, we start by briefly reviewing the
SPRT. LetX be a random variable with distributiofi(z; #) and assume the goal is to test the null hypothesis
Hy : 0 = 0, against the alternative hypothests, : § = 60,. Fori € {1,...,N}, the i-th SDM takes the
observations:; (1), z;(2),z(3), ..., which are assumed to be independent of each other and froob#ezvations
taken by all the other SDMs. The log-likelihood ratio asated to the observation;(t) is

f(i(t), 01)
Ai(t) = log Faa(0),60)" (24)
Accordingly, letA;(t) = >, _, Ai(h) denote the sum of the log-likelihoods up to time instanThe i-th SDM
continues to sample as long as < A;(t) < m, wheren, andr; are two pre-assigned thresholds; instead sampling
is stopped the first time this inequality is violated. Af(t) < 7o, then thei-th SDM decides ford = 6,. If
A;(t) > n1, then thei-th SDM decides fol = 6,.

To guarantee thbomogeneity propertywe assume that all the SDMs have the same threshgldsdn,. The
threshold values are related to the accuracy of the SPRTsasiloed in the classic Wald’s method [19]. We shortly
review this method next. Assume that, for the single SDM, vemiwo set the thresholdg andn; in such a way
that the probabilities of misdetection (sayify when H, is correct, i.e.]P[say Hy|H,]) and of false alarm (saying
H, when H, is correct, i.e.]P[say H;|Hy]) are equal to some pre-assigned valp@sdetection@Nd praise alarm Wald
proved that the inequaliti€B[say Hy | H1] < pmisdetection@nNdP[say H; | Hy] < praise alarm@re achieved when, and
;. satisfyny < log 1"’“;:7322"”1 andn; > log W" As customary, we adopt the equality sign in these inedeslit
for the design ofy, andn;. Specifically, in all our examples we assume thatgetection= Praise alarm= 0.1 and, in
turn, thatn; = —ng = log9.

We provide numerical results for observations describeddth discrete and continuous random variables. In
caseX is a discrete random variable, we assume ff{(at ¢) is a binomial distribution

F ) = {(;)900(19)”, if z€{0,1,...,n}, 25

0, otherwise,

wheren is a positive integer number. In casé is a continuous random variable, we assume ffat 0) is a
Gaussian distribution with meahand variancer?

PR SR Cy D
f(xz;0) W@ . (26)

The key ingredient required for the applicability of Projiosis 111.1 and 111.2 is the knowledge of the probabilities
{po‘o(t),puo(t)}teN and {p0|1(t),p1|1(t)}t€N. Given thresholds), and;, there probabilities can be computed
according to the method described in the Appendix B.1 (respdy Appendix B.2) forX discrete (respectively
X continuous) random variable.

We provide three sets of numerical results. SpecificallyExample V.1 we emphasize the tradeoff between
accuracy and expected decision time as a function of the auwfbSDMs. In Example V.2 we concentrate on the
monotonic behaviors that theout of N SDA algorithm exhibits both whei is fixed andq varies and whei is
fixed and NV varies. In Example V.3 we compare tfestestand themajority rule. Finally, Section V-A discusses
drawing connections between the observations in ExamglaM the cognitive psychology presentation introduced
in Section I-D.

Example V.1 (Tradeoff between accuracy and expected deaisi time) This example emphasizes the tradeoff
between accuracy and expected decision time as a functitreafumber of SDMs. We do that for tli@stestand
the majority rules. We obtain our numerical results for odd sizes of groiSDMs ranging froml to 61. In all
our numerical examples, we compute the values of the thigshg and»; according to Wald’s method by posing
Pmisdetection= Pfalse alarm= 0.1 and, thereforey); = log9 andny = —log9.

For a binomial distributionf(z;0) as in (25), we provide our numerical results under the falh@aconditions:
we setn = 5; we run our computations for three different paiés, 6,); precisely we assume thég = 0.5 — ¢ and
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01 = 0.5 + € wheree € {0.03,0.05,0.07}; and H; : 6 = 0, is always the correct hypothesis. For any pdif, 61)
we perform the following three actions in order
(i) we compute the probabilitie@;oou(t),pm(t)}teN according to the method described in Appendix B.1;
(i) we compute the probabilitie§po(: (t; N, q), p1j1(t; N, )}, for ¢ =1 andg = | N/2] + 1 according to the
formulas reported in Proposition II1.1;
(iii) we compute probability of wrong decision and expectede for the group of SDMs exploiting the formulas

w1 (N, q) = ZPOH(t;Nv q) and E[T|Hi,N,q| = Z(Pou(t%Na q) +p11(t; N, g))t.
=1 =1

According to Remark 1.7, since we consider only odd numkErsef SDMs, sinceg < [N/2] and since each
SDM running the SPRT has tta@most-sure decisiongroperty, thempyi (N, q) + pei (N, q) = 1. In other words,
the probability of no-decision is equal tband, hence, the accuracy of the SDA algorithms is charaegmonly
by the probability of wrong decision and the probability @friect decision. In our analysis we select to compute
the probability of wrong decision.

For a Gaussian distributiofi(x; 6, o), we obtain our numerical results under the following candi: the two
hypothesis ared, : 6 = 0 and H; : § = 1; we run our computations for three different valuesogfprecisely
o € {0.5,1,2}; and H; : 0 = 1 is always the correct hypothesis. To obtaif,(N,q) and E[T'|H;, N, g] for a
given value ofo, we proceed similarly to the previous case with the onlyedéhce that{po|1(t),pm(t)}tEN are
computed according to the procedure described in Appendix B

The results obtained for thiastestrule are depicted in Figure V.1, while the results obtainedthe majority
rule are reported in Figure 3.

Fastest rule
T

Fastest rule . . . . .
. ~0=2
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Fig. 2. Behavior of the probability of wrong decision and bétexpected number of iterations required to provide a detias the number
of SDMs increases when tHastestrule is adopted. In Figure (a) we consider the binomial distion, in Figure (b) the Gaussian distribution.

Some remarks are now in order. We start with tastestrule. A better understanding of the plots in Figure V.1
can be gained by specifying the values of the earliest plesdéxision time defined in (16) and of the probabilities
p1)1(t) andpg1 (t). In our numerical analysis, for each pafk, 1) considered and for both discrete and continuous
measurements(, we hadt = 1 and p;,(f) > po1(f). As expected from Proposition IV.1, we can see that the
fastestrule significantly reduces the expected number of iteratimyuired to provide a decision. Indeed, /s
increases, the expected decision tilt{@’|H,, N, ¢ = 1] tends tol. Moreover, notice tha;bx‘)l(N) approaches);
this is in accordance with equation (17).

As far as themajority rule is concerned, the results established in Propositt® and in Proposition 1V.4 are
confirmed by the plots in Figure 3. Indeed, since for all thesp@,, ¢1) we have considered, we hag; < 1/2,
we can see that, as expected from Proposition V.3, the pilityaof wrong decision goes t0 exponentially fast
and monotonically as a function of the size of the group of $iEMs. Regarding the expected time, in all the
cases, the expected decision tifdgl"|H;, N,q = | N/2] + 1] quickly reaches a constant value. We numerically
verified that these constant values corresponded to thewaredicted by the results reported in Proposition IV.4.
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Fig. 3. Behavior of the probability of wrong decision and loé texpected number of iterations required to provide a dec&s the number of
SDMs increases when thmajority rule is adopted. In Figure (a) we consider the binomial distion, in Figure (b) the Gaussian distribution.

Example V.2 (Monotonic behavior) In this example, we analyze the performance of the gengralt of N
aggregation rule, as the number of SDMsis varied, and as the aggregation rule itself is varied. Waiobd our
numerical results for odd values &f ranging from1 to 35 and for values of, comprised betweehand | N/2|+1.
Again we set the thresholdg andrn; equal tolog(—9) andlog9, respectively. In this example we consider only
the Gaussian distribution withh = 1. The results obtained are depicted in Figure 4, where thewiolg monotonic
behaviors appear evident:

(i) for fixed N and increasing;, both the probability of correct decision and the decisiometincreases;

(i) for fixed ¢ and increasingV, the probability of correct decision increases while theislen time decreases.
The fact that the decision time increases for fix¥dand increasing; has been established in Proposition 1V.6.
The fact that the probability of correct decision increaf@sfixed N and increasing; validates the conjecture
formulated at the end of Section IV-C.

N
o

N
(&2

0.95

=
o

Probability of
correct detection
Expected number
of observations
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15

10

qoutof N 5 .
Number of decision makers qoutof N Number of decision makers

Fig. 4. Probability of correct detection (left figure) andpexted decision time (right figure) for theout of N rule, plotted as a function of
network sizeN and accuracy thresholgd

Example V.3 (Fastest versus majority, at fixed group accurag) As we noted earlier, Figures V.1-3 show that
the majority rule increases remarkably the accuracy of the group, whidastestrule decreases remarkably the
expected number of iteration for the SDA to reach a decisibiis therefore reasonable to pose the following
question: if the local accuracies of the SDMs were set sotti@tccuracy of the group is the same for both the
fastestand themajority fusion rule, which of the two rules requires a smaller numbieobservations to give a
decision. That is, at equal accuracy, which of the two rudesptimal as far as decision time is concerned.

In order to answer this question, we use a bisection on thal ISBDM accuracies. We apply the numerical
methods presented in Proposition Ill.1 to find the propealldoresholds that set the accuracy of the group to the
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desired valuep,|;. Different local accuracies are obtained for differentidasrules and this evaluation needs to be
repeated for each group si2é.

In these simulations, we assume the random varidblis Gaussian with variance = 2. The two hypotheses
areHy: 0 =0 and H, : # = 1. The numerical results are shown in Figure 5 and discussledvbe

As is clear by the plots, the strategy that gives the fastesistbn with the same accuracy varies with group size
and desired accuracy. The left plot in Figure 5 illustratest,tfor very high desired group accuracy, thajority
rule is always optimal. As the accuracy requirement is eddathefastestrule becomes optimal for small groups.
Moreover, the group size at which the switch between optimigs happens, varies for different accuracies. For
example, the middle and right plot in Figure 5 illustratettiadile the switch happens av = 5 for a group
accuracyp\EVTl) =" = 0.05 and atN = 9 for p(Tl) = px‘)l =0.1.
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Fig. 5. Expected decision time for tHastestand themajority rules versus group siz&, for various network accuracy levels.

We summarize our observations about which rule is optimal, (which rule requires the least number of
observations) as follows:

(i) the optimal rule varies with the desired network accyrat fixed network size;

(ii) the optimal rule varies with the desired network sizefiged network accuracy; and
(iii) the change in optimality occurs at different networikes for different accuracies.

A. Decision making in cognitive psychology revisited

In this section we point out possible relationships betweenresults in sequential decision aggregation (SDA)
and some recent observations about mental behavior froncdbgitive psychology literature. Starting with the
literature review in Subsection I-D, our discussion herbased upon the following assumptions:

(i) SDA models multi-modal integration in cognitive infoation processing (CIP),

(i) the number of SDMs correspond to the number of sensorgatities in CIP,

(iii) the expected decision time in the SDA setup is anal@gtwthe reaction time in CIP, and

(iv) the decision probability in the SDA setup is analogoaghe firing rate of neurons in CIP.
Under these assumptions, we point out similarities betveegrSDA analysis and some recent observations reported
in the CIP literature. In short, thiastestand majority rules appear to emulate behaviors that are similar to the one
manifested by the brain under various conditions. We briefgntion below an example in cognitive psychology,
where a parallelism might be drawn.

It is observed in cognitive information processing (ClPattheven under the same type of stimuli, the stimuli
strength affects the additivity of the neuron firing, whiclight end up adding up to more, less, much less, and
sometimes to much more than the sum of the stimuli. Thesevimbaf the firing rates are called in CIP literature
additive, suppressive, sub-additive or super-additivedifionally, scientists have observed that depending en th
intensity of the stimuli, various areas of the brain arevattid when processing the same type of stimuli [11], [12],
[13], [14], [15]. A possible explanation for these two obsat behaviors is that the brain processes information in
a way that maintains optimality. Indeed, our comparisonhim middle and right parts of Figure 5 shows how the
fastest rule is optimal when individual SDMs are highly aete (strong and intact stimuli) and, vice versa, the
majority rule is optimal when individual SDMs are relatiyehaccurate (weak and degraded stimuli).

We observed in the middle and right part of Figure 5 that, fghtindividual accuracies, thiastestrule is more
efficient than themajority rule. We reach this conclusion by noting two observationst,fismaller group sizes
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require higher local accuracies than larger group sizegderao maintain the same group accuracy; second, the
fastestrule is optimal for small groups while thmajority rule is always optimal for larger groups. We believe that
these similarities between SDA and CIP propose the posgibil explaining better, other observed behaviors in
cognitive data processing if stronger links can be made émtvthe models.

VI. CONCLUSION

In this work, we presented a complete analysis of how a grdu&DMs can collectively reach a decision about
the correctness of a hypothesis. We presented a numeri¢ghbdchthat made it possible to completely analyze and
understand interesting fusion rules of the individualsiglens. The analysis we presented concentrated on two
aggregation rules, but a similar analysis can be made torstachel other rules of interest. An important question
we were able to answer, was the one relating the size of thggrod the overall desired accuracy to the optimal
decision rules. We were able to show that, no single rule fsnab for all group sizes or for various desired group
accuracy. We are currently extending this work to cases eviier individual decision makers are not identical.
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APPENDIX
A. Asymptotic and monotonicity results on combinatoriahsu
Some of the results provided for tiiastestrule and for themajority rule are based on the following properties
of the binomial expansiofx + y)V = Z;V:O (];’)xij*j.

Lemma .1 (Properties of half binomial expansions)For an odd numberN € N, and for real numbers: € R
and z € R satisfyingd < ¢ <1 and0 < z < ¢/2, define

siea = 3 (V)ptemn aa S - 3 (Voo

j=0 \J j=IN/2]
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The following statements hold true:
@) if 0 <z < ¢/2, then, taking limits over odd values 6f,

S(N:
i 2T g SNEED)
N —o0 c

(i) if = = ¢/2, then
S(N;e,x) = S(N;c,z) = %;
(i) if c=1and0 <z < 1/2, then
S(N +2;1,2) < S(N;1,2) and  S(N+2;1,z) > S(N;1,z).
Proof: To prove statement (i), we start with the obvious equatity= (c—z+xz)Y = S(N;c,2)+S(N;c, z).

Therefore, it suffices to show thaitn y_, o w = 0. Define the shorthand(j) := (];’)xj(c —2)¥=J and
observe

h(j) T e T e A o Nt
h(j+1) W'JWIJH@ —g)N-i-1 N—j =z
It is straightforward to see tha,g% >1 <= ¢j—aN+c—2>0 < j> =N (c=2) I) . Moreover, if
i>4 and0§z<§,thenj—%+%>%—%+c - >ﬂ——+c‘$ > 0. Here, the second inequality
follows from the fact that-Y > — I if 0 <z < £. In other words, ifj > & and0 < z < £, then R (+)1) > 1.
This result implies the following chain of inequahtlés([N/QD > h([N/ﬂ +1) > --- > h(N) providing the

following bound onS(N; ¢, x)

S(N;c,z) Z;-V:[N/z] (?f)mj(c_ a)N I

[N/2] (er) N2V (¢ — ) LN/2]
N N !

< N

C C C

Slnce(wm) < 2N, we can write

S(N;c,x N [IN/21 (¢ — 2)IN/2] 20\ V21 9(e — 2)\ /2
SN < vz e o () (R
[N/2] [N/2]
2x 2(c —x)
N/2 D .
- (5) (%) ()
Let « = 22 and 8 = 2(<%) and considero - 8 = w One can easily show that - 3 < 1 since
4ex — 42? — ¢ = —(c — 22)* < 0. The proof of statement (i) is completed by noting

N—o0 C N—00 C

i S < 2] (2 (0 9) % 0

The proof of the statement (ii) is stralghtforward In facfallows from the symmetry of the expressions when
r = £, and from the obvious equalltzj o ( Jad(c—x)N=9 =N,

Regardmg statement (iii), we prove here only tBatV + 2;1,z) < S(N;1,z) for 0 < = < 1/2. The proof of
S(N +2;1,2) > S(N;1,z) is analogous. Adopting the shorthand

fv = Y (V)era -0
’ i=[3] i |
we claim that the assumptidn< = < 1/2 implies
A(N,z):= f(N+2,2) — f(N,z) <0.
To establish this claim, it is useful to analyze the derxatf A with respect tar. We compute

gf(N z) = Ni i(?)xi—l(l — )N Ni (N — 1) (f) (=) NN (27)

i=[N/2] i=[N/2]
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The first sumzfi}}vm i(Y)ai=1(1 — 2)N =% in the right-hand side of (27) is equal to

%

N-1

N N N\ . )
SV IN/21-1 o\ N—[N/2] ; i—1(1 _ . \N—i
((N/2]>{2—‘x (1—-=x) +‘ Z Z(Z>x (1—x)V "
i=[N/2]+1
Moreover, exploiting the identityi + 1)(,Y,) = (N — i) (")),
N-1 N-—-2
(NN i N—i _ . N i N—i—1
Y ()= X () )ea-o
i=[N/2]+1 i=[N/2]
N-2
= Z (N —1) <N):Ei(1 —x)N7mt
i=[N/2] !

The second sum in the right-hand side of (27) can be rewréten

N—-1 N—-2

> (N-i) (f) d(1—z)NT = Y (N =) (]ZV> (1 — )N NN

i=[N/2] i=[N/2]

Now, many terms of the two sums cancel each other out and aneasily see that

g ) = N 2N/21=1 (1 _ Z\N=IN/2T N (1 — ) [V/21-1
oL () = (g )N/ (1 2) (1) /21 (a1 =) 2172,
where the last equality relies upon the identfy— [N/2] = | N/2| = [N/2] — 1. Similarly, we have

Hence

Straightforward manipulations show that

(rwjet +1) 921+ 0 =3 g )
and, in turn,
%(N,x) = ((N]j21> Fﬂ (z (1 — z))N/2171 {%ifm —x)— 1]
—: g(N, ) {4%1?37(1 —a)—1],

where the last equality defines the functigflV, z). Observe that: > 0 implies g(N,z) > 0 and, otherwise,
x = 0 implies g(N, z) = 0. Moreover, for allN, we have thatf(N,1/2) = 1/2 and f(N,0) = 0 and in turn that
A(N,1/2) = A(N,0) = 0. Additionally

0A N +2
—(N,1/2) =¢g(N,1/2) [ ——— — 1
e N1/2) =gV /2) (5 1) >0
and
0A 0A
%(N,O) =0 and %(N, 0F) =g(N,0%) (07 —1) <0.
The roots of the polynomial — 43+3z(1 —z) — 1 are § (1 + ,/ﬁ), which means that the polynomial has

one root inside the intervald, 1/2) and one inside the interval /2,1). Considering all these facts together, we
conclude that the function — A(N, z) is strictly negative in(0,1/2) and hence thaf(N +2,z) — f(N,z) < 0.
|
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B. Computation of the decision probabilities for a singleMsRpplying the SPRT test
In this appendix we discuss how to compute the probabilities

{Pnd\o} U{P0|0 s P1jo( )}teN and{]?nd\l} U{Pou s 1 ( )}tEN (28)

for a single SDM applying the classicakquential probability ratio tes(SPRT). For a short description of the
SPRT test and for the relevant notation, we refer the real@ettion V. We consider here observations drawn
from both discrete and continuous distributions.

1) Discrete distributions of the Koopman-Darmois-Pitmami: This subsection review the procedure proposed
in [5] for a certain class of discrete distributions. Speailly, [5] provides a recursive method to compute the
exact values of the probabilities (28); the method can bdiegbpo a broad class of discrete distributions, precisely
whenever the observations are modeled as a discrete ranagable of the Koopman-Darmois-Pitman form.

With the same notation as in Section V, I8t be a discrete random variable of the Koopman-Darmois-Ritma
form; that is

_Jh(z)exp(B(0)Z(x) — A(9)), if e Z,
f(m’e)_{o, if v ¢ 2,

whereh(z), Z(x) and A(9) are known functions and whet# is a subset of the integer numbéZsin this section
we shall assume thaf(z) = . Bernoulli, binomial, geometric, negative binomial andid8on distributions are
some widely used distributions of the Koopman-DarmoisaBit form satisfying the conditiot’(x) = z. For

distributions of this form, the likelihood associated witte ¢-th observationc(¢) is given by

At) = (B(01) — B(6o))=(t) — (A(61) — A(6o))-

Let ng,n1 be the pre-assigned thresholds. Then, one can see thatisguwil continue as long as

Mo+ H(A(01) = A(B0)) _ N~ . _ m + A1) = A(6p))
56y Be) < 2" BE) - B@) 29

for B(61) — B(6p) > 0; if B(Gl) B(p) < 0 the inequalities would be reversed. Observe fijt | z(i) is an

mteger number. Now Iet}(() be the smallest integer greater thm + t(A(61) — A(6y))} /(B(61) — (00)) and

let 771 ) be the largest integer smaller thém + t(A(61) — A(6p))} /(B(01) — B(6p)). Sampling will continue as
long asn( ) < X(t) < ‘( ) where X (t) = Zj 1 z(i). Now suppose that, for ang € [nét),ﬁgt)] the probability

P[X(t) = ¢] is known. Then we have

,(t)

PlX(t+1) = (|H)] = Z (e [X(t) = j|Hi,
j=mg"
and

i -

pip(t+1) = Z PX(t) = j|Hil f (r; 6s),
j=ns" r=n” —j+1
A0 g i1

poji( = > ) PIX() = jHf(r:0).
j=n  T=Te

Starting withP[X'(0) = 1], it is possible to compute recursively all the quantit{qg‘j(t)}:i1 andP[X (t) = /],
foranyt € N, ¢ € [n(()f),ﬁg) ], and {p“j(t)}f;. Moreover, if the setZ is finite, then the number of required

computations is finite.
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2) Computation of accuracy and decision time for pre-assijthresholds), and »;: continuous distributions:
In this section we assume thaf is a continuous random variable with density function gi\®n f(z, ). As
in the previous subsection, given two pre-assigned thtdshg andn;, the goal is to compute the probabilities
pq|;(t) = PlsayH;|H;, T = t], for i, j € {1,2} andt € N.

We start with two definitions. Lefy », and f ()¢, denote, respectively, the density function of the logHitkaod
function A and of the random variabl&(t), under the assumption thaf; is the correct hypothesis. Assume that,
for a givent € N, the density functionf, ¢, is known. Then we have

m
Ta),e.(s) = Ixn0. (8 =) fae,0, (z)d, 5 € (no,m),
o
and

m oo m No—x
i1 () :/n (/7 » fxygi(z)dz> Ia),e,(x)dx, andpg;(t) :/n (/_OO o (z)dz) ae,e,(x)dx.

In what follows we propose a method to compute these quesitithsed on a uniform discretization of the functions
A andA. Interestingly, we will see how the classic SPRT algorittam be conveniently approximated by a suitable
absorbing Markov chain and how, through this approximattbe probabilities{pﬂj(t)}zl, i,7 € {1,2}, can be
efficiently computed. Next we describe our discretizatippraach.

First, letd € Rwo, 7o = [ % ]d and7; = [%14. Second, fom =[] — || + 1, introduce the sets

S = {‘917‘ . ~7Sn} and I'= {7*n+2>’77n+37 ceey V=170, 715 - - - 7777,737777,72}7

wheres; = 7o + (i — 1), fori € {1,...,n}, andv; =i, fori € {~n+2,-n+3,...,n — 3,n — 2}. Third, let
X (resp.A) denote a discrete random varlable (resp. a stochastiegsptaking values i (resp. inS). Basically
A and A represent the discretization of and )\, respectively. To characterizg we assume that

P [A=id] :P[ié—ggz\gié+g], i€{-n+3,...,n—3},

and

P[A=(—n+2)] =P [A< (—n+2)§+g} and  B[A=(n-2 =P[r> (-2

From now on, for the sake of simplicity, we shall den@t¢\ = ié| by p;. Moreover we adopt the convention
that, givens; € S and~; € I', we have thats; + v; := 7o whenever eithefi = 1 ori+j -1 < 1, and
sit+; = 171 whenever eithei = n or i+ j — 1 > n. In this ways; + v; is always an element of. Next we set

A(t) = 32— A(h).

To describe the evolution of the stochastic procésslefine the row vector (t) = [ 1(t), ..., ()] € R
whosei-th componentr; (t) is the probability thaf\ equalss; at timet, that is,m;(t) = P [A(t) = } The evolution
of w(t) is described by the absorbing Markov ch&i A, 7(0)) where

o S is the set of states with; ands,, as absorbing states;

o A = [a;;] is the transition matrixa;; denote the probability to move from state to states; and satisfy,

according to our previous definitions and conventions,
— Q1] = Qpp = 1; ai; =an; =0, for i e {2,...,n} andje{l,...,n—1};
- apn = zé__mps and a;, = Y7 ps, he{2,...,n—1};
- a;; =pj—; 4,j€{2,...,n—1}
« 7(0) is the initial condition and has the property tigf\ (0) = 0] = 1.
In compact form we writer(¢) = 7(0) A"

The benefits of approximating the classic SPRT algorithnhait absorbing Markov chaifs, A, 7(0)) are sum-
marized in the next Proposition. Before stating it, we pdevsome useful definitions. First, gt € R("—2)x(n=2)
be the matrix obtained by deleting the first and the last rawgs@lumns ofA. Observe thaf — @ is an invertible
matrix and that its inversé’ := (I — Q)~! is typically known in the literature as tHendamental matriof the
absorbing matrix4. Second IetAgl,)L 1 andA(”) 1 denote, respectively, the first and the last column of theirmat
A without the first and the last component, L&LM Li=laon, s an1a]t and AV i=Tlagn. ... an_1n)"
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Finally, let e|m g and 1,,_, denote, respectively, the vector of the canonical basi®®f? having 1 in the
(%] + 1)-th position and the¢n — 2)-dimensional vector having all the components equal tespectively.

Proposition .2 (SPRT as a Markov Chain) Consider the classic SPRT test. Assume that we model itghrihe
absorbing Markov chair{S, A, 7(0)) described above. Then the following statements hold:

(|) po|;(t) = mi(t) —mi(t — 1) and py;(t) = mn(t) — mp(t — 1), for t € N;

(i) P[sayHo|H;] = eLT%OHlNal and P[say Hy|H;] = eLTnToHlNELn; and

(i) E[T|H;] = €T i Flna.

L5
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