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Abstract

We address optimal placement of vehicles with simple motion, to intercept a mobile target that arrives stochastically on
a line segment. The optimality of vehicle placement is measured through a cost function associated with intercepting the
target. With a single vehicle, we assume that the target either moves with fixed speed and in a fixed direction or moves
to maximize the vertical height or intercept time. We show that each of the corresponding cost functions is convex, has
smooth gradient and has a unique minimizing location, and so the optimal vehicle placement is obtained by any standard
gradient-based optimization technique. With multiple vehicles, we assume that the target moves with fixed speed and
in fixed direction. We present a discrete time partitioning and gradient-based algorithm, and characterize conditions
under which the algorithm asymptotically leads the vehicles to a set of critical configurations of the cost function.
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1. Introduction

Vehicle placement to provide optimal coverage has re-
ceived lot of recent attention due to potential applications
in environmental monitoring, patrolling a piece of land be-
tween nations and even in popular games such as soccer.
This work addresses vehicle placement to minimize a cost
associated with intercepting a mobile target that appears
randomly on a segment.

In static environments, vehicle placement problems are
analogous to geometric location problems, wherein given a
set of static points, the goal is to find supply locations that
minimize a cost function of the distance from each point
to its nearest supply location (cf. Megiddo and Supowit
(1984) and Zemel (1984)). For a single vehicle, the av-
erage distance to a random point, generated according to
a probability density function is given by the Weber or
the continuous 1–median function, for which there exists a
global minimizer as shown in Fekete et al. (2005), termed
as the median. For multiple distinct vehicle locations, the
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expected distance between a random point generated ac-
cording to a probability density and one of the locations
is known in literature as the continuous Weber or the con-
tinuous multi-median function, e.g., see Drezner (1995).
For more than one location, the multi-median function is
non-convex, and thus determining locations that minimize
the multi-median function is hard in the general case. It
is of interest to characterize the set of critical points of the
multi-median function. Cortés et al. (2004) have character-
ized the set of critical points for the problem of deploying
a group of robots in a region to optimize a multi-median
cost function. Schwager et al. (2009) provide an adaptive
control law to enable robots to approximate the density
function from sensor measurements. Mart́ınez and Bullo
(2006) presented motion coordination algorithms to steer
a mobile sensor network to an optimal placement. More
recently, Kwok and Mart́ınez (2010) presented a coverage
algorithm for vehicles in a river environment.

In mobile target scenarios, the cost for the vehicle is
a function of relative locations, speeds and motion con-
straints considered. For an adversarial target, the optimal
vehicle motion is obtained by solving a min-max pursuit-
evasion game, in which the target seeks to maximize while
the vehicle seeks to minimize a certain cost function. The
vehicle strategy is a version of the classic proportional nav-
igation guidance law (cf. Guelman (1971)). With con-
straints such as a wall in the playing space or non-zero
capture distance, strategies with optimal intercept time
have been derived in Isaacs (1965) and in Pachter (1987).

We consider a line segment on which a mobile target
appears via a known spatial probability density and one
or multiple vehicles seek to intercept it. The goal is to de-
termine vehicle placements that minimize a cost function
associated with the target motion. This work is an exten-
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sion of Bopardikar et al. (2010b), where we introduced the
placement problem for target motion with fixed speed and
in fixed direction, and for a uniform target arrival density.
We address single and multiple vehicle scenarios. With a
single vehicle, we consider a class of cost functions and es-
tablish properties such as convexity, smoothness and the
existence and uniqueness of a globally minimizing vehi-
cle location. We show that the cost functions associated
with the target moving with fixed speed and in a fixed
direction, and with the target seeking to maximize the
distance from the segment, fall in the class of cost func-
tions that we have analyzed. The cost function for target
motion that maximizes the intercept time is shown to be
proportional to the continuous 1–median function. With
multiple vehicles and the target moving with fixed speed
and in a fixed direction, we first provide an algorithm to
partition the line segment among the vehicles and charac-
terize its properties. With the expected intercept time as
the cost function, we propose a Lloyd descent algorithm
in which every vehicle computes its partition and moves
along the gradient of the expected time computed over its
partition. We characterize conditions under which the ve-
hicles asymptotically reach a set of critical configurations.

This paper is organized as follows. The problem is
formulated in Section 2. Single vehicle scenarios are ad-
dressed in Section 3. The multiple vehicle scenario is an-
alyzed in Section 4.

2. Problem Statement

We consider vehicles with simple motion and speed up-
per bounded by unity. A target arrives at a random po-
sition (x, 0) on the segment G := [0,W ] × {0}, termed
the generator, via a specified probability density function
φ : [0,W ] → R≥0. We assume that the density func-
tion φ is bounded, i.e., there exists an M > 0 such that
φ(x) ≤ M,∀x ∈ [0,W ], and φ is positive on a set of posi-
tive measure. The target moves with bounded speed less
than that of the vehicles, and is intercepted or captured
if a vehicle and the target are at the same point. The
goal is to determine vehicle placements that minimize a
certain cost function based on the maneuvering abilities of
the target. Specifically, we consider the following cases.

2.1. Single Vehicle Case

We determine a location p ∈ R × R≥0 that minimizes
Cexp : R

2 → R given by

Cexp(p) :=

∫ W

0

C(p, x)φ(x)dx, (1)

where C : R
2 → R≥0 is an appropriately defined cost of the

vehicle position p. In what follows, we seek to minimize
the following different cost functions.

(i) Expected constrained travel time: We assume that
the target arriving at (x, 0) translates in the positive Y -
direction with speed v < 1. From Bopardikar et al. (2010b),

the cost function C for this formulation is

T (p, x) =

√

(1 − v2)(X − x)2 + Y 2

1 − v2
− vY

1 − v2
, (2)

which is the time taken for the vehicle to intercept the
constrained target.

(ii) Expected vertical height: The cost function C for
this formulation is the vertical height H(p, x) which the
target seeks to maximize before being intercepted.

(iii) Expected intercept time: The cost function C for
this formulation is the intercept time Ti(p, x) which the
target seeks to maximize.

Explicit formulae for the quantities H and Ti are de-
rived in Section 3.2, and are illustrated in Figure 1.

H(p, x)

W

p

Ti(p, x)

I

(x, 0)

φ(x)

Figure 1: Intercepting a target that seeks to maximize either the
vertical height H or the time Ti until intercept.

2.2. Multiple Vehicles Case

We assume that the target translates in the positive
Y -direction with speed v < 1. As shown in Figure 2, given
m ≥ 2 vehicles having complete communication, the goal is
to determine vehicle locations pi ∈ [0,W ]×R≥0, for every
i ∈ {1, . . . ,m}, that minimize the expected constrained
travel time given by

Texp(p1, . . . ,pm) :=

∫ W

0

min
i∈{1,...,m}

T (pi, x)φ(x)dx, (3)

where T (pi, x) is given by Eq. (2).

φ(x)

p1

p3

q

W

v

p2

Figure 2: Intercepting a target having constrained motion.

3. Single Vehicle Scenarios

We first analyze a class of cost functions. This form will
appear in two distinct scenarios, the expected constrained
travel time and the expected vertical height.
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3.1. A class of cost functions

We assume that the cost function is given by Eq. (1),
where the function C has the form

C(X,Y, x) := a
√

b(X − x)2 + Y 2 − cY, (4)

and a, b, and c are positive constants, with a > c.
The partial derivatives of Cexp(X,Y ) with respect to

X and Y are given by

∂Cexp

∂X
= ab

∫ W

0

(X − x)φ(x)
√

b(X − x)2 + Y 2
dx, (5)

∂Cexp

∂Y
= aY

∫ W

0

φ(x)
√

b(X − x)2 + Y 2
dx− c. (6)

Lemma 3.1 (Convexity of expected cost) The expected
cost Cexp(X,Y ) is convex in X and Y over the domain
R × R>0.

The proof involves showing that the Hessian matrix of
C with respect to X and Y is positive semi-definite. The
complete proof is presented in Bopardikar et al. (2010a).

Lemma 3.2 (Existence of Minima) There exists a ve-
hicle location (X∗, Y ∗) ∈ ]0,W [×R>0 that minimizes Cexp.

Proof: Cexp has continuous partial derivatives in the
domain ]0,W [×R>0 (cf. Eq.s (5), (6)). We show that a
minimizer cannot lie on the boundary of the region [0,W ]×
R≥0. We begin by showing that Y ∗ exists and is finite.
Taking the limit of Cexp(X,Y ) as Y → +∞,

lim inf
Y →+∞

Cexp(X,Y ) ≥ lim inf
Y →+∞

(a− c)Y

∫ W

0

φ(x)dx = +∞,

since by assumption, a > c. Thus, Y ∗ exists and is finite.
Finally, to show that a minimizer lies in ]0,W [×R>0,

we need to prove two statements: (a) Y ∗ 6= 0, and (b)
X∗ ∈]0,W [. To show (a), Eq. (6) along with the assump-
tion φ(x) ≤M , for every x ∈ [0,W ], yields

∂Cexp

∂Y
≤MY a

∫ W

0

dx
√

b(X − x)2 + Y 2
− c

≤ MY a√
b

(log(W +
√

W 2 + Y 2/b) − log(Y/
√
b)) − c.

Thus, lim supY →0+ ∂Cexp/∂Y ≤ −c. Thus, for Y near zero
the gradient of Cexp points in the negative Y -direction,
implying that Y ∗ 6= 0.

To show (b), we first observe that for a given Y , in the
limit as X → ±∞, Cexp → +∞, and therefore X∗ must
be bounded. Finally, the claim follows since the partial
derivative of Cexp with respect to X is strictly negative at
X = 0 and is strictly positive at X = W .

These statements coupled with the convexity of Cexp

with respect toX and Y imply the existence of a minimizer
in the region ]0,W [×R>0.

Lemma 3.3 (Uniqueness) There exists a unique vehi-
cle location (X∗, Y ∗) ∈ ]0,W [×R>0 that minimizes Cexp.

Proof: Let there be two locations (X1, Y1) and (X2, Y2)
that minimize the expected cost. From Lemma 3.1, since
the expected cost Cexp is convex in X and Y , a con-
vex combination of (X1, Y1) and (X2, Y2) also minimizes
the expected time. Thus, the necessary conditions for
minimum are satisfied by (X̄(α), Ȳ (α)) := (αX1 + (1 −
α)X2, αY1 + (1 − α)Y2), for every α ∈ [0, 1]. Thus,

∫ W

0

(X̄(α) − x)φ(x)
√

(bX̄(α) − x)2 + Ȳ (α)2
dx = 0,

∫ W

0

Ȳ (α)φ(x)
√

b(X̄(α) − x)2 + Ȳ (α)2
dx =

c

a
.

Since the above conditions hold for every α ∈ [0, 1], the
partial derivatives of the above conditions evaluated at α =
0, must equal zero. Thus, upon simplifying, we obtain,

∫ W

0

(X2 − x)Y2(Y1 − Y2) − Y 2
2 (X1 −X2)

(b(X2 − x)2 + Y 2
2 )3/2

φ(x)dx = 0,

∫ W

0

(X2 − x)Y2(X1 −X2) − (Y1 − Y2)(X2 − x)2

(b(X2 − x)2 + Y 2
2 )3/2

φ(x)dx = 0,

where φ(x)/(b(X2−x)2 +Y 2
2 )3/2 =: f(X2, Y2, x) is strictly

positive for Y2 > 0. Multiplying the first equation by (X1−
X2), the second by (Y1 − Y2), and adding the equations,

∫ W

0

f(X2, Y2, x)(Y2(X1−X2)−(X2−x)(Y1−Y2))
2dx = 0.

Since f(X2, Y2, x) ≥ 0, we must have Y2(X1−X2)− (X2−
x)(Y1 − Y2) = 0, for every x at which f(X2, Y2, x) > 0,
which is feasible only if X1 −X2 = 0 and Y1 − Y2 = 0.

We now present the main result for this section.

Theorem 3.4 (Minimizing expected cost) From an ini-
tial location in R×R>0 and by using a gradient optimiza-
tion technique, the vehicle reaches the unique point that
minimizes the expected cost Cexp.

Proof: The gradient of Cexp with respect to X and Y
is a continuous function of X and Y in the region R×R>0.
The function Cexp is convex in X and Y (cf. Lemma 3.1)
and has a unique minimizer in ]0,W [×R>0 (cf. Lemmas 3.2
and 3.3). Thus, a gradient optimization technique (cf. Boyd
and Vandenberghe (2004)) leads the vehicle to the unique
global minimizer of Cexp.
Let V ⊂ [0,W ], and choose φ(x) such that φ(x) = 0,∀x ∈
[0,W ] \ V. Then, Theorem 3.4 yields the following result.

Corollary 3.5 (Any subset of generator) Let V ⊂ [0,W ]
have positive measure. Then, from an initial location in
[0,W ]×R>0, and following gradient descent with V as the
region of integration, the vehicle remains inside [0,W ] ×
R>0 at all subsequent times.
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Theorem 3.4 answers the problem of minimizing the
expected value of T , given by Eq. (2), with a := 1/(1−v2),
b := (1−v2) and c := v/(1−v2), and a > c. In general, it is
difficult to provide closed form expressions for the vehicle
location that minimizes the expected time. A special case
is described in Remark 3.6.

Remark 3.6 (Equal speeds) In this case, the optimal
placement in the X variable is at the centroid of the dis-
tribution φ, with the optimal Y given by

X∗ =

∫ W

0

φ(x)xdx; Y ∗ =

√

∫ W

0

φ(x)(X∗ − x)2dx. �

3.2. Optimal Placement for Adversarial Target

We consider two types of cost functions that the evader
tries to maximize; vertical height and intercept time.

3.2.1. Minimizing the Expected Vertical Height

We first present the solution to the differential game
with payoff equal to the vertical height. If the evader is
slower than the pursuer, then the Appolonius circle is the
boundary of the set of all points which the evader can
reach without being captured. The following property is
stated in Isaacs (1965).

Proposition 3.7 (Appolonius circle during pursuit)
If the pursuer and the evader both travel straight toward
a point U on the Appolonius circle, then any new such
circle, obtained from a pair of simultaneous intermediate
positions of the pursuer and the evader, is tangent to the
original circle at U, and is contained in the original circle.

The optimal pursuit strategy (cf. Isaacs (1965)) is to
choose its velocity vector such that the line joining the
pursuer and the evader remains parallel at all times, while
reducing the distance. So for optimal placement, it suffices
to determine the optimal evader strategy. Algorithm 1
summarizes our evader strategy, shown in Figure 3.

Algorithm 1: Move towards top-most

Assumes: Pursuer at (X,Y ). Evader at (x, 0).
Compute center and radius of the Appolonius circle:1:

O := (Ox, Oy) =
(x− v2X

1 − v2
,
−v2Y

1 − v2

)

,

R :=
v

1 − v2

√

(X − x)2 + Y 2.

Move towards the point (Ox, Oy +R) with speed v.2:

The following result is immediate from Proposition 3.7.

Lemma 3.8 (Move towards top-most is optimal) The
strategy move towards top-most is the evader’s optimal

Appolonius Circle

Im

(x, 0)

R

H

(X,Y )

O

Figure 3: Move towards top-most strategy for the evader.

strategy and the resulting optimal vertical height of the in-
tercept point is

H(X,Y, x) =
v

1 − v2

√

(X − x)2 + Y 2 − v2Y

1 − v2
.

Comparing the expression for H given by Lemma 3.8 with
the definition of C in Eq. (4), we have a := v/(1 − v2),
b := 1 and c := v2/(1 − v2), and a > c since v < 1. Thus,
by applying Theorem 3.4, we obtain the following result.

Theorem 3.9 (Minimizing expected height) From an
initial location in R × R>0, by using a gradient optimiza-
tion technique, the vehicle reaches the unique point that
minimizes the expected height Hexp.

3.2.2. Minimizing the Expected Intercept Time

In this formulation, we assume that the evader is con-
strained to remain above or on the X-axis. Thus, the
underlying differential game in this set up is the classic
wall pursuit game, proposed and solved in Isaacs (1965).
We present the main result for completeness.

Lemma 3.10 (Wall Pursuit game) The evader strat-
egy that maximizes the intercept time is to move towards
the furthest point of the Appolonius circle on the X-axis.

This optimal evader strategy is illustrated in Figure 4.

(X,Y )

(x, 0)

R

I

O

Appolonius Circle

Figure 4: Illustrating Lemma 3.10.

Now, given a convex region Q ⊂ R and a density func-
tion ψ : Q → R≥0, the median (cf. Fekete et al. (2005))
pmed is the unique global minimizer of

∫

Q

|p− z|ψ(z)dz.

We now present the main result of this section.
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Theorem 3.11 (Optimal location is the Median) The
median point of the region [0,W ] × {0} with the density
function φ uniquely minimizes the expected intercept time.

Proof: Using Lemma 3.10 and the Pythagoras theo-
rem, the intercept time Ti is given by

Ti(X,Y, x) =

√

R2 −
( vY

1 − v

)2

+

∣

∣

∣

∣

x− vX

1 − v
− x

∣

∣

∣

∣

,

where R is the radius of the Appolonius circle drawn at
the initial instant. Since pursuer placement on the X-axis
results into decreasing the intercept time Ti, we have

Tiexp(X) =
v2 + 3v

1 − v2

∫ W

0

|X − x|φ(x)dx,

which is minimized uniquely by the median of the region
[0,W ] × {0} with the density function φ.

4. The Case of Multiple Vehicles

We now address the multi-vehicle placement problem.

4.1. Dominance Region Partition

We introduce a generator partitioning procedure by
defining dominance regions between each pair of vehicles.

Definition 4.1 (Pairwise dominance region) For i, j ∈
{1, . . . ,m}, the pairwise dominance region Uij ⊆ [0,W ] of
pi with respect to pj is the set of target locations for which
vehicle pi takes lesser time to intercept the target than pj:

Uij := {x ∈ [0,W ] |T (pi, x) ≤ T (pj , x)}.

In what follows, we describe a procedure to determine
Uij , which is summarized in Algorithm 2. Without loss of
generality, assume that Xi < Xj . If Yi = Yj , i.e., the vehi-
cles are at the same distance from the generator, then Uij

is the piece of G that lies in the half-plane that is formed
by the perpendicular bisector of the segment joining pi

and pj and which contains pi. Now if Yi < Yj , then we
look for points (x, 0) in G for which T (pi, x) ≤ T (pj , x).
By setting (1 − v2) =: b, Eq. (2) gives

√

b(Xi − x)2 + Y 2
i −vYi ≤

√

b(Xj − x)2 + Y 2
j −vYj . (7)

On simplifying, one can show that Eq. (7) is quadratic
in x having real roots, which provides at most two points
for the boundary between Uij and Uji. To determine the
boundary points, consider the perpendicular bisector of
the segment joining pi and pj , as shown in Figure 5. We
look for points A1 and A2 on this bisector such that the
distances of A1 and A2 from the real line is v times their
respective distances from the vehicles. This gives rise to
the following quadratic equation in the variable ℓ

4(sin2 θ−v2)ℓ2+4(Yi+Yj) sin θℓ = −(Yi+Yj)
2+v2‖pi−pj‖2,

(Yi + Yj)/2

pj

A1

θ

ℓ

pi

A2

Perp. bisector

Figure 5: To determine pairwise dominance regions.

Algorithm 2: Pairwise Dominance Region

Assumes: Distinct pi = (Xi, Yi), pj = (Xj , Yj).
if Yi = Yj, then1:

Uij :=

{

[0, (Xi +Xj)/2], if Xi < Xj

[(Xi +Xj)/2,W ], if Xi > Xj2:

else3:

θ := arctan2(Yj − Yi,Xj −Xi) + π/24:

ℓ1,2 := two roots of 0 = 4(sin2(θ) − v2)ℓ25:

+4(Yi + Yj) sin(θ)ℓ+ (Yi + Yj)
2 − v2‖pi −pj‖2

6:

y1,2 := (Yi + Yj)/2 + sin(θ)ℓ1,27:

if y1 > 0 and y2 > 0 then8:

x1,2 := (Xi +Xj)/2 + cos(θ)ℓ1,29:

Uij :=

{

[0,W ] ∩ [x1, x2], if Yi < Yj

[0,W ] \ ]x1, x2[, if Yi ≥ Yj .

else10:

k := index in {1, 2} for which yk > 011:

x := (Xi +Xj)/2 + ℓk cos(θ)12:

Uij :=

{

[0,W ] ∩ ]−∞, x], if Xi < Xj

[0,W ] ∩ [x,+∞[, if Xi ≥ Xj13:

where ℓ and θ := arctan2((Yj − Yi), (Xj −Xi)) + π/2 are
as shown in Figure 5. Let ℓ1 and ℓ2 be the roots of the
above quadratic. Then the Y -coordinates of the candidate
boundary points A1 and A2 are given by

[y1, y2]
T = [1, 1]T (Yi + Yj)/2 + [ℓ1, ℓ2]

T sin θ.

Now, A1 and A2 are both boundary points if and only if
both have positive Y -coordinates. It can be shown that
there exists at least one among them which has positive
Y -coordinate. There arise two cases:

(i) If there are two candidate points A1 and A2 (as
in Figure 5), then we look at their corresponding X co-
ordinates, (x1, x2) given by Step 7. For (x, 0) ∈ G ∩
[x1, x2] × {0}, we have T (pi, x) ≤ T (pj , x), and thus Uij

is G ∩ [x1, x2] × {0}.
(ii) If there is only one candidate point A1, then we look

at its X coordinates, x1 given by Step 9. By assumption
Xi < Xj , and hence for (x, 0) ∈ G ∩ [−∞, x1] × {0}, we
have T (pi, x) ≤ T (pj , x) and thus Uij isG∩[−∞, x1]×{0}.

Thus, we have established the following property.
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Algorithm 3: Dominance region

Assumes: Distinct locations {p1, . . . ,pm}.
foreach vehicle j ∈ {1, . . . ,m} \ {i}, do1:

Determine Uij using Algorithm 2.2:

Vi =
⋂

j=1,...,m,j 6=i Uij .3:

Proposition 4.2 (Pairwise dominance region) Given
distinct locations pi = (Xi, Yi), pj = (Xj , Yj), if a target
arrives at (x, 0), where x ∈ Uij generated by Algorithm 2,
then T (pi, x) ≤ T (pj , x).

Similar to pairwise dominance regions, we introduce
the concept of dominance region Vi ∈ P([0,W ]) for the
ith vehicle, for every i ∈ {1, . . . ,m}, which is the set of
X-coordinates of target locations for which pi takes the
minimum time to intercept of all vehicles.

Assuming complete communication between vehicles,
Algorithm 2 is extended to determine the dominance re-
gion for a vehicle by (i) determining pairwise dominance
regions between vehicles and, (ii) taking intersection of all
pairwise dominance regions, as presented in Algorithm 3.

The next result for Algorithm 3 follows due to disjoint
interiors of dominance regions, and due to Proposition 4.2.

Proposition 4.3 (Optimality of dominance regions)
Given distinct vehicle positions and a target arrival,

(i) the dominance regions generated by Algorithm 3 form
a partition of the generator.

(ii) The time taken to reach the target is minimized by
the vehicle whose dominance region contains the tar-
get arrival location.

It is possible for the dominance region of a vehicle to be
empty. For instance, when one of the vehicles is very
far from the generating line (cf. first part of Figure 8).
However, one condition under which every vehicle has a
non-empty dominance region is when all vehicles have the
same Y -coordinate. For a general set of locations, Figure 6
shows a dominance region partition with three vehicles.

p3

p1

A2

A1

Perp. bisector

p2

p3

p1

p2

A1

Perp. bisector

p1

p2

p3

Perp. bisector

A1

p3

p1

p2

Figure 6: Dominance region partition induced by three vehicles.

Let E := [0,W ]×R≥0, P([0,W ]) be the set of all subsets
of [0,W ], B(r) be the closed ball of radius r around the
origin and + denote the Minkowski sum of two sets. The
domain of a set-valued map F : X ⇉ Z is the set of all
q ∈ X such that F (q) 6= ∅. F is said to be upper (resp.
lower) semi-continuous in its domain if, for every q in its
domain and for every ǫ > 0, there exists a δ > 0 such
that for every z ∈ q + B(δ), F (z) ⊂ F (q) + B(ǫ) (resp.
F (q) ⊂ F (z) + B(ǫ)). F is continuous in its domain if it
is both upper and lower semi-continuous.

The pairwise dominance region between pi and pj is
a set valued function Uij : E2 \ Sij ⇉ P([0,W ])2, where
Sij ⊂ E2 is the set of coincident locations for pi and pj .
Similarly, the dominance region partition for vehicle i is
a set-valued map Vi : Em \ Si ⇉ P([0,W ])2(m−1), where
S ⊂ Em is the set of vehicle locations in which at least one
other vehicle is coincident with pi.

Proposition 4.4 (Continuity of dominance regions) (i)
For every distinct i and j in the set {1, . . . ,m}, the
set valued map Uij is continuous in E2 \ Sij.

(ii) For each vehicle i ∈ {1, . . . ,m}, the set valued map
Vi is continuous on its domain.

Proof: The roots of Eq. (7) which is a quadratic in
x, vary continuously with pi and pj . Thus, the map Ui,j

is continuous in E2 \ Sij .
The domain of Vi is contained in the domain of Uij for

every j 6= i. From part (i) of this Proposition, for every
j 6= i, the set-valued map Uij is upper semi-continuous in
E2. Thus, for every j 6= i, at every q in the domain of
Vi and for every ǫ > 0, there exist δij > 0 such that for
every z ∈ q + B(δij), Uij(z) ⊂ Uij(q) + B(ǫ). Given an
ǫ > 0, by the choice of δi = min{δij ,∀j 6= i}, we obtain
that for every z ∈ q + B(δi), Vi(z) ⊂ Vi(q) + B(ǫ). Thus
Vi is upper semi-continuous. Lower semi-continuity of Vi

is established similarly and the result follows.

4.2. Minimizing the Expected Constrained Travel Time

For distinct vehicle locations, Eq. (3) can be written as

Texp(p1, . . . ,pm) =

m
∑

i=1

∫

Vi

T (pi, x)φ(x)dx, (8)

where Vi is the dominance region of the ith vehicle. The
gradient of Texp is computed using the following formula.

Lemma 4.5 (Gradient computation) For all vehicle con-
figurations such that no two vehicles are at coincident lo-
cations, the gradient of the expected time with respect to
vehicle location pi is

∂Texp

∂pi
=

∫

Vi

∂T

∂pi
(pi, x)φ(x)dx.

Akin to similar results in Cortés et al. (2004, 2005); Bullo
et al. (2009), the proof involves writing the gradient as a
sum of two contributing terms. The first is the final ex-
pression, while the second is a number of boundary terms

6



Algorithm 4: Lloyd descent for vehicle i

Assumes: Distinct locations {p1, . . . ,pm} ∈ Em

foreach time t ∈ N do1:

Compute Vi(t) by Algorithm 3 as a function of2:

{p1(t), . . . ,pm(t)}
if Vi(t) is empty, then3:

Move in unit time to (Xi, Yi − min{1, Yi})4:

else5:

For τ ∈ [t, t+ 1], move according to6:

ṗi(τ) = − sat
(

∫

Vi(t)

∂

∂pi
T (pi(τ), x)φ(x)dx

)

which cancel out due to continuity of T at the boundaries
of dominance regions. The complete proof is presented
in Bopardikar et al. (2010a).

For z ∈ R
2, define the function sat : R

2 → R
2 denote

the saturation function, i.e., if ‖z‖ ≤ 1, then sat(z) = z;
otherwise, sat(z) = z/‖z‖. Inspired by the established
Lloyd algorithm (cf. Bullo et al. (2009)), we present a
discrete-time descent approach in Algorithm 4.

We define the following vehicle configuration.

Definition 4.6 (Critical configuration) A set of loca-
tions {p1, . . . ,pm} is a critical dominance region configu-
ration if, for all i ∈ {1, . . . ,m},

pi = argmin
z∈E

∫

Vi

T (z, x)φ(x)dx,

where {V1, . . . ,Vm} is the dominance region partition in-
duced by {p1, . . . ,pm}.

We now state the main result of this section.

Theorem 4.7 (Convergence of Lloyd descent) Let γ :
N → R

2m be the evolution of the m vehicles according to
Algorithm 4 and assume that no two vehicle locations be-
come coincident in finite time or asymptotically. The fol-
lowing statements hold:

(i) the expected travel time t 7→ Texp(γ(t)) is a
non-increasing function of time;

(ii) if the dominance region Vi of any vehicle i is empty
at some time, then Vi will be non-empty within a
finite time; and

(iii) if there exists a time t such that every dominance re-
gion is non-empty for all times subsequent to t, then
the vehicle locations converge to the set of critical
dominance region configurations.

Proof: We begin by showing statement (i). In ev-
ery iteration of Algorithm 4, step 2: does not increase
the expected time Texp due to the optimality of the dom-
inance region partition, by Proposition 4.3. Step 4: does
not change the Texp as the associated dominance region is
empty. Finally, step 6: does not increase Texp as the vehicle

is moving along the gradient descent flow of Texp. Thus,
the expected time is non-increasing under Algorithm 4.

Statement (ii) follows from the fact that whenever Vi =
∅ for vehicle i, due to step 4:, vehicle i reaches the generator
after finite time and therefore has a non-empty Vi.

For non-empty Vi, let A : X × P([0,W ]) → X , be the
flow map of the differential equation at step 6: from time t
to time t+1. For statement (iii), consider the discrete-time
dynamical system given by the tuple (X ,X0,A), where
X = Em and X0 ∈ Em is the set of initial vehicle positions.

We now apply the discrete-time LaSalle Invariance Prin-
ciple (Theorem 1.19 in Bullo et al. (2009)), for which we
verify the four assumptions as follows.

1. Existence of a positively invariant set: At every
iteration of step 6:, each vehicle follows saturated gradi-
ent descent of a cost function belonging to the class of
Eq. (4) over its dominance region fixed for the iteration.
By Corollary 3.5, each vehicle remains in E throughout the
iteration, and therefore at all times. Thus, the set Em is
positively invariant for the system (X ,X0,A).

2. Existence of a non-increasing function along A: Texp

is non-increasing along A, by statement (i) of this theorem.
3. Boundedness of all evolutions of (X ,X0,A): Since

gradient descent keeps theX coordinates bounded in [0,W ],
it remains to show that the Y -coordinates of all vehicles re-
main bounded. Let us suppose the contrary. Then, there
are two cases: (a) at least one vehicle has its location
bounded and at least one other vehicle, say vehicle k moves
so that Yk grows unbounded; or (b) all of the vehicles move
so that their Y -coordinates grow unbounded. In case (a),
after finite time, the dominance region Vk becomes empty,
thus contradicting the assumption of statement (iii) of this
theorem. If case (b) occurs, then Texp grows unbounded,
thus contradicting statement (i) of this theorem. Thus, all
evolutions of (X ,X0,A) are bounded.

4. Continuity of Texp and A: Continuity of Texp follows
from Eq.s (2) and (8). To verify continuity of A, note
that whenever Vi is non-empty, by Proposition 4.4, Vi is
continuous with respect to vehicle locations. Thus, as long
as Vi is non-empty, A is continuous as the integrand is
continuous with respect to vehicle locations, and so is the
region of integration Vi.

By LaSalle Invariance Principle, the evolutions of
(X ,X0,A) converge to a set of the form T−1

exp(κ)∩M, where
κ is a real constant and M is the largest positively invari-
ant set in {x ∈ X |Texp(A(x)) = Texp(x)}. Since Texp

remains constant under action of A for the set of critical
dominance region configurations, it is contained in a set of
the form T−1

exp(κ) ∩M. If a set of vehicle positions is not
critical, then Texp strictly decreases under the action A,
and therefore the set of vehicle positions is not contained
in a set of T−1

exp(κ) ∩M. Thus, the vehicle locations con-
verge to the set of critical dominance region configurations.

The next result gives a simple condition to identify an
unstable critical dominance region configuration, which is
an unstable equilibrium of Algorithm 4.
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Figure 7: Algorithm 4 for uniform arrival density. The vehicles first
tend to an critical dominance region configuration (center figure). A
perturbation to their positions makes them move to a stable config-
uration (third figure).

Figure 8: Algorithm 4 for non-uniform arrival density (black line).
Initially, the blue vehicle has no dominance region. The vehicles tend
to a stable configuration.

Lemma 4.8 (Disconnected partitions are unstable)
A critical dominance region configuration is unstable if
some vehicle has disconnected dominance region partition.

The proof involves perturbing the position of a vehi-
cle that has a disconnected dominance region in a critical
dominance region configuration, and then showing that the
resulting gradient in the X direction for that vehicle takes
the vehicle away from the equilibrium configuration. The
complete proof is presented in Bopardikar et al. (2010a).

4.3. Simulations

We now present some simulations of Algorithm 4.
[Examples of critical locations] We consider two vehicles,
and a uniform probability density of target arrival, i.e.,
φ(x) = 1/W . From initial locations such as in the left-
most of Figure 7 wherein both vehicles having the same
X-coordinate of W/2, but different Y -coordinates, the ve-
hicles asymptotically approach a set of locations shown in
the center figure. However, a small perturbation to the po-
sitions leads the vehicles to positions in the rightmost fig-
ure. From most initial conditions, the vehicles converged
to a critical configuration as in the rightmost figure.
[Non-uniform probability distribution] We consider three
vehicles and the arrival probability density function,

φ(x) =

{

8x/W 2, if x ∈ [0,W/4],

2/W − 8(x−W/4)/(3W 2), if x ∈ ]W/4,W ].

From most initial conditions, the vehicles converged to
a critical configuration as in right-most part of Figure 8.

5. Conclusions and Future Directions

We addressed the problem of optimally placing vehi-
cles having simple motion in order to intercept a mobile

target that arrives stochastically on a line segment. For a
single vehicle, we determined unique optimal placements
when target motion was either constrained, i.e., with fixed
speed and direction, or adversarial. For the multiple vehi-
cle scenario and with constrained motion targets, we char-
acterized conditions under which a partition and gradient
based algorithm that takes the vehicles asymptotically to
a set of critical locations of the cost function.

A natural future direction is to consider adversarial
targets in the multiple vehicles scenario. Another direction
is to consider stochasticity in the motion of the target.
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