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Robotic reactions: Delay-induced patterns in autonomous vehicle systems
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Fundamental design principles are presented for vehicle systems governed by autonomous cruise
control (ACC) devices. By analyzing the corresponding delay differential equations, it is shown that
for any car-following model short-wavelength oscillations can appear due to robotic reaction-times,
and that there are tradeoffs between the time delay and the control gains. The analytical findings are
demonstrated on an optimal velocity model using numerical continuation and numerical simulation.
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Introduction. — Early car-following models, such as
the California model [1], allowed the study of linear sta-
bility of uniform traffic flow. These models already incor-
porated driver reaction-time (see [2] for a review), but at
that time the mathematical theory for the corresponding
delay differential equations (DDEs) [3] was not available.
By the 1990s, nonlinearities penetrated the car-following
theory due to the increasing speed and availability of
computers, which allowed the exploration of traffic dy-
namics by means of numerical simulation. The first non-
linear models, such as the optimal velocity model (OVM)
[4], were able to reproduce both uniform flow and stop-
and-go waves. (In fact, the OVM with reaction-time de-
lay [5] is a nonlinear extension of the California model.)
In the last two decades, a large number of car-following
models were constructed and investigated by simulations.

Recently, tools from dynamical systems theory have
been applied to explore ‘hidden’ unstable motions [6–
8] and the effects of reaction-time delay [7–10] in car-
following systems. It has been shown that the delay in-
creases the domains of linear instability of the uniform
flow. However, drivers may partially compensate for this
by anticipatory actions, e.g., by monitoring more than
one vehicle in front [9]. On the other hand, sufficiently
large excitations (such as sudden braking due to bad lane
changes) may still trigger traffic jams even when the uni-
form flow is linearly stable [7, 8, 11].

Such excitable dynamics may not allow a traffic engi-
neer to stabilize the uniform flow by controllable mes-
sage signs. However, one may ‘substitute’ human drivers
with autonomous cruise control (ACC) devices that can
measure the distances and velocity differences between
vehicles by radar, calculate the required action, and ac-
tuate cars accordingly [12]. Time delays appear in such
systems due to the time needed for sensing computation
and actuation. Such robotic reaction-times are smaller
than the human ones, but only the motion of the car
immediately in front can be monitored. In [13], ACC dy-
namics were studied by numerical simulation for a spe-
cific model, and short-wavelength oscillations, previously
observed in experiments, were detected for certain com-
binations of gain parameters. The goal of this article is
to unveil the dynamical principles underlying such phe-
nomena and to determine the parameter regimes for a
general car-following model where the uniform flow can

be stabilized by ACCs.
Modelling and stability. — Assuming identical vehi-

cles, the acceleration of the i-th vehicle is given by

v̇i(t) = f
(
hi(t− τ), ḣi(t− τ), vi(t− τ)

)
, (1)

where the dot stands for differentiation with respect to
time t, vi is the velocity of the i-th vehicle, hi is the dis-
tance between the i-th and the i+1-st vehicles, called the
headway, and τ is the reaction-time delay. The system is
completed by the kinematic condition

ḣi(t) = vi+1(t)− vi(t) . (2)

We assume that system (1,2) possesses a one-
parameter set of uniform flow equilibria

hi(t) ≡ h∗ , ḣi(t) ≡ 0 , vi(t) ≡ v∗ , (3)

and that there exists a functional relation between the
equilibrium headway h∗ and the equilibrium velocity v∗

0 = f(h∗, 0, v∗) ⇒ v∗ = V (h∗) . (4)

Here the monotonically increasing non-negative function
V expresses that the more sparse traffic is, the faster
drivers want to go.

For simplicity, we assume periodic boundary condi-
tions: N vehicles are placed on a circular road of length
L, which yields the algebraic equation

∑N
i=1 hi(t) = L.

This determines the equilibrium headway h∗ = L/N and
the equilibrium velocity v∗ through (4). We remark that
when considering the case of a semi-infinite road, the
velocity v∗ is prescribed (by the velocity of the leader),
and the equilibrium headway is given by h∗ = V −1(v∗).
In this paper, the analytical results are calculated for
arbitrary N while the stability charts and bifurcation di-
agrams are shown for N = 33. This is small enough to
keep the illustrations readable but is large enough to rep-
resent the ‘large N case’: N →∞ such that L/N is kept
constant. For physically realistic models, the derivatives
of f satisfy

F = ∂
∂hf(h∗, 0, v∗) ≥ 0 , G = ∂

∂ḣ
f(h∗, 0, v∗) ≥ 0 ,

H = − ∂
∂v f(h∗, 0, v∗) ≥ 0 ,

(5)

see [11]. (Notice the minus sign in the definition of H.)
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FIG. 1: (Color online) Linear stability diagrams for the general model (1,2). The stable regions are shaded and solid arrows
show the increase of the discrete wave number k. For small delay the stability boundary is the k = 1 curve while, for larger
delay, curves for k ≈ N/2 constitute the boundary. The red circles locate where the k = 1 and k = N/2 curves intersect. In
panel (b), we use the notation g = 2 G

H
+ 1.

When the uniform flow equilibrium (3) loses stabil-
ity, different spatial patterns may appear. By linearizing
the system (1,2) about the uniform flow and using trial
solutions proportional to eλt, λ ∈ C, one may obtain
the characteristic equation. Then considering the criti-
cal eigenvalues λ = ±iω, ω > 0, separating the real and
imaginary parts, and using some trigonometric identities,
one can determine the Hopf stability curves

F
H2 = ω

H

(
cos

(
kπ
N

)± P
)/(

2 sin
(

kπ
N

))
,

τH = H
ω arccos

[
H
ω sin

(
kπ
N

)((
2 G

H + 1
)
cos

(
kπ
N

)± P
)]

,

where P =
√

ω2

H2 −
(
2 G

H + 1
)2 sin2

(
kπ
N

)
, (6)

and k = 1, . . . , N − 1 is a discrete wave number. Formu-
lae (6) describe stability curves in the (F/H2, τH)-plane
that are parameterized by the rescaled frequency ω/H,
as shown in Fig. 1 for different values of G/H. The uni-
form flow is stable in the shaded domains, solid arrows
indicate the increase of the wave number from 1 to N−1,
and the curves are colored blue (dark grey) for k < N/2
and green (light grey) for k > N/2. Since the number
of vehicles N = 33 is odd there is no k = N/2 curve;
for even N this is located between the ‘last’ blue (dark
grey) and the ‘first’ green (light grey) curves. Note that
no steady state bifurcation occurs here, as can be shown
by substituting λ = 0 into the characteristic equation.

When crossing a stability curve a Hopf bifurcation
takes place, i.e., a pair of complex conjugate eigenvalues
crosses the imaginary axis. In the vicinity of the bifurca-
tion point, the resulting small-amplitude oscillations are
travelling waves that can be written in the form vi(t) =
v∗ + vamp cos

(
2kπ
N i + ωt

)
= v∗ + vamp cos

(± 2π
Λ±

s + ωt
)
;

see [7, 11]. Here s = L
N i and the spatial wavelength is

Λ+ = L
k for k ≤ N/2 and Λ− = L

N−k for k > N/2, i.e.,
the same spatial pattern arises for wave numbers k and
N − k.

Fig. 1 shows that for small delay the curve for the low-
est wave number k = 1 is the stability boundary, while
for larger delay the k ≈ N/2 curves constitute the bound-
ary. This means that when increasing F for small delay,

the uniform flow loses stability to long-wavelength oscilla-
tions and waves of shorter and shorter wavelengths show
up when further curves are crossed. For sufficiently large
delay, however, short-wavelength oscillations appear first
and these are followed by waves of longer wavelengths.
That is, the time delay can qualitatively alter the spatial
dynamics for ACC systems.

In order to explain this qualitative change, we focus
our attention to what happens along the horizontal and
vertical axes. For τ = 0 (along the horizontal axis in
Fig. 1), one may eliminate the frequency ω from (6) and
obtain

F
H2 =

(
2 G

H +1
)(

G
H tan2

(
kπ
N

)
+ 1

2

(
1+tan2

(
kπ
N

)))
, (7)

which increases as k grows from 1 toward N/2. (Note
that the k > N/2 curves do not cross the horizontal axis.)
This result agrees with the proof constructed in [11] for
the non-delayed system. Similarly, for F = 0 (along the
vertical axis in Fig. 1), eliminating ω yields

τH =
arctan

[((
2 G

H + 1
)
tan

(
kπ
N

))−1
]

+ kπ
N

√
1 + 4 G

H

(
G
H + 1

)
sin2

(
kπ
N

) , (8)

which reaches its minimum when k ≈ N/2. The change
in the order of curves along the axes makes it necessary
that curves for different wave numbers cross each other
in the (F/H2, τH)-plane. These crossings correspond to
codimension-two Hopf bifurcations that potentially lead
to complex dynamics. (A curve may cross itself as occurs
at the points denoted by black dots in Fig. 1.)

To approximate the value of the delay where qualita-
tive change occurs (i.e., locate the small region in the
middle of the panels where most curves cross each other)
we calculate where the k = 1 and the k = N/2 curves
intersect (in the large N limit). These point are high-
lighted by the red circles in Fig. 1. First, notice that in
the vicinity of the intersection the k = 1 curve is well
approximated by a vertical line located at

F
H2 = 1

2

(
2 G

H + 1
)

:= 1
2 g , (9)
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FIG. 2: (Color online) Linear stability diagrams for the OVM (1,2,12,13) corresponding to Fig. 1(a), i.e., for G = 0. Notation
as in Fig. 1 and the horizontal dotted line in panel (a) corresponds to the bifurcation diagrams in Fig. 3(a,b).

that is obtained by considering τ = 0 and k/N → 0.
Indeed, G ≥ 0 ⇔ g ≥ 1. Substituting (9) and k = N/2
into the second equation of (6) gives

τH = 1
g

√
2

1+
√

1+4g−2
arccos

[
1
g

2

1+
√

1+4g−2

]
& π/2

g+π/2 .

(10)
where the larger g is, the better the lower estimation is.
For G = 0 ⇔ g = 1 [Fig. 1(a)], Eq. (10) simplifies to

τH =
√

1
ϕ arccos

[
1
ϕ

]
≈ 0.711 , (11)

where ϕ = (1 +
√

5)/2 ≈ 1.618 is the golden ratio.
One may observe a tradeoff in the stability charts in

Fig. 1: when G is increased there is an increase of stabil-
ity in F but a decrease of stability in τ , that is, the stable
domain is stretched in one direction but squeezed in an
other. Similar deformation occurs when H is increased
as will be explained below on a concrete example. This
means that a common thumb rule of the non-delayed sys-
tem, namely that increasing the gains G and H is benefi-
cial for stability, is violated when the delay is sufficiently
large.

Optimal velocity model. — Formula (1) with restric-
tions (5) on the signs of derivatives describes a large fam-
ily of nonlinear models. Here we demonstrate the above
linear results and their possible consequences for the non-
linear dynamics on a concrete nonlinear car-following
model, the OVM [4, 5, 7, 8] where

f(h, ḣ, v) = α
(
V (h)− v

)
, (12)

and the V determines the equilibrium according to (4).
Here we use the dimensionless function

V (h) =

{
0 , if h ∈ [0, 1] ,

(h−1)3

1+(h−1)3 , if h ∈ [1,∞) ,
(13)

where space is rescaled by the stopping distance (below
which V (h) ≡ 0) and velocity is rescaled by the maximum
velocity (that is approached when h →∞); see [8].

Knowing f explicitly allows us to transform the stabil-
ity charts to physically meaningful parameters (like the
average headway h∗ = L/N). The derivatives (5) become

F = αV ′(h∗) , G = 0 , H = α , (14)

and using (6,13,14) one may draw stability charts in
the (h∗, τ)-plane for different values of α, as depicted
in Fig. 2. These correspond to the chart in Fig. 1(a)
with τH = τα and F/H2 = V ′(h∗)/α. For small α
there are two ‘copies’ of the stable domain on the left
and the right sides, while for larger α these areas merge.
Indeed, when varying h∗ for sufficiently large delay, the
‘first’ instability yields short-wavelength oscillations. A
tradeoff can also be observed: when α is increased the
width of the unstable domain decreases (and even disap-
pears for small delay) but the height of the stable domain
decreases. One may show that there is a critical delay
(τcrit ≈ 0.39) above which the unstable domain cannot
be diminished by increasing the gain parameter α. We
remark that for h∗ ≤ 1 the model (1,2,12,13) simplifies
to v̇i(t) = −α vi(t − τ), i = 1, . . . , N . This is a classic
example of a linear scalar delay differential equation [3]
that is stable for τ < π

2α as pointed out in Fig. 2(b).
We use numerical continuation techniques [14] to

demonstrate the complexity that can arise at the nonlin-
ear level due to the change in the order of stability curves.
These techniques allow us to trace both stable and un-
stable oscillatory solutions (travelling waves) arising from
the Hopf bifurcation points. We fix α = 1.0 and τ = 0.7,
that is, we study the system along the dotted horizontal
line in Fig. 2(a). In Fig. 3(a) the amplitude of velocity
oscillations is shown for different wave numbers, with de-
tail of the top of the branches in Fig. 3(b). Stable and
unstable states are represented by green (light grey) and
red (dark grey) curves, respectively. The horizontal axis
represents the uniform flow and Hopf bifurcations are
denoted by blue stars along the axis. The outermost bi-
furcations are subcritical, so unstable oscillations/waves
appear ‘before’ the uniform flow loses stability.

The branches of oscillations undergo further bifurca-
tions. Fold bifurcations (denoted by blue crosses) oc-
cur where branches fold back, while Neimark-Sacker and
period doubling bifurcations (denoted by blue stars and
blue diamonds) happen where the stability changes. In
the latter cases, quasiperiodic oscillations arise that are
not studied in detail in this article. We recall that with-
out delay the only stable oscillatory solution is the one-
wave solution [6] and this feature is preserved for small
delays. However, our results indicate that, for sufficiently
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FIG. 3: (Color online) In panel (a) the amplitude of velocity oscillations is shown for different wave numbers for the OVM
(1,2,12,13) and a zoom of the top section is displayed in panel (b). Stable and unstable solutions are shown as green (light grey)
and red (dark grey) curves, respectively. The solid arrows represent the increase of the wave number k for large amplitude.
Panel (c) shows a spatiotemporal plot generated by an initial value simulation at h∗ = 2.0.

large delay, oscillations for larger wave numbers (shorter
wavelengths) may also become stable. Notice that even
though the order of wave numbers is non-increasing along
the horizontal axis, the increasing order is gained back for
larger amplitude, as shown by the solid arrow in Fig. 3(a).

To visualize the resulting spatial patterns we use nu-
merical simulations. The spatiotemporal plot in Fig. 3(c)
is shown for α = 1.0, τ = 0.7, h∗ = 2.0 that corresponds
to the middle of Fig. 3(a,b). (The constraint vi(t) ≥ 0,
i = 1, . . . , N is used to eliminate unphysical motions like
reversing.) The initial conditions are chosen to be con-
stant functions along the interval [−τ, 0] such that vehi-
cles are placed into the uniform flow equilibrium except
one whose velocity and headway is reduced to mimic
the effect of a sudden braking. The effect of braking
propagates against the flow leading to a long-wavelength
stop-and-go wave. Simultaneously, short-wavelength os-
cillations develop ‘spontaneously’, i.e., a state that is a
‘mixture’ of long- and short-wavelength motions is ap-
proached. As time progresses the long-wavelength regime
becomes narrower and this would occur faster if noise was
added to the system. The detailed analysis of such pat-

terns will be the subject of future research.
Discussion. — ACCs are primarily developed to in-

crease the drivers’ comfort for individual vehicles, but,
as was shown above, these devices may also help to avoid
congestion. To achieve this goal it is essential to take
into account the above design principles (delay-induced
short-wavelength instabilities, delay-gain tradeoffs) when
designing ACC algorithms. The digital controllers built
into the robotic vehicles sample time periodically and
hold the accelerations constant during the sampling pe-
riod [15]. Exploring the effects of such quantization is
an interesting future research direction. Finally, even
though ACCs are only capable of controlling the one-
dimensional (longitudinal) motion of cooperative vehi-
cles systems, one may expect that time delays become
important for two-dimensional vehicle configurations, es-
pecially for high-speed maneuvers [16, 17].
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