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Abstract

We develop a novel localization theory for networks of nodes that measure each other’s bearing, i.e., we assume that
nodes do not have the ability to perform measurements expressed in a common reference frame. We begin with some
basic definitions of frame localizability and orientation localizability. Based on some key kinematic relationships, we
characterize orientation localizability for planar networks with angle-of-arrival sensing. We then address the orientation
localization problem in the presence of noisy measurements. Our first algorithm computes a least-squares estimate of the
unknown node orientations in a ring network given angle-of-arrival sensing. For arbitrary connected graphs, our second
algorithm exploits kinematic relationships among the orientations of nodes in loops in order to reduce the effect of noise.
We establish the convergence of the algorithm, and through some simulations we show that the algorithm reduces the
mean-square error due to the noisy measurements in a way that is comparable to the amount of noise reduction obtained
by the classic least-square estimator. We then consider networks in 3-dimensional space and we explore necessary and
sufficient conditions for orientation localizability in the noiseless case.

1. Introduction

One of the key problems in sensor networks is local-
ization, i.e., determining the location of each sensor in the
network. Sensor networks are used in a large number of
applications which cover a wide range of fields, such as,
surveillance, controls, communications, monitoring areas,
intrusion detection, vehicle tracking, mapping and recon-
struction of environments (camera sensor networks). In
particular, angle-of-arrival sensors are used for operations
such as maintaining formations of robotic agents, or geo-
graphically locating cell phones and other wireless devices
based on the information from multiple antennas.

We address the aforementioned problem in a distributed
manner, by assuming that any node in the network has its
own reference frame, and does not have any knowledge
about its physical position in the environment or the po-
sition of the other nodes. Each node, through a sensor,
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can detect the relative position of any other node inside a
given sensor footprint. The measurements are affected by
noise, so we extend our analysis to the noisy case. We call
frame localization the problem of computing the relative
location and orientation of each node of the network with
respect to each other. In the 2-d case, we aim to solve the
problem through a distributed algorithm, which computes
the estimate of the angle associated to every edge of the
graph by distributing the error of every cycle on its edges.

Network localization has been the center of extensive
research work, and the various approaches are due to dif-
ferent assumptions on the deployment of the nodes, the
dimension of the space, and the type of sensors employed.
In some cases, there is the use of special nodes, whose posi-
tions are known, called beacons or anchors (e.g., see Asp-
nes et al. (2006), Moore et al. (2004), and Khan et al.
(2009).) Aspnes et al. (2006) present a theoretical founda-
tion of the network localization problem; the authors pro-
vide conditions for uniqueness in localization of networks
with beacons and distance measurements, and study the
computational complexity in uniquely localizable networks
and in typical network deployment scenarios. Together
with the aforementioned, other works that exploit distance
informations or relative positions between node in study-
ing networks and robot formations are available in the lit-
erature; e.g, see Zhou and Roumeliotis (2007) and Trawny
et al. (2010). In the present work, we focus on angle-of-
arrival measurements. Therefore, particular interest arises
from the work by Rong and Sichitiu (2006), who propose
a localization and orientation approach based on angle-
of-arrival information between neighboring nodes. How-
ever, again, prior knowledge of the orientation of a few
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nodes is required. The authors of Eren et al. (2006) study
the uniqueness of network localization solutions through
the theory of rigid graphs, but they do not provide an al-
gorithm to compute such solution, even for the noiseless
case. Zhu et al. (2008) provide two methods for network lo-
calization using angle-of-arrival measurements. However,
the problem statement differs from ours in that it utilizes
the relationship between triplets of nodes, whereas we ad-
mit relationship between a greater number of nodes. Our
work is more closely related to the work of Tron and Vidal
(2009), where a distributed algorithm for 3-d sensor net-
work orientation and translation localization is proposed.

This paper contains several contributions. First, we
present a novel formulation of the frame localizability and
frame computational localization problem for networks in
2-d or 3-d ambient space with relative sensing. Second,
we define a characterization of frame localizability for pla-
nar networks, focusing on consistency for the orientation
localization problem. Third, we consider arbitrary con-
nected graphs and provide a distributed algorithm for pla-
nar orientation localization which exploits kinematic rela-
tionships among the orientation of nodes in loops in order
to reduce the effect of noise. Fourth, we provide simula-
tions in order to validate our algorithm results. Finally,
we consider networks in three-dimensional space and we
explore necessary or sufficient conditions for orientation
localizability in the noiseless case.

The paper is organized as follows. Section II reviews
some basic notions from kinematics and graph theory. Sec-
tion III contains the model and the problem statement.
Section IV contains the localizability results and the lo-
calization algorithm. Section V explores the orientation
localizability problem in three-dimensional space.

2. Preliminaries

2.1. Elements of kinematics

Let R and C denote real and complex numbers, respec-
tively. Let ‖v‖ denote the Euclidean norm of the vector
v ∈ Rd. Define the versor operator vers : Rd → Rd by
vers(0) = 0 and vers(v) = v/‖v‖ for v 6= 0. Define the
map proj : R → [−π, π[ by

proj(x) = (x+ π)mod2π − π, (1)

and similarly proj : Rn → [−π, π[n by proj([x1, . . . , xn]
T ) =

[proj(x1), . . . , proj(xn)]
T . Let ∠z denote the phase of z ∈

C. We are interested in measurements expressed in differ-
ent reference frames. Accordingly, we review some basic
kinematic conventions. We let Σ1 = {p1,x1,y1, z1} be
a fixed reference frame in R3. A point q and a vector v

expressed with respect to frame Σ1 are denoted by q1 and
v1, respectively. Next, let Σ2 = {p2,x2,y2, z2} be a refer-
ence frame fixed with a moving body. The origin of Σ2 is
the point p2, denoted by p12 when expressed with respect
to Σ1. The orientation of Σ2 is characterized by the 3-
dimensional rotation matrix R1

2, whose columns are the
frame vectors {x2,y2, z2} of Σ2 expressed with respect to
Σ1. We recall here the definition of the set of rotation
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Figure 1: Two reference frames in R3.

matrices in d-dimensions: SO(d) = {R ∈ Rd×d| RRT =
Id, det(R) = +1}. With these notations, reference frame
transformations in 3-dimensions are described by

q1 = R1
2q

2 + p12, and v1 = R1
2v

2. (2)

Recall alsoR1
2 = (R2

1)
T . Analogously, we let Si denote the

point set S as expressed in the reference frame Σi. Finally,
if three reference frames Σi, i ∈ {1, 2, 3}, are considered,
then simple bookkeeping arguments lead to

R1
2R

2
3R

3
1 = I3, and R1

2 = R1
3R

3
2. (3)

Next, we present a planar case version of these notions.
In the planar case, p1 and p2 take values in R2, the refer-
ence frames consist of only two orthonormal vectors, and
the rotation matrices take values in SO(2). It is conve-
nient to identify R2 with the set of complex numbers C
and to denote the unit imaginary number by

√
−1 ∈ C. If

we describe the planar rotation matrix R1
2 ∈ SO(2) by its

unit-length complex number representation exp(θ12
√
−1),

with angle θ12 ∈ [−π, π[, then the second part of eq. (2)
reads v1 = exp(θ12

√
−1)v2.

Finally, we review the exponential representation of ro-
tations. For the unit vector ω = (ω1, ω2, ω3) ∈ R3, we use
Rodrigues’ rotation formula (Murray et al., 1994) to define
the rotation matrix about axis ω of an angle γ as

exp
(
γω̂

)
= I3 + sin γω̂ + (1− cos γ)ω̂2, (4)

where ω̂ ∈ R3×3 is defined by ω̂z = ω × z, for all z ∈ R3.
We also recall that for any R ∈ SO(d) and v ∈ Rd,

R exp(v̂) = exp(R̂v)R. (5)

2.2. Elements of graph theory

We review a few notions and a theorem from graph
theory, e.g., see (Diestel, 2005; Foulds, 1995). We let G =
(V,E) represent an undirected graph G, with vertex set

V , {vi}ni=1 and edge set E with cardinality m. GD =
(V,ED) defines a directed graph associated to G, where
ED is an orientation of E. We denote a directed edge
from vi to vj by eij = (i, j). If the graph is undirected,
(i, j) is equivalent to (j, i).

Definition 1 (Path and cycle) Let G be either a directed
or undirected non-empty graph. A path is a non-empty
graph P = (VP , EP ) ⊆ G of the form VP , {vi}ki=1 and
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EP , {(ji, ji+1)}k−1
i=1 , where {j1, · · · , jk} is a permutation

of v1, · · · , vk. Every sequence of edges that form a closed
path in G and do not visit the same node twice, except the
start/end node, is called a cycle and it is denoted by ℓ.

The direction of a cycle is the order in which the nodes are
visited. We let L(G) denote the set of all cycles ℓ of G,
and |ℓ| the number of edges in ℓ. It should be noted that,
in a digraph GD, the cycle directions are independent of
the direction of the individual edges composing the cycles.

Definition 2 (Cycle vector) For ℓ ∈ L(GD), the cycle
vector is the vector 1ℓ ∈ {−1, 0,+1}m ⊂ Rm whose ith en-
try is +1 if the ith edge belongs to ℓ and its orientation is
consistent with the orientation of ℓ, −1 if the ith edge be-
longs to ℓ and its orientation is opposite to the orientation
of ℓ, and is 0 otherwise.

Definition 3 (Set of cycle and fundamental cycle
vectors) The set of cycle vectors is L = {1ℓ| ℓ ∈ L(GD)}.
A set of fundamental cycle vectors Lf ⊆ L is a subset of L
that constitute a basis for the linear space generated by L.
The elements of Lf are called fundamental cycle vectors.

Given a set of fundamental cycle vectors Lf , we let Lf (GD)
denote the associated fundamental cycles Lf (G) = {ℓ ∈
L(GD)| 1ℓ ∈ Lf}.

Definition 4 (Cycle and fundamental cycle matrix)
The cycle matrix C of a directed graph GD is the k ×m
matrix C = [1ℓ1 , . . . ,1ℓk ]

T where k is the cardinality of L,
and m is the number of edges of GD. An r × m matrix
Cf ⊆ C, with r = dim(Lf ), such that each row represents
a fundamental cycle vector in Lf , is called a fundamental
cycle matrix:

Cf = [1ℓ1 , . . . ,1ℓr ]
T , for all 1ℓi ∈ Lf . (6)

Note that Cf is not unique since it depends on the choice of
the fundamental cycle vectors, and it is a full rank matrix.

Theorem 5 (Number of independent cycles) If GD
has n vertices and m edges, then the dimension of the fun-
damental cycle space Lf ism−n+1, i.e., there arem−n+1
independent cycles.

3. Network model and localization problems

In what follows we describe our notion of a network
equipped with relative sensors. We consider a group of n
distinct nodes {p1, . . . , pn} in Rd, for d ∈ {2, 3}, and corre-
sponding reference frames {Σ1, . . . ,Σn} with the property
that pi is the origin of Σi for all i ∈ {1, . . . , n}.

3.1. Relative sensing model

Each node i activates a sensor that detects the presence
and returns a measurement of the relative position of any
node inside a given sensor footprint. The principal sens-
ing modality that we will use throughout the paper is the

angle-of-arrival sensing: node i measures vers(pij) ∈ Rd

for all nodes j within a fixed sensing range r from i, i.e.,
for all nodes j whose distance from i is not greater than r.

Given the nodes p1, . . . , pn, the directed sensing graph,
GD = (VS , ED) is the directed graph where vertex vi cor-
responds to node i and the directed edge (i, j) ∈ ED if
node j is inside the sensor footprint of node i. In what
follows, we assume that the sensing graph is the so-called
unit-disk geometric graph. With this assumption, if node
i senses node j, then node j senses node i as well. There-
fore, (i, j) ∈ ED iff (j, i) ∈ ED. To simplify notations we
use an undirected graph GS = (VS , ES) with vertex set
VS and undirected edge set ES satisfying (i, j) ∈ ES ⇐⇒
(i, j) ∈ ED ⇐⇒ (j, i) ∈ ED. We call GS the undi-
rected sensing graph or simply the sensing graph. We fur-
ther assume that a pair of nodes i and j communicate
with each other if and only if they can sense each other,
i.e., (i, j) ∈ ES . In summary, the physical components of a
relative sensing network consist of n nodes with identifiers
in {1, . . . , n}, with configurations in Rd×SO(d), and with
angle-of-arrival sensors.

3.2. The frame localization problem

We call frame localization the problem of computing
the location and orientation of each node of a relative sens-
ing network. Additionally, we call orientation localization
the problem of computing the orientation of each node of
a relative sensing network. We begin with questions about
the uniqueness of these localization problems.

Problem 6 (Frame and orientation localizability)
Given a relative sensing network with reference node 1,
provide graph theoretical conditions under which:

(frame localizability:) the reference frame transforma-
tions {R1

i , p
1
i }, for all i ∈ {2, . . . , n}, are uniquely

determined by the relative measurements;

(orientation localizability:) the orientationsR1
i , for all

i ∈ {2, . . . , n}, are uniquely determined by the rela-
tive measurements. �

Problem 7 (Centralized and distributed localiza-
tion) Given a frame (respectively, orientation) localiz-
able network, give a centralized or distributed algorithm
to compute the reference frames transformation {R1

i , p
1
i }

(respectively, the orientations R1
i ), for all i ∈ {2, . . . , n}.

Give algorithms for both noise-less and noisy sensor mea-
surements. �

Remark 8 (Data referencing motivation) It is worth
remarking that the frame localization problem needs to be
solved in relative sensing networks if measurements taken
by arbitrary sensors in their respective reference frames
need to be expressed (and possibly fused) in a common
unique reference frame. Measurements might include po-
sitions of targets, environment boundaries, etc. �
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3.3. Preliminary relationships

In three dimensions, for any sensing and communica-
tion undirected edge (i, j), the relationship between the

relative positions pji and pij and the change of frame ro-

tation matrix Ri
j can be computed from (2) to be pij =

−Ri
jp
j
i . It is possible to write a normalized version of this

equation that applies to angle-of-arrival measurements:

vers(pij) = −Ri
j vers(p

j
i ), (7)

The planar version, where relative positions are complex
numbers and rotations matrices are unit-length complex
numbers, is (recall eq. (1))

θij = proj(∠pij − ∠pji + π). (8)

Recall that nodes i and j measure each other’s relative
positions pij and p

j
i , respectively. The unknown variable in

eq. (7) is the rotation matrixRi
j with d degrees of freedom.

4. Two-dimensional frame localization

4.1. Orientation localizability with angle-of-arrival sensors

Theorem 9 (Orientation localizability) For a planar
relative sensing network with noiseless angle-of-arrival sens-
ing, the following statements are equivalent:

(i) the sensing graph is connected, and

(ii) the network is orientation localizable.

Proof: For every undirected edge (i, j) of the sensing

graph, the angles ∠pij and ∠pji are measured. Therefore,

eq. (8) implies that the relative angle θij is uniquely deter-
mined from the measurements. Now, let us prove (i) =⇒
(ii). If the network is connected, there exists a path from
a reference node, e.g., node 1, to each i 6= 1. From eq. (3),
the angle θ1i is uniquely determined as the sum of the rel-
ative angles along the path connecting i to the reference
node. Let us now prove (ii) =⇒ (i). Assume that there
exists no path from node i to the reference node 1. There-
fore, i and 1 belong to distinct connected components with
the network. No measurement is available about the rela-
tive orientation of each node in the component containing
i with respect to any node in the component containing 1.
Therefore, it is not possible that only a single orientation
θ1i is compatible with the measurements.

Proposition 10 (Sufficient conditions for localizabil-
ity) A planar relative sensing network with noiseless angle-
of-arrival sensing is both frame localizable and orientation
localizable if the sensing graph is rigid and at least one of
the edge lengths is known.

To prove Proposition 10, we introduce the following defini-
tions. Consider a reference frame with nodes {p1, . . . , pn},
where pi ∈ R2, i = {1, . . . , n}. We can identify the refer-
ence frame with a point p ∈ R2n. A length constraint Υ
between two points pi and pj in R2 is an equality of the

form ‖pi − pj‖2 = Υ, for any fixed Υ. A direction con-
straint Ω between two points pi and pj in R2 is an equal-
ity of the form ∠(pi − pj) = Ω, for any fixed Ω, where
the angle is computed with respect to a fixed reference
axis. It is then possible to introduce the direction graph
GΩ = (V,Ω) and the length graph GΥ = (V,Υ) and con-
sider the double graph GΩ,Υ = (V ; Ω,Υ). We can mea-
sure the distance among points through the rigidity func-
tion ζ : R2n → Rn(n+1)/2 defined by ζ(p)i,j = ‖pi − pj‖2,
for i < j ≤ n. The rigidity matrix for p is defined by
D(p) = 1

2ζ
′(p). The constraint matrix of the graph, de-

noted by D(GΩ,Υ, p), consists of the rows of D(p) that
correspond to the edges in Υ and Ω. A set of constraints
are said to be independent if the corresponding rows of the
constraint matrix are independent. The reference frame p
is said to be rigid if rankD(p) = 2n − 3. The following
result is taken from Servatius and Whiteley (1999).

Lemma 11 (Number of independent constraints) A
graph with n nodes and 2n− 3 independent direction con-
straints plus any single length constraint, has 2n− 2 inde-
pendent constraints and a 2-dimensional space of transla-
tions in the plane.

Proof: [Proof of Proposition 10] Since the sensing
graph is rigid, it is connected and it has at least 2n−3 inde-
pendent edges. Hence, by Theorem 9, it is orientation lo-
calizable, and by Lemma 11, the corresponding framework
has a 2-dimensional space of translation in the plane. Fix-
ing the origin as any node i ∈ {1, . . . , n}, the pair {Rij , pij},
for any j ∈ {1, . . . , n}, is uniquely determined. Hence the
network is frame localizable.

4.2. Orientation localization with noisy sensors: model and
problem statement

As in Theorem 9, we consider a network with nodes
in the plane and with angle-of-arrival sensing. We assume
that, for each undirected edge (i, j) of the sensing graph,
nodes i and j measure, respectively, the angles ∠pij + nij
and ∠pji +n

j
i , where we assume the noises nji and n

i
j to be

independent Gaussian random variables with zero mean
and variance σ2. We assume that the angle-of-arrival sen-
sors are relatively accurate so that σ2 ≪ π. Therefore, for
each undirected edge (i, j), we can measure only

yij = proj((∠pij + nij)− (∠pji + nji ) + π), (9)

and not the true relative orientation θij as in eq. (8).
If the sensing graph is a tree, then there is no redundant

measurement and we cannot reduce the effect of measure-
ment noise on our angle estimates. However, for every
cycle in the network, we can enforce a cycle constraint
(see eq. (3)) and thereby partially mitigate the noise. We
formalize this statement as follows.

Consider a sensing graph with n nodes and m edges,
and let GD be the associated directed graph computed by
assigning a direction to each edge in the following way:
the direction is from j to i if i > j. For each oriented
edge e = (j, i) of GD, let ψe denote the estimate of the
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true relative angle θji associated to e. Let ψ ∈ Rm denote
the vector of angle estimates for every edge of the graph.
Analogously, let y denote the measurement vector with
components ye = yji , for i > j. For ℓ ∈ L(GD), the cycle
error ǫℓ at ψ is

ǫℓ = proj(1ℓ · ψ), (10)

where proj(1ℓ · ψ) = proj
(∑

f∈ℓ±ψf
)
, and ± indicates

whether or not the direction of the edge f is concordant
with the direction of the cycle ℓ which f belongs to.

Motivated by this setup, we consider the nonlinear
least-squares estimation problem:

min
ψ∈[−π,π[m

‖proj(ψ − y)‖2

subject to proj(1ℓ · ψ) = 0, for all ℓ ∈ L(Gd).
(11)

Here, cost function and constraint set are nonconvex, e.g.,
the constraint set is a countable set of affine subspaces.

4.3. Orientation localization with noisy sensors: an itera-
tive projection algorithm

In this section we propose an iterative projection al-
gorithms that computes an approximate solution to the
optimization problem (11) and begin its analysis.

For a network GD with set of cycles L(GD), let Lf be
a set of fundamental cycles and let ψe denote the estimate
of the angle associated to the edge e. For 0 < κ ≪ 1,
consider the discrete-time system:

ψe(0) = ye,

ψe(t+ 1) = ψe(t)− κ
∑

ℓ∈Lf : e∈ℓ

(1ℓ · ee) proj(1ℓ · ψ(t)), (12)

for all edges e. Here ei is the m-dimensional vector whose
i-th entry is 1, and all the other entries are equal to zero.

In what follows we establish in what sense this algo-
rithm is distributed, and when and how fast the algorithm
converges to a feasible solution. The next subsection dis-
cusses how the algorithm reduces the effect of noise in the
measurements and approximates the solution to the opti-
mization problem (11).

The discrete-time system (12) is distributed in the fol-
lowing sense. First, we define an appropriate notion of
neighborhood. Given Lf , two edges are neighbors if there
exists a cycle in Lf containing them. Second, we assume
that each node of the graph contains a processor and we
associate to each edge e = (j, i) of the graph a unique
processor (e.g., the processor j if j > i). The estimate
ψe is maintained and updated by the processor associated
with the edge e. Third and final, we note that eq. (12)
can be evaluated if communication is exchanged between
processors of neighboring edges. More precisely, the value
of ψe can be updated according to eq. (12) if the processor
associated to e exchanges information with the processors
associated to every edge neighbor of e.

Theorem 12 (Exponential convergence of iterative
estimation algorithm) Consider a planar relative sens-
ing network with noisy angle-of-arrival sensing. For the

digraph associated to the sensing graph, let Lf be a set
of fundamental cycle vectors and Cf be the correspond-
ing fundamental cycle matrix. Consider the discrete-time
system (12) and assume κ < 2/(1 + λmax(CfC

T
f )), where

λmax(CfC
T
f ) is the maximum eigenvalue of CfC

T
f . Then,

every solution of (12) converges to the set of angles with
zero cycle error and does so with exponential convergence
factor (1− κ)2.

Proof: Let GD be the directed digraph, and let
dim(Lf ) = r. Given the fundamental cycles ℓ1, . . . , ℓr,
define the cycle error vector ǫ at ψ by ǫ = [ǫℓ1 , . . . , ǫℓr ]

T ,
where ǫℓi is defined by (10), for all i ∈ {1, . . . , r}. With
this notation we have

ψ(t+ 1) = ψ(t)− κ
∑

ℓ∈L(GD)

1ℓǫℓ(t).

Then for every loop α ∈ L(GD),

ǫ̂α(t+ 1) = ǫ̂α(t)− κ
∑

ℓ∈L(GD)

(1α · 1ℓ)ǫℓ(t),

where ǫ̂α(t) = (1α · ψ(t)). By choosing a base of indepen-
dent loops ℓi, i ∈ {1, . . . , r}, and an associated fundamen-
tal cycle matrix Cf as defined in (6), we can write this for
all the loops as vector ǫ̂, whose evolution is given by

ǫ̂(t+ 1) = ǫ̂(t)− κCfC
T
f ǫ(t),

and
ǫ(t+ 1) = proj((Ir − κF )ǫ(t)), (13)

where F = CfC
T
f . Note that F is symmetric positive

definite. Consider now the associated linear system

x(t+ 1) = (Ir − κF )x(t),

and the Lyapunov function candidate V (x) = xTPx, with
P = Ir. Next, for κ ∈ ]0, 2[, we define Q = (2κ −
κ2)Ir > 0. Noting that A = Ir − κF , we find the val-
ues of κ such that the discrete-time Lyapunov inequality
ATPA− P ≤ −Q holds. Because F is symmetric positive
definite, it can be diagonalized as F = UΛUT , with an or-
thogonal matrix U and a positive definite diagonal matrix
Λ = diag{λ1, . . . , λr}. Accordingly, the above discrete-
time Lyapunov inequality reads

U(Ir − κΛ)T (Ir − κΛ)UT − Ir ≤ −U(2κ− κ2)UT ,

which is satisfied if and only if (1−κλi)2−1+2κ−κ2 < 0,
for i ∈ {1, . . . , r}. Since λmin(F ) ≥ 1 (see Arioli et al.
(2006)), this is in turn satisfied for κ < 2/(1+λmax(F )) <
1. Additionally, one can show that P − Q = ρIr where
ρ = (1− κ)2.

We are now ready to study the nonlinear system (13).
It is straightforward to verify that the inequality V (proj(x)) ≤
V (x) holds for all x ∈ Rr. Therefore,

V (ǫ(t+1)) = V (proj(Aǫ(t))) ≤ V (Aǫ(t)) = ǫ(t)TATAǫ(t).

From the discrete-time Lyapunov inequality and from P −
Q = ρIr, we compute ǫ(t)TATAǫ(t) ≤ ρV (ǫ(t)), so that
V (ǫ(t)) ≤ ρtV (ǫ(0)). Given κ ∈ ]0, 2/(1 + λmax(F ))[, we
know that ρ < 1 and, therefore, the cycle error converges
to zero exponentially fast.
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4.4. Orientation localization: performance analysis of it-
erative algorithm

For general noise models, it is clear that the proposed
algorithm (12) does not compute the optimal solution to
the estimation problem (11). However, for measurements
subject to Gaussian noise with zero mean and small vari-
ance σ2 ≪ π, we believe that (i) the algorithm reduces
the mean-square error substantially for large numbers of
redundant measurements, (ii) in terms of noise reduction,
our algorithm is comparable to the classic least-square es-
timator for the linear problem analogous to our nonlinear
estimation problem (11). We justify these two statements
in what follows.

First, the motivation behind the structure of our algo-
rithm comes from the iterative projection method (Kacz-
marz, 1993) for systems of linear equations. Suppose the
sensing graph is a ring with n ≥ 3 nodes and with undi-
rected edges (i, (i+1) mod n), for i ∈ {1, . . . , n}. In what
follows, we write (i + 1) to denote (i + 1) mod n. Then,
for one step, eq. (12) in vector form becomes

ψ = y − 1ℓ
1

n
proj(1ℓ · y), (14)

where y = [y12 , y
2
3 , · · · , yn1 ]T and ψ = [ψ1

2 , ψ
2
3 , · · · , ψn1 ]T ,

and where κ has been chosen to be equal to 1
n . The

choice of κ = 1
n is consistent with Theorem 12, because

CfC
T
f = n, and therefore κ < 2

1+λmax(CfCT
f
)
. Now, as-

sume that angle measurements and measurement errors
are small enough that minψ ‖proj (ψ − y)‖2 = minψ ‖ψ−
y‖2, and proj(1ℓ · ψ) = 1ℓ · ψ. Hence, the estimation
problem (11) becomes the standard least-square estima-
tion problem, whose optimal solution is given by the Kacz-
marz’s iterative projection method, of which (14) is a par-
ticular case.

Second, let us consider the linear problem analogous to
problem (11), i.e., the classic least-squares:

min
θ̂∈[−π,π[m

‖θ̂ − y‖2

subject to 1ℓ · θ̂ = 2kπ, for all ℓ ∈ L(Gd),
(15)

where k ∈ Nz such that 1ℓ · θ = 2kπ, and z is the number
of cycles in L(Gd). We now consider the set of independent
cycles LI . By definition, we know that Cfθ = 2kfπ, with
kf ∈ Nr, and r is the number of independent cycles. The
true angle vector θ satisfies θ = θ0 + Uη, where Cfθ0 =

2kfπ, U ∈ Rm×(m−r) spans the null space of Cf , and η =
Rm−r is then computed accordingly. Simple calculations
show that the error covariance matrix Q ∈ Rm×m is

Q = E[(θ̂ − θ)(θ̂ − θ)T ] = σ2U(UTU)−1UT .

Note that the matrix U(UTU)−1UT is an orthogonal pro-
jector onto the vector space defined by the columns of U .
It is known that the trace of a projector is equal to the rank
of the projection, that is, tr(U(UTU)−1UT ) = m− r, and
the estimation mean-squared error (MSE) is then given by

MSE =
tr(Q)

(#of measurements)
= σ2m− r

m
. (16)

For a complete graph n nodes, m = n(n − 1)/2 implies
that the estimation MSE is σ2 2

n , which corresponds to a
multiplicative reduction of the measurements MSE equal
to 1 − 2

n (e.g., a reduction of 80% for a complete graph
with n = 10 nodes, and of 98% for a complete graph with
n = 100 nodes).

Third, we now provide some simulations to illustrate
the performance of the proposed distributed algorithm (12).
We consider an arbitrary network configuration with 10
nodes with fixed positions and varying sensing footprints.
Figure 2 shows the percentage decrease of the MSE ‖proj(ψ−
θ)‖2 with respect to the measurement MSE ‖proj(y−θ)‖2,
when the number of edges in the graph changes, com-
puted for different value of variance σ2, which refers to
the noise nij of each angle measurement ∠pij , as shown

in (9). The total noise on yij is additive, and therefore it

has variance 2σ2. Note that the number of independent
cycles is proportional to the number of redundant measure-
ments. As expected, we can see that, for small noise vari-
ance, the estimation MSE is smaller than the measurement
MSE, and the percentage decrease grows with the number
of redundant measurements available. In particular, for
σ2 ∈ {0.01, 0.1} [rad], the percentage decrease goes to
80%. For larger noise variance, however, there is no signif-
icant improvement. Figure 2 also shows the mean-squared
error percentage decrease of the analogous linear problem
computed via (16); as we can see, for large number of re-
dundant measurements, our algorithm reduces the mean-
square error in a way that is comparable to the amount of
noise reduction obtained by the classic least-squares esti-
mator.
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Figure 2: This plot refers to a graph with 10 nodes, using (12),
and represents the percentage decrease of ‖ proj(ψ − θ)‖2 with
respect to ‖ proj(ψ− θ)‖2 as the number of independent cycles
increases. Note this is an average over 2000 iterations of (12)
with Gaussian noise with error variance σ2 set to 0.01 [rad]
(black circle), 0.1 [rad] (red triangle), 0.2 [rad] (cyan square),
0.3 [rad] (blue star), and 0.5 [rad] (magenta diamond). Addi-
tionally, the green line with crosses represents the MSE percent-
age decrease computed with (16) for the classic least-squares
problem.

5. Three-dimensional frame localization

Here, we consider first a network composed by three
nodes in 3-dimensional space with a complete sensing graph.
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The setup is illustrated in the left image in Figure 3.

p1

p2

p3

p1

p2

p3

p4

Figure 3: Complete sensing graphs in R3

Lemma 13 (Feasible orientations) Given unit-length

measurements uij = vers(pij) and uji = vers(pji ), compute

Hi
j ∈ SO(3) by Hi

j = exp
(
αij êij

)
, where eij ∈ R3, αij ∈

[0, π] are defined1 by

eij =

{
vers(uij × uji ), if uij × uji 6= 0,

any unit-length vector ⊥ uij , otherwise,

αij = atan2(‖uij × uji‖,−uij · u
j
i ).

Then, for each solution Ri
j to eq. (7), there exists a unique

angle β ∈ [−π, π[ such that Ri
j = exp

(
β ûij

)
Hi

j.

Proof: First, let us show that Hi
j is solution of (7):

Hi
ju
j
i = exp

(
αij ê

i
j

)
uji ,

= uji + sinαij ê
i
ju
j
i + (1− cosαij)ê

i
j

2
uji .

Because eij and uji are mutually orthogonal unit vectors,

Hi
ju
j
i = uji cosα

i
j + n sinαij , (17)

where n is a unit vector perpendicular to the plane con-
taining eij and uji whose direction is given by their cross

product. Let us consider the orthonormal base {uji ,n, eij}.
Then, eq. (17) represents the rotation of axis uji around
axis eij of an angle αij , where α

i
j is, by definition, the angle

between uji and −uij . Therefore Hi
ju
j
i = −uij , that is, Hi

j

is solution of (7). Now, for an arbitrary angle γ ∈ [−π, π[,

exp
(
γ ûij

)
uij =

= uij cos γ + (uij × uij) sin γ + (1− cos γ)(uij · uij)uij
= uij cos γ + uij − uij cos γ = uij .

(18)

Then uij = − exp
(
β ûij

)
Hi

ju
j
i , for β = −γ ∈ [−π, π[, i.e.,

exp
(
β ûij

)
Hi

j is solution of (7) for all β ∈ ]−π, π].

1For any point (x, y) in the plane except for the origin, let
atan2(y, x) be the angle between the horizontal positive axis and
the point (x, y) measured counterclockwise.

Now, we want to show that any solution of (7) takes
such a form. Consider the following matrix:

R̃ = exp
(
ϕ v̂

)
exp

(
β ûij

)
Hi

j ,

where v is a unit vector such that v ∦ u
j
i , and ϕ ∈ [−π, π[,

ϕ 6= 0. By contradiction, let us assume R̃ is solution of (7).
Therefore,

uij = − exp
(
ϕ v̂

)
exp

(
β ûij

)
Hi

ju
j
i = exp

(
ϕ v̂

)
uij .

It is known that any rotation of a fixed vector that yields
the same vector is equivalent to a rotation of the vector
about itself. This implies v ‖ uij or ϕ = 0. Therefore,
by contradiction, any solution of (7) can be written as

R̃ = exp
(
β ûij

)
Hi

j , for an arbitrary β ∈ [−π, π[.

Lemma 14 Consider a network composed by three nodes
in 3-dimensional space with angle of arrival sensing. Pick
any one of the three nodes as reference. If the sensing
graph is the complete graph and the nodes are in generic
positions with generic orientations, then there are precisely
two feasible configurations for the three nodes and, there-
fore, the network is not orientation localizable.

Proof: The frame localizability problem is described
as follows. First, the unknown variables are the three ma-
trices Ri

i+1, for i ∈ {1, 2, 3}, where we write (i+ 1) to de-
note (i+1) mod 3. These matrices have each three degrees
of freedom, for a total of 9 degrees of freedom. Second, as-
suming unit-length angle of arrival measurements uji , for
i 6= j ∈ {1, . . . , 3}, the constraint equations arising from
the measurements and from the closed kinematics chain
relationships (3) are:

u12 = −R1
2u

2
1, u23 = −R2

3u
2
3,

u31 = −R3
1u

1
3, I3 = R1

2R
2
3R

3
1.

(19)

Given these measurements and according to Lemma 13, we
compute the three rotation matrices Hi

i+1 and we know

that there exist three angles βii+1 ∈ [−π, π[ such that

Ri
i+1 = exp

(
βii+1 û

i
i+1

)
Hi

i+1.

Thus, eq. (19) admits a unique solution {R1
2,R

2
3,R

3
1} pre-

cisely when there exist unique βii+1 ∈ [−π, π[ such that

I3 = exp
(
β1
2 û

1
2

)
H1

2 exp
(
β2
3 û

2
3

)
H2

3 exp
(
β3
1 û

3
1

)
H3

1.

Applying eq. (5) repeatedly, we compute

(H3
1)
T (H2

3)
T (H1

2)
T

= exp
(
β1
2 û

1
2

)
exp

(
β2
3 Ĥ

1
2u

2
3

)
exp

(
β3
1

̂H1
2H

2
3u

3
1

)
.

We now rely on the assumption of generic positions and
orientations to infer that u12 ∦ H1

2u
2
3 and that u23 ∦ H2

3u
3
1.

Also the left hand side term (H3
1)
T (H2

3)
T (H1

2)
T is generic.

From the formulation of the problem, we know that at least
a real solution for (19) exists. In particular, as shown
by Shuster and Markley (2003) and by Wittenburg and
Lilov (2003), such equations admit two solutions. There-
fore, the network is not orientation localizable.
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Now, let us consider a network composed by four nodes,
whose connected sensing graph consists of two 3-nodes
loops, with an edge in common. For example, consider
the setup in the right image in Figure 3.

Lemma 15 Consider a network composed by four nodes
in the 3-dimensional space with angle of arrival sensing.
If the sensing graph is connected and there are at least two
independent loops, then the network is orientation localiz-
able.

Proof: As in the three-nodes case, the set of eqs. (19)
is extended by

u12 = −R1
2u

2
1, u24 = −R2

4u
4
2,

u41 = −R4
1u

1
4, I3 = R1

2R
2
4R

4
1.

(20)

As eqs. (19), also eqs. (20) admit two solutions, i.e. two

different sets of values for βji . It is straightforward to show
that only one of the two solutions for β1

2 of (20) matches
with one of the solutions for β1

2 in (19) (see Shuster and

Markley (2003)). Therefore, all angles βji are uniquely
determined, and the network is orientation localizable.

Lemma 16 A necessary condition for a network in the 3-
dimensional space with angle of arrival sensing to be ori-
entation localizable is to have at least 4 nodes.

Proof: If the network has less than 3 nodes, there
are no loops, so it is not orientation localizable. Assume
now the network has 3 nodes. If the sensing graph is not
complete, the network has no loops and therefore is not
orientation localizable. If the sensing graph is complete,
according to Lemma 14, the network is not orientation
localizable.

Lemma 17 Any network in 3-dimensional space with a
complete sensing graph is orientation localizable if it has
at least 4 nodes.

Proof: In a complete network every loop belongs to
a three-edges loop. Therefore, by what has been shown
before, the network is orientation localizable.

Definition 18 (3-dimensional triangulation) Consider
a connected network composed of nodes in 3-dimensional
space. We call such network a 3-dimensional triangulation
if there exists a basis for the cycle space such that each cy-
cle in the basis has 3 nodes and it shares at least one edge
with another cycle of the basis.

Lemma 15 directly implies the following final result.

Lemma 19 Consider a network with n ≥ 4 nodes in 3-
dimensional space, and assume its angle of arrival sensing
is a 3-dimensional triangulation. Then, the network is
orientation localizable.

6. Conclusions

This paper has introduced the frame localization prob-
lem in a connected network. For the planar orientation
localization problem with angle-of-arrival (bearing) sen-
sors, we developed an exponentially fast algorithm that
reduces the effect of noise. For the three-dimensional case,
we have explored necessary and sufficient conditions for a
noiseless network to be orientation localizable.
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