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Abstract— This paper focuses on decentralized decision mak-
ing in a population of individuals each implementing the
sequential probability ratio test. The individual decisions are
combined by a fusion center into a collective decision via an
aggregation rule. For distinct aggregation rules, we study how
the population size affects the performance of the collective
decision making, i.e., the decision accuracy and time.

We analyze two aggregation rules, the fastest rule and the
majority rule. In the fastest rule, the group decision is equal to
the first decision made by any individual. In the majority rule,
the group decision is equal to the majority of the decisions.
Under the assumption of measurement independence among
individuals, we introduce a novel numerical representation of
the performance of decentralized decision making. We study
our settings analytically as well as numerically. Our numerical
results and simulations characterize the tradeoff between ac-
curacy and decision time as a function of the population size.

I. I NTRODUCTION

This work aims to understand how grouping individual
decision makers (DM) affects the speed and accuracy with
which a collective decision is made. This class of problems
has a rich history and some of its variations are studied in
the context of distributed detection in sensor networks [1],
[2], [3], [4], [5] and Bayesian learning in social networks [6],
[7].

In this paper we consider a group ofN individuals each
of them individually implementing the standard sequential
probability ratio test (SPRT) with the purpose of deciding
between two hypothesisH0 andH1. We refer to the individ-
uals asdecision makerswhich we denote as DMs hereafter.
In our setup no-communication is allowed between the DMs.
Once a DM has provided a decision it communicates it to a
fusion center. The fusion center collects the various decisions
and provides a global decision via an aggregation rule.

In this paper we focus on two aggregation rules, thefastest
rule and themajority rule. In the fastest rule, the fusion center
makes a global decision as soon as one hypothesis gets more
votes than the opponent hypothesis, while in the majority
rule the fusion rule makes a global decision as soon as one
of the two hypothesis gets⌊N/2⌋+ 1 decisions in its favor.
For both rules and for distinct sizes of the group of DMs, we
study the performance of the collective decision making, i.e.,
the decision accuracy and expected number of observations
required to provide a decision.

This work has been supported in part by AFOSR MURI Award F49620-
02-1-0325.

S. H. Dandach and R. Carli and F. Bullo are with the Cen-
ter for Control, Dynamical Systems and Computation, University
of California at Santa Barbara, Santa Barbara, CA 93106, USA,
{sandra|carlirug|bullo}@engr.ucsb.edu.

The framework we analyze in this paper is related to
the one considered in many papers in the literature, see
for instance [8], [1], [9], [2], [10], [3], [11] and references
therein. The focuses of these works are mainly two-fold.
First, determining which type of information should the
DMs send to the fusion center. Second, computing optimal
decision rules both for the DMs and the fusion center where
optimality refers to maximizing accuracy. One key implicit
assumption made in these works, is the assumption that the
aggregation rule is applied by the fusion center only after all
the DMS have provided their local decisions.

The work presented in this paper, relaxes the assumption
on the local decisions. Indeed the fusion center might provide
the global decision much earlier than the time needed for the
local decisions to be made by the whole group. Our main
concern is the exact computation of both the accuracy of
the final group decision as well as the expected number of
observations required by the group, in order to provide the
final decision. In this work we accomplish these objectives by
proposing exact expressions for the conditional probabilities
of the group giving the correct and wrong final decisions,
at any time instant. We perform this analysis both for the
fastest rule and the majority rule for a varying group sizes.
This represents the major contribution of this paper.

In the second part of the paper we use the expressions
that we provide in the first part of the paper, to numerically
characterize the tradeoff between the accuracy and the ex-
pected time and the group size. For illustration, we consider
a discrete distribution of the Koopman-Darmoi-Pitman form.
We find that the majority rule provides, asN increases, a
remarkable improvement in terms of of the accuracy while
the fastest rule provides a remarkable improvement in terms
of the expected number of observations required to provide
the final decision.

The rest of the paper is organized as follows. In Section II
we review the standard SPRT. In Section III we formally
introduce the problem studied in this paper. In Section IV
we present our novel numerical method useful to analyze the
problem of interest. In Section V we provide some numerical
results. We conclude in Section VI.

II. A BRIEF REVIEW OFSPRTAND OF RELATED

ANALYSIS METHODS

In this section we discuss the classicalsequential proba-
bility ratio test (SPRT) for a single decision maker; to do so
we follow the treatment in [12].



A. Classical Wald’s analysis

SPRT algorithm has been developed in 1943 by Abra-
ham Wald for the purpose of deciding between two simple
hypotheses. Suppose that the random variableX has a dis-
tribution f(x; θ) and that we want to test the null hypothesis
H0 : θ = θ0 against the alternative hypothesisH1 : θ = θ1.
Suppose the observationsx(1), x(2), x(3), . . . , are taken one
at a time until a decision is made and assume that they are
independent, i.e.,E[x(i)x(j)] = E[x(i)]E[x(j)] if i 6= j. We
define the log-likelihood ratio associated tok-th observation
x(k) as

λ(k) = log
f(x(k), θ1)

f(x(k), θ0)
.

The sum of the log-likelihoods up tok is denoted byΛ(k) =
∑k

j=1 λ(j). For the SPRT, sampling continues as long as
η0 < Λ(k) < η1, where η0 and η1 are two pre-assigned
thresholds. Sampling is stopped the first time this inequality
is violated. IfΛ(k) < η0, then the group decides forθ = θ0.
If Λ(k) > η1, then the group decides forθ = θ1. It can be
shown that, for any values ofη0 andη1, the SPRT algorithm
provides a decision almost surely.

The goal is to set the thresholdsη0 andη1 in such a way
that the probabilities of misdetection (sayingH0 when H1

is correct, i.e.,P[sayH0|H1]) and of false alarm (sayingH1

when H0 is correct, i.e.,P[sayH1|H0]) are equal to some
pre-assigned valuespm and pf (the subscriptsm and f
refer, respectively, to misdetection and false-alarm). Wald
proved that in order to guarantee the following probabilistic
constraints

P[sayH0|H1] = pm and P[sayH1|H0] = pf , (1)

the values ofη0 andη1 must satisfy the following conditions:
η0 ≥ log pm

1−pf
andη1 ≤ log 1−pm

pf
. Clearly, using equalities

in the above inequalities, that is,

η0 = log
pm

1 − pf

and η1 = log
1 − pm

pf

, (2)

one obtain thatP[sayH0|H1] ≤ pm andP[sayH1|H0] ≤ pf .
The classical Wald’s analysis computes the values forη0 and
η1 according to the formulas given in (2).

In [12] Wald determined also the average number of sam-
ples, denoted byT , required by the algorithm for providing
a decision to be approximately

E[T |H0] ≈
(1 − pf )η0 + pfη1

E

[

log f(x,θ1)
f(x,θ0)

|H0

] (3)

and

E[T |H1] ≈
(1 − pm)η1 + pmη0

E

[

log f(x,θ1)
f(x,θ0)

|H1

] . (4)

The denominators that show in equations (3) and (4) are the
Kullback-Leibler distances for the distributions. Observe that
equations (1), (3) and (4) are exact if, upon stopping with
k observations, eitherΛ(k) = η0 or Λ(k) = η1. However
some overshooting of the boundaries generally occurs. The
distribution of the overshootingΛ(k) − η1 and η0 − Λ0,

quantify the accuracy of the approximations introduced by
the formulas in (2).

B. Computation of accuracy and decision time for pre-
assigned thresholdsη0 and η1

In the previous subsection we have seen how the classical
Wald’s analysis provides simple formulas for setting the
values ofη0, η1 in order to meet pre-defined requirements on
the probabilities of error. In this subsection we would liketo
address the reversed problem: Given a-priori thresholdsη0

andη1, how can we compute the values of theP[sayH1|H0],
P[sayH0|H1], E[T |H0] andE[T |H1]?

We start by observing that an exact computations of those
probabilities and expected values would be possible if we
knew the probabilities of crossing the boundaries at any
time k ∈ N

1. Indeed in such case, ifpi|j(k) denotes the
probability of decidingHi at time k, given thatHj is the
correct hypothesis, i.e.,pi|j(k) := P[sayHi|Hj , T = k], from
standard probabilistic arguments it follows that

P[sayH1|H0] =
∞
∑

t=1

p1|0(t), (5)

and

E[T |H0] =

∞
∑

t=1

(p0|0(t) + p1|0(t))t. (6)

Similar formulas apply forP[sayH0|H1] andE[T |H1].
The author in [10], provided a recursive method for

computing exact values of these probabilities which can be
applied to a broad class of discrete distributions, precisely
when X is a discrete random variable of the Koopman-
Darmoi-Pitman form. The approach we will take later in
analyzing a group of DMs assumes the knowledge of the
quantities

{

pi|j(t)
}∞

t=1
, i, j = 1, 2. We proceed now by

reviewing the procedure proposed in [10] for computing
these terms.

Let X be a discrete random variable of the Koopman-
Darmoi-Pitman form; that is

f(x, θ) =

{

h(x) exp(B(θ)Z(x) − A(θ)) if x ∈ Z
0 if x /∈ Z,

whereh(x), Z(x) andA(θ) are known functions and where
Z is a subset of the integer numbersZ. In this section
we shall assume thatZ(x) = x. It is worth noting that
the Bernoulli, binomial, geometric, negative binomial and
Poisson distributions are some widely used distributions of
the Koopman-Darmoi-Pitman form, satisfying the condition
Z(x) = x. For distributions of this form we have that

λ(k) = (B(θ1) − B(θ0))x(k) − (A(θ1) − A(θ0)).

One can easily see that sampling will continue as long as

η0 + k(A(θ1) − A(θ0))

B(θ1) − B(θ0))
<

k
∑

i=1

x(i) <
η1 + k(A(θ1) − A(θ0))

B(θ1) − B(θ0))

1By conventionN denotes the set of positive integer numbers, i.e.,N =

{1, 2, 3, . . .}



for B(θ1) − B(θ0) > 0; if B(θ1) − B(θ0) < 0 the
inequalities would be reversed. Observe that

∑k
i=1 x(i)

is an integer number. Now let̄η(k)
0 be the smallest

integer greater than{η0 + k(A(θ1) − A(θ0))} /(B(θ1) −

B(θ0)) and let η̄
(k)
1 be the largest integer smaller than

{η1 + k(A(θ1) − A(θ0))} /(B(θ1)−B(θ0)). Sampling will
continue as long as̄η(k)

0 ≤ X (k) ≤ η̄
(k)
1 whereX (k) =

∑k
i=1 x(i). Now suppose that, for anyℓ ∈ [η̄

(k)
0 , η̄

(k)
1 ] the

probability P[X (k) = ℓ] is known. Then we have

P[X (k + 1) = ℓ|Hi] =

η̄
(k)
1
∑

j=η̄
(k)
0

f(ℓ − j; θi)P[X (k) = j|Hi],

(7)
and

p1|i(k + 1) =

η̄
(k)
1
∑

j=η̄
(k)
0

∞
∑

r=η̄
(k)
1 −j+1

P[X (k) = j|Hi]f(r; θi)

p0|i(k + 1) =

η̄
(k)
1
∑

j=η̄
(k)
0

η̄
(k)
0 −j−1
∑

r=−∞

P[X (k) = j|Hi]f(r; θi). (8)

Starting withP[X (0) = 1] it is possible to compute recur-
sively all the quantities

{

pi|j(k)
}∞

k=1
and P[X (k) = ℓ], for

any k ∈ N, ℓ ∈ [η̄
(k)
0 , η̄

(k)
1 ], and

{

pi|j(t)
}∞

t=1
.

III. D ECENTRALIZED SPRT:PROBLEM SETUP

In this Section we present our problem of interest. Con-
sider a group ofN decision makers which are repeatedly
observing a random variableX of distributionf(x, θ), with
the purpose of choosing between the two hypothesisH0 :
θ = θ0 and H1 : θ = θ1. Suppose each decision maker
is individually implementing the classic SPRT, reviewed in
Section II-A, with the assumptions that

(i) all the decision makers have the same thresholdsη0

andη1;
(ii) no-communication is allowed between the decision

makers;
(iii) the probability distributionsf(x, θ0) and f(x, θ1) are

known a-priori; and
(iv) the observations taken, conditioned on either hypothe-

sis, are independent in time as well as from decision
maker to decision maker.

Once a decision maker arrives at a final local decision, it
communicates it to a fusion center. The fusion center collects
the messages it receives keeping track of the number of
decisions in favor ofH0 and in favor of H1. A global
decision is provided by the fusion center according to one of
the following two stopping rules introduced in the literature
[1] : the fastest rule and themajority rule. Informally in
the fastestrule the decision of the group is set equal to the
decision of the fastest decision maker while in themajority
rule the group’s decision is set equal to the agreed on
decision by the majority of votes. In what follows, we refer
to the framework described above as to theDecentralized
SPRT with thefastest/majority rule.

Next we formally describe our setup. LetN denote the
size of the group of decision makers. Then theDecentralized
SPRT with thefastest/majorityrule is defined as follows:

Processor states: For eachi ∈ {1, . . . , N}, the i-th DM
stores in memory the variableΛi and two pre-assigned
values for the thresholdsη0 andη1.

Initialization : All variablesΛi, i ∈ {1, . . . , N}, are initial-
ized to0, i.e., Λi(0) = 0, i ∈ {1, . . . , N}.

State iteration (Decision Makers) : At time k ∈ N, for
eachi, if Λi(k − 1) ∈ [η0, η1], the i-th DM performs
three actions in the following order:
(1) DM i takes a new measurementxi(t) and computes
the log-likelihood

λi(k) = log
f (xi(k), θ1)

f (xi(k), θ0)
. (9)

(2) DM i updates the variableΛi by

Λi(k) = Λi(k − 1) + λi(k). (10)

(3) DM i comparesΛi(k) with the thresholdsη0 andη1.
In case eitherΛi(k) < η0 or Λi(k) > η1, DM i sends
a messageui to the fusion center to communicate its
local decision; specifically

ui =

{

−1 if Λi(k) < η0

+1 if Λi(k) > η1.

After having send its messageui thei-th decision maker
ceases running its SPRT algorithm.

The last step is to introduce the stopping rules that the fusion
center adopts to provide a decision. Below we formally
describe thefastestrule andmajority rule.
fastest rule : Define the following two sets

S+(k) = {i ∈ V : Λi(k) ≥ η1}

and
S−(k) = {i ∈ V : Λi(k) ≤ η0}

and the corresponding variables

Count+(k) = |S+(k)|

and
Count−(k) = |S−(k)|

Let T be the random variable accounting for the time
when the fusion center provides its decision, then

T = inf {k ∈ N : Count+(k) − Count−(k) 6= 0} .

If Count+(T ) > Count−(T ) then the fusion center
decides in favor ofH1; otherwise if Count−(T ) >
Count+(T ) then the fusion center decides in favor of
H0.

majority rule: Let S+, S−, Count+, Count−, T be defined
as in the previous rule, then

T = inf

{

k ∈ N : either Count+(k) ≥

⌈

N

2

⌉

or Count−(k) ≥

⌈

N

2

⌉}

.



If Count+(T ) ≥ ⌈N
2 ⌉ then the fusion center decides

in favor of H1; otherwise if Count−(T ) ≥ ⌈N
2 ⌉ the

fusion center decides in favor ofH0.

Given a group of decision makers, the goal is to compute
accuracy and decision time, both for theDecentralized SPRT
with the fastestrule and theDecentralized SPRT with the
majority rule. We will focus on this problem in the next
Section.

We conclude this Section by stating a Proposition that
establishes a desirable stopping property for both the above
stopping rules, whenN is odd.

Proposition III.1 Let N ∈ N be odd and consider the
Decentralized SPRT with thefastest/majorityrule described
above. Then, both thefasteststopping rule and themajority
stopping rule, reach a decision almost surely.

We omit the straightforward proof but we draw the attention
of the reader that the proof of this statement follows with
minor changes from Wald’s proof of almost sure convergence
for SPRT. In the rest of the paper we will assume the
following property.

Assumption III.1 The size of the group of decision makers,
i.e., N , is odd.

IV. D ECENTRALIZED SPRT:ACCURACY AND DECISION

TIME OF THE FASTEST AND MAJORITY RULES

The goal of this Section is to analyze accuracy and
expected decision time for the Decentralized SPRT both with
the fastestrule and themajority rule. The basic idea is to
provide a recursive method to compute, for a group of DMs,
the exact probabilities of providing a decision at any time
t ∈ N. Similarly to Equations (5), (6) these probabilities will
allow to estimate the accuracy and the expected decision
time.

In what follows, we denote bypi|j(t,N) the probability
that, given a group ofN decision makers, the fusion center
provides its global decision at timet in favor of hypothesis
Hi, given thatHj is correct, i.e.,

pi|j(t,N) =

P [Global decision forN DMs is Hi|Hj , T = t] .

It is worth observing thatpi|j(t, 1) coincides with the proba-
bility pi|j(t) defined in Section II-B when one DM is running
SPRT. For ease of notation will continue usingpi|j(t) instead
of pi|j(t, 1).

In what follows we provide formulas to compute recur-
sively the probabilities

{

pi|j(t,N)
}∞

t=1
, i, j = 0, 1. We

carry on under the assumption that the quantities
{

pi|j(t)
}

,
i.e., the probabilities for the standard SPRT with one DM,
are known a-priori. In particular we can assume that they
have been computed by the procedure described in Section
II-B.

A. Decentralized SPRT with thefastetrule

We start our analysis by introducing three useful quanti-
ties.

First, define the probability function of balanced decisions,
α : N × {1, . . . , ⌊N/2⌋} → [0, 1], as follows:α(t, k) is the
probability that, given a group of2k decision makers, there
exists a sequencek1 ≤ k2 ≤ . . . ≤ kt = k such that for any
τ ∈ [1, t], Count+(τ) = Count−(τ) = kτ . By convention
we setα(t, 0) = 1 for all t ≥ 0 and α(0, k) = 0 for all
k ∈

{

1, . . . , ⌊N
2 ⌋
}

.
Second, define the probability function of decisionH1 at

time t, β1|j : N × {1, . . . , N − 1} → [0, 1], j = 0, 1, as
follows: β1|j(t, h) is the probability that, for all timesτ ∈
[1, t−1], no decision maker in a group of sizeh have decided,
and that at timet the number of decisions favoring hypothesis
H1 is larger than the number of decisions favoringH0 when
Hj is true. Clearly, in an analogous way we can provide also
the definition of probability function of decisionH0 at time
t, β0|j : N × {1, . . . , N − 1} → [0, 1], j = 0, 1,

Finally, define the probability function of decision up to
time t, γi|j : N → [0, 1], as follows:γi|j(t) is the probability
that a single DM provided the decisionHi when Hj is
correct, before or at timet, i.e.,

γi|j(t) =
t
∑

s=1

pi|j(t). (11)

Proposition IV.1 Given a group ofN DMs satisfying As-
sumption III.1, consider the Decentralized SPRT with the
fastest rule as described in Section III. Without loss of
generality let us assume thatH1 is the correct hypothesis.
Then the following statements hold.

First, the probability that the group gives the correct
decision at timet ∈ N is

p1|1(t,N) =

⌊N
2 ⌋
∑

s=0

(

N

2s

)

α(t − 1, s)β1|1(t,N − 2s). (12)

Second, the probability of balanced decisions up to time
t ∈ N satisfies the recursion equations:

α(t, k) =

k−1
∑

s=0

(

2k

2k − 2s

)

α(t − 1, k − s)

(

2s

s

)

ps
1|1(t)p

s
0|1(t)

+

(

2k

k

)

pk
1|1(t)p

k
0|1(t). (13)

Third, the probabilityβ1|1(t, h) is given by

β1|1(t, h) =

⌊h
2 ⌋
∑

j=1

(

h

j

)

pj
11(t)×

×

(

j−1
∑

i=0

(

h − j

i

)

pi
0|1(t)

[

1 − γ1|1(t) − γ0|1(t)
]h−j−i

)

+
h
∑

j=⌈h
2 ⌉

(

h

j

)

pj

1|1(t)
[

1 − γ1|1(t) − γ0|1(t − 1)
]h−j

. (14)



Proof: For reasons of space we only sketch the proof
of the Proposition.

AssumeH1 is correct. When analyzing thefastestaggre-
gation rule, we need to keep in mind that the time at which
a DM gives its vote matters, since the group decides as soon
asCount+(k) − Count−(k) > 0. Once the group decides,
the later votes do not change the decision. To keep track of
this, we define the following two events:

Event 1 Given a group ofh = N − 2k DMs, then

• Count+(τ) = Count−(τ) = 0, for 1 ≤ τ ≤ t − 1.
• Count+(t) > Count−(t)

β1|1(t, h) denotes the probability of event1. Event1 denotes
the event in which, no decision has been made by theh
individuals for all times up tot− 1, then exactly att one of
the two hypothesis is favored over the other. Event1 happens
in one of two ways. Either,j ≤ ⌊h

2 ⌋ individuals decide in
favor of H1 at time t while at mostj − 1 individuals cast
their votes in favor ofH0 at the same time (while the rest of
the h individuals do not decide), or at timet more than half
of the h individuals decide in favor ofH1 (while the rest
either do not decide or decide forH0 at time t). Equation
(14) follows from these considerations.

Event 2 Given2k DMs andt ∈ N, there exists a sequence
k1 ≤ k2 ≤ . . . ≤ kt = k such that for anyτ ∈ [1, t]
Count+(τ) = Count−(τ) = kτ .

α(t, k) denotes the probability of event 2. Event 2 denotes
the event in which all decisions are made by pairs of DMs
whose number equally divides between the two hypothesis,
and therefore cancel out. For event2 to happen at timet
with 2k DM, it has to be that at timet − 1, 2k − 2j DM
have canceled out and that at timet, the remaining2j DMs
cast their votes and cancel out, or another possibility is that
all 2k DM decide and cancel out at timet. Equation (13)
follows.

Since the DMs take independent measurements, Events1
and2 are independent events, equation (12) follows.

Observe that in the previous Proposition,β1|1(t, h) can be
computed offline for allt andh. On the other hand,α(t, k) is
computed recursively; in order to calculateα(t, k), we need
to haveα(t − 1, j) for all j ∈ {1, 2, . . . , N − 1}.

B. Decentralized SPRT with themajority rule

Similar to the previous method, we present in this part,
the iterative numerical method through which we are able
to compute the probability of the fusion center making a
decision, as a function of the exact probabilities presented
in section II and of the size of the group, when the group
applies the majority rule.

Proposition IV.2 Consider the Decentralized SPRT with the
majority rule described above for a group of sizeN of
decision makers under Assumption III.1. Then for anyt ∈ N

we have that

pi|j(t,N) =

⌈N
2 ⌉−1
∑

k=0

N−k
∑

j=⌈N
2 ⌉−k

(

N

k

)

γk
i|j(t − 1)×

(

N − k

j

)

pj

i|j(t)
(

1 − γi|j(t)
)N−(j+k)

,

whereγi|j(t) was defined in(11).

The proof of this proposition follows the same line of thought
as that of proposition IV.1. We omit the proof for the lack
of space, but we briefly state the intuition. Themajority rule
will decide at timet in favor Hi whenHj is correct, if and
only if, at least⌈N

2 ⌉ DMs vote for Hi, while at most⌊N
2 ⌋

DMs voted forHj , at timet. It is not necessary that all the
DMs would have voted before the group decides, leaving
room for DMs who do not cast their opinions.

V. NUMERICAL RESULTS

In this section we provide an example of the numerical
method we describe in the previous Section. Both for the
fastestrule and themajority rule, given a group ofN decision
makers, we compute the probabilities

{

pi|j(t,N)
}

, i, j ∈
{0, 1}; thanks to these quantities we estimate accuracy and
expected decision time according to the formulas

P[sayHi|Hj ] =
∞
∑

t=1

pi|j(t,N),

and

E[T |Hi] =

∞
∑

t=1

(p0|i(t,N) + p1|i(t,N))t.

In this Section we assume thatX is a distribution of the
Koopman-Darmoi-Pitman form and hence that, through the
procedure illustrated in Section II, we can have access, at all
times t, to the probabilitypij(t). Specifically letf(x; θ) be
given by the binomial distribution, i.e.,

f(x; θ) =

(

n

x

)

θx(1 − θ)n−x

for x ∈ {0, 1, . . . , n}, andf(x; θ) = 0 otherwise. We assume
here thatn = 5.

In this Section we made our computations for three dif-
ferent pairs(θ0, θ1), under the assumption thatH1 is always
the correct hypothesis. Precisely we considerθ0 = 0.5 − ǫ
and θ1 = 0.5 + ǫ where ǫ = {0.02; 0.05; 0.08}. Moreover,
in order to point out the tradeoff accuracy-expected decision
time vs number of decision makers, we analyze group of
increasing size.

In all the scenarios we consider, we use the same values
for the thresholdsη0 andη1. In particular we assumed that
η0 andη1 are computed according to the formulas (2) letting
pm = pf = 0.1.

The results obtained are reported in Figures 1, 2 and 3.
We can see that, as the size of the group increases, the
majority rule provides a remarkable improvement in terms
of the accuracy, while the fastest rule provides a remarkable



improvement in terms of the expected number of iterations
required to provide a decision. The fastest rule improves
also the accuracy even though this improvement is not as
significant as the one provided by the majority rule. The
majority rule, in terms of number of iterations to provide a
decision, exhibits performance which are almost constant as
N varies.

Moreover, observe that the bigger the value ofǫ the faster
and the more accurate the decision making scheme is. This
is due to the fact that, asǫ increases, the Kullback-Leibler
distance between the distributionsf(x, θ0) and f(x, θ1)
increases.
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Fig. 1. In the first subplot we show the probability of error ofthe fastest
decision rule as the number of DMs changes. In the second subplot we
show the expected number of observations needed for the same group of
DMs applying the same rule to make a decisions.

10 20 30 40 50 60
0

0.05

0.1

Number of decision makers

P
ro

ba
bi

lit
y 

of
 w

ro
ng

 d
ec

is
io

n

Majority rule

 

 

10 20 30 40 50 60
0

20

40

60

Number of decision makers

E
xp

ec
te

d 
nu

m
be

r
 o

f o
bs

er
va

tio
ns

epsilon = 0.03
epsilon = 0.05
epsilon = 0.07

Fig. 2. In the first subplot we show the probability of error ofthe
majority rule as the number of DMs changes. In the second subplot we
show the expected number of observations needed for the same group of
DMs applying the same rule to make a decisions.

VI. CONCLUSION

In this work, we presented a complete analysis of how
a group of DMs can collectively reach a decision about
the correctness of a hypothesis. We presented a numerical
method that made it possible to completely analyze and un-
derstand interesting fusion rules of the individuals decisions.
The analysis we presented concentrated on two aggregation
rules, the fastest rule and the majority rule. We provided a
numerical example showing that, as the size of the group
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Fig. 3. In the first subplot we show a comparison between the probability
of error of the majority and the fastest rule as the number of DMschanges.
In the second subplot we show the expected number of observations needed
for the DMs applying the same rules to make a decisions

of decision makers increases, the majority rule significantly
improves the accuracy of the decision scheme, while the
fastest rule significantly reduces the expected number of
iterations required to provide a decision. It will be the
subject of our future work to estimate these improvements
as function of the number of DMs. Moreover we aim to
extend our analysis to the case where the decision makers
are allowed to communicate with each other.
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