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~ Abstract— This paper focuses on decentralized decision mak- The framework we analyze in this paper is related to
ing in a population of individuals each implementing the the one considered in many papers in the literature, see
sequential probability ratio test. The individual decisions are for instance [8], [1], [9], [2], [10], [3], [11] and referees

combined by a fusion center into a collective decision via an therein. The f fth K inlv_ two-fold
aggregation rule. For distinct aggregation rules, we study how €rein. The focuses of these works are mainly two-fold.

the population size affects the performance of the collective First, determining which type of information should the

decision making, i.e., the decision accuracy and time. DMs send to the fusion center. Second, computing optimal
We analyze two aggregation rules, the fastest rule and the decision rules both for the DMs and the fusion center where

majority rule. In the fastest rule, the group decision is equal to optimality refers to maximizing accuracy. One key implicit

the first decision made by any individual. In the majority rule, ) . . ’
the group decision is equal to the majority of the decisions, 2SSumption made in these works, is the assumption that the

Under the assumption of measurement independence among aggregation rule is applied by the fusion center only aftier a
individuals, we introduce a novel numerical representation of the DMS have provided their local decisions.
the performance of decentralized decision making. We study  Tpe work presented in this paper, relaxes the assumption
our settings a_nalythally as well as numerically. Our numerical on the local decisions. Indeed the fusion center might pievi
results and simulations characterize the tradeoff between ac- A : ] -
Curacy and decision Ume as a function Of the popula’[ion Size. the g|Oba| dECISIOH mUCh eal’|ler than the time needed fOf the
local decisions to be made by the whole group. Our main
concern is the exact computation of both the accuracy of
] ] S the final group decision as well as the expected number of
This work aims to understand how grouping individualpseryvations required by the group, in order to provide the
decision makers (DM) affects the speed and accuracy Wit decision. In this work we accomplish these objectives b
which a collective decision is made. This class of pmb'emﬁroposing exact expressions for the conditional probiesli
has a rich history and some of its variations are studied ig the group giving the correct and wrong final decisions,
the context of distributed detection in sensor networks [1}; any time instant. We perform this analysis both for the
[2], [3], [4], [5] and Bayesian learning in social networl§[  astest rule and the majority rule for a varying group sizes.

[71- This represents the major contribution of this paper.

In this paper we consider a group of individuals each In the second part of the paper we use the expressions

of them individually implementing the standard sequentl%at we provide in the first part of the paper, to numerically

Egbzzll:ti/ :)atr:o t:titegiSHpR;r? dvl\gth \;\?:rg;gfgjsteh:tnzec.g_mgcharacterize the tradeoff between the accuracy and the ex-
w Wo nyp 0 I Indivi pected time and the group size. For illustration, we comside

:Jnalnsu?i?ss'r?g-gi(riﬁxmggovxeisdael?:vtli;T)e[ivl\\f:ezetfsf[t)?\;a discrete distribution of the Koopman-Darmoi-Pitman form
P e find that the majority rule provides, @€ increases, a

Once a DM has provided a decision it communicates 't. 0 femarkable improvement in terms of of the accuracy while

fusion center. The fusion center collects the various duss the fastest rule provides a remarkable improvement in terms

and pr_owdes a global decision via an aggregation rule. of the expected number of observations required to provide
In this paper we focus on two aggregation rules,fdstest the final decision

rule and themajority rule. In the fastest rule, the fusion center . i i
ghe rest of the paper is organized as follows. In Section I

makes a global decision as soon as one hypothesis gets mor , .
e review the standard SPRT. In Section Ill we formally

votes than the opponent hypothesis, while in the majorit o . :
bp vp J R/groduce the problem studied in this paper. In Section IV

rule the fusion rule makes a global decision as soon as o .
of the two hypothesis getsV/2| + 1 decisions in its favor. we present our novel numerical method useful to analyze the
Eproblem of interest. In Section V we provide some numerical

For both rules and for distinct sizes of the group of DMs, w Its. Wi lude in Section VI
study the performance of the collective decision makirey, i. results. We conclude in Section V.
the decision accuracy and expected number of observations

I. INTRODUCTION

required to provide a decision. [I. A BRIEF REVIEW OFSPRTAND OF RELATED
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A. Classical Wald’s analysis quantify the accuracy of the approximations introduced by
SPRT algorithm has been developed in 1943 by Abrdhe formulas in (2).

ham Wald for the purpose of deciding bet\_Neen two s_lmplg_ Computation of accuracy and decision time for pre-

hypotheses. Suppose that the random varidblhas a dis- assigned thresholds, and 7,

tribution f(x;0) and that we want to test the null hypothesis i ) )
Hy : 6 = 0, against the alternative hypothesig : 6 = 0. In the previous subsection we have seen how the classical

Suppose the observationl ), z(2), 2(3), . . ., are taken one Wald’s analysis provides simple formulas for setting the

at a time until a decision is made and assume that they af@!Ues Ofro, 711 in order to meet pre-defined requirements on
independent, i.eE[z(i)z(j)] = Elz(i)|E[z(j)] if i £ j. We the probabilities of error. In this subsection we would ltke
define the log-likelihood ratio associatedieh observation address the reversed problem: Given a-priori threshgids

(k) as andn;, how can we compute the values of tAsayH; | Hy],
Fx(k),61) P[sayH|H,], E[T|Hy] andE[T|H,]?
A(k) = log m We start by observing that an exact computations of those
o ’ ) probabilities and expected values would be possible if we
The sum of the log-likelihoods up tois denoted byA(k) = knew the probabilities of crossing the boundaries at any

>°%_, A(j). For the SPRT, sampling continues as long agme 1 ¢ N Indeed in such case, jf;;(k) denotes the
o < A(k) < i, whereno and, are two pre-assigned pronability of decidingH; at time k, given thatH, is the

thresholds. Sampling is stopped the first time this inequali correct hypothesis, i.ep, ; (k) := PlsayH;|H;, T = k], from

is violated. If A(k) < no, then the group decides fér=6o.  standard probabilistic arguments it follows that

If A(k) > m, then the group decides fér= 6;. It can be

shown that, for any values af, and#,, the SPRT algorithm - -
provides a decision almost surely. Plsayfy| Ho] = ;p”()(t)’ ©)
The goal is to set the thresholgs andn; in such a way B

that the probabilities of misdetection (sayittf, when H, &nd o
is correct, i.e.P[sayH|H,]) and of false alarm (saying/, E[T|Ho) = Z(pOIO(t) + pijo())t. (6)
when Hy is correct, i.e.P[sayH;|H,]) are equal to some t=1

pre-assigned _valuepm a_nd Py ('Fhe subscriptsn and f ginjjar formulas apply foiP[sayHy|H1] andE[T'|H].
refer, respectively, to misdetection and false-alarm)ldwa The author in [10], provided a recursive method for

proved that in order to guarantee the following probabidist computing exact values of these probabilities which can be

constraints applied to a broad class of discrete distributions, précise
P[sayHy|H1]| = pm and  P[sayH,|Ho| = ps, (1) when X is a discrete random variable of the Koopman-
] . N Darmoi-Pitman form. The approach we will take later in
the values of), andn; must ?atlsfy the folIowmg condm.o.ns: analyzing a group of DMs assumes the knowledge of the
Ny > log% andn; < log % Clearly, using equalities quantities {pi\j(t)}:iy i,j = 1,2. We proceed now by
in the above inequalities, that is, reviewing the procedure proposed in [10] for computing
these terms.
Let X be a discrete random variable of the Koopman-
Darmoi-Pitman form; that is

m 1—pm
b and 1 =log— 2™ (2)

1 —ps Py
one obtain tha?[sayHy|H1] < p., andP[sayH,|Hy] < py. _
The classical Wald's analysis computes the valuesifand 7, g) — { h(z)exp(B(0)Z(x) — A(0)) it zeZ
m according to the formulas given in (2). ’ 0 if z¢2Z2,

In [12] Wald determm.ed also the average number Qf,sa”\‘/\?hereh(m), Z(x) and A(6) are known functions and where
ples, denoted by", required by the algorithm for providing z i 4 subset of the integer numbeFs In this section
a decision to be approximately we shall assume thaf(xz) = «. It is worth noting that
(I—pg)no +prm 3) the Bernoulli, binomial, geometric, negative binomial and
B [1og flx,61) \H, ] Poisson distributions are some widely used distributiohs o
Fl,00) 710 the Koopman-Darmoi-Pitman form, satisfying the condition
and Z(x) = x. For distributions of this form we have that

no = log

E[T|Ho] =~

(1 — pm)771 + Pm"No
E[T|H,] ~ . 4 B - o B |
i E [log H203 ) A(k) = (B(61) — B(6o))z(k) — (A(61) — A(6p))

] ] . One can easily see that sampling will continue as long as
The denominators that show in equations (3) and (4) are the

Kullback-Leibler distances for the distributions. Obsethat 7y + k(A(6:) — A(6)) <~ . m1 +k(A(61) — A(6p))
: : g Wi <Y x(i) <
equations (1), (3) and (4) are exact if, upon stopping with B(61) — B(6y)) B(61) — B(6y))

k observations, eitheA(k) = ny or A(k) = n;. However =t

S_Om? O\_/erShOOt'ng of the bo.undarles genera”y occurs. ThaBy conventionN denotes the set of positive integer numbers, Ne=
distribution of the overshooting\(k) — 1 and o — Ao,  {1,2,3,...}




for B(61) — B(6p) > 0; if B(61) — B(6p) < 0 the Next we formally describe our setup. Léf denote the
inequalities would be reversed. Observe tr@f:lx(i) size of the group of decision makers. Then Becentralized
is an integer number. Now Ieﬁék) be the smallest SPRT with thdastest/majorityrule is defined as follows:
Integer greater 7t(r,1?r{770 +k(A(6) — ‘_4(90))}/(]3(01) ~ Processor states: For eachi € {1,...,N}, the i-th DM
B(6y)) and letn; be the largest integer smaller than  q5req in memory the variable; and two pre-assigned

{m + k(A(61) — A(60))} /(B(01) — B(?,g)))' Sampling will values for the thresholds, and ;.

continue as long ag;’ < X(k) < 7 Whire Xk(k) = Initialization : All variablesA;, i € {1,..., N}, are initial-

S5, «(i). Now suppose that, for any [}, 7{")] the ized 100, i.e., A;(0) = 0, € {1...., N}.

probability P[X'(k) = ] is known. Then we have State iteration (Decision Makers): At time k € N, for
o) eachi, if A;(k —1) € [no,m], the i-th DM performs

three actions in the following order:
(1) DM ¢ takes a new measuremery(t) and computes
the log-likelihood

PIX(k+1) = (H| = Y f(t—j;0:)PX (k) = j|H],

. (k
P

7
and f(zi(k), 1)
\i(k) = log 20 2L 9
s ) =108 ¥ (0. 60) ®)
pupi(k+1) = Z Z P[X (k) = j|Hi|f(r;6;) (2) DM ¢ updates the variabla; by
j:ﬁék) r:ﬁ§k)—j+1 A,(k) = A7(k — 1) + Al(k) (10)
0 g —i—1 (3) DM i compares\; (k) with the thresholdsgy, andr);.
popk+1) = > > PlX(k) = j[H]f(r;6,). (8) In case either\;(k) < no or A;(k) > 11, DM i sends
j=q{  r=To° a message:; to the fusion center to communicate its
Starting withP[X'(0) = 1] it is possible to compute recur- local decision; speC|f|caII'y
sively all the quantities{p; ;(k)},_, andP[X'(k) = /], for w { —1 i Ay(k) <o
anyk e N, £ e [5”,7{"], and {p,; () }:° . +1if Ay(k) > i

After having send its message thei-th decision maker
I1l. DECENTRALIZED SPRT:PROBLEM SETUP ceases running its SPRT algorithm
_In this Section we present our problem of interest. Contpg |ast step is to introduce the stopping rules that thefusi
sider a group ofN decision makers which are repeatedlycenter adopts to provide a decision. Below we formally
observing a random variabl¥ of distribution f(z,6), with  jescribe thdastestrule andmajority rule.

the purpose of choosing between the two hypothégjs: fastest rule : Define the following two sets
0 = 6y and H, : 6 = 6,. Suppose each decision maker

is individually implementing the classic SPRT, reviewed in Si(k)={ieV:Ai(k)=m}
Section II-A, with the assumptions that and
0] aII(;[he decision makers have the same threshaolds S (k) ={icV:A(k)<mno}
andn, . .
(i) no-communication is allowed between the decision ~and the corresponding variables

makers; County (k) = |54+ (k)|
(iii) the probability distributionsf(z, 8y) and f(z,6;) are
known a-priori; and
(iv) the obserSations taken, conditioned on either hypothe Count_(k) = |S— (k)|
sis, are independent in time as well as from decision Let T be the random variable accounting for the time
maker to decision maker. when the fusion center provides its decision, then
Once a decision maker arrives at a final local decision, it T = inf {k € N : Count (k) — Count_(k) # 0} .

communicates it to a fusion center. The fusion center cisllec _
the messages it receives keeping track of the number of If Count (T) > Count (T) then the fusion center

and

decisions in favor ofH, and in favor of H;. A global decides in favor ofH,; otherwise if Count (T) >
decision is provided by the fusion center according to one of ~Count.(T') then the fusion center decides in favor of
the following two stopping rules introduced in the litenagu Hy.

[1] : the fastestrule and themajority rule. Informally in majority rule: Let S, ,S_, County,Count_,T be defined
the fastestrule the decision of the group is set equal to the ~ as in the previous rule, then

decision of the fastest decision maker while in thajority N

rule the group’s decision is set equal to the agreed on Tinf{k € N: either Count (k) > [QW
decision by the majority of votes. In what follows, we refer

to the framework described above as to thecentralized or Count_ (k) > {NW }
SPRT with thefastest/majority rule. 2



If Count(T) > [4] then the fusion center decidesA. Decentralized SPRT with tHastetrule

in favor of H,; otherwise if Count (T) > [5] the We start our analysis by introducing three useful quanti-
fusion center decides in favor df. ties.

Given a group of decision makers, the goal is to compute First, define the probability function of balanced decision
accuracy and decision time, both for thecentralized SPRT « : N x {1,...,|N/2]} — [0, 1], as follows:«a(t, k) is the
with the fastestrule and theDecentralized SPRT with the probability that, given a group dfk decision makers, there
majority rule. We will focus on this problem in the next exists a sequende, < ko < ... < k; = k such that for any
Section. T € [1,t], County (1) = Count_(7) = k,. By convention

We conclude this Section by stating a Proposition thave seta(t,0) = 1 for all t > 0 and a(0,k) = 0 for all
establishes a desirable stopping property for both theeabok < {1, cee [%J }
stopping rules, wheV is odd. Second, define the probability function of decisifh at
timet, 3y; : Nx{1,...,N =1} — [0,1], j = 0,1, as
follows: 3,;(t, k) is the probability that, for all times <
[1,t—1], no decision maker in a group of sizehave decided,
and that at time the number of decisions favoring hypothesis
H, is larger than the number of decisions favoriig when
Hj is true. Clearly, in an analogous way we can provide also
rghe definition of probability function of decisioH, at time

Proposition Ill.L1 Let N € N be odd and consider the
Decentralized SPRT with thiastest/majorityrule described
above. Then, both thiasteststopping rule and thenajority
stopping rule, reach a decision almost surely.

We omit the straightforward proof but we draw the attentio ) o
of the reader that the proof of this statement follows wittr Fois 3 N x {L,...,N -1} = [0,1], 5 =0,1,

; , Finally, define the probability function of decision up to
minor changes from Wald’s proof of almost sure convergencerne £, : N — [0,1], as follows:y, (1) is the probability

for SPRT. In the rest of the paper we will assume th(%'h ! . N .
following property. pap at a single DM provided the decisiof; when H; is
' correct, before or at timg, i.e.,

t
Assumption IIl.1 The size of the group of decision makers, () = Z (¢ 11
i.e., NV, is odd. (1) szlpzlj( ) .

IV. DECENTRALIZED SPRT:ACCURACY AND DECISION Proposition IV.1 Given a group ofN DMs satisfying As-
TIME OF THE FASTEST AND MAJORITY RULES sumption IIl.1, consider the Decentralized SPRT with the
. . . fastestrule as described in Section Ill. Without loss of

The goal of this Section is to analyze accuracy angenerality let us assume thaf; is the correct hypothesis.

expected decision time for the Decentralized SPRT both wi hen the following statements hold
First, the probability that the group gives the correct

the fastestrule and themajority rule. The basic idea is to
provide a recursive _method to (_:o_mpute, fo_r a group of D_Msdecision at timet € N is
the exact probabilities of providing a decision at any time
t € N. Similarly to Equations (5), (6) these probabilities will L5)
allow to estimate the accuracy and the expected decision pi1(t,N) = > <25>0<(t —Ls)Bip(t, N —2s). (12)
time. s=0
In what follows, we denote by; ;(t, N) the probability Second, the probability of balanced decisions up to time
that, given a group ofV decision makers, the fusion centert ¢ N satisfies the recursion equations:
provides its global decision at timein favor of hypothesis

k-1
H,, given thatH; is correct, i.e., _ 2k 25\ s
g j a(t7k:)—sz:; (2k28>a(t—1,k—s)(s P11 (Opop ()
pi;(t, N) = 2%\ i
P [Global decision forN DMs is H;|H,,T = t]. + ( k )pm(t)pm(t)- (13)

It is worth observing thap;; (¢, 1) coincides with the proba-  Third, the probability3,), (¢, h) is given by
bility p; ;(¢) defined in Section II-B when one DM is running

SPRT. For ease of notation will continue using (¢) instead L) N
Of piy 1.1). suem =3 ("))

In what follows we provide formulas to compute recur- j=1
sively the probabilities{pi‘j(t,N)}zl,z‘,j = 0,1. We I h— N .
carry on under the assumption that the quantifies;(t)}, x| ( . >p6|1(t) [T —p () —yop®)]" ™
i.e., the probabilities for the standard SPRT with one DM, =0

are known a-priori. In particular we can assume that they h hY\ h—j
have been computed by the procedure described in Sectioh Z j pl\l(t) [L=mp(®) —r0p-D]" 7. (14
1-B. 5=I%]



Proof: For reasons of space we only sketch the proofve have that

of the Proposition. [Y1-1 N_g

AssumeH; is correct. When analyzing tHastestaggre- pij;(t, N) = Z (N) %ki (= 1)x
gation rule, we need to keep in mind that the time at which k=0 j=[N]—k k !
a DM gives its vote matters, since the group decides as soon N —2k 4 4
asCounty (k) — Count_(k) > 0. Once the group decides, ( , >pg|,.(t) (1- %»lj(t))N—(J-&-k) 7
the later votes do not change the decision. To keep track of J ’
this, we define the following two events: where; ;(t) was defined in(11).

Event 1 Given a group ofh = N — 2k DMs, then ) - )
The proof of this proposition follows the same line of thotigh

e County(r)=Count_(r)=0,for1 <7 <t¢—1 as that of proposition IV.1. We omit the proof for the lack
e County(t) > Count_(t) of space, but we briefly state the intuition. Tim@jority rule

A1 (t, h) denotes the probability of eveit Eventl denotes will decide at timet in favor H; when H; is correct, if and
the event in which, no decision has been made by /the only if, at least[ 5] DMs vote for H;, while at most| 3 |
individuals for all times up td — 1, then exactly at one of DMs voted forH;, at timet. It is not necessary that all the
the two hypothesis is favored over the other. Evehappens DMs would have voted before the group decides, leaving
in one of two ways. Eitherj < | %] individuals decide in room for DMs who do not cast their opinions.
favor of H, at timet while at most; — 1 individuals cast
their votes in favor offf, at the same time (while the rest of
the 1 individuals do not decide), or at timemore than half ~ In this section we provide an example of the numerical
of the h individuals decide in favor off; (while the rest method we describe in the previous Section. Both for the
either do not decide or decide fdi, at timet). Equation fastestule and themajority rule, given a group oV decision
(14) follows from these considerations. makers, we compute the probabilitigg; (¢, N)}, .5 €
Event 2 Given2k DMs andt € N, there exists a sequence{ov 1}; thanks to these quantities we estimate accuracy and

V. NUMERICAL RESULTS

ki < ks < ... < k, = k such that for anyr € [1,¢] expected decision time according to the formulas
County (1) = Count_(7) = k.
a(t, k) denotes the probability of event 2. Event 2 denotes P[say;|H;] valy t,N),

the event in which all decisions are made by pairs of DMs
whose number equally divides between the two hypothesignd -
and therefore cancel out. For evehtto happen at time
with 2k DM, it has to be that at time — 1, 2k — 2j DM ET|H] ; Poii(t N) + pujs(t, N))t.
have canceled out and that at timyehe remaining2j DMs
cast their votes and cancel out, or another possibility a th
all 2k DM decide and cancel out at time Equation (13)
follows.

Since the DMs take independent measurements, Event
and?2 are independent events, equation (12) follows.

In this Section we assume thaf is a distribution of the
Koopman-Darmoi-Pitman form and hence that, through the
procedure illustrated in Section I, we can have accesd| at a
timest, to the probabilityp;;(¢). Specifically letf(z;6) be
Sgiven by the binomial distribution, i.e.,

- o) = (7)o - o

Observe that in the previous Propositigh,, (¢, ) can be
computed offline for alt andh. On the other handy(t, k) is  for 2 € {0,1,...,n}, andf(z;6) = 0 otherwise. We assume
computed recursively; in order to calculatét, k), we need here thatn, = 5.
to havea(t —1,7) for all j € {1,2,..., N —1}. In this Section we made our computations for three dif-
ferent pairs(6y, 61), under the assumption thaf; is always
the correct hypothesis. Precisely we considgr= 0.5 — ¢
and 6, = 0.5 + € wheree = {0.02;0.05; 0.08}. Moreover,
Similar to the previous method, we present in this parin order to point out the tradeoff accuracy-expected deuisi
the iterative numerical method through which we are abléme vs number of decision makers, we analyze group of
to compute the probability of the fusion center making ancreasing size.
decision, as a function of the exact probabilities presente In all the scenarios we consider, we use the same values
in section Il and of the size of the group, when the groufor the thresholdsj, and;. In particular we assumed that
applies the majority rule. 1o andn; are computed according to the formulas (2) letting
pm =py = 0.1
The results obtained are reported in Figures 1, 2 and 3.
Proposition 1V.2 Consider the Decentralized SPRT with theWe can see that, as the size of the group increases, the
majority rule described above for a group of siz€ of majority rule provides a remarkable improvement in terms
decision makers under Assumption Ill.1. Then for amyN  of the accuracy, while the fastest rule provides a remaekabl

B. Decentralized SPRT with thmajority rule



improvement in terms of the expected number of iteration
required to provide a decision. The fastest rule improve
also the accuracy even though this improvement is not i
significant as the one provided by the majority rule. The
majority rule, in terms of number of iterations to provide &
decision, exhibits performance which are almost constant .

N varies.
Moreover, observe that the bigger the value difie faster

and the more accurate the decision making scheme is. Ti
is due to the fact that, asincreases, the Kullback-Leibler

distance between the distribution§x,6,) and f(x,6,)
increases.
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Fig. 3. In the first subplot we show a comparison between thbafnitity
of error of the majority and the fastest rule as the number of BNenges.
In the second subplot we show the expected number of obsmmsateeded
for the DMs applying the same rules to make a decisions

of decision makers increases, the majority rule signifigant
improves the accuracy of the decision scheme, while the
fastest rule significantly reduces the expected number of
iterations required to provide a decision. It will be the
subject of our future work to estimate these improvements
as function of the number of DMs. Moreover we aim to
extend our analysis to the case where the decision makers

are allowed to communicate with each other.
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Fig. 1. In the first subplot we show the probability of errortbé fastest

decision rule as the number of DMs changes. In the second cutvel
show the expected number of observations needed for the samp gf

DMs applying the same rule to make a decisions. (1
[2]
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Fig. 2. In the first subplot we show the probability of error thie
majority rule as the number of DMs changes. In the second stlydo  [g]
show the expected number of observations needed for the sap gf
DMs applying the same rule to make a decisions. [9]
[10]

VI. CONCLUSION

In this work, we presented a complete analysis of how
a group of DMs can collectively reach a decision abouItll]
the correctness of a hypothesis. We presented a numerical
method that made it possible to completely analyze and ub%l
derstand interesting fusion rules of the individuals deais.

The analysis we presented concentrated on two aggregation
rules, the fastest rule and the majority rule. We provided a
numerical example showing that, as the size of the group
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