
Distributed Pursuit-Evasion with Limited-Visibility Sensors
Via Frontier-based Exploration

Joseph W. Durham, Antonio Franchi, and Francesco Bullo

Abstract— This paper addresses a novel visibility-based
pursuit-evasion problem in which a team of searchers with
limited range sensors must coordinate to clear any evaders
from an unknown planar environment. We present a distributed
algorithm built around guaranteeing complete coverage of
the frontier between cleared and contaminated areas while
expanding the cleared area. Our frontier-based algorithm can
guarantee detection of evaders in unknown, multiply-connected
planar environments which may be non-polygonal. We also
detail a method for storing and updating the global frontier
between cleared and contaminated areas without building a
global map or requiring global localization, which enables
our algorithm to be truly distributed. We demonstrate the
functionality of the algorithm through Player/Stage simulations.

I. INTRODUCTION

This paper deals with a distributed pursuit-evasion problem
for a team of robotic searchers in an unknown environment.
The distributed pursuit-evasion problem, also known as the
clearing problem, involves designing control and commu-
nication protocols such that the searchers will sweep an
environment and detect any intruders which may be present.
The pursuit-evasion problem has received a lot of attention in
recent years because of its applications to safety and security.
In this paper, we describe a distributed environment clearing
algorithm based on the concept of the frontier or boundary
between cleared and contaminated areas. Our algorithm can
guarantee the detection of any intruders or, if there are
insufficient searchers available, will clear as much area as
it can while ensuring no cleared areas are recontaminated.

In the literature on pursuit-evasion problems, many differ-
ent approaches and starting assumptions have been explored.
The study of guaranteeing detection of evaders in planar en-
vironments began with [1]. For a single searcher, [2] studied
a searcher with a limited field of view in a known polygon
while [3] cleared unknown environments without localization
using minimalist sensing. Efficient evader detection, where
one or more searchers are tasked with probabilistically
locating targets which move randomly, is another active
area covered in [4]. Pursuit-evasion on graphs representing
decompositions of known environments is a related topic
which goes back to [5] and includes recent works such as

This work is supported in part by NSF awards CMS-0626457 and IIS-
0904501 and by ARO MURI award W911NF-05-1-0219.

Joseph W. Durham and Francesco Bullo are with the Department of
Mechanical Engineering, University of California, Santa Barbara, CA,
93106 (joey, bullo)@engineering.ucsb.edu

Antonio Franchi is with the Dipartimento di Informatica
e Sistemistica, Università di Roma La Sapienza, Italy
franchi@dis.uniroma1.it

[6] and [7]. In addition, our work draws inspiration from
methods for exploration and deployment of agents based
on the frontier between explored and unexplored areas,
including [8], [9], [10] and [11].

In this paper we present a distributed clearing algorithm
for d−searchers, a searcher model with realistic limited range
visibility sensors. A well-known result from the literature is
that computing the minimum number of searchers required
to clear a general graph is NP-hard [5]. This result was
extended in [12] to searchers with infinite range sensors in
a polygonal environment, and so solving for the minimum
number of d−searchers to clear a non-polygonal environment
is also NP-hard. Instead, we present an efficient, distributed
algorithm which locally minimizes the number of searchers
required, and demonstrate the algorithm’s utility through
simulations using the opensource Player/Stage robot software
system [13].

There are three key contributions of this work. First, our
frontier-based algorithm can guarantee detection of evaders
in unknown, multiply-connected planar environments which
may be non-polygonal. To the best of our knowledge, no
prior work exists which achieves this. Second, we detail a
novel method for storing and updating the global frontier
between cleared and contaminated areas without building
a global map or requiring global localization. Finally, we
develop a method for selecting the next positions for the
searchers which locally optimizes the number of searchers
required and the expected increase in the area cleared.

This paper is organized as follows. Section II provides
definitions and states the problem which we are addressing.
In Section III we examine a centralized version of our
algorithm to clarify some of the details. The decentralized
algorithm is presented in Section IV and then demonstrated
through simulations in V. We conclude with a discussion of
future work in Section VI.

II. PROBLEM FORMULATION

We are given a team of n robotic searchers with limited
sensing and communication capabilities and finite memory,
all initially placed at the same position in the free space of
an unknown but limited planar environment. Let Q be the
free space of the environment, which must be connected but
can have holes and may be non-polygonal. The searchers
are tasked with detecting evaders which can be arbitrarily
small (even a single point) and can move arbitrarily fast, but
continuously, through Q. The trajectories and initial positions
of the evaders are unknown. We further require that the

NOTE: this is a Preprint Version.
To appear in Proc. of the 2010 IEEE Int. Conf. on Robotics and Automation, Anchorage, Alaska - May 2010

S

∂S

∂Sd

L

L

L

∂S

L

Fig. 1. On the left, four obstacles surround a d−searcher and lie within the
dashed circular region representing the area perceivable by the searcher’s
sensor without occlusions. The right image shows the boundary ∂S of the
sensor footprint for this position, with dashed oriented arcs for the free
boundary L and solid arcs for the local obstacle boundary.

control protocol for each searcher uses a constant amount
of memory with respect to the size of Q.

The robot model we use, the d−searcher, is a holonomic
(i.e., omnidirectional drive) mobile robot that can rotate and
translate continuously at bounded speed through Q. Our
model gets its name from the attached distance sensor which
has a maximum range of d > 0 and an angular aperture of
2π. The sensor cannot penetrate obstacles but is capable of
detecting any evaders visible to it.

Let S denote the footprint of the sensor when a robot is in
a generic configuration, as shown in Fig. 1. The footprint is a
local obstacle free region and we say that a point is guarded
by a robot if it belongs to the footprint of the sensor of
that robot. The oriented boundary of the sensor footprint,
∂S of S, is a closed arc partitioned into two sets: (1) the
local obstacle boundary (all the points where the sensor has
perceived an obstacle), and (2) the free boundary, denoted
with L, which consists of all the remaining points. Notice
that while S is always a simply connected region, L is not, in
general, a connected set. We refer to the connected subsets
of L as free arcs. The orientation of ∂S is defined in a
counter-clockwise manner, such that a point moving along
the boundary would have the internal part of S on the left.
The free arcs constituting L inherit the orientation of ∂S and
are an open subset of the topological manifold ∂S, with their
endpoints on obstacles. The local obstacle boundary arcs, on
the other hand, are closed in ∂S.

The perception of the sensor at a given point is the tuple
{S, ∂S,L}, i.e., a footprint S, surrounded by boundary ∂S,
and the set of free boundary arcs L of ∂S. For notation and
explanation, we will also have use for the union of a number
of perceptions from different points in Q, which we refer to
as the inspected region I . Since our algorithm does not allow
recontamination, I also represents the cleared area. We wish
to emphasize that our algorithm will not compute or store I ,
but will instead use only the frontier sections of the boundary
of I . Though I will be connected, it may not be simply
connected, meaning that ∂I is a set of a closed oriented
curves. As with ∂S, ∂I is partitioned into two sets: (1) the
obstacle boundary, and (2) the set of remaining oriented arcs,
called the frontier boundary, and denoted F .

Finally, we require that a pair of robots are guaranteed
to be able to communicate if their two sensor footprints
intersect. We further assume that two communicating robots
can compute their relative poses, as a result of a mutual
localization procedure [14]. The availability of any sort of
global localization is not assumed.

With these definitions we can now state the goal of
our algorithm: control the team of n searchers in order to
maintain complete coverage of frontier F while expanding
as much as possible the area of the cleared region, I , subject
to limited communication and memory constraints.

III. THE MULTI-ROBOT CLEARING ALGORITHM

For clarity, we have chosen to split the presentation of our
clearing algorithm into two stages. In this Section we pretend
that a central controller is commanding the searchers in order
to describe the fundamental algorithm steps and the data
structures involved. In Section IV we detail the distributed
implementation of the algorithm.

The team of n searchers is divided into two classes, the
frontier-guards and the followers:
• Frontier-guard: Each frontier-guard is assigned to a

unique position v ∈ Q called the guard’s viewpoint,
which can move during the evolution of the algorithm.
The frontier-guard must quickly reach its viewpoint
and report a perception, i.e. the tuple {S, ∂S,L}. In
order to detect evaders each frontier-guard must also
continuously monitor its sensor.

• Follower: Each follower is assigned to follow a frontier-
guard, and this assignment can change as the algorithm
progresses. Each follower is only required to passively
follow its frontier-guard.

As needed, the clearing algorithm will switch frontier-guards
to followers, and vice-versa.

At the beginning of the algorithm all n searchers are
clustered around a point in Q. One robot is selected as
the initial frontier-guard and assigned its initial position as
a starting viewpoint. All other robots are set as followers
of this guard. The frontier-guard will then record the first
perception, which initializes the main data stored during the
evolution of the algorithm.

Whenever a frontier-guard records its perception from a
viewpoint, a new step k of the algorithm starts and the
perception is classified as {Sk, ∂Sk,Lk} and called the k-
th perception. We denote the total inspected region at step
k as Ik := ∪ki=1Si. Again, the algorithm does not use
or store Ik or the obstacle portion of ∂Ik; one important
innovation of this work is that it stores and updates only Fk,
the oriented frontier arcs of Ik. Since the obstacle boundary
of the inspected region Ik is impossible for either searchers
or evaders to cross, there are only two ways an evader can
enter Ik: (1) by being inside of Sk\Ik−1 at the instant in
which the k-th perception is performed, or (2) by crossing
Fk. In this first case detection of the evader is immediate,
the focus of our algorithm is thus on maintaining complete
coverage of Fk and updating it when a new perception is
added.

NOTE: this is a Preprint Version.
To appear in Proc. of the 2010 IEEE Int. Conf. on Robotics and Automation, Anchorage, Alaska - May 2010

After each perception {Sk, ∂Sk,Lk} is recorded, the fol-
lowing actions are performed:

1) Compute Fk from Fk−1 and {Sk, ∂Sk,Lk} as detailed
in Sec. III-A.

2) Compute the next set of viewpoints Vk+1, which ensure
that Fk remains guarded and that Ik+1 will be a strict
superset of Ik, as detailed in Sec. III-B.

3) Assign each v ∈ Vk+1 to a nearby searcher and set the
searcher to be a frontier-guard.

4) Assign remaining searchers a frontier-guard to follow.
5) Compute paths for all frontier-guards to reach their

assigned viewpoint.
As we will explain in Section III-B, all the points of Fk
will remain guarded by the frontier-guards during the path
following. This fact guarantees that at every instant each
point of Fk is guarded by at least one frontier-guard and
thus Ik will remain clear. We refer to this feature as the
frontier guarding property.

Assuming that n ≥ max{|Vk| | for all k}, the algorithm
will terminate at the first step kf where Fkf

= ∅. At this
point, ∂Ikf

will consist entirely of obstacle arcs and Ikf
will

completely cover Q. Therefore, for every evader e in Q there
exists at least one time step ke during which it (1) crosses
Fke−1 for ke ∈ {2, . . . , kf}, or (2) belongs to Ske

\Ike−1 for
ke ∈ {1, . . . , kf}. We can conclude, by means of the frontier
guarding property, that every evader is detected before the
algorithm terminates.

A. Updating the global frontier without a global map
On the first step, F1 is initialized as the free boundary of the
first perception L1; on each subsequent step k, the algorithm
needs to compute the new frontier Fk, i.e., the non-obstacle
boundary of the inspected region Ik = Ik−1 ∪ Sk. The set
Fk can be partitioned into two subsets, (1) the set FExt

k−1 of
arcs from the prior frontier Fk−1 which do not belong to the
closure of Sk, and (2) the set LExt

k of arcs from Lk which are
not on the interior of Ik = ∪ki=1Si. While the computation
of FExt

k−1 from Fk−1 and {Sk, ∂Sk,Lk} is immediate, in this
section we describe a new method to compute LExt

k by using
only the oriented arcs of Fk−1 and {Sk, ∂Sk,Lk}.

In all previous work including [11], LExt
k has been com-

puted using Sk and Ik−1. The disadvantages of this prior
procedure for updating F are that computing Ik−1 requires
global localization and storing it requires non-constant size
per robot with respect to the size of environment Q.

Our new three-step method for computing LExt
k is based

around the intersections of the oriented arcs of Fk−1 and
∂Sk. As we will discuss in Section IV, this method requires
only temporary mutual localization between pairs of agents
to compute Fk and a constant amount of memory per robot
to store it regardless of the size of Q. Let L?k denote the
set of points belonging to the intersection between the arcs
of Lk and the arcs of Fk−1, and L̄?k the remaining points
of Lk. The points of LExt

k can be either on the boundary of
or exterior to Ik−1, the boundary points belong to L?k while
the exterior ones belong to L̄?k. The following crucial result
states that an arc in Lk can only switch from being on the
interior or exterior of Ik−1 at an intersection point in L?k.

⇔
l

J

p
p

p

p

p p⇔
p

f

J

l′

Fig. 2. Example classification of the neighborhood J of a point p ∈ L?
k

where arcs l ∈ Lk and f ∈ Fk−1 intersect. In the middle, the partitions
of J induced by l and f are represented separately. The white regions on
the right side of the oriented arcs indicate the exterior, and the patterned
regions on the left indicate the interior. The single neighborhood at right
shows the fusion of the two partitions of J . The bold part of l, denoted
with l′, is classified as belonging to frontier Fk because it lies between a
white and a patterned region. Note that in this case p ∈ l′.

Fig. 3. The classification of the points of arc l ∈ Lk in the neighborhood
of all possible types of intersections with arc f ∈ Fk−1. Arc l is drawn
solid, while f is dashed. Each row shows a different intersection type,
with columns for the various reciprocal orientations of l and f . The first
row shows isolated crossings, the second shows isolated tangents, the third
shows joinings, and the fourth row shows segments where l and f overlap.
The bold portions of l are classified as belonging to the new frontier LExt

k
as they lie between a white and a patterned region.

Lemma 1. Let l be an arc in Q which does not intersect
Fk−1. If any point of l belongs to the exterior of Ik−1, then
all of l belongs to the exterior of Ik−1. If any point of l
belongs to the interior of Ik−1, then all of l belongs to the
interior of Ik−1.

The first step of the method is to classify the neighborhood
on ∂Sk of each intersection point p ∈ L?k as either internal to
Ik−1 or not. An example of this neighborhood classification
is shown in Fig. 2. The neighborhood classifications for all
possible intersection cases are depicted in Fig. 3.

The second step of the method is to classify the ends of
each arc l ∈ Lk in the neighborhood of the endpoints of the
adjacent obstacle arcs. These neighborhoods can be classified
using the following Lemma:

Lemma 2. Let o denote a local obstacle arc of ∂Sk, let lL
and lR ∈ L̄?k denote the ends of the free arc segments on the
left and right of o, respectively, in the neighborhood of the
endpoints of o. Let Eo ⊂ o be the set of endpoints of any
frontier arcs of Fk−1 which either begin or end on o, and

NOTE: this is a Preprint Version.
To appear in Proc. of the 2010 IEEE Int. Conf. on Robotics and Automation, Anchorage, Alaska - May 2010

which are, in the neighborhood of o, fully contained in the
closure of Sk. Then:
• If Eo = ∅, then either lL and lR are both internal to
Ik−1 or neither are.

• If Eo 6= ∅, then lL is internal to Ik−1 if the closest1

e ∈ Eo represents the beginning frontier arc, and not
internal otherwise. The opposite holds for lR.

The third and final step is to propagate the classification
from the neighborhoods to all points of the arcs of Lk. This
propagation again exploits Lemma 1. Notice that, so long as
the selection of viewpoints guarantees that either L?k 6= ∅ or
at least one local obstacle arc o has a non-empty Eo, this
third step is well defined.

Combined, these three steps determine which segments of
the k-th free boundary Lk are not in the interior of Ik−1 and
thus should be included in frontier Fk.

B. Viewpoint planner

Our approach to viewpoint planning is similar to the ex-
ploration algorithm in [11]. The properties of our viewpoint
planning method are laid out in the following Proposition.

Proposition 1. Given Fk and the set of prior viewpoints Vk,
the viewpoint planner will select the smallest set of view-
points Vk+1 ∈ Ik which satisfy the following constraints:

1) Area(Ik+1) will be strictly greater than Area(Ik), and
2) Fk is contained in the closure of ∪v∈Vk+1S(v).

Within these constraints, the viewpoint planner will maximize
the expected area exposed, Area(Ik+1)− Area(Ik).

Remark The viewpoint planner we present here is for circu-
lar sensor footprints of radius d. For more general footprints,
such as a limited field-of-view, our clearing algorithm could
also be applied provided a viewpoint selection method was
developed which met the conditions of Proposition 1.

With the distributed application in mind, we simplify the
planning of Vk+1 by constructing it from Vk. Let vk be the
viewpoint of the k-th perception. As detailed in Section III-
A, Fk can be partitioned into two sets: FExt

k−1 (a subset of
the prior frontier), and LExt

k (a subset of ∂Sk). Let F Int
k−1 be

the portion of Fk−1 which is inside the closure of Sk. The
procedure for constructing Vk+1 is as follows:

1) Remove vk.
2) Remove any v ∈ Vk which was assigned to guard an

obsolete portion of the frontier in F Int
k−1.

3) Add a set of new viewpoints V ′ to cover and expand
the new frontier segments LExt

k .
We will now describe how to choose V ′ around viewpoint
vk when LExt

k 6= ∅.
A free arc l ∈ Lk is considered relevant for viewpoint

planning if it contains one or more frontier arc fragments
from LExt

k . A relevant free arc may contain one or more
frontier arc fragments, and each frontier arc fragment will

1With respect to the distance on the arc o.

be entirely contained in one relevant free arc. Let LRel
k ⊆ Lk

denote the set of relevant free arcs around vk.
The goal of this local viewpoint planning can then be

restated as partitioning the frontier points of each lRel ∈
LRel
k among the fewest possible new viewpoints V ′ while

maximizing the expected exposed area beyond LExt
k .

The first step in our method for local viewpoint planning
is to determine how many new viewpoints will be needed to
cover each lRel ∈ LRel

k . As shown in Fig. 1, each lRel will be
comprised of straight radial segments and circular segments
with radius d. The possible configurations are: single radial;
single curved; curved with radial on one side; or curved
with radial segments on both sides. The following Lemma
simplifies the determination of when a radial segment is
covered by a viewpoint.

Lemma 3. Let v′ ∈ Sk be a potential new viewpoint, and
r ∈ LRel

k be a radial free arc segment. Let p be the far
endpoint of r and v′p be the line segment between v′ and p.
If dist (v′, p) < d and v′p only intersects ∂S at p, then open
set r will be contained inside of S (v′).

There are two notable consequences of Lemma 3. First,
for any lRel with only a radial segment, one viewpoint is
sufficient. Second, for any lRel which contains both curved
and radial segments, we only need to partition the curved
segment: the viewpoint which covers an endpoint of the
curved segment will also cover any attached radial segment.

To assist in selecting V ′ we introduce parameter dmin ∈
(0, d], the minimum distance between vk and any v ∈ V ′. As
will become clear, dmin encodes a trade-off in the algorithm:
smaller values of dmin reduce |V ′| and thereby reduce the
number of searchers required; larger values of dmin increase
the expected area exposed and thereby reduce the number of
iterations required to clear Q.

Let δ (lRel) be the angular width of lRel measured counter-
clockwise from the angle of the right-most frontier point on
lRel to the angle of the left-most frontier point on lRel.

A single new viewpoint at least dmin from vk can then
cover an angular width of at most α (dmin) given by

α (dmin) = 2 arccos (dmin/2d) ∈ [2π/3, π) .

The number of viewpoints η necessary to cover lRel is then
determined by the following Lemma:

Lemma 4. For any lRel ∈ LRel
k , η viewpoints will be required

where 1 ≤ η ≤ 3. In particular:
• if δ (lRel) ≤ 2π

3 , η = 1,
• if 2π

3 < δ (lRel) < π, 1 ≤ η ≤ 2,
• if π ≤ δ (lRel) < 2π, 2 ≤ η ≤ 3, and
• if δ (lRel) = 2π, η = 3.

For η > 1, the angular width of lRel is then partitioned
such that the first viewpoint covers [0, δ (lRel) /η], and each
subsequent viewpoint covers the next equally sized slice.

Once we know how many v′ are needed to cover each
lRel, the final step is to optimize the placement of each v′

to maximize the expected area it will expose. For every v′

there are two points, p1 and p2 ∈ lRel which must be covered:

NOTE: this is a Preprint Version.
To appear in Proc. of the 2010 IEEE Int. Conf. on Robotics and Automation, Anchorage, Alaska - May 2010

for a single radial segement, p1 and p2 are the endpoints of
the segment; for any other configuration, p1 and p2 are the
endpoints of the partition of the curved arc in lRel assigned
to v′. Let Sk(p1) and Sk(p2) be the subsets of Sk which are
known to be visible from p1 and p2, respectively. We then
choose v′ as a point in Sk(p1)∩Sk(p2) which minimizes the
sum of the distances to each frontier point in the partition of
lRel assigned to v′.

By construction, this method of selecting V ′ guarantees
that LExt

k ∈ ∪v′∈V ′S(v′). The following Lemma states that
it also ensures that Area (Ik+1)−Area (Ik) > 0:

Lemma 5. For each v′ ∈ V ′, S(v′) will cover some new
area A ∈ Q where Area (A) > 0 and Area (A ∩ Ik) = 0.

IV. THE DISTRIBUTED CLEARING ALGORITHM

For the distributed clearing algorithm the communication
graph is in general disconnected, necessitating a couple
changes from the centralized description. First, the global
frontier must be stored and updated in a distributed manner.
Second, viewpoint planning must be performed locally by
the frontier-guards. Furthermore, the distributed algorithm
cannot rely on a global localization system. Finally, while the
centralized version is synchronous, in the distributed setting
it is possible for perceptions from disconnected searchers to
be recorded at the same time.

We distribute the global frontier by having each frontier-
guard store its local frontier segments and update them
through communication with its neighboring frontier-guards.
This distributed storage and updating can always be achieved,
since (1) by the frontier guarding property, each global fron-
tier point is guarded by a frontier-guard; (2) the classification
of Lk requires only those frontier segments which intersect
it, and by assumption two robots whose footprints intersect
are in communication and are mutually localized (e.g., by
the method described in [14], or by scan matching).

Once the local frontier for a frontier guard has been
classified, viewpoint planning relies only on the local in-
formation. In addition, the execution of the path between
viewpoints can be done without global localization; since
both viewpoints lie inside the local perception, either local
odometry of reasonable accuracy or a registration of the
footprints taken from the two viewpoints will suffice. In
fact, frontier updating is also based only on current relative
positions, not the absolute position. The distributed algorithm
can, therefore, continue to clear an environment even if the
searchers cannot determine where they started.

The two classes of searchers from the centralized algo-
rithm are each split in two, yielding four possible states:
• Expand: When a searcher is assigned a new viewpoint

to move to, it enters the expand state until it reaches
the viewpoint and records a perception.

• Frontier-guard: Each frontier-guard i will remain sta-
tionary at its viewpoint and has complete control over
its local frontier segments, Fk,i. It must communicate
with neighboring frontier-guards to keep Fk,i updated,
plan new viewpoints to cover and expand Fk,i, and then
dispatch a followers to the new viewpoints.

• Follow: Followers passively follow and respond to com-
mands from their frontier-guard.

• Wander: Wanderers are followers who have not found a
frontier guard to follow. When a frontier-guard has no
more local frontier to guard, it and its former followers
must wander until they locate a frontier-guard to follow.

The four-state state machine and the distributed algorithm
are explained in Fig. 4 and 5. The key subroutines are:
• UpdateNeighbFrontier/Frontier: These two

functions perform a localized version of the frontier
update method in Section III-A. Searcher i first acquires
its neighbors’ current frontier segments, classifies Lk,i
using these segments, and then informs its neighbors if
any of their frontier segments lie within Sk,i.

• ViewPointPlan: This function follows the viewpoint
planning method in Section III-B. It determines how
many viewpoints are needed based on the number and
angular width of the relevant free arcs. Then, the single
best new viewpoint is chosen from Sk,i.

• PathToViewPoint: Determines the shortest path
from the old viewpoint to the new viewpoint inside Sk,i,
which will be a straight line if Sk,i is star-shaped.

• SearchForLeader: This function does a random
walk with two additional behaviors. If a wanderer en-
counters a frontier-guard or expander, then it switches to
following this leader. If two wanderers come in contact,
they may join together to form a wandering blob.

The behavior of the frontier-guards in this distributed
clearing algorithm guarantees the frontier guarding property
from Section III. When expander i reaches its viewpoint and
makes a perception, it then enters the stationary frontier-
guard state. So long as i remains a frontier-guard, it will
maintain complete coverage of the frontier segments in Fk,i.
Searcher i will only leave the frontier-guard state if either
Fk,i is erased by a new neighbor, or if i determines that one
new viewpoint is sufficient to cover Fk,i and that the path
to the viewpoint also maintains coverage of Fk,i.

The combination of the frontier guarding property and
Lemma 5 guarantees that the distributed algorithm will
successfully clear all of Q, assuming there are sufficient
searchers available. When the task is completed, all searchers
will be in the Wander state. If all-to-one communication is
available (i.e., if all robots can communicate back to a central
security center), then detecting task completion is trivial. In
the most general case, the searchers will have to determine
the task is complete by querying the other searchers. In the
absence of global localization or other means of assuring
rendezvous, our proposal is that robots in the Wander state
clump together when they encounter each other to form
wandering blobs. Eventually, through the random walks of
these growing blobs, all searchers will be joined into a single
blob and task completion can be easily detected.

V. SIMULATIONS

To demonstrate the utility of the proposed distributed
clearing algorithm, we implemented it in the open-source
Player/Stage robot software system [13] using the Multirobot

NOTE: this is a Preprint Version.
To appear in Proc. of the 2010 IEEE Int. Conf. on Robotics and Automation, Anchorage, Alaska - May 2010

Procedure Expand
Data: frontier,path
foreach follower in followers do1

Send(follower,“follow”,path);2

Move(path);3
{S, ∂S,L} ← Perceive();4
neighbFront ← UpdateNeighbFront();5
frontier ← Frontier({S, ∂S,L},frontier,neighbFront);6
DoBehavior(“Frontier-Guard”,S,frontier);7

Procedure Frontier-Guard
Data: S,frontier
if frontier is empty then1

Send(followers,“wander”);2
DoBehavior(“Wander”);3

(bestVP,NumVPs) ← ViewPointPlan(S,frontier);4
path ← PathToViewPoint(S,bestVP);5
if NumVPs == 1 then6

DoBehavior(“Expand”,frontier,path);7

else8
if followers has at least one follower then9

follower ← PopFollower(followers);10
Send(follower,“expand”,path);11
WaitForFollower(follower);12

else13
while no new neighbor and no followers do14

Sleep();15

DoBehavior(“Frontier-Guard”,S,frontier);16

Procedure Follow
Receive(Leader,message,path);1
switch message do2

case “follow”3
Move(path);4

case “expand”5
DoBehavior(“Expand”,∅,path);6

case “wander”7
DoBehavior(“Wander”);8

Procedure Wander
SearchForLeader();1
if leader found then2

DoBehavior(“Follow”);3

if all searchers wandering then4
exit5

Fig. 4. Details of the actions taken by searchers in each of the four possible
searcher roles: Expand, Frontier-guard, Follow, and Wander.

Expand

Frontier-
Guard

Follow

Wander

Fig. 5. State machine diagram for the distributed clearing algorithm.

Fig. 6. A simulation of three circular robots sweeping an environment
with holes to locate the triangular evaders, with images ordered left-to-right
and then top-to-bottom. The discretized boundary of each frontier-guard’s
current footprint, ∂S, is shown using colored squares where dark-red is
used for local frontier segments.

0 5 10 15
0%

20%

40%

60%

80%

100%

Iteration Number

P
e
rc

e
n

t
A

re
a
 C

le
a
re

d

 0

 30

 60

 90

 120

 150

F
ro

n
ti

e
r

C
e
ll

s
 P

e
r

G
u

a
rd

Fig. 7. For the simulation in Fig. 6, the percentage of the total free space
cleared at each iteration is plotted with blue squares against the left axis,
while the average frontier cells stored per frontier-guard is plotted with
green circles against the right axis.

Integrated Platform [15]. Perceptions are implemented as
local occupancy grids, with oriented frontier arcs handled as
ordered sequences of cells. Each robot stores only its most
recent perception and its local frontier.

Three simulations of the algorithm in action are shown
in the video included with the submission of this paper and
are described in this Section. The first simulation features
three searchers clearing an environment with two large holes
and three evaders. The progression in Fig. 6 begins at the
top-left, where the robots start expanding from a corner of
the map. The second screenshot shows the searcher clearing
the lower passage waiting for help to cover one of its two
frontier segments. Once the central vertical passage is cleared
by another searcher, the trio continue on to complete their
sweep. Fig. 7 shows the total percentage of the free space
cleared by the robots for each iteration (where a new iteration
begins with each recorded perception), as well as the number
of frontier cells stored per frontier-guard.

In the second simulation, six searchers track down five
evaders in a larger multiply-connected environment. Two
screenshots are shown in Fig. 8, where the robots begin in

NOTE: this is a Preprint Version.
To appear in Proc. of the 2010 IEEE Int. Conf. on Robotics and Automation, Anchorage, Alaska - May 2010

Fig. 8. Two screenshots from a simulation of six circular robots clearing
an environment containing five triangular evaders.

0 5 10 15 20 25 30 35
0%

20%

40%

60%

80%

100%

Iteration Number

P
e
rc

e
n

t
A

re
a
 C

le
a
re

d

 0

 30

 60

 90

 120

 150

F
ro

n
ti

e
r

C
e
ll

s
 P

e
r

G
u

a
rd

Fig. 9. For the simulation in Fig. 8, the percentage of the total free space
cleared at each iteration is plotted with blue squares against the left axis,
while the average frontier cells stored per frontier-guard is plotted with
green circles against the right axis.

a corner of the map before spreading out to cover the free
space. Notice that in the second image there are two groups
of searchers which are separated and cannot communicate
with each other. Fig. 9 shows the total area cleared and
the frontier cells stored over the iterations of the algorithm.
This plot shows that the number of frontier cells stored per
frontier-guard is independent of the area cleared.

The third and final simulation consists of twelve searchers
expanding in a vast empty environment. Using only the
local viewpoint optimizations discussed in Section III-B, the
paths taken and the final configuration shown in Fig. 10
closely approximate the globally optimal trajectories where
the searchers fan out until they are equally spaced on the
circumference of a large circle with their sensor footprints
just touching.

VI. FUTURE WORK

There are a number of interesting future directions for this
work. First, the specification of a general viewpoint planner
for sensors with a limited field-of-view would extend the
algorithm to a much broader class of hardware. The devel-
opment of bounds on the number of d−searchers required to
clear an environment would also be a significant contribu-
tion. Another extension would be to guarantee a connected
communication graph for the searchers at all times, perhaps
including a connection back to the initial starting point.

Fig. 10. Final configuration of 12 robots clearing as much area as the can
in an empty environment, with tracks showing the paths of each robot.

Finally, the frontier concept could also be applied to three-
dimensional environments.

REFERENCES

[1] I. Suzuki and M. Yamashita, “Searching for a mobile intruder in a
polygonal region,” SIAM Journal on Computing, vol. 21, no. 2, pp.
863–888, 1992.

[2] B. P. Gerkey, S. Thrun, and G. Gordon, “Visibility-based pursuit-
evasion with limited field of view,” International Journal of Robotics
Research, vol. 25, no. 4, pp. 299–315, 2006.

[3] S. Sachs, S. Rajko, and S. M. LaValle, “Visibility-based pursuit-
evasion in an unknown planar environment,” International Journal of
Robotics Research, vol. 23, no. 1, pp. 3–26, 2004.

[4] G. Hollinger, S. Singh, J. Djugash, and A. Kehagias, “Efficient multi-
robot search for a moving target,” International Journal of Robotics
Research, vol. 28, no. 2, pp. 201–219, 2009.

[5] T. D. Parsons, “Pursuit-evasion in a graph,” in Theory and Applications
of Graphs, ser. Lecture Notes in Mathematics, Y. Alavi and D. Lick,
Eds. Springer, 1978, vol. 642, pp. 426–441.

[6] M. Adler, H. Räcke, N. Sivadasan, C. Sohler, and B.Vöcking, “Ran-
domized pursuit-evasion in graphs,” Combinatorics, Probability and
Computing, vol. 12, no. 3, pp. 225–244, 2003.

[7] A. Kolling and S. Carpin, “Multi-robot surveillance: an improved
algorithm for the graph-clear problem,” in 2008 IEEE Int. Conf. on
Robotics and Automation, Pasadena, CA, May 2008, pp. 2360–2365.

[8] B. Yamauchi, “Frontier-based exploration using multiple robots,” in
2nd Int. Conf. on Autonomous Agents, Minneapolis, MN, May 1998,
pp. 47–53.

[9] A. Howard, M. J. Matarić, and G. S. Sukhatme, “An incremental
self-deployment algorithm for mobile sensor networks,” Autonomous
Robots, vol. 13, no. 2, pp. 113–126, 2002.

[10] A. Ganguli, J. Cortes, and F. Bullo, “Distributed deployment of
asynchronous guards in art galleries,” in 2006 American Control
Conference, Minneapolis, MN, Jun. 2006, pp. 1416–1421.

[11] A. Franchi, L. Freda, G. Oriolo, and M. Vendittelli, “The sensor-based
random graph method for cooperative robot exploration,” IEEE/ASME
Transactions on Mechatronics, vol. 14, no. 2, pp. 163–175, 2009.

[12] L. J. Guibas, J.-C. Latombe, S. M. Lavalle, D. Lin, and R. Motwani,
“A visibility-based pursuit-evasion problem,” International Journal of
Computational Geometry & Applications, vol. 9, no. 4/5, pp. 471–494,
1999.

[13] B. Gerkey and contributors, “The Player/Stage Project,”
http://playerstage.sourceforge.net, July 2009,
version 2.13.

[14] A. Franchi, G. Oriolo, and P. Stegagno, “Mutual localization in a multi-
robot system with anonymous relative position measures,” in 2009
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, St. Louis,
MO, Oct. 2009, pp. 3974–3980.

[15] A. Franchi and P. Stegagno, “Multirobot Integrated Platform,”
http://www.dis.uniroma1.it/ labrob/software/MIP/,
Aug. 2009.

NOTE: this is a Preprint Version.
To appear in Proc. of the 2010 IEEE Int. Conf. on Robotics and Automation, Anchorage, Alaska - May 2010

