
Synchronization and Transient Stability in Power Networks and
Non-Uniform Kuramoto Oscillators

Florian Dörfler and Francesco Bullo

Abstract— Motivated by recent interest for multi-agent sys-
tems and smart grid architectures, we discuss the synchroniza-
tion problem for the network-reduced model of a power system
with non-trivial transfer conductances. Our key insight is to
exploit the relationship between the power network model and a
first-order model of coupled oscillators. Assuming overdamped
generators (possibly due to local excitation controllers), a
singular perturbation analysis shows the equivalence between
the classic swing equations and a non-uniform Kuramoto model
characterized by multiple time constants, non-homogeneous
coupling, and non-uniform phase shifts. By extending methods
from synchronization theory and consensus protocols, we es-
tablish sufficient conditions for synchronization of non-uniform
Kuramoto oscillators. These conditions reduce to and improve
upon previously-available tests for the classic Kuramoto model.
By combining our singular perturbation and Kuramoto analy-
ses, we derive concise and purely algebraic conditions that relate
synchronization and transient stability of a power network to
the underlying network parameters and initial conditions.

I. INTRODUCTION

The vast North American interconnected power grid is
often referred to as the largest and most complex machine
engineered by humankind. The envisioned future power grid
is expected to be even more complex than the current one and
will rely increasingly on renewable energy sources, such as
wind and solar power, which cause stochastic disturbances.
Thus, the future power grid is more prone to instabilities,
which can ultimately lead to power blackouts. The detection
and rejection of such instability mechanisms will be one of
the major challenges faced by the future “smart grid”.

One form of power network stability is the so-called
transient stability, which is the ability of a power system
to remain in synchronism when subjected to large transient
disturbances such as faults on transmission elements or loss
of load, generation, or system components. For example,
a recent major blackout in Italy in 2003 was caused by
tripping of a tie-line and resulted in the loss of synchronism
of the Italian power grid with the rest of Europe. In a classic
setting the transient stability problem is posed as a special
case of the more general synchronization problem, which
considers a possibly longer time horizon, possibly drifting
generator rotor angles, and local excitation controllers aiming
to restore synchronism. In order to analyze the stability of a
synchronous operating point of a power grid and to estimate
its region of attraction, various sophisticated methods have
been developed [2], [3], [4], [5], [6]. Surveys on transient
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stability analysis can be found in [7], [8], [9]. Unfortunately,
the existing methods can cope only with simplified models
and do not result in simple conditions to check if a power sys-
tem synchronizes for a given network state and parameters.
In fact, it is an outstanding problem to relate synchronization
and transient stability of a power network to the underlying
network parameters, state, and topology [10].

The recent years have witnessed a burgeoning interest of
the control community in cooperative control of multi-agent
systems. One of the basic tasks in a multi-agent system is a
consensus of the agents’ states to a common value [11]. This
consensus problem finds applications in robotic coordination,
distributed sensing and computation, and various other fields
including synchronization. In most articles treating consensus
problems the agents obey single integrator dynamics, but the
synchronization of interconnected power systems has often
been envisioned as possible future application [12]. However,
we are aware of only one article [13] that indeed applies
consensus methods to a power network model.

Another set of literature relevant to our investigation is the
synchronization in the coupled oscillator model introduced
by Kuramoto [14]. The synchronization of coupled Kuramoto
oscillators has been widely studied by the physics [15], [16]
and the dynamical systems communities [17], [18]. This
vast literature with numerous theoretical results and rich
applications to various scientific areas is elegantly reviewed
in [19], [20]. Recent works in the control community [21],
[22], [23], [24] investigate the close relationship between
Kuramoto oscillators and consensus networks.

The three areas of power network synchronization, Ku-
ramoto oscillators, and consensus protocols are apparently
closely related. Indeed, the similarity between the Kuramoto
model and the power network models used in transient sta-
bility analysis is striking. Even though power networks have
often been referred to as coupled-oscillators systems, the
similarity to a second-order Kuramoto-type model has been
mentioned only recently in the power systems community
in simulation studies for simplified models [25], [26], [27].
In the coupled-oscillators literature, second-order Kuramoto
models have often been analyzed [20], but we know of only
one article mentioning power networks [28]. In short, neither
the Kuramoto nor the power systems literature has recog-
nized and thoroughly analyzed this apparent connection.

There are three main contributions in the present pa-
per. First, we present a coupled-oscillators approach to the
problem of synchronization and transient stability in power
networks. Via a singular perturbation analysis, we show that
the transient stability analysis for the classic swing equations
with overdamped generators reduces, on a long time-scale,
to the problem of synchronizing non-uniform Kuramoto
oscillators with multiple time constants, non-homogeneous



coupling, and non-uniform phase shifts. This reduction to a
non-uniform Kuramoto model is arguably the missing link
connecting transient stability analysis and networked control,
a link that was hinted at in [10], [12], [25], [26], [27], [28].

Second, we give novel and purely algebraic conditions that
suffice for synchronization and transient stability of a power
network. To the best of our knowledge these conditions are
the first ones to relate synchronization and performance of a
power network directly to the underlying network parameters
and initial state. Our conditions are based on different and
possibly less restrictive assumptions than those obtained by
classic analysis methods [2], [3], [4], [5], [6]. We consider
a network-reduction model of a power system and do not
make any of the following common or classic assumptions:
we do not require uniform mechanical damping, we do not
require the swing equations to be formulated in relative
coordinates or the existence of an infinite bus, and we do not
require the transfer conductances to be “sufficiently small” or
even negligible. On the other hand, our results are based on
the assumption that each generator is strongly overdamped,
possibly due to internal excitation control. This assumption
allows us to perform a singular perturbation analysis and
study a dimension-reduced system. In simulations, our syn-
chronization conditions appear to hold even if generators
are not overdamped, and in the application to real power
networks the approximation via the reduced system has been
used successfully in academia and industrial practice.

Our synchronization conditions are based on an analytic
approach whereas classic analysis methods [2], [3], [4], [5],
[6] rely on numerical procedures to approximate the region of
attraction of an equilibrium by level sets of energy functions
and stable manifolds. Compared to classic analysis methods,
we do not aim at providing best estimates of the region of
attraction or the critical clearing time. Rather, we approach
the outstanding problem [10] of relating synchronization
and transient stability to the underlying network structure.
For this problem, we derive sufficient and purely algebraic
conditions that can be interpreted as follows: “the network
connectivity has to dominate the network’s non-uniformity,
the network’s losses, and the lack of phase locking”

Third and final, we perform a synchronization analysis of
non-uniform Kuramoto oscillators, as an interesting math-
ematical problem in its own right. Our analysis combines
and extends methods from consensus protocols and synchro-
nization theory. As an outcome, purely algebraic conditions
on the network parameters and the system state establish
the phase locking, frequency entrainment, and phase syn-
chronization of the non-uniform Kuramoto oscillators. We
emphasize that our results do not hold only for non-uniform
network parameters but also in the case when the underlying
coupling topology is not a complete graph. When our results
are specialized to classic (uniform) Kuramoto oscillators,
they reduce to and even improve upon various well-known
conditions in the literature on the Kuramoto model [15], [17],
[22], [23], [24], [29]. In the end, these conditions guaran-
teeing synchronization of non-uniform Kuramoto oscillators
also suffice for the transient stability of the power network.

Paper Organization: The remainder of this section in-
troduces some notation and recalls the consensus protocol
and the Kuramoto model. Section II reviews the problem

of transient stability analysis and synchronization in power
networks. Section III introduces the non-uniform Kuramoto
model and presents the main result of this article. Section IV
applies a singular perturbation analysis to the power network
model resulting in the non-uniform Kuramoto model, which
is analyzed in Section V. Section VI illustrates the analytical
results via simulation studies. Finally, some conclusions are
drawn in Section VII. All proofs and further references can
be found in the full-length version of this article [1].

Preliminaries and Notation: Given an n-tuple
(x1, . . . , xn), diag(xi) ∈ Rn×n is the associated diagonal
matrix, x ∈ Rn is the associated vector, xmax and xmin
are the maximum and minimum elements, and ‖x‖2 is
the 2–norm. Let 1 and 0 be the vectors with unit and
zero entries of appropriate dimension. Given an array
{Aij} with i, j ∈ {1, . . . , n}, we let A ∈ Rn×n denote
the associated matrix and we define Amax = maxi,j{Aij}
Amin = mini,j{Aij}. Define the sinc function sinc : R→ R
by sinc(x) = sin(x)/x. The set T1 = (−π, π] is the torus
and the product set Tn is the n-torus. Given two angles
θ1 ∈ T1 and θ2 ∈ T1 we define their distance |θ1−θ2|, with
slight abuse of notation, to be the geodesic distance on T1.

A weighted directed graph is a triple G = (V, E , A), where
V = {1, . . . , n} is the set of nodes, E ⊂ V × V is the set
of directed edges, and A ∈ Rn×n is the adjacency matrix
inducing the graph. The Laplacian is the matrix L(aij) :=
diag(

∑n
j=1 aij)−A. For an undirected graph, i.e., A = AT ,

let H ∈ R|E|×n be the incidence matrix inducing, for x ∈
Rn, the vector of difference variables Hx= (x2 − x1, . . . ).
If G is connected, then ker(H)=ker(L(aij))=span(1), all
n − 1 remaining eigenvalues of L(aij) are strictly positive,
and the second-smallest eigenvalue λ2(L(aij)) is referred
to as the algebraic connectivity of G. Finally, the set {i, j}
refers to the pair of nodes connected by either (i, j) or (j, i).

Review of the Consensus Protocol and the Kuramoto
Model: In a system of n autonomous agents, each char-
acterized by a state variable xi ∈ R, a basic task is to
achieve a consensus on a common state value, that is,
xi(t)−xj(t)→ 0 as t→∞ for all agent pairs {i, j}. Given
a graph with adjacency matrix A describing the interaction
between agents, a linear continuous time algorithm to achieve
consensus on the agents’ state is the consensus protocol

ẋi = −
∑n

j=1
aij(xi − xj), i ∈ {1, . . . , n} . (1)

In vector notation the consensus protocol (1) takes the form
ẋ = −L(aij)x and directly reveals the underlying graph G.

A well-known and widely used model for the synchro-
nization among coupled oscillators is the Kuramoto model,
which considers n coupled oscillators with state θi ∈ T1 and
natural frequency ωi ∈ R, and with the dynamics

θ̇i = ωi −
K

n

∑n

j=1
sin(θi − θj), i ∈ {1, . . . , n} , (2)

where K is the coupling strength among the oscillators.

II. PROBLEM SETUP IN SYNCHRONIZATION AND
TRANSIENT STABILITY ANALYSIS

A. The Mathematical Model of a Power Network
In a power network with n generators we associate with

each generator its internal voltage Ei > 0, its active power



output Pe,i, its mechanical power input Pm,i > 0, its inertia
Mi > 0, its damping constant Di > 0, and its rotor angle θi
measured with respect to a rotating frame with frequency f0.
All parameters are given in per unit system, except for Mi

and Di which are given in seconds, and f0 is typically given
as 50 Hz or 60 Hz. The rotor dynamics of generator i are
then given by the classic constant-voltage behind reactance
model of interconnected swing equations [7], [30]

Mi

πf0
θ̈i = −Diθ̇i + Pm,i − Pe,i, i ∈ {1, . . . , n} .

Under the common assumption that the loads are modeled
as passive admittances, all passive nodes of a power network
can be eliminated resulting in the reduced admittance matrix
with components Yij = Gij+

√
−1Bij , where Gij = Gji ≥

0 and Bij = Bji > 0 are the conductance and susceptance
between generator i and j in per unit values. With the power-
angle relationship, the electrical output power Pe,i is then

Pe,i =
∑n

j=1
EiEj (Gij cos(θi − θj) +Bij sin(θi − θj)) .

Given the admittance Yij between generator i and j, define
the magnitude |Yij | = (G2

ij+B
2
ij)

1/2 > 0 and the phase shift
ϕij = arctan(Gij/Bij) ∈ [0, π/2) depicting the energy loss
due to the transfer conductance Gij . Recall that a lossless
network is characterized by zero phase shifts. Furthermore,
we define the natural frequency ωi := Pm,i−E2

iGii (effective
power input to generator i) and the coupling weights Pij :=
EiEj |Yij | (maximum power transferred between generators
i and j) with Pii := 0 for i ∈ {1, . . . , n}. The power network
model can then be formulated compactly as
Mi

πf0
θ̈i = −Diθ̇i + ωi −

∑n

j=1
Pij sin(θi − θj + ϕij) . (3)

Note that higher order electrical and flux dynamics can be
reduced into an augmented damping constant Di in (3)
[31]. The generator’s internal excitation control essentially
increases the damping torque towards the net frequency and
can also be reduced into the damping constant Di [30], [31].
It is commonly agreed that the classical model (3) captures
the power system dynamics sufficiently well during the first
swing. Thus we omit higher order dynamics and control
effects and assume they are incorporated into the model (3).

B. Synchronization and Equilibrium in Power Networks
A frequency equilibrium of the power network model (3)

is characterized by θ̇ = 0 and by the power flow equations

Pi(θ) = Pm,i − E2
iGii − Pe,i ≡ 0, i ∈ {1, . . . , n} , (4)

depicting the power balance. The generators are said to be in
a synchronous equilibrium, if the phase differences θi−θj are
constant, respectively the frequency differences θ̇i − θ̇j are
zero. We say the power network synchronizes (exponentially)
if the phase differences θi(t) − θj(t) become bounded and
the frequency differences θ̇i(t)−θ̇j(t) converge to zero (with
exponential decay rate) as t → ∞. In the literature on
coupled oscillators this is also referred to as phase locking
and frequency entrainment, and the case θi = θj for all
i, j ∈ {1, . . . , n} is referred to as phase synchronization.

In order to reformulate the synchronization problem as
a stability problem, system (3) is usually formulated in

relative coordinates and, to render the resulting dynamics
self-contained, uniform damping is assumed, i.e., Di/Mi is
constant. Alternatively, sometimes the existence of an infinite
bus (a stationary generator without dynamics) as reference
is postulated. We remark that both of these assumptions are
not physically justified but are mathematical simplifications
to reduce the synchronization problem to a stability analysis.

C. Review of Classic Transient Stability Analysis
Classically, transient stability analysis deals with a special

case of the synchronization problem, namely the stability
of a post-fault equilibrium, that is, a new equilibrium of (3)
arising after a change in the network parameters or topology.
To analyze the stability of a post-fault equilibrium and to
estimate its region of attraction various sophisticated methods
have been developed [7], [8], [9], which typically employ
the Hamiltonian structure of system (3). Since in general a
Hamiltonian for model (3) with non-zero conductances does
not exist, early analysis approaches neglect the phase shifts
[2], [3]. In this case, the power network model (3) takes form

(M/πf0) θ̈ = −Dθ̇ −∇U(θ) , (5)

where ∇ is the gradient operator and U : (−π, π]n → R is
the potential energy given up to an additive constant by

U(θ) = −
∑n

i=1
ωiθi+

∑n

j=1
Pij (1− cos(θi − θj)) . (6)

When system (5) is formulated in relative or reference
coordinates (that feature equilibria), the energy function
(θ, θ̇) 7→ (1/2) θ̇T (M/πf0)θ̇ + U(θ) serves semi-globally
as a Lyapunov function and clearly implies convergence of
the dynamics (5) to θ̇ = 0 and the largest invariant zero level
set of ∇U(θ). In order to estimate the region of attraction of
a stable equilibrium, algorithms such as PEBS [3] or BCU
[5] consider the associated dimension-reduced gradient flow

θ̇ = −∇U(θ) . (7)

Then (θ∗,0) is a hyperbolic type-k equilibrium of (5) (i.e.,
the Jacobian has k stable eigenvalues) if and only if (θ∗) is a
hyperbolic type−k equilibrium of (7). Moreover, the regions
of attractions of both equilibria are bounded by the stable
manifolds of the same unstable equilibria [5, Theorem 5.7].

For fixed and “sufficiently small” transfer conductances
the lossy power system (3) can be analyzed locally as a
perturbation of the lossless system (5) [5]. Other approaches
to lossy power networks compute numerical energy functions
[4] or make use of an extended invariance principle [6].
Based on these results numerical methods were developed
to approximate the stability boundaries of (5) by level sets
of energy functions or stable manifolds of unstable equilibria.

To summarize the shortcomings of the classical transient
stability analysis methods, they consider simplified models
formulated in relative or reference coordinates and mostly
result in numerical procedures rather than in concise and
simple conditions. For lossy power networks the cited articles
consider either special benchmark problems or networks with
“sufficiently small” transfer conductances. To the best of our
knowledge there are no results quantifying this smallness for
arbitrary networks. Moreover, from a network perspective the
existing methods do not result in conditions relating synchro-
nization to the network’s parameters, state, and topology.



III. THE NON-UNIFORM KURAMOTO MODEL AND MAIN
SYNCHRONIZATION RESULT

A. The Non-Uniform Kuramoto Model
The similarity between the power network model (3)

and the Kuramoto model (2) is striking. To emphasize this
similarity, we define the non-uniform Kuramoto model by

Di θ̇i = ωi −
∑n

j=1
Pij sin(θi − θj + ϕij) , (8)

where i ∈ {1, . . . , n} and the parameters satisfy the follow-
ing ranges: Di > 0, ωi ∈ R, Pij > 0, and ϕij ∈ [0, π/2), for
all i, j ∈ {1, . . . , n}, i 6= j; by convention, Pii and ϕii are
set to zero. System (8) may be regarded as a generalization of
the classic Kuramoto model (2) with multiple time-constants
Di and non-homogeneous but symmetric coupling terms Pij
and phase-shifts ϕij . The non-uniform Kuramoto model (8)
will serve as a link between the power network model (3),
the Kuramoto model (2), and the consensus protocol (1).

Remark III.1 (Second-order mechanical systems and
their first-order approximations:) The non-uniform Ku-
ramoto model (8) can be seen as a long-time approximation
of the second order system (3) for a small “inertia over
damping ratio” Mi/Di or, more specifically, for a ratio
2Mi/Di much smaller than the net frequency 2πf0. Spoken
differently, system (8) can be obtained by a singular per-
turbation analysis of the second-order system (3). Note the
analogy between the non-uniform Kuramoto model (8) and
the dimension-reduced gradient system (7), which is often
studied in classic transient stability analysis to approximate
the stability properties of the second-order system (5) [3],
[5], [9]. Both models are of first order, have the same right-
hand side, and thus also the same equilibria with the same
stability properties. Strictly speaking, both models differ only
in the time constants Di. The dimension-reduced system (7)
is formulated as a gradient-system and is used to study the
stability of the equilibria of (7) (possibly formulated in rela-
tive coordinates). The non-uniform Kuramoto model (8), on
the other hand, can be directly used to study synchronization
and clearly reveals the underlying network structure. �

B. Main Synchronization Result
We are now ready to state our main result on the power

network model (3) and the non-uniform Kuramoto model (8).

Theorem III.1 (Main synchronization result) Consider
the power network model (3) and the non-uniform Kuramoto
model (8). Assume that the minimal coupling weight is larger
than a critical value, i.e., for every i, j ∈ {1, . . . , n}

Pmin > Pcritical :=
Dmax

n cos(ϕmax)
×(

max
{i,j}

( ωi
Di
− ωj
Dj

)
+ max

i

∑n

j=1

Pij
Di

sin(ϕij)
)
. (9)

Accordingly, define γmin = arcsin(cos(ϕmax)Pcritical/Pmin)
taking value in (0, π/2−ϕmax). For γ ∈ [γmin, π/2−ϕmax),
define the (non-empty) set of bounded phase differences
∆(γ) := {θ ∈ Tn : max{i,j} |θi − θj | ≤ γ}.
For the non-uniform Kuramoto model,

1) phase locking: for every γ ∈ [γmin, π/2 − ϕmax) the
set ∆(γ) is positively invariant; and

2) frequency entrainment: if θ(0) ∈ ∆(γ), then the
frequencies θ̇i(t) synchronize exponentially to some
frequency θ̇∞ ∈ [θ̇min(0), θ̇max(0)].

For the power network model with initial phases satisfying
θ(0) ∈ ∆(γ) and any initial frequencies θ̇(0),

1) approximation error: there exists a constant ε∗ > 0
such that, if ε := (Mmax)/(πf0Dmin) < ε∗, then the
solution (θ(t), θ̇(t)) of (3) exists for all t ≥ 0 and it
holds uniformly in t that

θ(t)− θ̄(t) = O(ε), ∀t ≥ 0 ,

θ̇(t)−D−1P (θ̄(t)) = O(ε), ∀t > 0 ,
(10)

where θ̄(t) is the solution to the non-uniform Kuramoto
model (8) with initial condition θ̄(0) = θ(0) and
D−1P (θ̄) is the power flow (4) scaled by D−1; and

2) asymptotic approximation error: there exists ε and
ϕmax sufficiently small, such that the O(ε) approxima-
tion errors in equation (10) converge to zero as t→∞.

We discuss the assumption that the perturbation parameter
ε needs to be small separately and in detail in the next
subsection and state the following remarks to Theorem III.1.

Remark III.2 (Physical interpretation of Theorem III.1:)
The condition (9) on the network parameters has a direct
physical interpretation when it is rewritten as

n
Pmin

Dmax
cos(ϕmax)>max

{i,j}

( ωi
Di
− ωj
Dj

)
+max

i

n∑
j=1

Pij
Di

sin(ϕij) .

(11)
The right-hand side of (11) states the worst-case non-
uniformity in natural frequencies and the worst-case lossy
coupling of a node to the network (Pij sin(ϕij) = EiEjGij
reflects the transfer conductance), both of which are scaled
with the rates Di. These negative effects have to be domi-
nated by the left-hand side of (11), which is a lower bound
on mini{

∑n
j=1 Pij cos(ϕij)/Di}, the worst-case lossless

coupling of a node i to the network. The gap between the
left- and the right-hand side in (11) determines the ultimate
lack of phase locking in ∆(γ). In summary, the conditions
of Theorem III.1 read as “the network connectivity has to
dominate the network’s non-uniformity, the network’s losses,
and the lack of phase locking.” The minimal coupling weight
Pmin in condition (9) is not only the weakest power flow but
reflects for uniform voltages Ei and phase shifts ϕij also the
maximum pairwise effective resistance of the original non-
reduced power network. The effective resistance is a well
studied graphical property and is related to the algebraic
connectivity and the graph-topological distance. �

Remark III.3 (Refinement of Theorem III.1:) Theorem
III.1 can also be stated for a non-complete but connected
coupling graph and two-nom-like bounds on the parameters
and initial conditions involving the algebraic connectivity
(see Theorem V.3). In the case of a lossless network, explicit
values for the synchronization frequency and the exponential
synchronization rate can be derived, and conditions for phase
synchronization can be given (see Section V). �



Remark III.4 (Reduction of Theorem III.1 to classic
Kuramoto oscillators:) When specialized to classic (uni-
form) Kuramoto oscillators (2), the presented condition (9)
improves the results obtained by [15], [17], [23], [24], [29].
We refer the reader to the detailed remarks in Section V. �

C. Discussion of the Perturbation Assumption

The assumption that each generator is strongly over-
damped is captured by the smallness of the perturbation
parameter ε = (Mmax)/(πf0Dmin). This choice of the pertur-
bation parameter ε and the subsequent singular perturbation
analysis is similar to the analysis of Josephson arrays [16],
coupled overdamped mechanical pendula [32], and also
classic transient stability analysis [3, Theorem 5.2], [27].

In the linear case, this analysis resembles the well-known
overdamped harmonic oscillator, which features one slow
and one fast eigenvalue. The harmonic oscillator thus exhibits
two separate time-scales and the fast eigenvalue correspond-
ing to the frequency damping can be neglected in the long-
term phase dynamics. In the non-linear case these two
distinct time-scales are captured by a singular perturbation
analysis. In short, this dimension-reduction of a coupled-
pendula system corresponds to the physical assumption that
damping and synchronization happen on separate time scales.

In the application to realistic generator models one has to
be careful under which operating conditions ε is indeed a
small physical quantity. Typically, Mi ∈ [2s, 8s] depending
on the type of generator and the mechanical damping (includ-
ing damper winding torques) is poor: Di ∈ [1, 2]/(2πf0).
However, for the synchronization problem also the gen-
erator’s internal excitation control have to be considered
which increase the damping torque to Di ∈ [10, 35]/(2πf0)
depending on the load [30], [31]. In this case, ε ∈ O(0.1) is
small and a singular perturbation approximation is accurate.

We note that the simulation studies in Section VI show
an accurate approximation of the power network by the non-
uniform Kuramoto model also for larger values of ε.

The assumption that ε is small seems to be crucial for
the approximation of the power network model by the non-
uniform Kuramoto model. However, similar results can also
be obtained independently of the magnitude of ε. In Remark
III.1 we discussed the similarity between the non-uniform
Kuramoto model (8) and the dimension-reduced system (7)
considered in classic transient stability analysis. The tran-
sient stability literature derived various static and dynamic
analogies between the power network model (3) and the
reduced first-order model (7) [3], [5]. Among other things,
both models have the same equilibria with the same local
stability properties and comparable regions of attractions, as
mentioned earlier. These results hold independently of the
magnitude of ε, have been successfully applied in academia
and in industry [9], and support the approximation of the
power network model by the non-uniform Kuramoto model.

IV. SINGULAR PERTURBATION ANALYSIS

This section puts the approximation of the power network
model (3) by the non-uniform Kuramoto model (8) on
solid mathematical ground. With the perturbation parameter
ε = Mmax/(πf0Dmin) the power network model (3) can be

reformulated as the singular perturbation problem

εθ̈i = −Fiθ̇i+
Fi
Di

(
ωi−

∑n

j=1
Pij sin(θi−θj+ϕij)

)
, (12)

where Fi :=(Di/Dmin)/(Mi/Mmax) for i∈{1, . . . , n}. For ε=
0, system (12) reduces to the non-uniform Kuramoto model
(8) or, after freezing time, it reduces to the set of algebraic
equations θ̇i = Pi(θ)/Di, where Pi(θ) is the power flow (4).
For ε sufficiently small, the synchronization dynamics of (12)
can be approximated by the non-uniform Kuramoto model
(8) and the power flow (4), where the terms Fi will determine
the speed of convergence of the initial approximation error.

Theorem IV.1 (Singular Perturbation Approximation)
Consider the power network model (3) written as the singular
perturbation problem (12) with initial conditions (θ(0), θ̇(0))
and solution (θ(t, ε), θ̇(t, ε)). Consider furthermore the non-
uniform Kuramoto model (8) as the reduced model with
initial condition θ(0) and solution θ̄(t), the quasi-steady state
h(θ) defined component-wise as hi(θ) := Pi(θ)/Di, and the
boundary layer error yi(t/ε) := (θ̇i(0) − hi(θ(0))) e−Fit/ε

for i ∈ {1, . . . , n}. Let T > 0 be arbitrary but finite and
assume that the initial frequencies θ̇i(0) are bounded.

Then, there exists ε∗ > 0 such that for all ε < ε∗, the
singular perturbation problem (12) has a unique solution on
[0, T ], and for all t ∈ [0, T ] it holds uniformly in t that

θ(t, ε)−θ̄(t)=O(ε) , θ̇(t, ε)−h(θ̄(t))−y(t/ε)=O(ε). (13)

Moreover, given any Tb ∈ (0, T ), there exists ε∗ ≤ ε∗ such
that for all t ∈ [Tb, T ] and whenever ε < ε∗ it holds that

θ̇(t, ε)− h(θ̄(t)) = O(ε) . (14)

Theorem IV.1 holds on a finite time interval [0, T ]. In order
to render the approximation (13)-(14) valid on an infinite
time interval, additionally exponential stability of the reduced
system is required. Among other things, the following section
will show that the non-uniform Kuramoto model synchro-
nizes exponentially for certain initial conditions. In this case,
we can state the following corollary of Theorem IV.1.

Corollary IV.1 Under the assumption that the non-uniform
Kuramoto model (8) synchronizes exponentially for some ini-
tial condition θ(0), the singular perturbation approximation
(13)-(14) in Theorem IV.1 is valid for any T > 0.
Moreover, there exist ε and ϕmax sufficiently small such that
the approximation errors (13)-(14) converge to zero.

V. SYNCHRONIZATION ANALYSIS OF NON-UNIFORM
KURAMOTO OSCILLATORS

This section combines and extends methods from the con-
sensus and Kuramoto literature to analyze the non-uniform
Kuramoto model (8). The role of the time constants Di and
the phase shifts ϕij is immediately revealed when dividing
by Di both hand sides and expanding the right-hand side as

ωi
Di
−

n∑
j=1

(
Pij
Di

cos(ϕij)sin(θi−θj)+
Pij
Di

sin(ϕij)cos(θi−θj)
)
.

The difficulties in the analysis of system (8) are the lossy
(anti-synchronizing) coupling via (Pij/Di)sin(ϕij)cos(θi−θj)



and the non-symmetric coupling between an oscillator pair
{i, j} via Pij/Di on the one hand and Pij/Dj on the other.

Since the non-uniform Kuramoto model (8) is derived
from the power network model (3), the underlying graph
induced by P is complete and symmetric, i.e., except for the
diagonal entries, the matrix P is fully populated and sym-
metric. For the sake of generality, this section considers the
non-uniform Kuramoto model (8) under the assumption that
the graph induced by P is neither complete nor symmetric,
that is, some coupling terms Pij are zero and P 6= PT .

A. Frequency Entrainment
Under the assumption of bounded phase differences, the

classic Kuramoto oscillators (2) achieve frequency entrain-
ment. An analogous result guarantees synchronization of the
non-uniform Kuramoto oscillators (8) whenever the graph
induced by P has a globally reachable node.

Theorem V.1 (Frequency entrainment) Consider the non-
uniform Kuramoto model (8) where the graph induced by
P has a globally reachable node. Assume that there exists
γ ∈ (0, π/2−ϕmax) such that the (non-empty) set of bounded
phase differences ∆(γ) = {θ ∈ Tn : max{i,j} |θi − θj | ≤
γ} is positively invariant. Then for every θ(0) ∈ ∆(γ),

1) the frequencies θ̇i(t) synchronize exponentially to some
frequency θ̇∞ ∈ [θ̇min(0), θ̇max(0)]; and

2) if ϕmax = 0 and P = PT , then θ̇∞ = Ω :=∑
i ωi/

∑
iDi and the exponential synchronization

rate is no worse than

λfe =−λ2(L(Pij)) cos(γ) cos(∠(D1,1))2/Dmax. (15)

In the convergence rate λfe given in (15), the factor
λ2(L(Pij)) is the algebraic connectivity of the graph induced
by P =PT , the factor 1/Dmax is the slowest time constant
of the non-uniform Kuramoto model (8), the proportionality
λfe∼cos(γ) reflects the phase locking, and the proportional-
ity λfe∼cos(∠(D1,1))2 =(1TD1)2/(‖1‖2 ‖D1‖2)2 reflects
the fact that the error coordinate θ̇−Ω1 is for non-uniform
time constants not orthogonal to the agreement vector Ω1.

In essence, the proof of Theorem V.1 is based on the
insight that the frequency dynamics of the non-uniform Ku-
ramoto oscillators can be written as the consensus protocol

d

d t
θ̇i = −

∑n

j=1
aij(θ(t))(θ̇i − θ̇j), i ∈ {1, . . . , n} ,

where the weight aij(θ(t))=(Pij/Di) cos(θi(t)−θj(t)+ϕij)
is strictly positive for Pij > 0 and θ(t) ∈ ∆(γ) for all t ≥ 0.

Remark V.1 (Reduction of Theorem V.1 to classic Ku-
ramoto oscillators:) For classic Kuramoto oscillators (2),
Theorem V.1 can be reduced to [23, Theorem 3.1]. �

B. Phase Locking
The key assumption in Theorem V.1 is that phase dif-

ferences are bounded in the set ∆(γ). To show this phase
locking assumption, the Kuramoto literature provides various
methods such as quadratic Lyapunov functions [23], contrac-
tion mapping [24], geometric [17], or Hamiltonian arguments
[15], [18] based on an order parameter similar to the potential
energy U(θ) defined in (6). Due to the asymmetric coupling

and the phase shifts none of the mentioned methods appears
to be easily extendable to the non-uniform Kuramoto model.

A different approach from the literature on consensus
protocols [21], [22] is based on convexity and contraction
and aims to show that the arc containing all phases is of non-
increasing length. This approach turns out to be applicable
to completely-coupled non-uniform Kuramoto oscillators.

Theorem V.2 (Phase locking I) Consider the non-uniform
Kuramoto-model (8), where the graph induced by P = PT

is complete. Assume that the minimal coupling is larger than
a critical value, i.e., for every i, j ∈ {1, . . . , n}

Pmin > Pcritical :=
Dmax

n cos(ϕmax)
×(

max
{i,j}

( ωi
Di
− ωj
Dj

)
+ max

i

∑n

j=1

Pij
Di

sin(ϕij)
)
. (16)

Accordingly, define γmin = arcsin(cos(ϕmax)Pcritical/Pmin)
taking value in (0, π/2−ϕmax). For γ ∈ [γmin, π/2−ϕmax),
define the (non-empty) set of bounded phase differences
∆(γ) = {θ ∈ Tn : max{i,j} |θi − θj | ≤ γ}. Then

1) phase locking: for every γ ∈ [γmin, π/2 − ϕmax) the
set ∆(γ) is positively invariant; and

2) frequency entrainment: for every θ(0) ∈ ∆(γ) the
frequencies θ̇i(t) of the non-uniform Kuramoto oscil-
lators (8) synchronize exponentially to some frequency
θ̇∞ ∈ [θ̇min(0), θ̇max(0)]. Moreover, if ϕmax = 0, then
θ̇∞ = Ω and the exponential synchronization rate is
no worse than λfe stated in equation (15).

Theorem V.2 relies on the contraction property: the posi-
tive invariance of ∆(γ) means geometrically that all θi ∈ T
are contained in a rotating arc of non-increasing maximal
length γ. Thus, the non-smooth function V : Tn → [0, π],

V (θ) = max{|θi − θj | | i, j ∈ {1, . . . , n}}

has to be non-increasing at the boundary of ∆(γ), which
is true under condition (16) interpreted in Remark III.2.
Frequency entrainment follows directly from Theorem V.1.

Remark V.2 (Reduction of Theorem V.2 to classic Ku-
ramoto oscillators:) For the classic Kuramoto oscillators (2)
the sufficient condition (16) of Theorem V.2 specializes to

K > Kcritical := ωmax − ωmin . (17)

In other words, if K > Kcritical, then there exists a positive-
measure set of initial phase differences ∆(γ) with γ ∈
[arcsin(Kcritical/K), π/2), such that the oscillators synchro-
nize. To the best of our knowledge, the condition (17) on the
coupling gain K is the tightest bound sufficient for synchro-
nization that has been presented in the Kuramoto literature so
far. In fact, the bound (17) is close to the necessary condition
for synchronization K>Kcritical n/(2(n−1)) derived in [15],
[23], [24]. Thus, in the case of two oscillators, condition (17)
is necessary and sufficient for the onset of synchronization.

Other sufficient bounds given in the Kuramoto literature
scale asymptotically with n, e.g., [24, Theorem 2] or [23,
proof of Theorem 4.1]. To compare condition (17) with
the bounds derived in [17], [23], [29], we note that our



condition can be equivalently stated as follows. The set of
bounded phase differences ∆(π/2−γ), for γ ∈ (0, π/2),
is positively invariant if K ≥ K(γ) := Kcritical/ cos(γ).
Our bound improves the bound K > K(γ)n/2 derived
in [23, proof of Theorem 4.1] via a quadratic Lyapunov
function, the bound K > K(γ)n/(n − 2) derived in [29,
Lemma 9] via contraction arguments similar to ours, and the
bound derived geometrically in [17, proof of Proposition 1]
that, after some manipulations, reads in our notation as
K ≥ K(γ) cos((π/2 − γ)/2)/ cos(π/2 − γ). In summary,
the bound (16) in Theorem V.2 improves the known suf-
ficient conditions for synchronization of classic Kuramoto
oscillators [15], [17], [23], [24], [29], and is necessary and
sufficient condition in the case of two oscillators. �

Theorem V.2 presents an infinity bound for the phase
locking and is based on the infinity bound (16) on the
parameters and a complete coupling graph. In the remainder
of this section, we consider a different approach based on
an ultimate boundedness argument requiring only two-norm
bounds and connectivity of the graph induced by P = PT .

With slight abuse of notation, we denote the two-norm
of the vector of pairwise geodesic distances by ‖Hθ‖2 =
(
∑
{i,j} |θi − θj |2)1/2, and aim at ultimately bounding the

evolution of ‖Hθ(t)‖2. In the recent literature [23], [24],
a Lyapunov function considered for the uniform Kuramoto
model (2) is simply ‖Hθ‖22. Unfortunately, in the case of
non-uniform rates Di this function’s Lie derivative is sign-
indefinite. Inspired by [23], [24], let D6={i,j} :=

∏n
k 6=i,j Dk,

and consider the function W : Tn → R defined by

W(θ) =
1
2

∑
{i,j}

1
D6={i,j}

|θi − θj |2 .

A Lyapunov analysis of the non-uniform Kuramoto model
via the Lyapunov functionW leads to the following theorem.

Theorem V.3 (Phase locking II) Consider the non-uniform
Kuramoto model (8), where the graph induced by P = PT is
connected with incidence matrix H and unweighted Lapla-
cian L = HTH . Assume that the algebraic connectivity of
the lossless coupling is larger than a critical value, i.e.,

λ2(L(Pij cos(ϕij))) > λcritical :=∥∥HD−1ω
∥∥

2
+
√
λmax(L)

∣∣∣∣∣∣[. . . ,∑n
j=1

Pij

Di
sin(ϕij), . . .

]∣∣∣∣∣∣
2

cos(ϕmax)(κ/n)µmin{i,j}{D6={i,j}}
,

(18)

where µ := (mini6=j{DiDj}/maxi6=j{DiDj})1/2 and κ :=∑n
k=1(1/D6=k). Accordingly, define ρmax ∈ (π/2− ϕmax, π)

as unique solution to the equation (π/2−ϕmax) sinc(ρmax) =
cos(ϕmax)λcritical/λ2(L(Pij cos(ϕij))). Then

1) phase locking: for every ρ ∈ (π/2 − ϕmax, ρmax)
and for ‖Hθ(0)‖2 ≤ µρ there is T ≥ 0 such that
‖Hθ(t)‖2 < π/2− ϕmax for all t > T ; and

2) frequency entrainment: if ‖Hθ(0)‖2 ≤ µρ, then the
frequencies θ̇i(t) of the non-uniform Kuramoto oscil-
lators (8) synchronize exponentially to some frequency
θ̇∞ ∈ [θ̇min(0), θ̇max(0)]. Moreover, if ϕmax = 0, then
θ̇∞ = Ω and the exponential synchronization rate is
no worse than λfe stated in equation (15).

Remark V.3 (Physical interpretation of Theorem V.3:)
In condition (18) the term (κ/n)µmin{i,j}{D6={i,j}}
weights the non-uniformity in the time constants Di,∣∣∣∣[. . . ,∑n

j=1 Pij sin(ϕij)/Di, . . .
]∣∣∣∣

2
is the two-norm of the

vector with entry i reflecting the lossy coupling of a node
i to the network,

∥∥HD−1ω
∥∥

2
= ‖(ω2/D2 − ω1/D1, . . . )‖2

corresponds to the non-uniformity in the natural frequencies,
cos(ϕmax) = sin(π/2 − ϕmax) reflects the ultimate phase
locking, λmax(L) is the largest eigenvalue of the Laplacian
of the unweighted coupling graph (related to the maximum
degree of a node), and λ2(L(Pij cos(ϕij))) is the algebraic
connectivity induced by the lossless coupling. �

Remark V.4 (Reduction of Theorem V.3 to classic Ku-
ramoto oscillators:) For classic Kuramoto oscillators (2),
condition (18) relaxes to K > K∗critical := ‖Hω‖2 resembling
the bound K > ωmax − ωmin = ‖Hω‖∞ presented in (17).
It follows that the oscillators synchronize for ‖Hθ(0)‖2 <
ρmax, where ρmax ∈ (π/2, π) is the solution to the equation
(π/2) sinc(ρmax) = K∗critical/K. Note also that the Lyapunov
function W(θ) reduces to the one used in [23], [24] and can
be used to prove [23, Theorem 4.2] and [24, Theorem 1].�

C. Phase Synchronization
For uniform natural frequencies and zero phase shifts,

Theorem V.2 and Theorem V.3 imply phase synchronization.

Theorem V.4 (Phase synchronization) Consider the non-
uniform Kuramoto-model (8), where the graph induced by
P has a globally reachable node, ϕmax = 0, and ωi/Di = ω̄
for all i ∈ {1, . . . , n}. Then

1) for θ(0) ∈ {θ ∈ Tn : max{i,j} |θi − θj | < π} the
phases θi(t) synchronize exponentially to θ∞(t) ∈
[θmin(0), θmax(0)] + ω̄t; and

2) if P = PT and ‖Hθ(0)‖2 ≤ µρ with ρ ∈ [0, π), then
θ∞(t) =

∑
iDiθi(0)/

∑
iDi+ω̄t and the exponential

synchronization rate is no worse than

λps = −κ
n

min
{i,j}
{D6={i,j}} sinc(ρ)λ2(L(Pij)). (19)

The worst-case phase synchronization rate λps can be
interpreted similarly as the terms in condition (18), where
sinc(ρ) corresponds to the phase locking in ‖Hθ(0)‖2 ≤ µρ.

Remark V.5 (Reduction of Theorem V.4 to classic Ku-
ramoto oscillators:) Statements 1) and 2) can be reduced to
the Kuramoto result found in [22] and Theorem 1 in [24].�

VI. SIMULATION RESULTS

The conditions given in Theorem III.1 and Theorem V.3
are only sufficient for synchronization, and simulations show
that the bounds on the network parameters and its initial
state are overly conservative. For a fixed value of ε the
accuracy of the singular perturbation approximation of the
power network model (3) by the non-uniform Kuramoto
model (8) is independent of the network size but becomes
worse if the initial state is near the stability margin – a
property that is obvious in Theorem IV.1, where ε is depen-
dent on (θ(0), θ̇(0)). Conversely, if the sufficient conditions
for synchronization are satisfied, the singular perturbation
approximation is expected to hold also for large values of ε.



t = 0.00s t = 0.11s t = 0.23s

t = 0.34s t = 0.46s t = 0.58s

t = 0.69s t = 0.81s t = 3.00s

Fig. 1. Simulation of the power network model (3) (outer circle) and the
non-uniform Kuramoto model (8) (inner circle)

Figure 1 shows a simulation of such a case, where ε = 0.6s
is large and all initial angles are clustered with exception
of the red one. The simulation parameters can be found in
[1]. The conditions of Theorem V.2 are satisfied and syn-
chronization can be observed. Since ε is large, the damping
of the generators in the power network is poor and their
synchronization dynamics are oscillatory, whereas the non-
uniform Kuramoto oscillators synchronize with the dynam-
ics of overdamped pendula. Nevertheless, after this initial
transient in the boundary layer the singular perturbation
approximation is accurate, and all oscillators synchronize.

VII. CONCLUSIONS

This paper studied the synchronization and transient sta-
bility problem for a network-reduction model of a power sys-
tem. Our technical approach is based on the assumption that
each generator is highly overdamped due to local excitation
control. The subsequent singular perturbation analysis shows
that the transient stability analysis in power networks reduces
to the synchronization problem for non-uniform Kuramoto
oscillators. The latter is an interesting mathematical problem
in its own right and was tackled by combining and extending
techniques from synchronization theory and consensus pro-
tocols. In the end, purely algebraic conditions depending on
network parameters and initial phase differences suffice for
the synchronization of non-uniform Kuramoto oscillators as
well as the transient stability of the power network model.
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sensus via delayed position feedback with application to Kuramoto
oscillators,” in European Control Conference, Budapest, Hungary,
Aug. 2009, pp. 2464–2469.

[30] P. M. Anderson and A. A. Fouad, Power System Control and Stability.
Iowa State University Press, 1977.

[31] P. W. Sauer and M. A. Pai, Power System Dynamics and Stability.
Prentice Hall, 1998.

[32] R. De Luca, “Strongly coupled overdamped pendulums,” Revista
Brasileira de Ensino de Fı́sica, vol. 30, pp. 4304–4304, 2008.


