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Abstract— We address optimal placement of vehicles with
simple motion, to intercept a mobile target that arrives stochas-
tically on a line segment. The optimality of vehicle placement is
measured through a cost function associated with intercepting
the target. With a single vehicle, we assume that the target
either moves with fixed speed and in a fixed direction or moves
to maximize the vertical height or intercept time. We show
that each of the corresponding cost functions is convex, has
smooth gradient and has a unique minimizing location, and
so the optimal vehicle placement is obtained by any standard
gradient-based optimization technique. With multiple vehicles,
we assume that the target moves with fixed speed and in fixed
direction. We present a discrete time partitioning and gradient-
based algorithm, and characterize conditions under which the
algorithm asymptotically leads the vehicles to a set of critical
configurations of the cost function.

I. I NTRODUCTION

Vehicle placement to provide optimal coverage has re-
ceived lot of recent attention due to potential applications
in environmental monitoring, patrolling regions between na-
tions and even in games like soccer. This work addresses
vehicle placement to minimize a cost associated with inter-
cepting a mobile target that appears randomly on a segment.

In static environments, vehicle placement problems are
analogous to geometric location problems, wherein given a
set of static points, the goal is to find supply locations that
minimize a cost function of the distance from each point
to its nearest supply location (cf. [1]). For a single vehicle,
the average distance to a random point, generated according
to a probability density function is given by the Weber or
the continuous1–median function, for which there exists a
global minimizer as shown in [2], termed as themedian.
For multiple distinct vehicle locations, the expected distance
between a random point generated according to a probability
density and one of the locations is known in literature as the
continuous Weber or the continuous multi-median function,
e.g., see [3]. For more than one location, the multi-median
function is non-convex, and thus determining locations that
minimize the multi-median function is hard in the general
case. It is of interest to characterize the set of critical points
of the multi-median function. [4] have characterized the set
of critical points for the problem of deploying a group of
robots in a region to optimize a multi-median cost function.
This work has been extended in [5] to enable robots to
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approximate the function from sensor measurements. More
recently, [6] presented a coverage algorithm for vehicles in
a river environment.

In mobile target scenarios, the cost for the vehicle is a
function of relative locations, speeds and motion constraints
considered. For an adversarial target, the optimal vehicle
motion is obtained by solving a min-max pursuit-evasion
game, in which the target seeks to maximize while the
vehicle seeks to minimize a certain cost function. With
constraints such as a wall in the playing space or non-zero
capture distance, strategies with optimal intercept time have
been derived in [7] and in [8].

We consider a line segment on which a mobile target
appears via a known spatial probability density and one
or multiple vehicles seek to intercept it. The goal is to
determine vehicle placements that minimize a cost function
associated with the target motion. This work is an extension
of [9], where we introduced the placement problem for target
motion with fixed speed and in fixed direction, and for a
uniform target arrival density. We address single and multiple
vehicle scenarios. With a single vehicle, we consider a class
of cost functions and establish properties such as convexity,
smoothness and the existence and uniqueness of a globally
minimizing vehicle location. We show that the cost functions
associated with the target moving with fixed speed and in a
fixed direction, and with the target seeking to maximize the
distance from the segment, fall in the class of cost functions
that we have analyzed. The cost function for target motion
that maximizes the intercept time is shown to be proportional
to the continuous1–median function. With multiple vehicles
and the target moving with fixed speed and in a fixed
direction, we first provide an algorithm to partition the line
segment among the vehicles and characterize its properties.
With the expected intercept time as the cost function, we
propose a Lloyd descent algorithm in which every vehicle
computes its partition and moves along the gradient of the
expected time computed over its partition. We characterize
conditions under which the vehicles asymptotically reach a
set of critical configurations.

This paper is organized as follows. The problem is for-
mulated in Section II. Single vehicle scenarios are addressed
in Section III. The multiple vehicle scenario is analyzed in
Section IV. Due to space constraints, complete proofs to all
results have been provided in our online technical report [10].

II. PROBLEM STATEMENT

We consider vehicles with simple motion and speed upper
bounded by unity. A target arrives at a random position(x, 0)
on the segmentG := [0,W ] × {0}, termed thegenerator,
via a specified probability density functionφ : [0,W ] →
R>0. We assume that the density functionφ is bounded, i.e.,



there exists anM > 0 such thatφ(x) ≤ M,∀x ∈ [0,W ].
The target moves with bounded speed less than that of the
vehicles, and is intercepted or captured if a vehicle and the
target are at the same point. The goal is to determine vehicle
placements that minimize a certain cost function based on the
maneuvering abilities of the target. Specifically, we consider
the following cases.

A. Single vehicle case

We seek a vehicle locationp ∈ R × R≥0 that minimizes

Cexp(p) :=

∫ W

0

C(p, x)φ(x)dx, (1)

whereC : R
2 → R≥0 is an appropriately defined cost of the

vehicle positionp. In what follows, we seek to minimize the
following different cost functions.

(i) Expected constrained travel time:We assume that the
target arriving at(x, 0) translates in the positiveY -direction
with speedv < 1. From [9], the cost functionC for this
formulation is

T (p, x) =

√

(1 − v2)(X − x)2 + Y 2

1 − v2
−

vY

1 − v2
, (2)

which is the time taken for the vehicle to intercept the
constrained target.

(ii) Expected vertical height:The cost functionC for this
formulation is the vertical heightH(p, x) which the target
seeks to maximize before being intercepted.

(iii) Expected intercept time: The cost functionC for this
formulation is the intercept timeTi(p, x) which the target
seeks to maximize.

Explicit formulae for the quantitiesH andTi are derived
in Section III-B, and are illustrated in Figure 1.
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Fig. 1. Intercepting a target that seeks to maximize either thevertical
heightH or the timeTi until intercept.

B. Multiple vehicles case

We assume that the target translates in the positiveY -
direction with speedv < 1. As shown in Figure 2, givenm ≥
2 vehicles having complete communication, the goal is to
determine vehicle locationspi ∈ [0,W ]×R≥0, for everyi ∈
{1, . . . ,m}, that minimize the expected constrained travel
time given by

Texp(p1, . . . ,pm) :=

∫ W

0

min
i∈{1,...,m}

T (pi, x)φ(x)dx, (3)

whereT (pi, x) is given by Eq. (2).
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Fig. 2. Intercepting a target having constrained motion.

III. S INGLE VEHICLE SCENARIOS

We first analyze a class of cost functions. This form will
appear in two distinct scenarios, the expected constrained
travel time and the expected vertical height.

A. A class of cost functions

We assume that the cost function is given by Eq. (1), where
the functionC has the form

C(X,Y, x) := a
√

b(X − x)2 + Y 2 − cY, (4)

anda, b, andc are positive constants, witha > c.
The partial derivatives ofCexp(X,Y ) with respect toX

andY are given by

∂Cexp

∂X
= ab

∫ W

0

(X − x)φ(x)
√

b(X − x)2 + Y 2
dx, (5)

∂Cexp

∂Y
= aY

∫ W

0

φ(x)
√

b(X − x)2 + Y 2
dx− c. (6)

Lemma III.1 (Convexity of expected cost)The expected
costCexp(X,Y ) is a convex function ofX and Y over the
domainR × R>0.

The proof involves showing that the Hessian matrix ofC
with respect toX andY is positive semi-definite.

Lemma III.2 (Existence of Minima) There exists a vehi-
cle location(X∗, Y ∗) ∈ ]0,W [×R>0 that minimizesCexp.

Proof: [Sketch] We show that a minimizer cannot lie
on the boundary of the region[0,W ] × R≥0. The first step
is to show thatY ∗ exists and is finite by showing that
lim infY →+∞ Cexp(X,Y ) = +∞. To show thatY ∗ 6= 0,
we use Eq. (6) to upper bound and obtain∂Cexp/∂Y ≤ −c.
Thus, for Y near zero the gradient ofCexp points in the
negativeY -direction, implying thatY ∗ 6= 0. Finally, we
show that the partial derivative ofCexp with respect toX is
strictly negative atX = 0 and is strictly positive atX = W ,
implying that a minima cannot lie atX = 0 nor X = W .

Lemma III.3 (Uniqueness) There exists a unique vehicle
location (X∗, Y ∗) ∈ ]0,W [×R>0 that minimizesCexp.

Proof: [Sketch] We assume that there be two locations
(X1, Y1) and(X2, Y2) that minimize the expected cost. From
Lemma III.1, since the expected costCexp is convex inX
andY , a convex combination of(X1, Y1) and(X2, Y2) also



minimizes the expected time. Thus, the necessary conditions
for minima are satisfied by(X̄(α), Ȳ (α)) := (αX1 + (1 −
α)X2, αY1 + (1 − α)Y2), for everyα ∈ [0, 1]. Since these
conditions hold for everyα ∈ [0, 1], the partial derivatives
of the above conditions evaluated atα = 0, must equal zero.
Thus, upon simplifying, we obtain the following equation.
∫ W

0

f(X2, Y2, x)(Y2(X1−X2)−(X2−x)(Y1−Y2))
2dx = 0.

wheref is a strictly positive function. Thus,Y2(X1−X2)−
(X2 − x)(Y1 − Y2) = 0, for everyx. This is feasible only if
X1 −X2 = 0 andY1 − Y2 = 0.

Lemmas III.1, III.2 and III.3 lead to the following result.

Theorem III.4 (Minimizing expected cost) From an ini-
tial location inR×R>0 and by using a gradient optimization
technique, the vehicle reaches the unique point that mini-
mizes the expected costCexp.

Theorem III.4 answers the problem of minimizing the
expected value ofT , given by Eq. (2), witha := 1/(1−v2),
b := (1− v2) andc := v/(1− v2), anda > c. In general, it
is difficult to provide closed form expressions for the vehicle
location that minimizes the expected time. A special case is
described in Remark III.5.

Remark III.5 (Equal speeds) In this case, the optimal
placement in theX variable is at thecentroid of the
distributionφ, with the optimalY given by

X∗ =

∫ W

0

φ(x)xdx; Y ∗ =

√

∫ W

0

φ(x)(X∗ − x)2dx. �

B. Optimal placement for adversarial target

We consider two types of cost functions that the evader
tries to maximize; vertical height and intercept time.

1) Minimizing the expected vertical height:We first
present the solution to the differential game with payoff equal
to the vertical height. If the evader is slower than the pursuer,
then the Appolonius circle is the boundary of the set of all
points which the evader can reach without being captured.
The following property is stated in [7].

Proposition III.6 (Appolonius circle during pursuit) If
the pursuer and the evader both travel straight toward a
point U on the Appolonius circle, then any new such circle,
obtained from a pair of simultaneous intermediate positions
of the pursuer and the evader, is tangent to the original
circle at U, and is contained in the original circle.

The optimal pursuit strategy (cf. [7]) is to choose its
velocity vector such that the line joining the pursuer and
the evader remains parallel at all times, while reducing the
distance. So for optimal placement, it suffices to determine
the optimal evader strategy. Algorithm 1 summarizes our
evader strategy, shown in Figure 3.

The following result is immediate from Proposition III.6.

Algorithm 1 : Move towards top-most
Assumes: Pursuer at(X,Y ). Evader at(x, 0).
Compute center and radius of the Appolonius circle:1:

O := (Ox, Oy) =
(x− v2X

1 − v2
,
−v2Y

1 − v2

)

,

R :=
v

1 − v2

√

(X − x)2 + Y 2.

Move towards the point(Ox, Oy +R) with speedv.2:

Appolonius Circle

(X, Y )

Im

(x, 0)

R

O

H

Fig. 3. Move towards top-most strategy for the evader.

Lemma III.7 (Move towards top-most is optimal) The
strategy move towards top-mostis the evader’s optimal
strategy and the resulting optimal vertical height of the
intercept point is

H(X,Y, x) =
v

1 − v2

√

(X − x)2 + Y 2 −
v2Y

1 − v2
.

Comparing the expression forH given by Lemma III.7 with
the definition ofC in Eq. (4), we havea := v/(1 − v2),
b := 1 and c := v2/(1 − v2), anda > c sincev < 1. Thus,
by applying Theorem III.4, we obtain the following result.

Theorem III.8 (Minimizing expected height) From an
initial location in R×R>0, by using a gradient optimization
technique, the vehicle reaches the unique point that
minimizes the expected heightHexp.

2) Minimizing the expected intercept time:This formula-
tion assumes that the evader is constrained to remain above
or on theX-axis. Thus, the underlying differential game in
this set up is the classicwall pursuit game, proposed and
solved in [7]. We present the main result for completeness.

Lemma III.9 (Wall pursuit game) The evader strategy
that maximizes the intercept time is to move towards the
furthest point of the Appolonius circle on theX-axis.

This optimal evader strategy is illustrated in Figure 4.
Now, given a convex regionQ ⊂ R and a density function

ψ : Q → R≥0, themedian(cf. [2]) pmed is the unique global
minimizer of

∫

Q

|p− z|ψ(z)dz.

We now present the main result of this section.
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Fig. 4. Illustrating Lemma III.9.

Theorem III.10 (Optimal point is the median) The me-
dian point of the region[0,W ]×{0} with the density function
φ uniquely minimizes the expected intercept time.

IV. T HE CASE OF MULTIPLE VEHICLES

We now address the multi-vehicle placement problem.

A. Dominance region partition

We introduce a generator partitioning procedure by defin-
ing dominance regions between each pair of vehicles.

Definition IV.1 (Pairwise dominance region) For i, j ∈
{1, . . . ,m}, the pairwise dominance regionUij ⊆ [0,W ] of
pi with respect topj is the set of target locations for which
vehiclepi takeslessertime to intercept the target thanpj :

Uij := {x ∈ [0,W ] |T (pi, x) ≤ T (pj , x)}.

A procedure to determineUij is summarized in Algo-
rithm 2. The central idea is to use the relationT (pi, x) ≤
T (pj , x) to characterize the set of all target locations(x, 0)
as a function of(Xi, Yi) and (Xj , Yj) for which pi can
reach a target sooner thanpj . One case of Algorithm 2 is
illustrated in Figure 5.

(Yi + Yj)/2

pj

A1

θ

l

pi

A2

Perp. bisector

Fig. 5. To determine pairwise dominance regions.

The following property is established for Algorithm 2.

Proposition IV.2 (Pairwise dominance region)Given dis-
tinct locationspi = (Xi, Yi), pj = (Xj , Yj), if a target
arrives at (x, 0), wherex ∈ Uij generated by Algorithm 2,
thenT (pi, x) ≤ T (pj , x).

Similar to pairwise dominance regions, we introduce the
concept ofdominance regionVi ∈ P([0,W ]) for the ith
vehicle, for everyi ∈ {1, . . . ,m}, which is the set of
X-coordinates of target locations for whichpi takes the
minimumtime to intercept of all vehicles.

Assuming complete communication between vehicles, Al-
gorithm 2 is extended to determine the dominance region

Algorithm 2 : Pairwise dominance region
Assumes: Distinct pi = (Xi, Yi), pj = (Xj , Yj).
if Yi = Yj , then1:

Uij :=

{

[0, (Xi +Xj)/2], if Xi < Xj

[(Xi +Xj)/2,W ], if Xi > Xj2:

else3:

θ := arctan2(Yj − Yi,Xj −Xi) + π/24:

ℓ1,2 := two roots of0 = 4(sin2(θ) − v2)ℓ25:

+4(Yi + Yj) sin(θ)ℓ+ (Yi + Yj)
2 − v2‖pi − pj‖

26:

y1,2 := (Yi + Yj)/2 + sin(θ)ℓ1,27:

if y1 > 0 andy2 > 0 then8:

x1,2 := (Xi +Xj)/2 + cos(θ)ℓ1,29:

Uij :=

{

[0,W ] ∩ [x1, x2], if Yi < Yj

[0,W ]\]x1, x2[, if Yi ≥ Yj .10:

else11:

k := index in {1, 2} for which yk > 012:

x := (Xi +Xj)/2 + ℓk cos(θ)13:

Uij :=

{

[0,W ] ∩ ]−∞, x], if Xi < Xj

[0,W ] ∩ [x,+∞[, if Xi ≥ Xj14:

Algorithm 3 : Dominance region
Assumes: Distinct locations{p1, . . . ,pm}.
foreach vehicle j ∈ {1, . . . ,m} \ {i}, do1:

DetermineUij using Algorithm 2.2:

Vi =
⋂

j=1,...,m,j 6=i Uij .3:

for a vehicle by (i) determining pairwise dominance regions
between vehicles and, (ii) taking intersection of all pairwise
dominance regions, as presented in Algorithm 3.

The next result for Algorithm 3 follows due to disjoint
interiors of dominance regions, and due to Proposition IV.2.

Proposition IV.3 (Optimality of dominance regions)
Given distinct vehicle positions and a target arrival,

(i) the dominance regions generated by Algorithm 3 form
a partition of the generator.

(ii) The time taken to reach the target is minimized by the
vehicle whose dominance region contains the target
arrival location.

It is possible for the dominance region of a vehicle to be
empty. For instance, when one of the vehicles is very far
from the generating line (cf. first part of Figure 8). However,
one condition under which every vehicle has a non-empty
dominance region is when all vehicles have the sameY -
coordinate. For a general set of locations, Figure 6 shows a
dominance region partition with three vehicles.

Let E := [0,W ]×R≥0, P([0,W ]) be the set of all subsets
of [0,W ], B(r) be the closed ball of radiusr around the



p3

p1

A2

A1

Perp. bisector

p2

p3

p1

p2

A1

Perp. bisector

p1

p2

p3

Perp. bisector

A1

p3

p1

p2

Fig. 6. Dominance region partition induced by three vehicles.

origin and+ denote the Minkowski sum of two sets. The
domain of a set-valued mapF : X ⇉ Z is the set of all
q ∈ X such thatF (q) 6= ∅. F is said to be upper (resp.
lower) semi-continuous in its domain if, for everyq in its
domain and for everyǫ > 0, there exists aδ > 0 such
that for everyz ∈ q + B(δ), F (z) ⊂ F (q) + B(ǫ) (resp.
F (q) ⊂ F (z) +B(ǫ)). F is continuous in its domain if it is
both upper and lower semi-continuous.

The pairwise dominance region betweenpi and pj is a
set valued functionUij : E2 \ Sij ⇉ P([0,W ])2, where
Sij ⊂ E2 is the set of coincident locations forpi and pj .
Similarly, the dominance region partition for vehiclei is a
set-valued mapVi : Em \ Si ⇉ P([0,W ])2(m−1), where
S ⊂ Em is the set of vehicle locations in which at least one
other vehicle is coincident withpi.

Proposition IV.4 (Continuity of dominance regions) (i)
For every distincti and j in the set{1, . . . ,m}, the
set valued mapUij is continuous inE2 \ Sij .

(ii) For each vehiclei ∈ {1, . . . ,m}, the set valued map
Vi is continuous on its domain.

B. Minimizing the expected constrained travel time

For distinct vehicle locations, Eq. (3) can be written as

Texp(p1, . . . ,pm) =

m
∑

i=1

∫

Vi

T (pi, x)φ(x)dx, (7)

whereVi is the dominance region of theith vehicle. The
gradient ofTexp is computed using the following formula.

Lemma IV.5 (Gradient computation) For all vehicle con-
figurations such that no two vehicles are at coincident
locations, the gradient of the expected time with respect to
vehicle locationpi is

∂Texp

∂pi

=

∫

Vi

∂T

∂pi

(pi, x)φ(x)dx.

Akin to similar results in [4], [11], [12], the proof involves
writing the gradient as a sum of two contributing terms. The
first is the final expression, while the second is a number of
boundary terms which cancel out due to continuity ofT at
the boundaries of dominance regions.

For z ∈ R
2, define the functionsat : R

2 → R
2 denote

the saturation function, i.e., if‖z‖ ≤ 1, then sat(z) =
z,otherwise,sat(z) = z/‖z‖. Inspired by the established
Lloyd algorithm (cf. [12]), we present a discrete-time descent
approach in Algorithm 4.

Algorithm 4 : Lloyd descent for vehiclei
Assumes: Distinct locations{p1, . . . ,pm} ∈ Em

foreach time t ∈ N do1:

ComputeVi(t) by Algorithm 3 as a function of2:

{p1(t), . . . ,pm(t)}
if Vi(t) is empty, then3:

Move in unit time to(Xi, Yi − min{1, Yi})4:

else5:

For τ ∈ [t, t+ 1], move according to6:

ṗi(τ) = − sat
(

∫

Vi(t)

∂

∂pi

T (pi(τ), x)φ(x)dx
)

We define the following vehicle configuration.

Definition IV.6 (Critical configuration) A set of locations
{p1, . . . ,pm} is a critical dominance region configuration
if, for all i ∈ {1, . . . ,m},

pi = argmin
z∈E

∫

Vi

T (z, x)φ(x)dx,

where {V1, . . . ,Vm} is the dominance region partition in-
duced by{p1, . . . ,pm}.

We now state the main result of this section.

Theorem IV.7 (Convergence of Lloyd descent)Let γ :
N → R

2m be the evolution of them vehicles according
to Algorithm 4 and assume that no two vehicle locations
become coincident in finite time or asymptotically. The
following statements hold:

(i) the expected travel timet 7→ Texp(γ(t)) is a
non-increasing function of time;

(ii) if the dominance regionVi of any vehiclei is empty
at some time, thenVi will be non-empty within a finite
time; and

(iii) if there exists a timet such that every dominance
region is non-empty for all times subsequent tot, then
the vehicle locations converge to the set of critical
dominance region configurations.

Proof: [Sketch] Statement (i) follows because in
steps2:, 4: and 6: of Algorithm 4, Texp is non-increasing.

Statement (ii) follows from the fact that wheneverVi = ∅
for vehicle i, due to step4:, vehicle i reaches the generator
after finite time and therefore has a non-emptyVi.

For statement (iii), letA : X × P([0,W ]) → X , be the
flow map of the differential equation at step6: from time t to
time t+1. Consider the discrete-time dynamical system given
by the tuple(X ,X0,A), whereX = Em andX0 ∈ Em is the



Fig. 7. Algorithm 4 for uniform arrival density. The vehicles first tend to
an critical dominance region configuration (center figure). Aperturbation to
their positions makes them move to a stable configuration (third figure).

set of initial vehicle positions. We now apply the discrete-
time LaSalle Invariance Principle (Theorem 1.19 in [12]), for
which we verify the four assumptions as follows.

1. Existence of a positively invariant set: The setX is
invariant since every vehicle remains inE at all times.

2. Existence of a non-increasing function alongA: Texp is
non-increasing alongA, by statement (i) of this theorem.

3. Boundedness of all evolutions of(X ,X0,A): If at
least one vehicle, say vehiclek moves so thatYk grows
unbounded, then after finite time, the dominance regionVk

becomes empty, contradicting the assumption of statement
(iii) of this theorem. If theY -coordinates of all vehicles
grow unbounded, thenTexp grows unbounded, contradicting
part (i) of this theorem.

4. Continuity ofTexp and A: Continuity of Texp follows
from Eq.s (2) and (7).A is continuous as the integrand is
continuous with respect to vehicle locations, and so is the
region of integrationVi (cf. Proposition IV.4).

By LaSalle Invariance Principle, the evolutions of
(X ,X0,A) converge to a set of the formT−1

exp(κ)∩M, where
κ is a real constant andM is the largest positively invariant
set in {x ∈ X |Texp(A(x)) = Texp(x)}. If a set of vehicle
positions is not critical, thenTexp strictly decreases under the
actionA, and therefore the set is not contained in a set of
T−1

exp(κ)∩M. Thus, the vehicle locations converge to the set
of critical dominance region configurations.

C. Simulations

We now present some simulations of Algorithm 4.
[Examples of critical locations]We consider two vehicles,
and a uniform probability density of target arrival, i.e.,
φ(x) = 1/W . From initial locations such as in the leftmost
of Figure 7 wherein both vehicles having the sameX-
coordinate ofW/2, but differentY -coordinates, the vehicles
asymptotically approach a set of locations shown in the
center figure. However, a small perturbation to the positions
leads the vehicles to positions in the rightmost figure. From
most initial conditions, the vehicles converged to a critical
configuration as in the rightmost figure.
[Non-uniform probability distribution] We consider three
vehicles and the arrival probability density function,

φ(x) =

{

8
W 2x, if x ∈ [0,W/4],
2
W

− 8
3W 2 (x− W

4 ), if x ∈]W/4,W ].

From most initial conditions, the vehicles converged to a
critical configuration as in right-most part of Figure 8.

Fig. 8. Algorithm 4 for non-uniform arrival density (black line). Initially,
the blue vehicle has no dominance region. The vehicles tend toa stable
configuration.

V. CONCLUSIONS ANDFUTURE DIRECTIONS

We addressed the problem of optimally placing vehicles
having simple motion in order to intercept a mobile target
that arrives stochastically on a line segment. For a single ve-
hicle, we determined unique optimal placements when target
motion was either constrained, i.e., with fixed speed and di-
rection, or adversarial. For the multiple vehicle scenarioand
with constrained motion targets, we characterized conditions
under which a partition and gradient based algorithm that
takes the vehicles asymptotically to a set of critical locations
of the cost function.

A natural future direction is to consider adversarial targets
in the multiple vehicles scenario. Another direction is to
consider stochasticity in the motion of the target.
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