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Abstract—We address optimal placement of vehicles with approximate the function from sensor measurements. More

simple motion, to intercept a mobile target that arrives stochas-  recently, [6] presented a coverage algorithm for vehictes i
tically on a line segment. The optimality of vehicle placementis 5 river environment

measured through a cost function associated with intercepting | bile t t . th t for th hicle i
the target. With a single vehicle, we assume that the target  '' MODIle larget scenarios, the cost 1or the vehicle Is a
either moves with fixed speed and in a fixed direction or moves function of relative locations, speeds and motion constsai

to maximize the vertical height or intercept time. We show considered. For an adversarial target, the optimal vehicle
that each of the corresponding cost functions is convex, has motion is obtained by solving a min-max pursuit-evasion
smooth gradient and has a unique minimizing location, and game, in which the target seeks to maximize while the

so the optimal vehicle placement is obtained by any standard hicl ks t P tai t functi With
gradient-based optimization technique. With multiple vehicles, vehicle seeks to minimize a certain cost tunction. Wi

we assume that the target moves with fixed speed and in fixed constraints such as a wall in the playing space or non-zero
direction. We present a discrete time partitioning and gradient-  capture distance, strategies with optimal intercept tiraeeh
based algorithm, and characterize conditions under which the peen derived in [7] and in [8].
algorithm asymptotically leads the vehicles to a set of critical We consider a line segment on which a mobile target
configurations of the cost function. - . - .
appears via a known spatial probability density and one
. INTRODUCTION or multiple vehicles seek to intercept it. The goal is to
Vehicle placement to provide optimal coverage has redetermine vehicle placements that minimize a cost function
ceived lot %f recent atter?tion due Fio potential a%plica;ionaSSOCiated with t.he target motion. This work is an extension
of [9], where we introduced the placement problem for target
motion with fixed speed and in fixed direction, and for a

GRiform target arrival density. We address single and mplglti

vehigle placement to minimize a cost associated with inte(/- hicle scenarios. With a single vehicle, we consider asclas
cepting a mobile target that appears randomly on a SEIMERL- cost functions and establish properties such as coryyexit

In static environments, vehicle placement problems Al&moothness and the existence and uniqueness of a globally

analogous. to geometric Iocat_lon pr_oblems, Where”_” given r?linimizing vehicle location. We show that the cost function
sgt .of.stat|c points, th? goal is to f'|nd supply locations thaﬁssociated with the target moving with fixed speed and in a
minimize a cost function of the distance from each poin ixed direction, and with the target seeking to maximize the

to its nearest supply location (cf. [1]). For a single veicl distance from the segment, fall in the class of cost funstion

the average'(ystance.to a ra”.do”.‘ po.|nt, generated accordmgt we have analyzed. The cost function for target motion
to a probability density function is given by the Weber or,

th i q dian function. hich th ist that maximizes the intercept time is shown to be proportiona
€ continuousi—median tunction, for whicn there exists ay, yhe continuoud—median function. With multiple vehicles
global minimizer as shown in [2], termed as theedian

. . ) X . and the target moving with fixed speed and in a fixed
For multiple distinct vehicle locations, the expectedaiisie igirection, we first provide an algorithm to partition thedin

between a random point generated according to a probabil gment among the vehicles and characterize its properties

density and one of the locations is known in literature as tr\‘/:\/ith the expected intercept time as the cost function, we
continuous Weber or the continuous multi-median functiorE‘ropose a Lloyd descent algorithm in which every veﬁicle
€.g., see [3]. For more than one location, the multi-media omputes its partition and moves along the gradient of the

function is non-convex, and thus determining locations thaﬁxpected time computed over its partition. We characterize

m|n|m||§§ thfe_ TUIt"Tted"? fur1tct|pn Iti har(il "; thte. gﬁnera onditions under which the vehicles asymptotically reach a
case. It is of interest to characterize the set of criticahtso .\ ¢ iiical configurations.

of the multi-median function. [4] have characterized the se This paper is organized as follows. The problem is for-

;)fbcrtmciil p(r)mtis r:‘(ir thetir%rigblemmo{tidriplgiy '29 a tgfro:pti Or:mulated in Section Il. Single vehicle scenarios are adekss
ObotS In a region 1o op € a multiF-median cost UNCUoMN, section 111, The multiple vehicle scenario is analyzed in

This work has been extended in [5] to enable robots %ection IV. Due to space constraints, complete proofs to all
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The target moves with bounded speed less than that of the
vehicles, and is intercepted or captured if a vehicle and the

there exists an\/ > 0 such thatg(x) < M,Vz € [0, W].
.pz .\
[ ]

target are at the same point. The goal is to determine vehicle ps

placements that minimize a certain cost function based®n th (@) g I
maneuvering abilities of the target. Specifically, we cdasi

the following cases. W

A. Single vehicle case Fig. 2. Intercepting a target having constrained motion.

We seek a vehicle locatiop € R x R>( that minimizes
Il. SINGLE VEHICLE SCENARIOS

w
Coxp(p) = / C(p,z)¢(z)dz, 1) We first analyze a class of cost functions. This form will
0 appear in two distinct scenarios, the expected constrained
whereC : R? — R is an appropriately defined cost of thetravel time and the expected vertical height.
vehicle positionp. In what follows, we seek to minimize the .
following different cost functions. A. A class of cost functions
(i) Expected constrained travel timive assume that the ~We assume that the cost function is given by Eq. (1), where
target arriving ai(z, 0) translates in the positive-direction  the functionC' has the form

with speedv < 1. From [9], the cost functiorC' for this C(X,Y.2) = a\/B(X — )2+ V2 — ¢, 4
formulation is L) - )

\/(1 (X — a2V . anda, b, andc are positive constants, witta > c.

T(p,z) = . =, (@ The partial derivatives 0€e,p(X,Y") with respect toX
l-w l-w andY are given by

which is the time taken for the vehicle to intercept the w

constrained target. 00exp _ (X x)¢(x) (5)
(i) Expected vertical heighfThe cost functionC for this 0x o V(X —z)?+ Y2

formulation is the vertical height/ (p, ) which the target 3Cexp

seeks to maximize before being intercepted. = / 2dx —c. (6)
(iii) Expected intercept timé&he cost functionC' for this Vb ‘+Y

formulation is the intercept tim&i(p, «) which the target
seeks to maximize.

Explicit formulae for the quantitied/ andT1i are derived
in Section 111-B, and are illustrated in Figure 1.

Lemma Ill.1 (Convexity of expected cost) The expected
cost Cexp(X,Y) is a convex function ok and Y over the
domainR x R~.

The proof involves showing that the Hessian matrix (of
P with respect toX andY is positive semi-definite.

Lemma I11.2 (Existence of Minima) There exists a vehi-
cle location(X™*,Y™) € ]0, W[xRx( that minimizeXCexp.

Proof: [Sketch] We show that a minimizer cannot lie
on the boundary of the regiofd, W] x Rxq. The first step
is to show thatY* exists and is finite by showing that
Fig. 1. Intercepting a target that seeks to maximize eithervéiréical lim ianHJroo Cexp(X7 Y) = +4o00. To show thatY* # 0,
height  or the time'T1i until intercept. we use Eq. (6) to upper bound and obtéifiey,/0Y < —c.

Thus, forY near zero the gradient afe,, points in the

negative Y-direction, implying thatY* # 0. Finally, we

B. Multiple vehicles case show that the partial derivative @fey, With respect toX is
We assume that the target translates in the positive Strictly negative atX’ = 0 and is strictly positive afl’ = W,
direction with speed < 1. As shown in Figure 2, givem >  IMPplying that a minima cannot lie ak = 0 nor X = W' .

w

2 vehicles having complete communication, the goal is to u
determine vehicle locations; € [0, W] xRx, for everyi €

{1,...,m}, that minimize the expected constrained travelemma lI1.3 (Uniqueness) There exists a unique vehicle
time g|ven by location (X*,Y™*) € ]0, W[xRsq that minimize<Ceyp.

w Proof: [Sketch] We assume that there be two locations
Texp(P1, - -+ Pm) := / ie{flninm}T(pi,xW(x)d% (3)  (X1,Y1) and(X3, Y2) that minimize the expected cost. From
0 Lemma lll.1, since the expected caSt,, is convex inX
whereT (p;, z) is given by Eq. (2). andY’, a convex combination ofXy,Y;) and (X5, Y>) also



minimizes the expected time. Thus, the necessary conslitionAlgorithm 1: Move towards top-most
for minima are satisfied byX («),Y («)) := (aX; + (1 — Assumes Pursuer a{ X, Y ). Evader at(z, 0).

a)X3,aY1 + (1 —a)Yy), for everya € [0,1]. Since these ;. compute center and radius of the Appolonius circle:
conditions hold for everyy € [0, 1], the partial derivatives

of the above conditions evaluatedaat= 0, must equal zero. ,7 (T X —0?Y
S . : . 0:=(0;,0)) = ——,——= ),
Thus, upon simplifying, we obtain the following equation. 1—v2 71 —0?

R := 71_1} VX —2)2+Y2

02

w
/ f(XQ,YQ7]/')(YQ(XI_X2>—(X2_JC)(Yl_YQ))2dx =0.
0 2 Move towards the pointO,, O, + R) with speedv.

where f is a strictly positive function. Thug(X; — X5) —

(X2 —2)(Y1 — Ys) = 0, for everyz. This is feasible only if

Xl—X2:0andY1—Y2:O. |
Lemmas IlI.1, lIl.2 and 111.3 lead to the following result.

Theorem Ill.4 (Minimizing expected cost) From an ini- 0);
tial location inR xR~ and by using a gradient optimization R
technique, the vehicle reaches the unique point that mini-
mizes the expected caStyp.

Appolonius Circle!
0]

Theorem IIl.4 answers the problem of minimizing the
expected value of’, given by Eq. (2), witha := 1/(1 —v?), Fig. 3. Move towards top-most strategy for the evader.
b:=(1-9?) andc:=v/(1—v?), anda > c. In general, it
is difficult to provide closed form expressions for the védhic
location that minimizes the expected time. A special case [Ssmma I11.7 (Move towards top-most is optimal) The
described in Remark II1.5. strategy move towards top-mosis the evader's optimal

strategy and the resulting optimal vertical height of the
Remark 111.5 (Equal speeds) In this case, the optimal intercept point is
placement in theX variable is at thecentroid of the
distribution ¢, with the optimalY” given by H(X,Y,z) =

v VY
72\/(X—x)2+Y2 el

1—wv

w w
X* = / d(x)xde; Y = \// o(z)(X* —2)2de. 0O  Comparing the expression féf given by Lemma I11.7 with
0 0 the definition of C' in Eq. (4), we haven := v/(1 — v?),
b:=1andc:=v?/(1 —v?), anda > ¢ sincev < 1. Thus,

B. Optimal placement for adversarial target . . .
P _p _ g by applying Theorem lIl.4, we obtain the following result.
We consider two types of cost functions that the evader

tries to maximize; vertical height and intercept time.

1) Minimizing the expected vertical heightiWe first
present the solution to the differential game with payofiaq
to the vertical height. If the evader is slower than the persu
then the Appolonius circle is the boundary of the set of a
points which the evader can reach without being captured.
The following property is stated in [7].

Theorem II1.8 (Minimizing expected height) From  an
initial location in R x R+, by using a gradient optimization
technique, the vehicle reaches the unique point that
Irlninimizes the expected heightyp.

2) Minimizing the expected intercept tim&his formula-

tion assumes that the evader is constrained to remain above
. ) ) ) ) or on the X-axis. Thus, the underlying differential game in
Proposition 111.6 (Appolonius circle during pursuit) If this set up is the classiwall pursuit game, proposed and

the pursuer and the evader both travel straight toward &gyed in [7]. We present the main result for completeness.
point U on the Appolonius circle, then any new such circle,

obtained from a pair of simultaneous intermediate posgion .
P P Iremma [11.9 (Wall pursuit game) The evader strategy

of the pursuer and the evader, is tangent to the origin S . . )
circle at U, and is contained in the original circle. athat maximizes the mtercep'_[ t'me IS to move _towards the
furthest point of the Appolonius circle on thé-axis.
The optimal pursuit strategy (cf. [7]) is to choose its

velocity vector such that the line joining the pursuer and NS optimal evader strategy is illustrated in Figure 4.
the evader remains parallel at all times, while reducing the NOW, given a convex regio@ C R and a density function

distance. So for optimal placement, it suffices to determirié : € — Rxo, themedian(cf. [2]) pmed is the unique global
the optimal evader strategy. Algorithm 1 summarizes oupinimizer of
evader strategy, shown in Figure 3. / lp — 2| (2)dz.

The following result is immediate from Proposition 111.6. Q

We now present the main result of this section.



Algorithm 2: Pairwise dominance region
Assumes Distinct p; = (X;,Y:), p; = (X;,Y;).
1 if Y; =Y, then

U= [0, (Xi + X;)/2], if X; <X;
s 2 T UX+ Xp)/2, W), i X > X
/Appolonius Circle 3 else
0 4 6 := arctany(Y; — Y;, X; — X;) + /2

5. | (19 := two roots of0 = 4(sin(0) — v?)¢?
6 +4(Yi +Y)) sin(0)¢ + (Vi +Y5)? —v*[[p; — py®

7. y12 = (Y; +Y;)/2 + sin(6)¢; -

Fig. 4. lllustrating Lemma [11.9.

Theorem [11.10 (Optimal point is the median) The me- 8
dian point of the region0, W]x {0} with the density function |
¢ uniquely minimizes the expected intercept time.

if y1 > 0 andy, > 0 then
Z1,2 = (Xi + Xj)/2 + COS(@)ELQ

[O,W]ﬁ[l‘l,l‘g], if }/1<Y}

IV. THE CASE OF MULTIPLE VEHICLES Uj = {[ W\ [ YV >y
) 0, xr1, T2, ity; > je

We now address the multi-vehicle placement problem. ®

else
k :=index in {1,2} for which y;, > 0
z = (X;+ X;)/2 + £} cos(0)

A. Dominance region partition 1L

. L 12
We introduce a generator partitioning procedure by defl{y
ing dominance regions between each pair of vehicles. '

Definition 1V.1 (Pairwise dominance region) For i,j €
{1,...,m}, the pairwise dominance regidii;; [0, W] of
pi with respect top; is the set of target locations for which
vehiclep; takeslessertime to intercept the target thap;:

{[O,W] N)-oc0,2], if X; < X;
UZ‘]‘ =
14:

[

Uij == {z € [0, W]|T(p;, ) < T(pj, )} Algorithm 3: Dominance region
A procedure to determind/;; is summarized in Algo- ~ ASsumes Distinct locations{p,.. ., pm }.
rithm 2. The central idea is to use the relatidiip;, z) < + foreachvehiclej e {1,...,m}\ {i}, do
T(p;,x) to characterize the set of all target locatidns0) 2 | DeterminelU;; using Algorithm 2.
as a function of(X;,Y;) and (X,,Y;) for which p; can 3 V; = Nzt mjzi Ui

reach a target sooner thasy. One case of Algorithm 2 is
illustrated in Figure 5.

Ao for a vehicle by (i) determining pairwise dominance regions
between vehicles and, (ii) taking intersection of all pasev
dominance regions, as presented in Algorithm 3.

The next result for Algorithm 3 follows due to disjoint
interiors of dominance regions, and due to Proposition.IV.2

Proposition V.3 (Optimality of dominance regions)
Given distinct vehicle positions and a target arrival,

(i) the dominance regions generated by Algorithm 3 form

Fig. 5. To determine pairwise dominance regions.

The following property is established for Algorithm 2. a partition of the generator.
(i) The time taken to reach the target is minimized by the
Proposition 1V.2 (Pairwise dominance region) Given dis- vehicle whose dominance region contains the target
tinct locationsp; = (X;,Y;), p; = (X;,Y;), if a target arrival location.
arrives at(x,0), wherex € U;; generated by Algorithm 2, . ) ) .
thenT(p;, z) < T(p;, ). It is possible for the dominance region of a vehicle to be

empty. For instance, when one of the vehicles is very far

Similar to pairwise dominance regions, we introduce thérom the generating line (cf. first part of Figure 8). However
concept ofdominance regionV; € P([0,W]) for the ith one condition under which every vehicle has a non-empty
vehicle, for everyi € {1,...,m}, which is the set of dominance region is when all vehicles have the sadme
X-coordinates of target locations for whigh; takes the coordinate. For a general set of locations, Figure 6 shows a
minimumtime to intercept of all vehicles. dominance region partition with three vehicles.

Assuming complete communication between vehicles, Al- Let & := [0, W] xR>¢, P([0, W]) be the set of all subsets
gorithm 2 is extended to determine the dominance regiaof [0, W], B(r) be the closed ball of radius around the



Perp. bisector

Perp. bisector

@ (O

Fig. 6. Dominance region partition induced by three vehicles

origin and + denote the Minkowski sum of two sets. The

domain of a set-valued map : X = Z is the set of all

q € X such thatF(q) # 0. F is said to be upper (resp.

lower) semi-continuous in its domain if, for evetyin its
domain and for every > 0, there exists & > 0 such
that for everyz € q + B(¢), F(z) C F(q) + B(e) (resp.

F(q) C F(z)+ B(e)). F is continuous in its domain if it is

both upper and lower semi-continuous.

The pairwise dominance region betwepnand p; is a
set valued function;; : €2\ S;; = P([0,W])?, where
Sij C £? is the set of coincident locations fqy; and p;.
Similarly, the dominance region partition for vehicldés a
set-valued mapy; : €™\ S; = P([0, W])2(m=1), where

S C €™ is the set of vehicle locations in which at least one

other vehicle is coincident witlp;.

Proposition V.4 (Continuity of dominance regions) (i)
For every distincti and j in the set{1,...,m}, the
set valued mag/;; is continuous ing? \ Sij.

For z € R?, define the functiorsat : R?> — R? denote
the saturation function, i.e., ifz]| < 1, thensat(z) =
z,otherwise,sat(z) = z/||z||. Inspired by the established
Lloyd algorithm (cf. [12]), we present a discrete-time d&=#c
approach in Algorithm 4.

Algorithm 4: Lloyd descent for vehicle:

Assumes Distinct locations{p1,...,pm} € E™
1. foreachtimet € N do
2 ComputeV;(t) by Algorithm 3 as a function of
{pl(t)a s 7pm(t)}
if V;(t) is empty then
| Move in unit time to(X;,Y; — min{1,Y;})
else
For r € [t,t + 1], move according to

) = st ([ ST ) mp(e)e)

[

We define the following vehicle configuration.

Definition 1V.6 (Critical configuration) A set of locations
{p1,-..,pPm} IS a critical dominance region configuration
if, for all ¢ € {1,...,m},

pi = argmin/ T(z,z)p(x)dx,
zc& Vi

where {Vy,...,V,,} is the dominance region partition in-

duced by{p1,...,Pm}

We now state the main result of this section.

(i) For each vehiclei € {1,...,m}, the set valued map Theorem IV.7 (Convergence of Lloyd descent)et v

V; is continuous on its domain.

B. Minimizing the expected constrained travel time

N — R?m be the evolution of then vehicles according
to Algorithm 4 and assume that no two vehicle locations
become coincident in finite time or asymptotically. The

For distinct vehicle locations, Eq. (3) can be written as following statements hold:

m

%@mﬂWZZLﬂmW@% @)
i=17Vi

where V; is the dominance region of thégh vehicle. The
gradient of e,y is computed using the following formula.

Lemma IV.5 (Gradient computation) For all vehicle con-

figurations such that no two vehicles are at coincident

(i) the expected travel time— Teyp((t)) is a
non-increasing function of time;

(i) if the dominance regiofV; of any vehiclei is empty

at some time, thew; will be non-empty within a finite

time; and

if there exists a timet such that every dominance

region is non-empty for all times subsequent tthen

the vehicle locations converge to the set of critical

dominance region configurations.

(iii)

locations, the gradient of the expected time with respect to

vehicle locationp; is

OTexp / or
= —(pi, z)o(x)dx.
op:. . b, (pi, ©) ()

Akin to similar results in [4], [11], [12], the proof invohee

Proof: [Sketch] Statement (i) follows because in
stepsz;, 4 ande: of Algorithm 4, T4, is non-increasing.
Statement (ii) follows from the fact that whenevwér= 0
for vehicle i, due to step:, vehiclei reaches the generator
after finite time and therefore has a non-empty

writing the gradient as a sum of two contributing terms. The For statement (iii), letd : X x P([0, W]) — X, be the
first is the final expression, while the second is a number dow map of the differential equation at stedrom time¢ to

boundary terms which cancel out due to continuityZoft
the boundaries of dominance regions.

timet¢+1. Consider the discrete-time dynamical system given
by the tuple(X, Xy, A), whereX = £™ and X, € £™ is the



| =

Fig. 7. Algorithm 4 for uniform arrival density. The vehisldirst tend to
an critical dominance region configuration (center figurepehturbation to
their positions makes them move to a stable configurationd(tirgure).

set of initial vehicle positions. We now apply the discrete-
time LaSalle Invariance Principle (Theorem 1.19 in [129y, f

which we verify the four assumptions as follows.

1. Existence of a positively invariant set: The sétis
invariant since every vehicle remains énat all times.

2. Existence of a non-increasing function aloAg 7y is
non-increasing alongd, by statement (i) of this theorem.

3. Boundedness of all evolutions dft, &y, A): If at
least one vehicle, say vehicle moves so thaty; grows

unbounded, then after finite time, the dominance regipn

Fig. 8. Algorithm 4 for non-uniform arrival density (blackg). Initially,
the blue vehicle has no dominance region. The vehicles teral stable
configuration.

V. CONCLUSIONS ANDFUTURE DIRECTIONS

We addressed the problem of optimally placing vehicles
having simple motion in order to intercept a mobile target
that arrives stochastically on a line segment. For a singie v
hicle, we determined unique optimal placements when target
motion was either constrained, i.e., with fixed speed and di-
rection, or adversarial. For the multiple vehicle scenarnd
with constrained motion targets, we characterized caorti
under which a partition and gradient based algorithm that
takes the vehicles asymptotically to a set of critical |z

becomes empty, contradicting the assumption of statemesftthe cost function.

(iii) of this theorem. If theY-coordinates of all vehicles

A natural future direction is to consider adversarial tésge

grow unbounded, theffiiy, grows unbounded, contradicting in the multiple vehicles scenario. Another direction is to

part (i) of this theorem.
4. Continuity of T4, and A: Continuity of Tey, follows
from Eg.s (2) and (7).A is continuous as the integrand is

consider stochasticity in the motion of the target.
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By LaSalle Invariance Principle, the evolutions ofthatead to the proof of Lemma III.3.

(X, Xy, A) converge to a set of the forffi, (x) M, where
k Is a real constant and/ is the largest positively invariant
set in{z € X |Texp(A(x)) = Texp(z)}. If @ set of vehicle
positions is not critical, theffe,, strictly decreases under the
action A, and therefore the set is not contained in a set of?]
Texp ()N M. Thus, the vehicle locations converge to the set

(1]

of critical dominance region configurations. [ | [3]
C. Simulations (41
We now present some simulations of Algorithm 4. [5]

[Examples of critical locations\We consider two vehicles,
and a uniform probability density of target arrival, i.e.,
¢(x) = 1/W. From initial locations such as in the leftmost (6]
of Figure 7 wherein both vehicles having the sam¥e
coordinate ofi¥’/2, but differentY-coordinates, the vehicles [7]
asymptotically approach a set of locations shown in the®
center figure. However, a small perturbation to the position
leads the vehicles to positions in the rightmost figure. Fromni9]
most initial conditions, the vehicles converged to a caitic
configuration as in the rightmost figure.

[Non-uniform probability distribution] We consider three [10]
vehicles and the arrival probability density function,

o) = | T if € [0.W/4), -
2 i@, if x W/, W),

[12]
From most initial conditions, the vehicles converged to a
critical configuration as in right-most part of Figure 8.
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