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Abstract— The theory of consensus dynamics is widely em-
ployed to study various linear behaviors in networked control
systems. Moreover, nonlinear phenomena have been observed
in animal groups, power networks and in other networked
systems. This inspires the development in this paper of two
novel approaches to define distributed nonlinear dynamical
interactions. The resulting dynamical systems are akin to
higher-order nonlinear consensus systems. Over connected
undirected graphs, the resulting dynamical systems exhibit
various interesting behaviors that we rigorously characterize.

I. I NTRODUCTION

Collective behavior in animal groups, such as schools of
fish, flocks of birds, and herds of wildebeests, is a widely
studied phenomenon. It has been proposed that the decision
making in such groups is distributed rather than central: each
individual in such a group decides how to behave based
on local information. In particular, some adjacency-based
averaging models have been proposed to model the observed
behavior in such systems. These adjacency-based averaging
algorithms are called consensus algorithms, and have been
widely studied in various engineering applications.

Of particular interest are recent results in ecology [4]
which show that, for small difference in the preferences
of the individuals, the decision making in animal groups is
well modeled using consensus dynamics, but for significant
differences in the preferences of individuals, the decision
dynamics bifurcate away from consensus. This provides
motivation for coming up with dynamics which mimic such
nonlinear behaviors in engineered multi-agent systems.

Recently, dynamical systems theory has been extensively
applied to networked systems. In particular, the consensus
problem has been studied in various fields, e.g., network
synchronization [15], flocking [18], rendezvous [10], sensor
fusion [16], formation control [5], etc; a detailed description
is presented in [12], [6]. Some nonlinear phenomena have
been studied in certain classes of networks. Certain nonlinear
protocols to achieve consensus have been studied [1]. The
bifurcation problem has been studied in neural networks;
a Hopf-like bifurcation has been observed in a two cell
autonomous system [20], and pitchfork and Hopf bifurca-
tions have been studied in artificial neural networks [14],
[19]. Some static bifurcations have been studied in load flow
dynamics of power networks [9]. A version of bifurcations in
consensus networks has been studied in the opinion dynamics
literature [11]. The models in opinion dynamics problems
can be interpreted as consensus dynamics on a time varying
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graph with no globally reachable node. These models are
complicated, and are difficult to implement on an engineered
multi-agent network.

In this paper, we propose distributed algorithms to achieve
nonlinear behaviors in a networked system. We define two
frameworks, namely, the absolute nonlinear flow, and the
disagreement nonlinear flow to define nonlinear dynamics
on a multi-agent network. We apply these frameworks to
characterize a pitchfork bifurcation in a multi-agent network.
For a graph with a single node, the proposed dynamics
reduce to scalar nonlinear dynamics. In essence, the proposed
dynamics are extensions of the scalar nonlinear dynamics to
engineered multi-agent systems. The major contributions of
our work are:

1) We propose generalized frameworks to describe dis-
tributed nonlinear dynamics in a multi-agent network.

2) For each framework, we generically define the set of
final possible equilibrium configurations.

3) We define the distributed pitchfork bifurcation dynam-
ics for networked systems using these frameworks.

4) We present some general tools to study stability of
these dynamics, and utilize them to study stability of
the pitchfork bifurcation dynamics.

5) We present a comprehensive treatment of these dynam-
ics for lower order networks.

The remainder of the paper is organized as following.
In the Section II, we elucidate some basics of dynamical
systems and graph theory, which is followed by the develop-
ment of frameworks to define nonlinear dynamics on graphs
in Section III. We use these frameworks to study pitchfork
bifurcation dynamics on graphs in Section IV. We further
explain the results through some examples in Section V.
Finally, our conclusions are in Section VI.

II. PRELIMINARIES

A. Pitchfork bifurcation

The equation

ẋ = γx − x3, γ, x ∈ R, (1)

is defined as the normal form for the supercritical pitchfork
bifurcation [17]. The dynamics of (1) are as follows:

1) For γ < 0, there exists a stable equilibrium point at
x = 0, and no other equilibrium point.

2) For γ = 0, there exists a critically stable equilibrium
point atx = 0.

3) For γ > 0, there exist two stable equilibrium points at
x = ±√

γ, and an unstable equilibrium point atx = 0.

The pointγ = 0 is called the bifurcation point.



B. Laplacian Matrix of a graph

Given a digraphG = (V, E), whereV = {v1, . . . , vn} is
the set of nodes andE is the set of edges, theLaplacian
matrix L(G) ∈ R

n×n has entries:

li,j =











−1, if (i, j) ∈ E ,

di, if i = j,

0, otherwise,

wheredi is the out-degree of nodei, i.e., number of edges
emanating from nodei [3]. The set of nodesj ∈ V , such
that (i, j) ∈ E , is referred to as theadjacencyof the nodei,
and is denotedadj(i).

Properties of Laplacian Matrix:
1) The Laplacian matrix is symmetric if and only ifG is

undirected.
2) A symmetric Laplacian matrix is positive semidefinite.
3) For a graphG with n nodes and at least one globally

reachable node, the rank of the Laplacian matrix is
n − 1.

4) The kernel of the Laplacian matrix for a graphG of
order n with at least one globally reachable node is
diag(Rn), i.e. {(x1, . . . , xn) ∈ R

n | x1 = · · · = xn}.

C. Center manifold theorem

For (z1, z2) ∈ R
n1 × R

n2 , consider the following system

ż1 = A1z1 + g1(z1, z2),

ż2 = A2z2 + g2(z1, z2),
(2)

where all eigenvalues ofA1 ∈ R
n1×n1 , andA2 ∈ R

n2×n2

have zero and negative real parts, respectively. The functions
g1 : R

n1 × R
n2 → R

n1 , andg2 : R
n1 × R

n2 → R
n2 satisfy

the conditions

gi(0, 0) = 0,
∂gi

∂z
(0, 0) = 0, ∀i ∈ {1, 2}. (3)

For the system in equation (2), for smallz1, there exists [7]
an invariant center manifoldh : R

n1 → R
n2 satisfying the

conditions

h(0) = 0,
∂h

∂z1
(0) = 0, and

A2h(z1)+g2(z1, h(z1)) =
∂h

∂z1
(z1)[A1z1 + g1(z1, h(z1))].

The center manifold theorem [7] states that the dynamics
on the center manifold determine the overall asymptotic
dynamics of (2) near(z1, z2) = (0, 0), i.e., the overall
dynamics are determined by

ż1 = A1z1 + g1(z1, h(z1)). (4)

D. Laplacian flow

Let G be a undirected connected graph of ordern. The
Laplacian flowon R

n is defined by

ẋ = −L(G)x.

In components, the Laplacian flow is given by

ẋi =
∑

j∈adj(i)

(xj − xi), i ∈ {1, . . . , n}.

The vectorL(G)x is called thedisagreement vector. It has
been shown in [13] that the solutions to the Laplacian
flow converge to diag(Rn) for fixed as well as switching
topologies.

III. D ISTRIBUTED NONLINEAR DYNAMICS IN NETWORKS

Before we define distributed nonlinear dynamics in net-
works, we introduce the following notation. We denote the
set of connected undirected graphs withn nodes by

Γn = {G | L(G) = L(G)T , and rank(L(G)) = n − 1}.
A. Absolute nonlinear flow

We call a flow absolute nonlinear flowif each node
transmits a value which is a function of only its own label.
For aG ∈ Γn, on R

n, such a flow is given by

ẋ = L(G)f(x),

wheref : R
n → R

n is a smooth function. In components,
the absolute nonlinear flow is given by

ẋi =
∑

j∈adj(i)

(fi(xi) − fj(xj)), ∀i ∈ {1, . . . , n}.

The set of equilibrium points of the absolute nonlinear flow
is

{x∗ | f(x∗) ∈ diag(Rn)}.
The salient feature of the absolute nonlinear flow formulation
is that the set of equilibrium points is an invariant over the
setΓn. Moreover, the sum of the states is an invariant over
any trajectory of the system, which follows from the fact that
∑n

i=1 ẋi = 0.

B. Disagreement nonlinear flow

We call a flowdisagreement nonlinear flowif each node
transmits a value which is determined only by corresponding
entry in the disagreement vector. For aG ∈ Γn, on R

n, such
a flow is given by

ẋ = f(L(G)x),

wheref : R
n → R

n is some smooth function. In compo-
nents, the disagreement nonlinear flow is given by

ẋi = fi

(

∑

j∈adj(i)

(xi − xj)

)

, ∀i ∈ {1, . . . , n}.

A particular case of the disagreement nonlinear flow is
when eachfi is a polynomial. In this scenario, the disagree-
ment nonlinear flow is given by

ẋ =
(

a0 + a1D(x) + . . . + am(D(x))m
)

1n,

whereD(x) = diag (L(G)x). In components, this becomes

ẋi = a0 + a1I(xi) + . . . + am(I(xi))
m, ∀i ∈ {1, . . . , n},

whereI(xi) =
∑

j∈adj(i)(xi −xj). Let ther ≤ m real roots
of the equation

a0 + a1z + . . . + amzm = 0

be zi, i ∈ {1, . . . , r}. The set of equilibrium points of the
disagreement nonlinear flow with polynomial nonlinearity is

{x∗ ∈ R
n | L(G)x∗ ∈ {z1, . . . , zr}n}.

Here, the equilibrium points depend on the graph topology.



IV. D ISTRIBUTED BIFURCATIONS IN NETWORKS

We study a particular class of distributed nonlinear dy-
namics wherefi : R → R, for each i ∈ {1, . . . , n}, is
fi(x) = γx − x3, whereγ ∈ R is some constant. We refer
to such nonlinearity as apitchfork nonlinearity.

A. Absolute nonlinear flow with pitchfork nonlinearity

Given a connected undirected graphG ∈ Γn, andγ ∈ R,
the absolute nonlinear flow with pitchfork nonlinearity is

ẋ = γL(G)x − L(G)diag(x)31n. (5)

In components, this becomes

ẋi = γ
∑

j∈adj(i)

(xi − xj) −
∑

j∈adj(i)

(x3
i − x3

j ), (6)

for all i ∈ {1, . . . , n}.
For a given graphG ∈ Γn, and a full rank diagonal matrix

Υ ∈ R
n×n, let us define thegeneralized Laplacian flowby

ẋ = −L(G)Υx. (7)

Lemma 1 (Generalized Laplacian Flow):For the gener-
alized Laplacian flow, the following statements hold:

1) The equilibrium points are given by

E = {αΥ−1
1n | α ∈ R}.

2) The solutions converge to the setE if and only if Υ >
0.

Proof: The proof is similar to Exercise 1.25 in [3], with
a Lyapunov functionV (x) = xT ΥL(G)Υx. For the brevity,
we omit the details.

Before we analyze the absolute nonlinear flow with pitch-
fork nonlinearity, we introduce some useful notation. Given
γ ∈ R>0, definef0, f± :

[

−
√

4γ/3,
√

4γ/3
]

→ R by

f0(β) = β, andf±(β) = −β

2
±
√

γ − 3

4
β2.

Theorem 1 (Abs. nonlin. flow with pitchfork nonlinearity):
For the absolute nonlinear flow with pitchfork nonlinearity,
the following statements hold:

1) Equilibrium points:
For γ ≤ 0, the set of equilibrium points is

Ec = diag(Rn). (8)

For γ > 0, the set of equilibrium points is

Eb = {{f−(β), f0(β), f+(β)}n|
β ∈ [−

√

4γ/3,
√

4γ/3]},
where {f−(β), f0(β), f+(β)}n is the set of
n-tuples which have each entry in the set
{f−(β), f0(β), f+(β)}.

2) Consensus:
For γ ≤ 0, each trajectory converges to some point in
the setEc.

3) Bifurcation:
For γ > 0, each equilibrium pointx∗ ∈ Eb is locally
stable if and only if3x∗

i
2 > γ for eachi ∈ {1, . . . , n}.

Proof: We start by determining the equilibrium points
for equation (5), which are given by

γx − diag(x)31n ∈ ker(L(G)),

=⇒ γxi − x3
i = α, ∀i ∈ {1, . . . , n}, andα ∈ R. (9)

We observe that equation (9) is a cubic equation and hence,
has at least one real rootβ (say). The other roots of the
equation (9) can be determined in terms ofβ, and are given
by

xi = −β

2
±
√

γ − 3

4
β2, ∀i ∈ {1, . . . , n}. (10)

We observe that the roots given in equation (10) are complex
if γ ≤ 0. Hence, forγ ≤ 0, the equilibrium points are given
by the setEc. It follows from equation (10) that forγ > 0,
Eb is the set of equilibrium points.

To establish the second statement, we consider a Lyapunov
function V (x) = xTL(G)x. We observe that, forγ ≤ 0, the
Lie derivative of this Lyapunov function along the absolute
nonlinear flow with pitchfork nonlinearity is given by

V̇ (x) = 2γxTL(G)x − 2xTL(G)diag(x)31n ≤ 0,

which establishes the stability of each point in the setEc.
The proof of convergence is similar to Exercise 1.25 in [3].

To establish the third statement, we linearize the absolute
nonlinear flow with pitchfork nonlinearity about an equilib-
rium point x∗ to get

ẋ = L(G)(γI − 3diag(x∗)2)x =: L(G)Υx,

where Υ is a diagonal matrix. From Lemma 1, it follows
that each equilibrium pointx∗ ∈ Eb is locally stable if and
only if Υ is negative definite, which concludes the proof.

Remark 1:Let Ξ be the set ofn-dimensional vectors with
entries in{−, 0,+}, whose cardinality is3n. Therefore,ξ ∈
Ξ is an n-dimensional multi-index with indices in alphabet
{−, 0,+}. For anyξ ∈ Ξ, definefξ : [−

√

4γ/3,
√

4γ/3] →
R

n by

fξ(β) =
(

fξ1
(β), . . . , fξn

(β)
)

∈ R
n.

The setEb can be interpreted as the union of three curves in
the following way

Eb = ∪ξ∈Ξ fξ([−
√

4γ/3,
√

4γ/3]).

(Here we letg(A) denote the image of a functiong : A →
R.) �

Remark 2:The results in Theorem 1 hold for any directed
graph with at least one globally reachable node. �

Conjecture 1 (Completeness):Given aγ ∈ R, the union
of the basin of attractions of all the stable equilibrium points
of the absolute nonlinear flow with pitchfork nonlinearity is
R

n \ Z, whereZ is a measure zero set. �

Conjecture 2 (Switching topology):The results in Theo-
rem 1 hold for a network with switching topologyGk ∈
Γn, k ∈ N. �



B. Disagreement nonlinear flow with pitchfork nonlinearity

Given a connected undirected graphG ∈ Γn, andγ ∈ R,
the disagreement nonlinear flow with pitchfork nonlinearity
is

ẋ = γL(G)x − (diag(L(G)x))31n. (11)

In components, the above dynamics,∀i ∈ {1, . . . , n}, are
given by

ẋi = γ
∑

j∈adj(i)

(xi − xj) −





∑

j∈adj(i)

(xi − xj)





3

. (12)

Before we analyze the disagreement nonlinear flow with
pitchfork nonlinearity, we introduce the following notation.
We partition the Laplacian matrix in the following way:

L(G) =

[

Ln−1 L∗,n

Ln,∗ Ln,n

]

, (13)

whereLn−1 ∈ R
(n−1)×(n−1).

We also construct a transformation matrixP ∈ R
n×n in

the following way:

P =

[

Ln−1 L∗,n

1
T
n−1 1

]

. (14)

The last row of the transformation matrixP is chosen to
be the basis of the kernel of the Laplacian matrixL(G), for
G ∈ Γn. Hence, a coordinate transform through matrixP
separates the center manifold and the stable/unstable man-
ifold. Now, we state some properties of the transformation
matrix P .

Lemma 2 (Properties of the transformation matrix):
Given a graphG ∈ Γn, then for the transformation matrix
P defined in equation (14) the following statements hold:

1) The submatrixLn−1 is symmetric positive definite.
2) The transformation matrixP is full rank.
3) The inverse of the transformation matrix satisfies the

following:

1
T
nP−1 = eT

n , and P−1en =
1

n
1n,

whereen = [0 . . . 0 1]
T .

Proof: For the brevity, we present only the idea of
the proof. The first statement follows from some algebraic
manipulations on the Laplacian matrix, Theorem 1.37 in [3],
and semi-positive definiteness of the Laplacian matrix. The
second statement follows from the first statement and the
fact that1n belongs to the kernel of the Laplacian matrix.

To prove the third statement, we note that the inverse of
transformation matrixP is given by

P−1 =

[

(Ln−1 − L∗,n1
T
n−1)

−1 1
n
1n−1

−1
T
n−1(Ln−1 − L∗,n1

T
n−1)

−1 1
n

]

. (15)

It follows immediately from equation (15) that1T
nP−1 = en

and P−1en = 1
n
1n. This concludes the proof of the third

and the last statement.
Theorem 2 (Dis. nonlin. flow with pitchfork nonlinearity):

For the disagreement nonlinear flow with pitchfork
nonlinearity, the following statements hold:

Equilibrium points:

1) For γ ≤ 0, the set of equilibrium points is

Fc = diag(Rn).

2) For γ > 0, the set of equilibrium points is

Fb =
{

P−1y | y ∈ {0,−√
γ,

√
γ}n−1 × R,

and
n−1
∑

i=1

yi ∈ {0,−√
γ,

√
γ}
}

.

Consensus:

For γ ≤ 0, each trajectory converges to some point in
the setFc.

Bifurcation:

1) For γ > 0, and n even, the set of locally stable
equilibrium points is

F̄b =
{

P−1y | y ∈ {−√
γ,

√
γ}n−1 × R,

and
n−1
∑

i=1

yi ∈ {−√
γ,

√
γ}
}

.

Moreover, each equilibrium pointx∗ ∈ Fb\F̄b is
unstable.

2) For γ > 0, and oddn > 1, each equilibrium point
x∗ ∈ Fb is unstable.

Proof: We transform the coordinates toy = Px,
and observe that in the new coordinates the equation (11)
transforms to

P−1ẏ = γ











y1 − y3
1

...
yn−1 − y3

n−1

−∑n−1
i=1 yi + (

∑n−1
i=1 yi)

3











. (16)

With some algebraic manipulations, one may see that the
system in equation (16) is equivalent to






ẏ1

...
ẏn−1






= γ(Ln−1 − L∗,n1

T
n−1)







y1 − y3
1

...
yn−1 − y3

n−1







+ L∗,nẏn, (17)

and ẏn = −
n−1
∑

i=1

y3
i +

(

n−1
∑

i=1

yi

)3

. (18)

To establish the first statement, we note that the equi-
librium point of the system in equation (17), for eachi ∈
{1, . . . , n − 1}, are given by

y∗
i ∈

{

{0}, if γ ≤ 0,

{0,±√
γ} if γ > 0.

The equilibrium points, thus obtained, should be consistent
with the equilibrium condition of equation (18). Substitution
of these equilibrium points into the equation (18) yields
∑n−1

i=1 yi ∈ {0,±√
γ}. The equilibrium value ofyn is a free



parameter, and can take any valueβ ∈ R. This concludes
the proof of the first statement.

The proof of the second statement is similar to the
Lyapunov function based proof in Theorem 1.

To prove the local stability of each equilibrium pointx∗ ∈
F̄b, for n even, we shift the origin of (17) and (18), defining
new coordinates as

(ζ1, ζ2)
T = (ζ11, . . . , ζ1n−1, ζ2)

T = y − y∗,

whereP−1y∗ ∈ F̄b. In these new coordinates, (17) and (18)
become
[

ζ̇1

ζ̇2

]

=

[

−2γLn−1(I + 1n−11
T
n−1) 0

0 0

]

×
[

ζ1

ζ2

]

+

[

ḡ1(ζ1)
ḡ2(ζ2)

]

, (19)

where ḡ1 : R
n−1 → R

n−1 and ḡ2 : R
n−1 → R satisfy

equation (3).
The dynamics of (19) are similar to the dynamics of (2),

andζ1 = h(ζ2) = 0 is the center manifold. Theζ2 dynamics
on this manifold are neutrally stable. Hence, each equilibrium
point x∗ ∈ F̄b is locally stable.

Similarly, for n odd, expressing (17) and (18) in the new
coordinates gives
[

ζ̇1

ζ̇2

]

=

[

γLn−1(−2I + 1n−11
T
n−1) 0

−3γ1
T
n−1 0

]

×
[

ζ1

ζ2

]

+

[

g1(ζ1)
g2(ζ2)

]

, (20)

where, g1 : R
n−1 → R

n−1, and g2 : R
n−1 → R satisfy

the conditions in equation (3). Since, the matrix−2I +
1n−11

T
n−1 has an eigenvalue atn − 3, the equilibria are

unstable forn ≥ 3.
The instability of the setFb\F̄b follows similarly.
Remark 3:The absolute and disagreement nonlinear flows

can be studied with other normal forms for the bifurcations in
scalar systems. For example, one may consider the transcrit-
ical nonlinearityfi : R → R defined byfi(x) = γx − x2,
for all i ∈ {1, . . . , n}, and someγ ∈ R. It can be shown
that, forγ > 0, the absolute nonlinear flow with transcritical
nonlinearity converges to consensus under very restrictive
conditions, otherwise each equilibrium point is unstable.The
disagreement nonlinear flow with transcritical nonlinearity
has each equilibrium point unstable forγ > 0. �

V. NUMERICAL RESULTS

We determined the equilibrium points of the absolute
nonlinear flow with pitchfork nonlinearity and established
their stability in Theorem 1. Now we study this system on
some lower order graphs to better understand the underlying
dynamics. We start with a graph with two nodes. Forγ ≤ 0,
the set of equilibrium points of this system is the consensus
set,diag(R2), which are all stable, while forγ > 0, the set
of equilibrium points is shown in Figure 1(a). The subset of
the consensus setC2 belonging to the convex hull of the set
E2 is unstable. Asγ is decreased, the ellipse of equilibrium
points shrinks in size, disappearing atγ = 0. Observe that

x1+x2 is an invariant along any trajectory of the system, and
it can be utilized to reduce the dimension of the system. For
the reduced systemx1 + x2 ≡ c is a parameter, and it turns
out that a pitchfork bifurcation is observed atc =

√

4γ/3.
The corresponding bifurcation diagram forγ = 1 is shown in
Figure 1(b). Forc ≥

√

4γ/3, the only equilibrium point of
the system is atx = c/2. For c <

√

4γ/3, this equilibrium
point loses its stability and two new stable equilibrium points
appear in the system. This is a pitchfork bifurcation.
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Fig. 1. Absolute nonlinear flow with pitchfork nonlinearityon a graph
with two nodes andγ = 1. (a) The unstable equilibrium points are shown
with magenta color while the stable ones are shown in blue color. (b) The
bifurcation diagram for the reduced system. Notice the pitchfork bifurcation
at x1 + x2 = 2/

√
3.

We now consider a line graph with three nodes. Forγ ≤ 0,
the set of equilibrium points is the consensus set,diag(R3),
which are all stable. The set of equilibrium points forγ =
1 is shown in Figure 2(a). Similar to the two node case,
x1 + x2 + x3 is an invariant along any trajectory of the
system, and this can be utilized to reduce the dimension of
the system. For the reduced systemx1 + x2 + x3 ≡ c is
a parameter, and very interesting behaviors are observed as
this parameter is varied (see Figure 2(b)). We note that the
equilibrium at(c/3, c/3) corresponds to the consensus state.
For c = 0 the set of equilibrium points is the consensus point
and an ellipse. Each point on the ellipse is stable, while the
consensus point is a source. As the value ofc is increased
from zero, the reduced system has seven equilibrium points,
three of which are sinks, three are saddle points, and one is a
source. As the value ofc is further increased the three saddle
points move towards the source, reaching it atc =

√
3γ at an

S3-symmetric transcritical bifurcation [2], [8]. As the saddle
points cross the source, i.e., forc >

√
3γ, the source becomes

a sink, and the three saddle points move towards the other



three sinks. Atc = 2
√

γ, the three saddles meet the three
sinks and annihilate each other in saddlenode bifurcations.
For c > 2, there is only one equilibrium point in the system,
which is a sink.
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Fig. 2. Absolute nonlinear flow with pitchfork nonlinearityon a line graph
with three nodes andγ = 1. (a) The equilibrium points are comprised
of three ellipses and a line. (b) The bifurcation diagram forthe reduced
system. Notice theS3-symmetric transcritical bifurcation atc =

√
3, and

the saddlenode bifurcations atc = 2.

We now study the disagreement nonlinear flow with
pitchfork nonlinearity on a line graph with two nodes. For
γ ≤ 0, the set of equilibrium points for this system is the
consensus set,diag(R2), and each equilibrium point is stable.
Forγ = 1, the set of equilibrium points is shown in Figure 3.
For γ > 0 each point in the consensus set is unstable, while
all other equilibrium points are stable.
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Fig. 3. Phase plot for relative nonlinear flow with pitchforknonlinearity on
a graph with two nodes andγ = 1. The consensus set (shown in magenta)
is unstable, while two sets (shown in blue) are stable.

VI. CONCLUSIONS

In this paper, we considered three frameworks which de-
fine distributed nonlinear dynamics in multi-agent networks.
We determined the set of equilibria that could be achieved

through these dynamics, and examined their stability. We
also described the bifurcation behavior in multi-agent net-
works using these frameworks, and demonstrated a variety
of interesting behaviors that can be achieved.

A number of extensions to the work presented here are
possible. For example, the networks considered here are
static. There is a high possibility that the described dynamics
persist for networks with switching topology as well. Fur-
thermore, the class of functions which yield stable equilibria
is not well understood yet. It remains an open problem to
characterize this.
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