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Abstract— We introduce a problem in which a service ve-
hicle seeks to defend a deadline (boundary) from dynamically
arriving mobile targets. The environment is a rectangle and the
deadline is one of its edges. Targets arrive continuously over
time on the edge opposite the deadline, and move towards the
deadline at a fixed speed. The goal for the vehicle is to maximize
the fraction of targets that are captured before reaching the
deadline. We consider two cases; when the service vehicle is
faster than the targets, and; when the service vehicle is slower
than the targets. In the first case we develop a novel vehicle
policy based on computing longest paths in a directed acyclic
graph. We give a lower bound on the capture fraction of the
policy and show that the policy is optimal when the distance
between the target arrival edge and deadline becomes very
large. We present numerical results which suggest near optimal
performance away from this limiting regime. In the second case,
when the targets are slower than the vehicle, we propose a
policy based on servicing fractions of the translational minimum
Hamiltonian path. In the limit of low target speed and high
arrival rate, the capture fraction of this policy is within a small
constant factor of the optimal.

I. INTRODUCTION

Vehicle motion planning in dynamic environments arises
in many important autonomous vehicle applications. In areas
such as environmental monitoring, surveillance and perimeter
defence, the vehicle must re-plan its motion as it acquires in-
formation on its surroundings. In addition, remote operators
may add tasks to, or remove tasks from, the vehicle’s mission
in real-time. In this paper we consider a problem in which a
vehicle must defend a boundary in a dynamic environment
with approaching targets.

Static vehicle routing problems consider planning a path
through a fixed number of locations. Examples include the
traveling salesperson problem (TSP) [1], the deadline-TSP
and vehicle routing with time-windows [2]. Recently, re-
searchers have looked at the TSP with moving objects. In [3]
the authors consider objects moving on straight lines and
focus on the case when the objects are slower than the vehicle
and when the vehicle moves parallel to the x- or y-axis. The
same problem is studied in [4], but with arbitrary vehicle
motion, and it is called the translational TSP. The authors
of [4] propose a polynomial-time approximation scheme to
catch all objects in minimum time. Other variations of the
problem are studied in [5] and [6].

Dynamic vehicle routing (DVR) is a class of problems
in which vehicles must plan paths through service demand
locations that arrive sequentially over time. An early DVR
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Fig. 1. The problem setup. Demands are shown as black disks approaching
the deadline at speed v. The service vehicle is a square.

problem was the dynamic traveling repairperson problem [7],
[8], where each demand assumes a fixed location upon
arrival, and the vehicle must spend some amount of on-
site service time at each location. This problem has also
been studied from the online algorithm perspective [9], [10].
Other recent DVR problems include DVR with demands
that disappear if left unserviced for a certain amount of
time [11], and demands with different priority levels [12].
In our earlier work [13], we introduced a DVR problem
in which demands arrive on a line segment and move in
a perpendicular direction at a fixed speed slower than the
vehicle. We derived conditions on the demand arrival rate and
demand speed for the existence of a vehicle routing policy
which can serve all demands, and a proposed a policy based
on the translational minimum Hamiltonian path.

Contributions: In this paper we introduce the following
problem (see Fig. 1): Targets (or demands) arrive according
to a stochastic process on a line segment of length W .
Upon arrival the demands move with fixed speed v towards
a deadline which is at a distance L from the generator.
A unit speed service vehicle seeks to capture the demands
before they reach the deadline (i.e., within L/v time units
of being generated). The performance metric is the fraction
of demands that are captured before reaching the deadline.

We assume that the arrival process is uniform along the
line segment and temporally Poisson with rate λ. In the
case when the demands are faster than the service vehicle
(i.e., v ≥ 1) we introduce the novel Longest Path policy,
which is based on computing longest paths in a directed
acyclic reachability graph. When L ≥ vW , we derive a
lower bound on the capture fraction as a function of the
system parameters. We show that the Longest Path policy is
the optimal policy when L is much greater than vW . In the



case when the demands are slower than the service vehicle
(i.e, v < 1), we propose a policy based on the translational
minimum Hamiltonian path called the TMHP-fraction policy.
In the limit of low demand speed and high arrival rate, the
capture fraction of this policy is within a small constant
factor of the optimal. We present numerical simulations
which verify our results, and show that the Longest Path
policy performs very near the optimal even when L < vW .

The paper is organized as follows. In Section II we
formulate the problem and in Section III we review some
background material. In Section IV we consider the case of
v ≥ 1 and introduce the Longest Path Policy. In Section V
we study v < 1 and introduce the TMHP-fraction policy.
Finally, in Section VI we present simulations results. Due
to page constraints we omit the proofs of all results. An
extended version of this paper, including all proofs, can be
found in [14].

II. PROBLEM FORMULATION

Consider an environment E := [0,W ] × [0, L] ⊂ R2 as
shown in Figure 1. The line segment [0,W ] × {0} ⊂ E is
termed the generator, and the segment [0,W ] × {L} ⊂ E
is termed the deadline. The environment contains a single
vehicle with position p(t) = [X(t), Y (t)]T ∈ E , modeled as
a first-order integrator with unit speed. Demands (or targets)
arrive in the environment according to a temporal Poisson
process with rate λ > 0. Upon arrival, each demand assumes
a uniformly distributed location on the generator, and then
moves with constant speed v > 0 in the positive y-direction
towards the deadline. If the vehicle intercepts a demand
before the demand reaches the deadline, then the demand
is captured. On the other hand, if the demand reaches the
deadline before being intercepted by the vehicle, then the
demand escapes. Thus, to capture a demand, it must be
intercepted within L/v time units of being generated.

We let Q(t) ⊂ E denote the set of all outstanding demand
locations at time t. If the ith demand to arrive is captured,
then it is removed from Q and placed in the set Qcapt with
cardinality ncapt. If the ith demand escapes, then it is removed
from Q and placed in Qesc with cardinality nesc.

Causal Policy: A causal feedback control policy for the
vehicle is a map P : E × F(E) → R2, where F(E) is the set
of finite subsets of E , assigning a commanded velocity to
the service vehicle as a function of the current state of the
system: ṗ(t) = P(p(t),Q(t)).

Non-causal Policy: In a non-causal feedback control
policy the commanded velocity of the service vehicle is a
function of the current and future state of the system. Such
policies are not physically realizable, but they will prove
useful in the upcoming analysis.

Formally, let the generation of demands commence at time
t = 0, and consider the sequence of demands (q1, q2, . . .)
arriving at increasing times (t1, t2, . . .), with x-coordinates
(x1, x2, . . .). We can also model the arrival process by
assuming that at time t = 0, all demands are located in
[0,W ] × (−∞, 0], move in the y-direction at speed v for
all t > 0, and are revealed to the service vehicle when they
cross the generator. Thus, at time t = 0, the position of the

ith demand is (xi, v(t− ti)). We can define a set containing
the position of all demands in the region [0,W ] × (−∞, 0]
at time t as Qunarrived(t). Then, a non-causal policy is one
for which ṗ(t) = P(p(t),Q(t) ∪Qunarrived(t)).

Problem Statement: The goal in this paper is to find
causal policies P that maximize the fraction of demands that
are captured Fcap(P ), termed the capture fraction, where

Fcap(P ) := lim sup
t→+∞

E
[

ncapt(t)
ncapt(t)+nesc(t)

]
.

III. PRELIMINARY COMBINATORIAL RESULTS

We now review the longest path problem and optimal
tours/paths through a set of points.

A. Longest Paths in Directed Acyclic Graphs

A directed graph G = (V,E) consists of a set of vertices
V and a set of directed edges E ⊂ V ×V . An edge (v, w) ∈
E is directed from vertex v to vertex w. A path in G is
a sequence of vertices such that from each vertex in the
sequence, there is an edge in E directed to the next vertex
in the sequence. A path is simple if it contains no repeated
vertices. A cycle is a path in which the first and last vertex
in the sequence are the same. A graph G is acyclic if it
contains no cycles. The longest path problem is to find a
simple path of maximum length (i.e., a path that visits a
maximum number of vertices). In general this problem is NP-
hard as its solution would imply a solution to the well known
Hamiltonian path problem [15]. However, if the graph is a
DAG, then the longest path problem has an efficient dynamic
programming solution [1] with complexity O(|V |+|E|), that
relies on topologically sorting [16] the vertices.

B. The Euclidean Shortest Path/Tour Problems

Given a set Q of n points in R2, the Euclidean traveling
salesperson problem (ETSP) is to find the minimum-length
tour (i.e., cycle) of Q. Letting ETSP(Q) denote the minimum
length of a tour of Q, we can state the following result.

Theorem III.1 (Length of ETSP tour, [17]) Consider a
set Q of n points independently and uniformly distributed
in a compact set E of area |E|. Then, there exists a constant
βTSP such that, with probability one,

lim
n→+∞

ETSP(Q)√
n

= βTSP

√
|E|. (1)

The constant βTSP has been estimated numerically as
βTSP ≈ 0.7120± 0.0002, [18].

The Euclidean Minimum Hamiltonian Path (EMHP) prob-
lem is to compute the shortest path through a set of points. In
this paper we consider a constrained EMHP problem: Given
a start point s, a set of n points Q, and a finish point f , all
in R2, determine the shortest path which starts at s, visits
each point in Q exactly once, and terminates at f . We let
EMHP(s,Q, f) denote the length of the shortest path.

Corollary III.2 (Length of EMHP) Consider a set Q of n
points independently and uniformly distributed in a compact



set E of area |E|, and any two points s, f ∈ E . Then with
probability one,

lim
n→+∞

EMHP(s,Q, f)√
n

= βTSP

√
|E|,

where βTSP is defined in Theorem III.1.

The above corollary states that the length of the EMHP
and the ETSP tour are asymptotically equal, and it follows
directly from the fact that as n → +∞, the diameter of E is
negligible when compared to the length of the tour/path.

C. Translational Minimum Hamiltonian Path (TMHP)

The TMHP problem is posed as follows. Given initial
coordinates; s of a start point, Q := {q1, . . . ,qn} of a set of
points, and f of a finish point, all moving with speed v ∈]0, 1[
in the positive y-direction, determine a minimum length path
that starts at time zero from point s, visits all points in the
set Q and ends at the finish point. The following gives a
solution [4] for the TMHP problem.
(i) Define the map g : R2 → R2 by

g(x, y) =
( x√

1− v2
,

y

1− v2

)
.

(ii) Compute the EMHP that starts at gv(s), passes through
{g(q1), . . . , g(qn)} =: g(Q) and ends at g(f).
(iii) To reach a translating point with initial position (x, y)
from the initial position (X, Y ), move towards the point
(x, y + vT ), where

T =

√
(1− v2)(X − x)2 + (Y − y)2

1− v2
− v(Y − y)

1− v2
.

The length TMHPv(s,Q, f) of the path is as follows.

Lemma III.3 (TMHP length, [4]) Let the initial coordi-
nates s = (xs, ys) and f = (xf , yf ), and the speed of the
points v ∈ ]0, 1[. Then,

TMHPv(s,Q, f) = EMHP(g(s), g(Q), g(f)) +
v(yf − ys)

1− v2
.

IV. DEMAND SPEED GREATER THAN VEHICLE SPEED

Here we develop a policy for the case when the demand
speed v ≥ 1. In this policy, the service vehicle remains on
the deadline and services demands as per the longest path in
a directed acyclic reachability graph. In this section we begin
by introducing the reachability graph, and then proceed to
state and analyze the Longest Path policy.

A. Reachable Demands

Consider a demand generated at time t1 ≥ 0 at position
(x, 0). The demand moves in the positive y-direction at speed
v ≥ 1, and thus (x(t), y(t)) = (x, v(t − t1)) for each t ∈
[t1, T ], where T is either the time of escape (i.e., T = L/v+
t1), or it is the time of capture. Now, given the service vehicle
location (X(t), Y (t)), a demand with position (x, y(t)) is
reachable if and only if

v|X(t)− x| ≤ Y (t)− y(t). (2)

Reachable demands

Fig. 2. The construction of the reachability graph. The top-left figure
shows the set of reachable points from a vehicle positioned on the deadline.
The top-right and bottom-left figures show the reachable set from demand
locations. The bottom-right figure shows the reachability graph.

That is, the service vehicle must be at a height of at least
v|X(t)− x| above the demand in order to capture it.

Definition IV.1 (Reachable set) The reachable set from a
position (X, Y ) ∈ E is

R(X, Y ) := {(x, y) ∈ E : v|X − x| ≤ |Y − y|}.

If the service vehicle is located at (X, Y ), then a demand
can be captured if and only if it lies in the set R(X, Y ).

An example of the reachable set is shown in Figure 2. Next,
given a demand in the reachable set, the following motion
gives a method of capture.

Definition IV.2 (Intercept motion) Consider a vehicle po-
sition ((X(t̄), Y (t̄)) and a demand position (x, y(t̄)) ∈
R(X(t̄), Y (t̄)) at time t̄ ≥ 0. In intercept motion, the service
vehicle captures the demand by first moving horizontally at
unit speed to the position (xi, Y (t̄)), and then waiting at the
location for the demands arrival.

It turns out that intercept motion is optimal, as summarized
in the following lemma. The proof is contained in [14].

Lemma IV.3 (Optimality of intercept motion) Consider
v ≥ 1, and let the service vehicle be initially positioned on
the deadline. Then, there is an optimal policy in which the
service vehicle uses only intercept motion.

Next, consider the set of demands in R(X(t̄), Y (t̄)), and
suppose the vehicle chooses to capture demand i, with
position qi(t̄) = (xi, yi(t̄)) ∈ R(X(t̄), Y (t̄)). Upon capture
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Fig. 3. A snapshot in the evolution of the Non-causal Longest Path policy.
The vehicle has planned the solid red path through all demands, including
those that have not yet arrived. In comparison, a dashed causal longest path
is shown, which only considers demands that have arrived.

at time T , the service vehicle can recompute the reachable
set, and select a demand that lies within. Since all demands
translate together, every demand that was reachable from
qi(t̄), is reachable from qi(T ). Thus, the service vehicle can
“look ahead” and compute the demands that will be reachable
from each captured demand position. This idea motivates the
concept of a reachability graph.

Definition IV.4 (Reachability graph) For v ≥ 1, the
reachability graph of a set of points {q1, . . . ,qn} ∈ E , is a
directed acyclic graph with vertex set V := {1, . . . , n}, and
edge set E, where for i, j ∈ V , the edge (i, j) is in E if and
only if qj ∈ R(qi) and j 6= i.

Given a set Q of n outstanding demands, and a vehicle
position (X, Y ), we can compute the corresponding reach-
ability graph (see Fig. 2) in O(n2) computation time. In
addition, by Section III-A we can compute the longest path
in a reachability graph in O(n2) computation time.

B. A Non-causal Policy and Upper Bound

To derive an upper bound for v ≥ 1, we begin by
considering a non-causal policy. In the online algorithms
literature, such a policy would be referred to as an offline
algorithm [9].

Non-causal Longest Path (NCLP) policy
Assumes: Vehicle is located on deadline and v ≥ 1.
Compute the reachability graph of the vehicle position1

and all demands in Q(0) ∪Qunarrived(0).
Compute a longest path in this graph, starting at the2

service vehicle location.
Capture demands in the order they appear on the path,3

intercepting each demand on the deadline.

Figure 3 shows an example of a path generated by the
Non-causal Longest Path policy. Note that the service vehicle
will intercept each demand on the deadline, and thus the path
depicts which demands will be captured, and in what order.

The following lemma, whose proof is contained in [14],
establishes the optimality of the NCLP policy.

Lemma IV.5 (Optimal non-causal policy) If v ≥ 1, then
the Non-causal Longest Path policy is an optimal non-causal
policy. Moreover, if v ≥ 1, then for every causal policy P ,

Fcap(P ) ≤ Fcap(NCLP).

C. The Longest Path Policy

We now introduce the Longest Path policy. In the LP
policy, the fraction η is a design parameter. The lower η
is chosen, the better the performance of the policy, but this
comes at the expense of increased computation.

The Longest Path (LP) policy
Assumes: Vehicle is located on deadline and v ≥ 1
Compute the reachability graph of the vehicle position1

and all demands in Q(0).
Compute a longest path in this graph, starting at the2

service vehicle location.
Capture demands in the order they appear on the path,3

intercepting each demand on the deadline.
Once a fraction η ∈ ]0, 1] of the demands on the path4

have been serviced, recompute the reachability graph of
all outstanding demands and return to step 2.

In the following theorem, we relate the Longest Path
policy to its non-causal relative. Such a bound is referred to
as a competitive ratio in the online algorithms literature [9].
The proof can be found in [14].

Theorem IV.6 (Optimality of Longest Path policy) If
v ≥ 1, then

Fcap(LP) ≥
(

1− vW

L

)
Fcap(NCLP),

and thus the LP policy is optimal as vW/L → +∞.

Remark IV.7 (Conservativeness of bound) The bound in
Theorem IV.6 is conservative. This is primarily due to
bounding the expected distance between the causal and non-
causal paths by W . The distance between two independently
and uniformly distributed points in [0,W ], is W/3. The
distance is even less if the points are positively correlated
(as is likely the case for the distance between paths). Thus,
it seems that it may be possible to increase the bound to

Fcap(LP) ≥
(

1− vd

L

)
Fcap(NCLP),

where d < W/3. �

The previous theorem establishes the performance of the
Longest Path policy relative to a non-causal policy. However,
the LP policy is difficult analyze directly. This is due to the
fact that the position of the vehicle at time t depends on
the positions of all outstanding demands in Q(t). Thus, our
approach is to lower bound the capture fraction of the LP
policy with a greedy policy.



The Greedy Path (GP) policy
Assumes: Vehicle is located at (X, L)
Compute the reachability set R(X, L).1

Capture the demand in R(X, L) with the highest2

y-coordinate using intercept motion.
Repeat.3

Given a set of outstanding demands Q(t) at time t, the
Greedy Path policy generates a suboptimal longest path
through Q(t). In addition, the vehicle position is independent
of all outstanding demands, except the demand currently
being captured. Thus, the capture fraction of the Greedy Path
policy provides a lower bound for the capture fraction of
the Longest Path policy. We are now able to establish the
following result, whose proof is contained in [14].

Theorem IV.8 (Lower Bound for Longest Path policy)
If L ≥ vW , then for the Longest Path policy

Fcap(LP) ≥ Fcap(GP) ≥ 1√
πα erf(

√
α) + e−α

,

where α = λW/2 and erf : R → [−1, 1] is the error
function.

V. DEMAND SPEED LESS THAN VEHICLE SPEED

In this section we study the case when the demand speed
v < 1. For this case, an upper bound on the capture fraction
has been derived in [13]. We introduce a policy which is a
variant of the TMHP-based policy in [13], and lower bound
its capture fraction in the limit of low demand speed and
high demand arrival rate.

A. Capture Fraction Upper Bound

The following theorem upper bounds the capture fraction
of every policy for the case of v < 1.

Theorem V.1 (Capture fraction upper bound, [13]) If
v < 1, then for every causal policy P

Fcap(P ) ≤ min
{

1,
2√

vλW

}
.

The proof of the above theorem is contained in [13], and
relies on a computation of the expected minimum distance
between demands. Notice that for low demands speed, i.e.,
v � 1, it may be possible to achieve a capture fraction of
one, even for high arrival rates.

B. The TMHP-fraction Policy

In Section III-C we reviewed the translational minimum
Hamiltonian Path (TMHP) through a set of demands. The
following policy utilizes this path to service demands. Fig-
ure 4 shows an example of the TMHP-fraction policy. In
contrast with the LP policy, where the vehicle remains on
the deadline, in the TMHP-fraction policy the vehicle follows
the TMHP using minimum time motion between demands as
described in Section III-C.

Notice that none of the demands in the region [0,W ] ×
[0, L/2] at time t will have escaped before time t + L/(2v).

Fig. 4. The TMHP-fraction policy. The left-hand figure shows a TMHP
through all outstanding demands. The right-figure shows the instant when
the vehicle has followed the path for L/(2v) time units and recomputes its
path, allowing some demands to escape.

Thus, the vehicle is guaranteed that for the first L/(2v)
time units, all demands on the TMHP path are still in the
environment. For the TMHP-fraction policy we have the
following result (see [14] for its proof).

The TMHP-fraction (TF) policy
Assumes: Vehicle is located on the line y = L/2.
Compute a translational minimum Hamiltonian path1

through all outstanding demands in [0,W ]× [0, L/2],
starting at the service vehicle position, and terminating
at the demand with the lowest y-coordinate.
if time to travel entire path is less than L/(2v) then2

Service all outstanding demands by following the3

computed path.
else4

Service outstanding demands along the computed5

path for L/(2v) time units.
Repeat.6

Theorem V.2 (TMHP-fraction policy lower bound) In
the limit as v → 0+ and λ → +∞, the capture fraction of
the TMHP-fraction policy satisfies

Fcap(TF) ≥ min
{

1,
1

βTSP

√
vλW

}
.

Remark V.3 (Bound comparison) In the limit as v → 0+,
and λ → +∞, the capture fraction of the TMHP-fraction
policy is within a factor of 2βTSP ≈ 1.42 of the optimal. �

VI. SIMULATIONS

We now present two sets of results from numerical ex-
periments. The first set compares the Longest Path policy
with η = 1 to the Non-causal Longest Path policy and to
the theoretical lower bound in Theorem IV.8. The second set
compares the TMHP-fraction policy to the policy indepen-
dent upper bound in Theorem V.1 and the lower bound in
Theorem V.2.

To simulate the LP and the NCLP policies, we perform 10
runs of the policy, where each run consists of 5000 demands.
A comparison of the capture fractions for the two policies is
presented in Figure 5. When L > vW , the capture fraction of
the LP policy is nearly identical to that of the NCLP policy.
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(a) v = 2 and L > vW .
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Fig. 5. Simulation results for LP policy (solid red line with error bars
showing ± one standard deviation) and the NCLP policy (dashed black
line) for an environment of width W = 120 and length L = 500. In (a),
L > vW , and the lower bound in Theorem IV.8 is shown in solid green.
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(a) Demand speed v = 0.01.
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(b) Demand speed v = 0.05.

Fig. 6. Simulation results for TMHP-fraction policy. The solid black curve
shows the upper bound in Theorem V.1 and the dashed line shows the lower
bound in Theorem V.2. Numerical results are shown with error bars.

Even in Figure 5(a), where L < vW , the capture fraction
of the LP policy is within 2% of the NCLP policy, and thus
the optimal. This suggests that the Longest Path policy is
essentially optimal over a large range of parameter values.

To simulate the TMHP-fraction policy, the linkern1

solver is used to generate approximations to the optimal
TMHP. For each value of arrival rate, we determine the
capture fraction by taking the mean over 10 runs of the
policy. A comparison of the simulation results with the
theoretical results from Section V are presented in Figure 6.
For v = 0.01 in Fig. 6(a), the experimental results are in
near exact agreement with the theoretical lower bound in
Theorem V.1. For v = 0.05 in Fig. 6(b), the experimental re-
sults are within 5% of the theoretical lower bound. However,
notice that the experimental capture fraction is smaller than
the theoretical lower bound. This is due to several factors.
First, we have not reached the limit as v → 0+ and λ → +∞
where the asymptotic value of βTSP ≈ 0.712 holds. Second,
we are using an approximate solution to the optimal TMHP,
generated via the linkern solver.

VII. CONCLUSIONS

In this paper we introduced a pursuit problem in which a
vehicle must defend a deadline from approaching demands.

1linkern is freely available for academic research use at
http://www.tsp.gatech.edu/concorde.html.

We presented novel policies in the case when the demand
speed is greater than the vehicle speed, and in the case when
the demand speed is less than the vehicle speed. In the former
case we introduced the Longest Path policy which is based on
computing longest paths in the directed acyclic reachability
graph, and in the latter case we introduced the TMHP-
fraction policy. For each policy, we analyzed the fraction
of demands that are captured.

There are many areas for future work. The Longest Path
policy has promising extensions to the case when demands
have different priority levels, and to the case of multiple
vehicles. We would also like to fully characterize the capture
fraction when L < vW , and tighten our existing bounds to
reflect the near optimal performance shown in simulation.
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