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On the Security of Linear Consensus Networks
Fabio Pasqualetti Antonio Bicchi Francesco Bullo

Abstract—This work considers the problem of reaching con-
sensus in an unreliable linear consensus network. A solution
to this problem is relevant for several tasks in multi-agent
systems including motion coordination, clock synchronization,
and cooperative estimation. Only relying on their direct mea-
surements, the agents detect and identify uncooperative behav-
iors using unknown input observer techniques. By modelling
the misbehaving nodes as unknown and unmeasurable inputs
affecting the network, we recast the problem into a system
theoretic framework. We consider both the cases of Byzantine
as well as non-colluding faults, and we express the solvability
conditions of the two cases in terms of the observability properties
of a linear system associated with the network. It is shown
that generically any node can correctly detect and identify the
misbehaving nodes, provided that the connectivity of the network
is sufficiently high. Precisely, for a linear consensus network to
be generically resilient to k concurrent faults, the connectivity of
the communication graph needs to be 2k +1, if Byzantine faults
are allowed, and k + 1, if faulty agents are considered.

I. INTRODUCTION

Distributed systems and networks have received much
attention in the last years because of their flexibility and
computation performance. One of the most frequent task to
be accomplished by autonomous agents is to agree upon
some parameters. Agreement variables represent quantities
of interest such as the work load in a network of parallel
computers, the clock speed for wireless sensor networks, the
velocity, the rendezvous point, or the formation pattern for a
team of autonomous vehicles; e.g., see [1], [2], [3].

Several algorithms achieving consensus have been proposed
and studied in the computer science community [4]. In this
work, we consider linear iterations, where, at each time instant,
each node updates its state as a weighted combination of its
own value and those received from its neighbors [1], [2]. The
choice of algorithm weights is a parameter that influences the
convergence speed toward the steady state value [5].

Because of the lack of a centralized entity which may
monitor the activity of the nodes of the network, distributed
systems are prone to attacks and components failure, and it is
of increasing importance to guarantee trustworthy computation
even in the presence of misbehaving parts. The misbehaving
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agents are here classified, depending on their abilities, as
Byzantine, or malicious, and as non-colluding, or faulty. Ma-
licious agents have complete knowledge of the network, and
posses unlimited sensing, communication, and computation
capabilities. Also, they collude in order to cause the biggest
damage to the network. On the other hand, faulty agents do
not cooperate maliciously, and their uncooperative behavior
is often due to an hardware failure. When malicious agents
are present, the worst case scenario for the network has to be
considered, whereas in the presence of faulty agents, atypical
agents behaviors, i.e., those occurring with zero probability,
are not taken into account.

Reaching unanimity in an unreliable system is an important
problem well known by computer scientists interested in
distributed computing. A first characterization of the resilience
of distributed systems to Byzantine attacks appears in [6],
where the authors consider the task of agreeing upon a binary
message sent by a “general,” when the communication graph
is complete. In [7] the resilience of a partially connected1

network seeking consensus is analyzed, and it is shown that
the well-behaving agents of a network can always agree upon
a parameter if and only if the number of malicious agents

(i) is less than one-half of the network connectivity, and
(ii) it is less than one-third of the number of processors.

This result has to be regarded as a fundamental limitation
of the ability of a distributed consensus system to sustain
arbitrary malfunctioning: the presence of misbehaving Byzan-
tine processors can be tolerated only if their number satisfies
the above threshold, independently of whatever consensus
protocol is adopted.

In this work, we consider linear consensus algorithms in
which every agent, including the misbehaving ones, are as-
sumed to send the same information to all their neighbors. This
assumption appears to be realistic for most control scenarios.
In a sensing network for instance, the data used in the con-
sensus protocol consists of the measurements taken directly by
the agents, and it is assumed that the measurements regarding
the same quantity coincide. Also, in a broadcast network, the
information is transmitted using broadcast messages, so that
the content of a message is the same for all the receiving
nodes. The problem of characterizing the resilience properties
of linear consensus strategies has been partially addressed in
recent works [8], [9], [10], where, for the malicious case, it
is shown that, despite the limited abilities of the misbehaving
agents, the resilience to external attacks is still limited by the
connectivity of the network. In [8] the problem of detecting
and identifying misbehaving agents in a linear consensus
network is first introduced, and a solution is proposed for the
single faulty agent case. In [9], [10], the authors provide a

1The connectivity of a graph is the maximum number of disjoint paths
between any two vertices of the graph.
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policy that k malicious agents can follow to prevent some
of the nodes of a 2k-connected network from computing the
desired function of the initial state, or, equivalently, from
reaching an agreement. On the contrary, if the connectivity is
2k+1 or more, then the authors show that generically the set of
misbehaving nodes is identified independent of its behavior,
so that the desired consensus is reached. In this paper, we
extend and improve the results along these directions, e.g.,
by characterizing the complete set of policies that make a
set of k malicious agents undetectable or unidentifiable, and
by providing the resilience bounds in the case of faulty
agents. Our approach also differs from the existing computer
science literature, e.g., our analysis leads to the development
of algorithms that can be easily extended to work on both
discrete and continuous time linear consensus networks, and
also with partial knowledge of the network topology.

The main contributions of this work are as follows. By
recasting the problem of linear consensus computation in
an unreliable system into a system theoretic framework, we
provide a constructive mathematical interpretation of some
results first appeared in the computer science community. In
particular, we relate the connectivity, and hence the resilience
properties of a linear consensus iteration on a network, to
the observability properties of a linear system associated with
such network. The misbehaving nodes, which update their
state arbitrarily, are detected and identified by means of a set
of residual generator filters. We consider both Byzantine and
faulty nodes. In the first case, we obtain results analogous
to those of [7] (i.e., k malicous agents can be identified if
the network is (2k + 1)-connected and cannot be identified if
the network is 2k-connected), and we exhaustively describe
the strategies that the malicious nodes can follow to disrupt
a linear network that is not sufficiently connected. We show
that the inputs that allow the misbehaving agents to remain
undetected or unidentified coincide with the zero inputs of
the linear system associated with the network. Finally, we
underline that a linear consensus protocol, in which the ma-
licious agents are not allowed to send conflicting information
to their neighbors, is as resilient to malicious attacks as the
flooding strategies proposed in [7]. In the second case, we
show that the resilience bound can be raised, and we describe
necessary and sufficient conditions to detect and uniquely
identify a set of k faulty agents acting in a (k + 1)-connected
linear network. Also, the proposed resilience bounds are shown
to be generic with respect to the network communication
weights, i.e., given a network, the bounds hold for almost
all choices of the communication weights. In the last part
of the paper, we consider the situation in which either the
partial knowledge of the network topology, or the hardware
limitations make it infeasible for the agents to implement the
proposed detection and identification procedure. We describe
an approximate algorithm, which has low complexity, and for
which the computational burden of each agent is independent
of the size of the network.

The rest of the paper is organized as follows. Section II
recalls some basic facts on the fault detection and isolation
problem for linear systems. In Section III we describe the
consensus model under consideration. Section IV contains the
conditions under which the misbehaving agents are detectable

and identifiable, and Section V deals with the genericity of
such conditions. Section VI presents our algorithmic proce-
dures. Sections VII and VIII contain respectively our numer-
ical studies and our conclusions.

II. NOTATION AND PRELIMINARY CONCEPTS

We will be using the same notation as in [11]. Throughout
the paper, let the triple (A,B, C) denote the linear discrete
time system

x(t + 1) = Ax(t) + Bu(t),
y(t) = Cx(t),

(1)

and let the subspaces B and C denote respectively the image
space Im(B) and the null space Ker(C). A subspace V ⊆ X is
a (A,B)-controlled invariant if AV ⊆ V+B, while a subspace
S ⊆ X is a (A, C)-conditioned invariant if A(S ∩ C) ⊆ S . A
state trajectory x(t) of (1) can be controlled on a subspace V
if and only if this is a (A,B)-controlled invariant. The set of
all controlled invariants contained in C admits a supremum,
which we denote with V∗, and which corresponds to the locus
of all possible state trajectories of (1) invisible at the output.
On the other hand, a conditioned invariant S is a subspace such
that there exists an observer for the system (1) for the factor
space X/S. The set of the conditioned invariants containing
B admits an infimum, which we denote with S∗.

In a linear system, the presence of sensors failure and actua-
tors malfunction is usually modeled by adding some unknown
and unmeasurable functions ui to the nominal system, so that
the dynamic model becomes

x(t + 1) = Ax(t) +
m∑

i=1

Biui(t),

y(t) = Cx(t).

(2)

The matrices Bi and the functions ui are referred to as failure
signatures and failure modes. By definition, when the failure
i is not acting, the corresponding function ui is constantly
equal to zero. Given the system (2), the fault detection and
isolation problem is to design a dynamic residual generator
that takes the observables y(t) and generates a set of residual
vectors ri(t), such that 1) every residual ri(t) decays to zero
if no failure is present, and 2) the nonzero residuals, allow to
uniquely identify the failures. From [11], [12] we know the
following result.

Theorem II.1 (Fault detection and isolation) Consider the
system (A, [B1 · · ·Bm], C), and let K = {1, . . . ,m}. The
fault detection and isolation problem is solvable if and only if

Bi ∩ (V∗
K\i + S∗

K\i) = ∅, ∀i ∈ K, (3)

where V∗
K\i and S∗

K\i are the maximal controlled and minimal
conditioned invariant subspaces associated with the triple
(A, [Bj1 · · ·Bjm−1 ], C), j1, . . . , jm−1 ∈ K \ {i}.

Theorem II.1 guarantees the existence of a filter whose
output ri, which is referred to as i-th residual, is affected
only by the dynamics generated by the i-th failure signature.
Moreover, the transfer function between the signature i and
the residual ri is left-invertible, i.e., when the initial condition
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of the residual generator and that of the system coincide, the
mapping from ui to ri is one to one. Note that Theorem II.1
does not provide the solvability conditions for the detection
and identification of misbehaving agents in a linear consensus
network, because the misbehaving nodes, and hence the failure
signatures, are unknown.

III. LINEAR CONSENSUS IN THE PRESENCE OF
MISBEHAVING AGENTS

Let G be an undirected graph, V its vertex set, and E
its edge set. The connectivity of G is the maximum number
of disjoint paths between any two vertices of the graph, or,
equivalently, the minimum number of vertices in a vertex
cutset [13]. Denote with Ni the neighbors set of the node
i ∈ V , i.e., all the nodes j ∈ V such that the pair (j, i) ∈ E.
Consider the discrete time linear consensus system

x(t + 1) = Ax(t), (4)

in which the row stochastic and primitive matrix A is such
that the (i, j)-th entry equals the weight of the communication
edge from j to i, and in which the vector x contains the real
numbers (state) associated with the agents [1]. In the sequel,
we will be only considering consensus systems in which the
graph associated with the consensus matrix A is not complete.

Algorithms of the form (4) have no resilience to malfunc-
tions and external attacks, as it is shown in [8], and the
failure of one or more agents prevents the entire network
from reaching the desired consensus. We model the presence
of the misbehaving node i using an exogenous input in the
i-th position, so that, if the set of the misbehaving nodes is
K = {i1, i2, . . . } ⊂ V , the consensus system becomes

x(t + 1) = Ax(t) + BKuK(t), (5)

where, being ej the j-th vector of the canonical basis, the input
matrix is BK = [ei1 ei2 · · · ]. The misbehaving agents are
allowed to update their state in an arbitrary way by choosing
the input function uK . In particular, the misbehaving agents
are said to be malicious if they can inject any arbitrary function
uK , while they are said to be faulty if, given any proper
subspace V of the state space, they are not able to confine the
evolution of the state of the network on V . In the malicious
case, the worst case scenario for the network is considered,
whereas, in the faulty case, atypical network dynamics, i.e.,
those lying on a subset of the state space of zero Lebesgue
measure, are not taken into account. Note that our choice of
keeping the matrix A fixed and of letting the class of inputs uK

unspecified models also the situation in which the misbehaving
agents modify some entries of the matrix A, and the case of
unreliable communication edges.

Remark 1 (Complete communication graph) If the graph
associated with A is complete, then the identification of
the misbehaving agents does not depend upon the number
of misbehaving agents. Indeed, the state of the network is
correctly received after the first step, so that each node can
predict the evolution of the network, and hence identify the
misbehaving agents. It follows that the number of malicious
agents that can be tolerated in a linear consensus networks
needs not be less than one third of the total number of nodes.

IV. DETECTION AND IDENTIFICATION OF MISBEHAVING
AGENTS

Given a k-connected linear consensus network of the form
(5), we associate an output matrix Cj with each agent j, which
describes the information about the state of the network that
is directly available to j. In particular, yj(t) = Cjx(t), and
Cj = [en1 · · · enp

]T , {n1, . . . , np} ∈ Nj . The problem of
ensuring trustworthy computation among the agents of the
network can be divided into a detection phase, in which the
presence of the misbehaving components is revealed, and an
identification phase, in which the identity of the misbehaving
agents is discovered. From a system theoretic prospective, both
tasks require certain observability properties of the consensus
system. Let I represent the identity matrix of appropriate di-
mensions, the zero dynamics of the linear system (A,BK , Cj)
are the state trajectories invisible at the output, and can be
characterized by means of the (n + p)× (n + m) pencil

P (z) =
[

zI −A BK

Cj 0

]
.

The complex value z̄ is said to be an invariant zero of the sys-
tem (A,BK , Cj) if there exists a zero state direction x0, and a
zero input direction g such that (z̄I−A)x0+BKg = 0. Finally,
if rank(P (z)) = n+m for all but finitely many complex values
z, then the system (A,BK , Cj) is left-invertible, i.e., there
are no two pairs of distinct inputs that give rise to the same
output sequence. The zero dynamics are strictly related to the
connectivity of the communication graph associated with the
consensus algorithm.

Theorem IV.1 (Zero dynamics and connectivity) Given
the consensus system (A,BK , Cj), let k be the connectivity
of the digraph associated with A. If |K| > k, then there
exists a set K and a node j such that the triple (A,BK , Cj)
is not left-invertible. Moreover, if |K| = k, then there exists
a set K and a node j such that the triple (A,BK , Cj) has
nontrivial zero dynamics.

Proof: Let G be the digraph associated with A, and let
k be the connectivity of G. Take a set K of k + 1 malicious
nodes, such that k of them form a vertex cut S of G. Note that,
since the connectivity of G is k, such set always exists. The
network G is divided into two subnetworks G1, and G3, which
communicate only through the nodes S. Assume that the
misbehaving agent K \ S belongs to G3, while the observing
node j belongs to G1. After reordering the nodes such that
the vertices of G1 come first, the vertices S come second, and
the vertices of G3 come third, the consensus matrix A is of

the form
[

A11 A12 0
A21 A22 A23
0 A32 A33

]
. Let uS = −A23x3, where x3 is the

vector containing the values of the nodes of G3, and let uK\S

be any arbitrary nonzero function. Clearly, starting from the
zero state, the values of the nodes of G1 are constantly 0, while
the subnetwork G3 is driven by the misbehaving agent K \S.
We conclude that the triple (A,BK , Cj) is not left-invertible.

Suppose now that K ≡ S as previously defined, and let
uK = −A23x3. Let the initial condition of the nodes of G1

and of S be zero. Since every state trajectory generated by
x3 6= 0 does not appear in the output of the agent j, the triple
(A,BK , Cj) has nontrivial zero dynamics.
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A set of misbehaving agents may remain undetected from
the observations of the node j if and only if there exists an
initial condition of the network such that their behavior does
not appear in the output sequence yj .

Theorem IV.2 (Undetectable malicious agents) Let A be a
consensus matrix, let V be the nodes of the network, and
let K ⊂ V be the set of malicious agents. The set K is
undetectable by the node j ∈ V if and only if the system
(A,BK , Cj) has nontrivial zero dynamics.

Proof: It follows directly from the properties of a strong
observable system [14].

Following Theorem IV.2, we can state a first upper bound
on the number of malicious agents that can be detected.

Theorem IV.3 (Detection of malicious agents) Given a k-
connected linear consensus network, at most k−1 concurrent
malicious agents can be detected by every node in the network.

Proof: Suppose there are k malicious nodes, and that the
communication graph associated with the consensus system is
k-connected. Let the misbehaving agents form a vertex cut.
Because of Theorem IV.1, for some output matrix Cj , the
consensus system has nontrivial zero dynamics, so that the
malicious nodes may remain undetected.

The identification of the misbehaving nodes is more chal-
lenging than the detection. Let K1 and K2 be any two disjoint
sets of possible misbehaving agents, and let x1 and x2 be
the state trajectories generated by K1 and K2 with the inputs
u1 and u2. Clearly, if the difference x1 − x2 belongs to the
null space of the output matrix Cj , then it is not possible to
determine from the observations of the agent j whether the
set K1 or the set K2 is misbehaving.

Theorem IV.4 (Unidentifiable malicious agents) Let A be
a consensus matrix, let V be the nodes of the network,
and let K1 ⊂ V be the set of malicious agents. The set
K1 is identifiable by the node j ∈ V if and only if the
system (A, [BK1 BK2 ], Cj) has no nontrivial zero dynamics,
for every set K2 ⊂ V of possible misbehaving agents.

Proof: (Only if) By contradiction, let x0 and [u1 −u2]T
be a zero state direction, and a zero input sequence for the
system (A, [BK1 BK2 ], Cj). We have

yj(t) = 0 = Cj

„
A

t
x0 +

t−1X
τ=0

A
t−τ−1

B1u1(τ) −
t−1X
τ=0

A
t−τ−1

B2u2(τ)

«

where B1 and B2 are the input matrices associated with the
sets K1 and K2. Therefore,

Cj

„
A

t
x
1
0 +

t−1X
τ=0

A
t−τ−1

B1u1(τ)

«
= Cj

„
A

t
x
2
0 +

t−1X
τ=0

A
t−τ−1

B2u2(τ)

«
,

where x1
0 − x2

0 = x0. Clearly, since the output sequence
generated by K1 coincide with the output sequence gener-
ated by K2, the two sets of misbehaving nodes can not be
distinguished.

(If) Recall that a system with no zero dynamics is strongly
observable [14], i.e., there exists a unique pair of initial
condition and input sequence that generates the output se-
quence. Let K be the set containing all the possible sets of

misbehaving nodes, and let K ∈ K be the set of malicious
nodes. Let Y be the vector containing the output sequence
of the node j. Consider the systems Σi,l = (A, [BKi BKl

]),
with Ki,Kl ∈ K, and Ki ∩ Kl = ∅, and compute the input
sequence, if any, that produces Y for every system Σi,l. Since
each system Σil has no zero dynamics, there is a unique input
sequence producing Y . In particular, whenever Ki = K, the
input corresponding to the set Kl is zero, so that all the sets
Kl, such that Kl ∩ K = ∅, are recognized as well-behaving,
and, by exclusion, the set K is identified.

As a consequence of Theorem IV.4, if up to k malicious
agents are allowed to act in the network, then a necessary and
sufficient condition to correctly identify the set of malicious
nodes is that the consensus system subject to any set of 2k
inputs has no zero nontrivial dynamics.

Theorem IV.5 (Identification of malicious agents) Given a
k-connected linear consensus network, at most bk−1

2 c mali-
cious agents can be identified by every node in the network.

Proof: Let K1 and K2 be two sets of bk−1
2 c + 1

agents, and let K1 be malicious. Since 2(bk−1
2 c + 1) ≥ k,

by Theorem IV.1 there exist K1, K2, and j such that the
system (A, [BK1 BK2 ], Cj) has nontrivial zero dynamics. By
Theorem IV.4, the set K1 is not identifiable.

A complete characterization of the undetectable or uniden-
tifiable malicious behaviors is derived from Theorem IV.4.

Theorem IV.6 (Undetectable and unidentifiable inputs)
Let A be a consensus matrix, and let K1 ⊂ V be the
set of malicious agents. The set of inputs that make the
agents K1 undetectable coincide with the zero inputs of the
system (A,BK1 , Cj). Moreover, the functions uK1 that make
the set K1 unidentified are such that there exists an input
[uK1 uK2 ]

T that generates a zero dynamic for the system
(A, [BK1 BK2 ], Cj), where K2 ⊂ V is any set of possible
misbehaving nodes.

Proof: It follows directly from Theorem IV.4.
For a linear consensus network, Theorem IV.5 provides

an alternative proof of the resilience bound first presented
in [7] and later rediscovered in [9], and Theorem IV.6 fully
characterizes the behaviors for which a group of malicious
agents remains unidentified from the output observations of a
certain node.

In most of the practical applications, it is too restrictive to
assume that the misbehaving nodes are able to generate zero
dynamics, since they need to be able to steer the state along
particular directions, which have zero Lebesgue measure in the
state space.2 This motivates the study of the resilience of linear
consensus networks to faulty (non-colluding) attacks, which,
by definition, are not allowed to generate zero dynamics. The
following theorem states an upper bound on the number of
faulty agents that can be detected and identified.

Theorem IV.7 (Identification of faulty agents) Given a k-
connected linear consensus network, at most k−1 concurrent

2The zero state directions are confined on the subspace V∗, which is a
proper space of the state space, and hence has zero Lebesgue measure.
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misbehaving agents can be detected and correctly identified
by any well-behaving agent.

Proof: By assuming that the misbehaving nodes are
not colluding, we suppose that they are not able to steer
the network along zero dynamics. Therefore, the detection
problem can always be accomplished, and we only need to
show that at most k−1 faulty agents can be correctly identified.
Suppose there are k faulty agents, and suppose that they form
a vertex cut. The network is divided into two subnetworks G1

and G2 by the faulty nodes K. Let i be a node of G2, and
consider the problem of understanding, from the observations
of the agent j of G1, whether the set K or the agent i is faulty.
As in the proof of Theorem IV.1, the system (A, [BS Bi], Cj ])
is not left-invertible, and, since every signal starting from i
reaches j through the agents K, we have BS ∩ S∗

i 6= 0.
From Theorem II.1, the dynamics generated by the two sets
K and i can not be decoupled, and, in particular, the set K
can reproduce the output sequence generated by any ui. We
conclude that j, and in fact any node in G1, is never able to
distinguish whether i, and in fact any set of nodes in G2, or
the set K is faulty.

Theorems IV.5 and IV.7 only give an upper bound on the
maximum number of concurrent misbehaving agents that can
be detected and identified. In the next section it will be shown
that, generically, in order to detect and identify k malicious
agents, the connectivity of the communication graph needs
to be 2k + 1, while, for faulty agents, a (k + 1)-connected
network is sufficient. In other words, if there exists a set
of k misbehaving nodes that can not be identified by the
agent j, then a random and arbitrarily small change of the
consensus matrix makes the misbehaving nodes detectable and
identifiable with probability one, provided that the connectivity
of the communication graph is sufficiently high.

V. STRUCTURAL PROPERTIES AND GENERIC SOLVABILITY

We will be using some known results in the field of linear
structured systems, and we refer the interested reader to [15],
[16] for a detailed treatment of the subject. Given a linear
structured system of the form

x(t + 1) = [A]x(t) + [B]u(t)
y(t) = [C]x(t) + [D]u(t),

(6)

we associate a directed graph G = (V,E) with it. The vertex
set V is given by U∪X∪Y , with U = {u1, . . . , um} the set of
input vertices, X = {x1, . . . , xn} the set of state vertices, and
Y = {y1, . . . , yp} the set of output vertices. The indices n, m,
and p denote respectively the dimension of the state space, the
input space, and the output space. Denoting (i, j) for a directed
edge from the vertex i to the vertex j, the edge set E of G is
E[A] ∪E[B] ∪E[C] ∪E[D], with E[A] = {(xj , xi)|[A]ij 6= 0},
E[B] = {(uj , xi)|[B]ij 6= 0}, E[C] = {(xj , yi)|[C]ij 6= 0},
E[D] = {(uj , yi)|[D]ij 6= 0}. In the latter, for instance [A]ij 6=
0 means that the entry (i, j) of the matrix [A] is a nonzero
parameter. A path, i.e., a sequence of vertices where each node
is connected to the following one in the path, is simple if every
vertex in the path occurs only once, and two paths are disjoint
if they consist of disjoint sets of vertices. A set of l mutually
disjoint and simple paths between two sets of vertices S1 and

S2 is called a linking of size l from S1 to S2. A simple path in
which the initial and the last vertex coincide is called cycle,
and a cycle family of size l is a set of l mutually disjoint
cycles. Finally, a path is called Y -topped if its end vertex is
in the set Y . From [15] we know the following results.

Theorem V.1 (Generic normal rank of a matrix pencil)
Let P (z) be the system pencil of the structured system (6).
The normal rank of P (z) is generically equal to n plus the
size of a maximum linking from U to Y .

In other words, for almost any numerical realization Σ of
the structure matrices ([A], [B], [C], [D]), the normal rank of
the pencil of Σ equals n plus the size of a maximum linking
from the input to the output vertices. Recall that the union of a
linking, a Y -topped path family and a cycle family is disjoint
if they mutually have no vertices in common.

Theorem V.2 (Generic number of invariant zeros) Let the
pencil P (z) of the structured system (6) have full column rank
n+m, even after the deletion of an arbitrary row. The generic
number of invariant zeros of the system (6) is equal to n minus
the maximal number of vertices in X contained in the disjoint
union of the following sets:

(i) a linking of size m from U to Y ,
(ii) a set of cycles in X , and

(iii) a set of Y -topped paths.

For our purposes, assume [D] = 0, and note that the
connectivity of the graph associated with a structured system
([A], [B], [C]) can be used to characterize the zero dynamics
of almost all numerical realization of ([A], [B], [C]).

Theorem V.3 (Generic zero dynamics and connectivity)
Let ([A], [B], [C]) be a k-connected structured system. If the
number of independent columns of [B] is less than k, then
almost any numerical realization of ([A], [B], [C]) has no
zero dynamics.

Proof: Consider the digraph G associated with the struc-
tured system ([A], [B], [C]), and let P (z) be its matrix pencil.
Because of Theorem V.1, P (z) has full normal rank n+|U |, so
that almost any realization of ([A], [B], [C]) is left-invertible.
Deleting the row v from P (z) corresponds to deleting all
the incoming edges to the node v. Let G

′
be the digraph

associated with P (z) after deleting one of its rows. Since G
is k-connected, G

′
is at least k− 1 connected. The maximum

size of a linking from U to Y is still |U |, and hence P (z) has
full normal rank even after the deletion of an arbitrary row.
By considering a set of n self loops in G, which are always
present in our consensus model, we have that all the n vertices
in X are covered, and therefore, by Theorem V.2, almost any
realization of ([A], [B], [C]) has no invariant zeros.

Given a structured triple ([A], [B], [C]) with δ nonzero
elements, the set of parameters that make ([A], [B], [C]) a
consensus system is a subset S of Rδ , because the matrix A
needs to be nonnegative and row stochastic. A certain property
that holds generically in Rδ needs not be valid generically with
respect to the feasible set S. However, a consensus system with
no zero dynamics can generically be found.
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Theorem V.4 (Genericity of consensus systems) Let
([A], [B], [C]) be a k-connected structured system. If the
number of independent columns of [B] is less than k,
then, for almost every nonnegative numerical realization
of ([A], [B], [C]), there exists a consensus system with no
nontrivial zero dynamics.

Proof: Let (A,B, C) be a nonnegative numerical instance
of ([A], [B], [C]). The set of parameters for which a generic
property fails to hold coincides by definition with an algebraic
hypersurface of the parameter space [16], so that a property
remains generic when the parameter set is restricted to the non-
negative orthant. Because of Theorem V.3, the triple (A,B, C)
has generically no zero dynamics. Moreover, the Perron-
Frobenius Theorem for nonnegative matrices ensures the ex-
istence of a positive eigenvector x for the matrix A associated
with the eigenvalue of largest magnitude r [17]. Let D be the
diagonal matrix whose main diagonal equals x, then the matrix
r−1D−1AD is a consensus matrix [18]. A similarity trans-
formation using D yields the system (D−1AD,D−1B,CD),
which generically has also no zero dynamics. Finally, the
system (r−1D−1AD,D−1B,CD) is a k-connected consensus
system with, generically, no zero dynamics. Indeed, if there
exists a value z̄, a zero direction x0, and a zero input direction
g for the system (r−1D−1AD,D−1B,CD), then the value
z̄r, with state direction x0/r and input direction u, is an
invariant zero of (D−1AD,D−1B,CD), which contradicts
the hypothesis.

Following Theorem V.4, we are able to state our results
concerning the resilience of a linear consensus network to
external attacks.

Theorem V.5 (Generic identification of malicious agents)
Given a k-connected consensus network, up to bk−1

2 c
malicious agents can generically be detected and correctly
identified by any agent.

Proof: Since 2bk−1
2 c < k, by Theorem V.3 the consensus

system with any set of 2bk−1
2 c has generically no zero dynam-

ics. By Theorem IV.4, any set of bk−1
2 c malicious agents is

detectable and identifiable by any node in the network.
We conclude this Section with the resilience bound for the

faulty agents model.

Theorem V.6 (Generic identification of faulty agents)
Given a k-connected consensus network, up to k − 1 faulty
agents can generically be detected and correctly identified by
any agent.

Proof: Let V be the set of nodes, and K ⊂ V the set of
faulty agents. Let k be the connectivity of the graph associated
with a structure matrix [A], and let |K| = k−1 be the rank of
the input matrix BK . By virtue of Theorem V.3, almost any
numerical instance of ([A], [BK ], [Cj ]) has no zero dynamics,
regardless of the choice of j, and therefore V∗

K = ∅. Let i ∈
V \K, and consider the system Σi = (A, [BK Bi], Cj), j ∈
V . Since the number of inputs in Σi equals the connectivity
of G, the system Σi is generically nondegenerate because of
Theorem V.1, and hence left-invertible [14]. Therefore,

Bi ∩ (V∗
K + S∗

K) = Bi ∩ S∗
K = 0,

Algorithm 1: Detection and identification of misbe-
having agents in a linear consensus network.

Input : Consensus matrix; number of misbehaving
nodes p;

Require: The communication graph is p + 1
connected, if only faulty agents are
allowed, and 2p + 1 connected otherwise;

Each agent computes the residual generators for1:

every possible set of p + 1 misbehaving agents;
while the misbehaving agents are unidentified do2:

Exchange data with the neighbors;3:

Update the state;4:

Evaluate the residual functions;5:

if every ith residual is nonzero then6:

Agent i is recognized as misbehaving.7:

for any set of k intruders K ∪ {i}. The dynamics of the K
intruders can be fully decoupled from the output trajectory
generated by any other node i, and therefore up to k − 1
faulty nodes are successfully detected and identified. Indeed,
for each i ∈ V \ K, the residual associated with i in the
system (A, [BK Bi], Cj) converges to zero, so that the agent
i is regarded as well-behaving, and, by exclusion, the set K
is identified. Note that, since the faulty agents are not allowed
to inject the inputs described in Lemma IV.6, there is no other
set of agents able to generate the output observations.

VI. DETECTION AND IDENTIFICATION ALGORITHMS

A distributed procedure to detect and identify the misbe-
having agents in a linear consensus network is in Algorithm
1. Here is an informal description.

Exact identification We focus on the agent j. Let k
be the number of misbehaving nodes to be identi-
fied, and let K be the set containing all the

(
n−1
k+1

)
combinations of k+1 elements of V \{j}. For each
set K̃ ∈ K, consider the system ΣK̃ = (A,BK̃ , Cj),
and compute3 a set of residual generator filters for
ΣK̃ . If the connectivity of the communication graph
is sufficiently high, then, as described in the previous
sections, each residual function is nonzero if and
only if the corresponding failure mode is active. Let
K be the set of misbehaving nodes, then, whenever
K ⊂ K̃, the residual function associated with the
failure mode K̃ \ K becomes zero after an initial
transient, so that the agent K̃ \ K is recognized as
well-behaving. By exclusion, because the residuals
associated with the misbehaving agents are always
nonzero, the set K is identified.

Notice that, since the residual generators are dead beat
filters, the detection and the identification of the misbehaving
agents take place in finite time, and that, because each agent
only rely on its local observations, no communication overhead
is introduced in the consensus protocol.

3A procedure to design a residual generator filter can be found in [12].
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Fig. 1. The residual generators are designed to achieve the best compromise
between sensitivity to faults and robustness to noise. As an example, for the
network in Fig. 3(a), the magnitude of the 42-th residual, computed by the
agent 32, is sensibly larger than the 12-th and 21-th residual.

Algorithm 1, although provably correct, requires every agent
to know the entire topology of the network, and to compute
a number of residuals which grows exponentially with the
number of nodes of the network. In a more realistic scenario
each agent is only aware of the communication structure of
some neighborhood, and they can perform only a certain
number of operation in a reasonable amount of time. It follows
that, in practice, the proposed procedure is implementable only
on a small consensus network. In the sequel, we present a
heuristic to address this issue.

Consider the set V d
j ⊂ V of the d-neighbors of the agent j,

i.e., the set of nodes within distance d from the agent j, and let
Ad

j be the matrix describing the interaction among the nodes
V d

j . Let V d
j = {v̄1, . . . , v̄l}, then, for all i, k ∈ {1, . . . , l}, the

(i, k)-th entry of Ad
j equals

• the (v̄i, v̄k)-th entry of A if Nv̄i ⊆ V d
j ;

• 1/|Nv̄i ∩V d
j | if Nv̄i 6⊆ V d

j , and if the (v̄i, v̄k)-th entry of
A is positive; and

• 0 otherwise.
For a set of possible misbehaving agents K, let Σd

K,j =
(Ad

j , B
d
K,j , C

d
j ), where Bd

j = HBK , Cd
j = CHT , HT =

[ej1 . . . ejl
], {j1, . . . , jl} ∈ V d

j , jl = |V d
j |, denote the

reduced system computed by the agent j. In the absence of
misbehaving nodes, the residual functions associated with the
reduced system Σd

K,j asymptotically decay to zero.

Theorem VI.1 (Convergence of residuals) Let Σd
K,j be the

reduced consensus system computed by the agent j. In the
absence of misbehaving agents, and for every set K of possible
misbehaving agents, the residual functions computed by j
decay to zero.

Proof: Let Σd
K,j be the reduced system of the agent j.

Note that the residual functions for a consensus system are
not affected by the state trajectories lying on the subspace
1, because the state of a consensus system converges to
1, and the residuals are designed to decay to zero in the
absence of misbehaving nodes. Finally, since in the absence
of misbehaving agents both the consensus system and Σd

K,j

converge to the subspace 1, the residuals computed by j decay
to zero.

Because the evolution of the reduced system Σd
K,j differs

from the dynamic of the consensus system ΣK , the residual
generators designed using the system Σd

K,j do not provide
exact decoupling for the trajectories of the system ΣK . In
other words, every residual function is in general nonzero, so
that the identification of the misbehaving set needs to rely on
a threshold mechanism. As in [19], we design the residual
generators so that a good compromise between sensitivity to
faults and robustness to noise is achieved. As in Fig. 1, the
magnitude of the residual functions associated with the faulty
agents turns out to be larger than the magnitude of the residual
functions associated with the well-behaving nodes, so that a
correct identification of the misbehaving set is generally still
possible. Here is a description of our heuristic, a detailed
version of which is forthcoming.

Low-complexity identification We focus on the agent
j. Let k be the number of misbehaving nodes to be
identified, and let K be the set containing all the(|V d

j |−1

k+1

)
combination of k+1 elements of V d

j \{j}.
For each set K̃ ∈ K, consider the system Σd

K̃,j
,

and compute a set of residual generator filters for
Σd

K̃,j
. Compare the residuals with a predetermined

threshold and identify the misbehaving agents.
Note that, the required memory and the computational burden
are a function of d, and not of the dimension of the network.

VII. EXAMPLES

In the first example of this section the Exact identification
algorithm is used, while in the second example the Low-
complexity identification is implemented.

A. Exact detection and identification

Consider the network of Fig. 2(a), and let A be a randomly
chosen consensus matrix, in particular

A =


0.2795 0.1628 0 0.1512 0.4066 0 0 0
0.0143 0.3363 0.3469 0 0 0.3025 0 0

0 0.0718 0.1904 0.2438 0 0 0.4941 0
0.0844 0 0.4457 0.0660 0 0 0 0.4040
0.1709 0 0 0 0.2694 0.2472 0 0.3125

0 0.4199 0 0 0.1575 0.3293 0.0932 0
0 0 0.0174 0 0 0.4241 0.2850 0.2735
0 0 0 0.3024 0.2039 0 0.2065 0.2873

 .

The network is 3-connected, and it can be verified that for any
set K of 3 misbehaving agents, and for any observer node j,
the triple (A,BK , Cj) is left-invertible. Also, for any set K
of cardinality 2 the triple (A,BK , Cj) has no invariant zeros.
As previously discussed, any well-behaving node can detect
and identify up to 2 faulty agents, or up to 1 malicious agent.
Consider the observations of the agent 1, and suppose that
the agents {3, 7} inject a random signal into the network. As
described in Algorithm 1, the agent 1 computes the residual
functions for each of the

(
7
3

)
possible set of misbehaving

nodes, and identify the well-behaving agents. For example,
independent of the initial condition of the network, for the
system x(t+1) = Ax(t)+B3u3(t)+B4u4(t)+B7u7(t), after
7 time steps, the residual function associated with the input
4 is zero, as in 2(b), so that the agent 4 is regarded as well-
behaving. The agents 3 and 7 instead, since they always have
nonzero residual functions, are recognized as misbehaving. If
the misbehaving nodes are malicious, then no more than 1
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Fig. 2. In Fig. 2(b) a consensus network where the nodes 3 and 7 are
faulty. In Fig. 2(a) the residual functions computed by the agent 1, under the
hypothesis that the misbehaving set is {3, 4, 7}.

10 20 30 40 50 60 70 80 90 100

1 11 21 31 41 51 61 71 81 91

2 12 22 32 42 52 62 72 82 92

3 13 23 33 43 53 63 73 83 93

4 14 24 34 44 54 64 74 84 94

5 15 25 35 45 55 65 75 85 95

6 16 26 36 46 56 66 76 86 96

7 17 27 37 47 57 67 77 87 97

8 18 28 38 48 58 68 78 88 98

9 19 29 39 49 59 69 79 89 99

(a)

10 20 30 40 50 60 70 80 90 100

1 11 21 31 41 51 61 71 81 91

2 12 22 32 42 52 62 72 82 92

3 13 23 33 43 53 63 73 83 93

4 14 24 34 44 54 64 74 84 94

5 15 25 35 45 55 65 75 85 95

6 16 26 36 46 56 66 76 86 96

7 17 27 37 47 57 67 77 87 97

8 18 28 38 48 58 68 78 88 98

9 19 29 39 49 59 69 79 89 99

(b)

Fig. 3. In Fig. 3(a) a consensus network with 100 nodes and 15 faulty
agents. In Fig. 3(b) the result of the detection and identification heuristic. All
the faulty agents are isolated from the network of well-behaving agents.

intruder can be tolerated. Indeed, the consensus system with
4 inputs exhibits nontrivial zero dynamics, so that a set of 2
malicious nodes may remain unidentified. For example, the
system (A,B{2,4,6,8}, C1) has nontrivial zero dynamics, since
the nodes {2, 4, 6, 8} form a vertex cut. It follows that there
exists an initial condition and an input function such that the
nodes {2, 4} and {6, 8} generate the same output observations,
and, therefore, can not be distinguished.

B. Approximate detection and isolation

The goal of the following example is to show that an effec-
tive detection and identification mechanism can be designed
using the heuristic presented in Section VI. Suppose that the
network topology is as in Fig. 3(a), and that the agents only
know the structure of a 3-neighborhood, as the shaded region
in Fig. 3(a) for the agent 15. We will be considering only
faulty agents, because the partial knowledge of the network
makes it impossible to identify malicious nodes. Suppose that
the 15 red agents in Fig. 3(a) are faulty, and suppose that
they add a random white noise to the consensus algorithm.
The agents design the residual generator for the portion of
consensus network they know, and they execute 40 steps of
the consensus algorithm. By comparing the residuals with
a predetermined threshold, all the misbehaving agents are
identified and isolated from the network, as in Fig. 3(b).
Clearly, because the identification algorithm is not exact, some
communication edges are cut erroneously.

VIII. CONCLUSIONS

The problem of distributed reliable computation in networks
with misbehaving nodes is considered, and its relationship with
the fault detection and isolation problem for linear systems
is discussed. The resilience of linear consensus networks to
external attacks is characterized through some properties of the
underlying communication graph, as well as from a system-
theoretic perspective. In almost any linear consensus network,
the misbehaving components can be correctly detected and
identified, as long as the connectivity of the communication
graph is sufficiently high. Precisely, for a linear distributed
consensus network to be resilient to k concurrent faults, the
connectivity of the communication graph needs to be 2k+1, if
Byzantine failures are allowed, and k + 1, otherwise. Finally,
for the faulty agents case, good performance can be obtained
even when the agents do not know the entire topology of the
consensus network, or when they are subject to memory or
computation constraints.
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