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Abstract. In this paper we introduce a dynamic vehicle routing problem in which there are
multiple vehicles and multiple priority classes of service demands. Service demands of each priority
class arrive in the environment randomly over time and require a random amount of on-site service
that is characteristic of the class. To service a demand, one of the vehicles must travel to the demand
location and remain there for the required on-site service time. The quality of service provided to each
class is given by the expected delay between the arrival of a demand in the class, and that demand’s
service completion. The goal is to design a routing policy for the service vehicles which minimizes a
convex combination of the delays for each class. First, we provide a lower bound on the achievable
values of the convex combination of delays. Then, we propose a novel routing policy and analyze
its performance under heavy load conditions (i.e., when the fraction of time the service vehicles
spend performing on-site service approaches one). The policy performs within a constant factor of
the lower bound, where the constant depends only on the number of classes, and is independent
of the number of vehicles, the arrival rates of demands, the on-site service times, and the convex
combination coefficients.
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1. Introduction. A classical problem in queueing theory is that of priority
queueing [9]. In the simplest setup, customers arrive at a single server sequentially
over time. Each customer is a member of either the high-priority, or the low-priority
class. High priority customers and low priority customers form separate queues. The
goal is to provide the highest possible quality of service to the high priority queue
(Q1) while maintaining stability of the low priority queue (Q2). That is, the goal is
to minimize the expected delay for high-priority customers while keeping the length
of the low-priority queue finite. When both the customer inter-arrival times and the
customer service times are distributed exponentially, the preemptive priority policy
is known to be optimal [9]:

When Q1 is nonempty, serve high priority customers; when Q1 is
empty, serve low-priority customers. If a high priority customer ar-
rives while serving Q2, then preempt service and immediately begin
serving the high-priority customer.

A more general two-class queueing problem is to minimize a convex combination
of the service delays for high- and low-priority customers

cD1 + (1− c)D2, where c ∈ (0, 1).

In this case an optimal policy can be created by using a mixed policy that spends
fraction c of the time serving Q1 as the high-priority queue, and fraction (1−c) serving
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Q2 as though it is the high-priority queue [7]. The set of achievable delays has also
been studied in the more general setting of queueing networks [2].

In this paper we consider an m-class, n-service-vehicle spatial queueing problem,
called dynamic vehicle routing with priority classes. Demands for service arrive se-
quentially over time in a compact environment E in the plane. Each demand is a
member of one of m priority classes. Upon arrival, each demand assumes a location
in E , and requires a class-dependent amount of on-site service time. To service a
demand, one of the n vehicles must travel to the demand location and perform the
on-site service. If we specify a policy by which the vehicles serve demands, then the
expected delay for demands of class α, denoted Dα, is the expected amount of time
between a demand’s arrival and its service completion. Then, given convex combi-
nation coefficients c1, . . . , cm > 0, the goal is to find the vehicle routing policy that
minimizes c1D1 + · · · + cmDm. By increasing the coefficients for certain classes, a
higher priority level can be given to their demands. This problem has important ap-
plications in areas such as UAV surveillance, where targets are given different priority
levels based on their urgency or potential importance [1].

When there is only one class of demands, the problem in this paper is known as
the Dynamic Traveling Repairperson Problem (DTRP) [18, 3, 4]. The DTRP was
arguably the first member of a class of problems known as dynamic vehicle rout-
ing (DVR); for other DVR problems see [10]. In [3, 4], optimal DTRP policies are
proposed in heavy load (i.e., when the fraction of time the service vehicles spend
performing on-site service approaches one), and in light load (i.e., when the frac-
tion of time the service vehicles spends performing on-site service approaches zero).
In [13], a simple unified DTRP policy is presented for both light and heavy load con-
ditions. Recently, there has been an increased interest in DVR among researchers in
robotic motion planning, as it provides a powerful method for completing spatially
distributed tasks that are generated in real-time. In particular, DVR results have
recently been obtained on decentralized policies [8, 15], moving demands [6], impa-
tient demands [14], demands requiring pickup and delivery [23], and demands which
require teams of vehicles [19]. Other related vehicle routing problems include the ori-
enteering problem and discounted-reward-TSP problems [5], the dynamic assignment
problem [21], and spatial queueing in the context of urban operations research [11].

The main contribution of this paper is to introduce dynamic vehicle routing with
priority classes. We derive a lower bound on the achievable values of the convex com-
bination of delays, and propose a novel policy in which each class of demands is served
separately from the others. We show that in heavy load, the policy performs within
a constant factor 2m2 of the lower bound. Thus, the constant factor is independent
of the number of vehicles, the arrival rates of demands, the on-site service times, and
the convex combination coefficients. To establish the constant factor, we proceed in
a similar manner as [13, 14] and develop a system of nonlinear inequality-based re-
cursive equations on the expected number of outstanding demands. We then utilize a
novel proof technique to upper bound the limiting number of outstanding demands,
which relies on constructing a set of linear equality-based recursive equations to bound
trajectories. We present an improvement on the policy in which classes of similar pri-
ority are merged together. We also perform extensive simulations and introduce an
effective heuristic improvement called the tube heuristic.

The paper is organized as follows. In Section 2 we give some asymptotic properties
of optimal Euclidean traveling salesperson tours. In Section 2.2 we formalize the
problem and in Section 3 we derive a lower bound on the achievable delay. In Section 4
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Fig. 2.1. A depiction of the problem for two vehicles and three priority classes. Left figure:
One vehicle is moving to a class 1 demand, and the other to a class 2 demand. Right figure: The
bottom vehicle has serviced the class 1 demand and is moving to a class 2 demand. A new class 3
demand has arrived.

we introduce and analyze the Separate Queues policy, and present the improvements
given by queue merging and the tube heuristic. Finally, in Section 5 we present
simulation results.

2. Background and Problem Statement. In this section we summarize the
asymptotic properties of optimal Euclidean traveling salesperson tours, and formalize
the dynamic vehicle routing problem with priority classes.

2.1. The Euclidean Traveling Salesperson Problem. Given a set Q of
N points in R2, the Euclidean traveling salesperson problem (TSP) is to find the
minimum-length tour of Q (i.e., the shortest closed path through all points). Let
TSP(Q) denote the minimum length of a tour through all the points in Q. Assume
that the locations of the N points are random variables independently and identically
distributed, uniformly in a compact set E with area |E|; in [22] it is shown that there
exists a constant βTSP such that, almost surely,

lim
N→+∞

TSP(Q)√
N

= βTSP

√
|E|. (2.1)

The constant βTSP has been estimated numerically as βTSP ≈ 0.7120 ± 0.0002, [17].
The limit in equation (2.1) holds for all compact sets E , and the shape of E only affects
the convergence rate to the limit. In [11], the authors note that if E is “fairly compact
[square] and fairly convex”, then equation (2.1) provides an adequate estimate of the
optimal TSP tour length for values of N as low as 15.

2.2. Problem Statement. Consider a compact environment E in the plane with
area |E|. The environment contains n vehicles, each with maximum speed v. Demands
of type α ∈ {1, . . . ,m} (also called α-demands) arrive in the environment according
to a Poisson process with rate λα. Upon arrival, demands assume an independently
and uniformly distributed location in E . An α-demand is serviced when the vehicle
spends an on-site service time at the demand location, which is generally distributed
with finite mean s̄α.

Consider the arrival of the ith α-demand. The service delay for the ith demand,
Dα(i), is the time elapsed between its arrival and its service completion. The wait
time is defined as Wα(i) := Dα(i) − sα(i), where sα(i) is the on-site service time
required by demand i. A policy for routing the vehicles is said to be stable if the
expected number of demands in the system for each class is bounded uniformly at all



4 S. L. SMITH, M. PAVONE, F. BULLO, E. FRAZZOLI

times. A necessary condition for the existence of a stable policy is

% :=
1
n

m∑
α=1

λαs̄α < 1. (2.2)

The load factor % is a standard quantity in queueing theory [9], and is used to capture
the fraction of time the n servers (vehicles) must be busy in any stable policy. In
general, it is difficult to study a queueing system for all values of % ∈ [0, 1), and a
common technique is to focus on the limiting regimes of % → 1−, referred to as the
heavy load regime, and % → 0+, referred to as the light load regime.

Given a stable policy P the steady-state service delay is defined as Dα(P ) :=
limi→+∞ E [Dα(i)], and the steady-state wait time is Wα(P ) := Dα(P ) − s̄α. Thus,
for a stable policy P , the average delay per demand is

D(P ) =
1
Λ

m∑
α=1

λαDα(P ),

where Λ :=
∑m

α=1 λα. The average delay per demand is the standard cost functional
for queueing systems with multiple classes of demands. Notice that we can write
D(P ) =

∑m
α=1 cαDα(P ) with cα = λα/Λ. Thus, we can model priority among classes

by allowing any convex combination of D1, . . . , Dm. If cα > λα/Λ, then the delay of α-
demands is being weighted more heavily than in the average case. Thus, the quantity
cαΛ/λα gives the priority of α demands compared to that given in the average delay
case. Without loss of generality we can assume that priority classes are labeled so
that

c1

λ1
≥ c2

λ2
≥ · · · ≥ cm

λm
, (2.3)

implying that if α < β for some α, β ∈ {1, . . . ,m}, then the priority of α-demands is
at least as high as that of β-demands. With these definitions, we are now ready to
state our problem.

Problem Statement: Let Π be the set of all causal, stable and
stationary policies for dynamic vehicle routing with priority classes.
Given the coefficients cα > 0, α ∈ {1, . . . ,m}, with

∑m
α=1 cα = 1,

and satisfying expression (2.3), let D(P ) :=
∑m

α=1 cαDα(P ) be the
cost of policy P ∈ Π. Then, the problem is to determine a vehicle
routing policy P ∗, if one exists, such that

D(P ∗) = inf
P∈Π

D(P ). (2.4)

We let D∗ denote the right-hand side of equation (2.4). A policy P for which
D(P )/D∗ is bounded has a constant-factor guarantee. If lim sup%→1− D(P )/D∗ =
κ < +∞, then the policy P has a heavy-load constant-factor guarantee of κ. In this
paper we focus on the heavy-load regime, and look for policies with a heavy-load
constant-factor guarantee that is independent of the number of vehicles, the arrival
rates of demands, the on-site service times, and the convex combination coefficients.
In the light-load regime, existing policies for the dynamic traveling repairperson can
be used, as is summarized in the following remark.

Remark 2.1 (Light-load regime). In light load, % → 0+, optimal policies have
been developed for the dynamic traveling repairperson problem (i.e., the single-class
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dynamic vehicle routing problem). These policies rely on the computation of a set of
n-median locations for the environment E; that is, a set of n positions Q∗ ⊂ E, that
minimize

E
[

min
q∈Q∗

‖q− q0‖
]

,

where q0 is a uniformly distributed location in E. In particular, the n Stochastic
Queue Median (nSQM) policy, first introduced in [4], can be described as follows:

Place one vehicle at each of the n-median locations of E. When a
demand arrives, assign it to the closest median location, and to the
corresponding vehicle. Have each vehicle service its demands in the
first-come-first-served order, returning to its median location after
each service is completed.

In fact, by following the proof in [4], one can show that the nSQM policy is an optimal
policy for dynamic vehicle routing with priority classes. The proof of this statement
is omitted in the interest of brevity, and we refer interested readers to [4] for details.•

3. Lower Bound in Heavy Load. In this section we present two lower bounds
on the delay in equation (2.4). The first holds only in heavy load (i.e., as % → 1−),
while the second (less tight) bound holds for all %.

Theorem 3.1 (Heavy-load lower bound). For every routing policy P ,

D(P ) ≥ β2
TSP|E|

2n2v2(1− %)2

m∑
α=1

cα + 2
m∑

j=α+1

cj

λα as % → 1−, (3.1)

where c1, . . . , cm satisfy expression (2.3).
Before proving Theorem 3.1 let us quickly comment on the form of inequality (3.1).

The right-hand side of inequality (3.1) approaches +∞ as % → 1−. Thus, one should
more formally write the inequality with D(P )(1−%)2 on the left-hand side, so that the
right-hand side is finite. However, this makes the presentation less readable, and thus,
henceforth we adhere to the less formal but more transparent style of inequality (3.1).

Proof. Consider a tagged demand i of type α, and let us quantify its total service
requirement. The demand requires on-site service time sα(i). Let us denote by dα(i)
the distance from the location of the demand served prior to i, to i’s location. In order
to compute a lower bound on the wait time, we will allow “remote” servicing of some
of the demands. For an α-demand i that can be serviced remotely, the travel distance
dα(i) is zero (i.e., a service vehicle can service the ith α-demand from any location
by simply stopping for the on-site service time sα(i)). Thus, the wait time for the
modified remote servicing problem provides a lower bound on the wait time for the
problem of interest. To formalize this idea, we introduce the variables rα ∈ {0, 1} for
each α ∈ {1, . . . ,m}. If rα = 0, then α-demands can be serviced remotely. If rα = 1,
then α-demands must be serviced on location. We assume that rα = 1 for at least one
α ∈ {1, . . . ,m}. Thus, the total service requirement of α-demand i is rαdα(i)/v+sα(i),
where v is the service vehicle speed. The steady-state expected service requirement
is rαd̄α/v + sα, where d̄α := limi→+∞ E [dα(i)]. In order to maintain stability of the
system we must require

1
n

m∑
α=1

λα

(
rαd̄α

v
+ s̄α

)
< 1. (3.2)
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Applying the definition of % in equation (2.2), we write inequality (3.2) as

m∑
α=1

rαλαd̄α < (1− %)nv. (3.3)

For a stable policy P , let N̄α represent the steady-state expected number of
unserviced α-demands. Then, the expected total number of outstanding demands
that require on-site service (i.e., cannot be serviced remotely) is given by

∑m
j=1 rjN̄j .

We now apply a result from the dynamic traveling repairperson problem (see [25],
page 23) which states that in heavy load (% → 1−), if the steady-state number of
outstanding demands is N , then a lower bound on expected travel distance between
demands is (βTSP/

√
2)
√
|E|/N . Applying this result we have that

d̄α ≥
βTSP√

2

√
|E|∑
j rjN̄j

=: d̄, (3.4)

for each α ∈ {1, . . . ,m}. Combining inequalities (3.3) and (3.4),∑
α rαλα

nv(1− %)
<

1
d̄
.

Applying the definition of d̄, squaring both sides, and rearranging we obtain

β2
TSP

2
|E|(
∑

α rαλα)2

n2v2(1− %)2
<
∑
α

rαN̄α.

From Little’s law, N̄α = λαWα for each α ∈ {1, . . . ,m}, and thus

∑
α

rαλαWα >
β2

TSP

2
|E|

n2v2(1− %)2

(∑
α

rαλα

)2

. (3.5)

Recalling that Wα = Dα − s̄α and rα ∈ {0, 1} for each α ∈ {1, . . . ,m}, we see that
expression (3.5) gives us 2m−1 constraints on the feasible values of D1(P ), . . . , Dm(P ).
Hence, a lower bound on D∗ can be found by minimizing

∑m
α=1 cαWα subject to the

constraints in expression (3.5). We can lower bound the solution to the optimization
problem by minimizing the cost function subject to only a subset of the 2m − 1
constraints. In particular, consider the following linear program

minimize
m∑

α=1

cαWα,

subject to


λ1 0 0 · · · 0
λ1 λ2 0 · · · 0
...

...
. . . 0

λ1 λ2 λ3 · · · λm




W1

W2

...
Wm

 ≥ Ψ


λ2

1

(λ1 + λ2)2
...

(λ1 + · · ·+ λm)2

 ,

where

Ψ :=
β2

TSP

2
|E|

n2v2(1− %)2
.
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W2

W1 = Ψλ1

W1λ1 + W2λ2 = Ψ(λ1 + λ2)2

W1

Fig. 3.1. The feasible region of the linear program for 2 queues. When class 1 is of higher
priority, the solution is given by the corner. Otherwise, the solution is −∞.

The above problem is feasible (see Fig. 3.1), it has only one basic feasible solution,
and it is of the form: minimize cT W subject to AW ≥ b. Thus, either the problem
is unbounded, or the solution W∗ is given by the basic feasible solution. To establish
boundedness we consider the dual problem: maximize bT y subject to AT y = c and
y ≥ 0. By the Duality Theorem of Linear Programming [12], if the dual is feasible,
then the minimization problem is bounded. To check feasibility of the dual, we solve
for AT y = c, with y ≥ 0, to obtain

yα =
cα

λα
− cα+1

λα+1
≥ 0 for all α ∈ {1, . . . ,m− 1},

ym =
cm

λm
≥ 0.

Thus, the dual is feasible if and only if the priority classes are labeled as in expres-
sion (2.3). When expression (2.3) is satisfied, the minimization problem is bounded,
and its solution (W ∗

1 , . . . ,W ∗
m) is given by

W ∗
α =

Ψ
λα

(
(λ1 + · · ·+ λα)2 − (λ1 + · · ·+ λα−1)2

)
= Ψ

λα + 2
α−1∑
j=1

λj

 .

(In fact, this is the solution of the full optimization problem with 2m − 1 constraints.
This fact can be verified, somewhat tediously, by writing the dual of the full problem
and directly computing its solution. To shorten the presentation we omit the direct
computation and use the above technique.) The optimal value of the cost function,
and thus the lower bound on D∗, is given by

m∑
α=1

cαW ∗
α = Ψ

m∑
α=1

cα

λα + 2
α−1∑
j=1

λj

 = Ψ
m∑

α=1

cα + 2
m∑

j=α+1

cj

λα.

Applying the definition of Ψ we obtain the desired result.
Remark 3.2 (Lower bound for all % ∈ [0, 1)). With slight modifications, it is

possible to obtain a less tight lower bound valid for all values of %. In the above
derivation, the assumption that % → 1− is used only in inequality (3.4). It is possible
to use, instead, a lower bound valid for all % ∈ [0, 1) (see [4]):

d̄α ≥ γ

√
|E|∑

α rαN̄α + n/2
,
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where γ = 2/(3
√

2π) ≈ 0.266. Using this bound we obtain the same linear program as
in the proof of Theorem 3.1, with the difference that Ψ is now a function given by

Ψ(x) :=
γ2|E|

n2v2(1− %)2
x− n

2
.

Following the procedure in the proof of Theorem 3.1

W ∗
1 =

γ2|E|
n2v2(1− %)2

λ1 −
n

2λ1

W ∗
α =

γ2|E|
n2v2(1− %)2

λα + 2
α−1∑
j=1

λj

 ,

for each α ∈ {2, . . . ,m}. Finally, for every policy P , Dα(P ) ≥ W ∗
α + s̄α, and thus

D(P ) ≥ γ2|E|
n2v2(1− %)2

m∑
α=1

cα + 2
m∑

j=α+1

cj

λα

− nc1

2λ1
+

m∑
α=1

cαs̄α, (3.6)

for all % ∈ [0, 1) under the labeling in expression (2.3). •
In the remainder of the paper we design a policy and establish a constant-factor

guarantee relative to the heavy load lower bound.

4. Separate Queues Policy. In this section we introduce and analyze the Sep-
arate Queues (SQ) policy. We show that this policy is within a factor 2m2 of the
lower bound in heavy load.

To present the SQ policy we need some notation. We assume vehicle k ∈
{1, . . . , n} has a service region R[k] ⊆ E , such that {R[1], . . . , R[n]} forms a parti-
tion of the environment E . In general the partition could be time varying, but for the
description of the SQ policy this will not be required. We assume that information on
outstanding demands of type α ∈ {1, . . . ,m} in region R[k] at time t is summarized
as a finite set of demand positions Q

[k]
α (t) with N

[k]
α (t) := card(Q[k]

α (t)) . Demands
of type α with location in R[k] are inserted in the set Q

[k]
α as soon as they are gener-

ated. Removal from the set Q
[k]
α requires that service vehicle k moves to the demand

location, and provides the on-site service. The SQ policy is described in Algorithm 1.
In this algorithm, the probability distribution p gives a set of parameters which will
be used to optimize performance. Without loss of generality, we avoid pathological
situations by restricting each pα to be positive (if pα = 0 for some class α, then the
average delay per demand is trivially unbounded).

Fig. 4.1 shows an illustrative example of the SQ policy. In the first two frames the
vehicle is servicing only class 1 (circle shaped) demands, whereas in the third frame,
the vehicle is servicing class 2 (diamond shaped) demands.

4.1. Stability Analysis of the SQ Policy in Heavy Load. In this section
we analyze the SQ policy in heavy load, i.e., as % → 1−. In the SQ policy each region
R[k] has equal area, and contains a single vehicle. Thus, the n vehicle problem in a
region of area |E| has been turned into n independent single-vehicle problems, each
in a region of area |E|/n, with arrival rates λα/n. To determine the performance of
the policy we need only study the performance in a single region k. For simplicity
of notation we omit the label k. We refer to the time instant ti in which the vehicle
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Algorithm 1: Separate Queues (SQ) Policy
Optimize: algorithm performance over probability distribution

p = [p1, . . . , pm], where pα > 0 for each α ∈ {1, . . . ,m}.
Partition E into n equal area regions and assign one vehicle to each region.1

foreach vehicle-region pair k do2

if the set ∪αQ
[k]
α is empty then3

Move vehicle toward the median of its own region until a demand4

arrives.
else5

Select Q ∈ {Q[k]
1 , . . . , Q

[k]
m } according to p.6

if Q is empty then7

Reselect until Q is nonempty.8

Compute TSP tour through all demands in Q.9

Service Q following the TSP tour, starting at the demand closest to10

the vehicle’s current position.
Repeat.11

Fig. 4.1. A representative simulation of the SQ policy for one vehicle and two priority classes.
Circle shaped demands are high priority, and diamond shaped are low priority. The vehicle is marked
by a chevron shaped object and TSP tour is shown in a solid line. The left-figure shows the vehicle
computing a tour through class 1 demands. The center-figure shows the vehicle part-way through
the class 1 tour and some newly arrived class 2 demands. The right-figure shows the vehicle after
completing the class 1 tour and computing a new tour through all class 2 demands.

computes a new TSP tour as the epoch i of the policy; we refer to the time interval
between epoch i and epoch i + 1 as the ith iteration and we will refer to its length
as Ti. Finally, let Nα(ti) := Nα,i, α ∈ {1, . . . ,m}, be the number of outstanding
α-demands at beginning of iteration i.

The following straightforward lemma, similar to Lemma 1 in [13], will be essential
in deriving our main results.

Lemma 4.1 (Number of outstanding demands). In heavy load (i.e., % → 1−),
after a transient, the number of demands serviced in a single tour of the vehicle in
the SQ policy is very large with high probability (i.e., the number of demands tends to
+∞ with probability that tends to 1, as % approaches 1−).

Proof. Consider the case where the vehicle moves with infinite velocity (i.e., v →
+∞); then the system is reduced to an M/G/1 queue (i.e., a queue with exponentially
distributed inter-arrival times, generally distributed service times, and a single server;
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we refer the reader to [9] for more details). The infinite-velocity system has fewer
demands (for every α ∈ {1, . . . ,m}) waiting in queue. A known result on M/G/1
queues [24] states that, after transients, the total number of demands, as % → 1−,
is very large with high probability. Thus, in the SQ policy, the number of demands
in all m classes is very large with high probability. In particular, this implies that,
after a transient, the number of demands is very large with high probability at the
instances when the vehicle starts a new tour.

Let TSj be the event that Qj is selected for service at iteration i of the SQ policy.
By the total probability law

E [Nα,i+1] =
m∑

j=1

pjE (Nα,i+1|TSj), α ∈ {1, . . . ,m},

where the conditioning is with respect to the task being performed during iteration
i. During iteration i of the policy, demands arrive according to independent Poisson
processes. Call Nnew

α,i the number of α-demands (α ∈ {1, . . . ,m}) newly arrived during
iteration i; then, by definition of the SQ policy

E (Nα,i+1|TSj) =

{
E
(
Nnew

α,i |TSj

)
, if α = j

E (Nα,i|TSj) + E
(
Nnew

α,i |TSj

)
, otherwise.

By the law of iterated expectation, we have E
(
Nnew

α,i |TSj

)
= (λα/n)E (Ti|TSj),

where Ti is the length (duration) of the ith iteration. Moreover, since the number of
demands outstanding at the beginning of iteration i is independent of the task that
will be chosen, we have E (Nα,i|TSj) = E [Nα,i]. Thus we obtain

E (Nα,i+1|TSj) =

{
λα

n E (Ti|TSj), if α = j

E [Nα,i] + λα

n E (Ti|TSj), otherwise.

Therefore, we are left with computing the conditional expected values of Ti. The
length of Ti is given by the time needed by the vehicle to travel along the TSP tour
plus the time spent to service demands. Assuming i large enough, Lemma (4.1) holds,
and we can apply equation (2.1) to estimate from the quantities Nα,i, α ∈ {1, . . . ,m},
the length of the TSP tour at iteration i. Conditioning on TSj (when only demands
of type j are serviced), we have

E (Ti|TSj) =
βTSP

√
|E|/n

v
E
(√

Nj,i|TSj

)
+ E

(∑Nj,i

k=1 sj,k|TSj

)
≤

βTSP

√
|E|/n

v

√
E [Nj,i] + E [Nj,i]s̄j ,

where we have
• applied equation (2.1);
• applied Jensen’s inequality for concave functions, in the form E

[√
X
]
≤√

E [X];
• removed the conditioning on TSj , since the random variables Nα,i are inde-

pendent from future events, and in particular from the choice of the task at
iteration i; and

• used the crucial fact that the on-site service times are independent from the
number of outstanding demands.
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Collecting the above results (and using the shorthand X̄ to indicate E [X], where
X is any random variable), we have

N̄α,i+1 ≤ (1− pα)N̄α,i +
m∑

j=1

pj
λα

n

[
βTSP

√
|E|√

nv

√
N̄j,i + N̄j,is̄j

]
, (4.1)

for each α ∈ {1, . . . ,m}. The m inequalities above describe a system of recursive
relations that describe an upper bound on N̄α,i, α ∈ {1, . . . ,m}. The following
theorem bounds the values to which they converge.

Theorem 4.2 (Steady-state queue length). For every set of initial conditions
{N̄α,0}α∈{1,...,m}, the trajectories i 7→ N̄α,i, α ∈ {1, . . . ,m}, resulting from inequali-
ties (4.1), satisfy

lim sup
i→+∞

N̄α,i ≤
β2

TSP|E|
n3v2(1− %)2

λα

pα

 m∑
j=1

√
λjpj

2

, as % → 1−.

Proof. Define qj := 1− pj and let λ̂α denote the arrival rate in region R[k]. Thus
λ̂α := λα/n for each α ∈ {1, . . . ,m}. Let x(i) := (N̄1,i, N̄2,i, . . . , N̄m,i) ∈ Rm and
define two matrices

A :=


λ̂1p1s̄1 + q1 λ̂1p2s̄2 . . . λ̂1pms̄m

λ̂2p1s̄1 λ̂2p2s̄2 + q2 . . . λ̂2pms̄m

...
. . .

...
λ̂mp1s̄1 λ̂mp2s̄2 . . . λ̂mpms̄m + qm

 ,

and

B :=
βTSP

√
|E|√

nv


λ̂1p1 λ̂1p2 . . . λ̂1pm

λ̂2p1 λ̂2p2 . . . λ̂2pm

...
. . .

...
λ̂mp1 λ̂mp2 . . . λ̂mpm

 .

Then, letting the relation “≤” in Rm denote the product order of m copies of R
(in other words, for v, w ∈ Rm, the relation v ≤ w is interpreted component-wise),
inequalities (4.1) can be written as

x(i + 1) ≤ Ax(i) + B


√

x1(i)√
x2(i)
...√

xm(i)

 =: f(x(i)), (4.2)

where f : Rm
≥0 → Rm

≥0, and xj(i), j ∈ {1, . . . ,m}, are the components of vector x(i).
We refer to the discrete system in inequality (4.2) as System-X. Next we define two
auxiliary systems, System-Y and System-Z. The initial conditions of these two systems
will be set equal to x(0), and we will use their trajectories to bound the trajectories
of original system (i.e., System-X). We define System-Y as

y(i + 1) = f(y(i)). (4.3)
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System-Y is, therefore, equal to System-X, with the exception that we replaced the
inequality with an equality.

Pick, now, any ε > 0. From Young’s inequality

√
a ≤ 1

4ε
+ εa, for all a ∈ R≥0. (4.4)

Hence, for i 7→ y(i) ∈ Rm
≥0, the equation (4.3) becomes

y(i + 1) ≤ Ay(i) + B
( 1

4ε
1m + ε y(i)

)
=
(
A + εB

)
y(i) +

1
4ε

B1m.

where 1m is the vector (1, 1, . . . , 1)T ∈ Rm. Next, define System-Z as

z(i + 1) =
(
A + εB

)
z(i) +

1
4ε

B1m =: g(z(i)). (4.5)

The proof now proceeds as follows. First, we show that the initial conditions
x(0) = y(0) = z(0), imply that

x(i) ≤ y(i) ≤ z(i), for all i ≥ 0. (4.6)

Second, we show that the trajectories of System-Z are bounded; this fact, together
with expression (4.6), implies that also trajectories of System-Y and System-X are
bounded. Third, and last, we will compute lim supi→+∞ y(i); this quantity, together
with expression (4.6), will yield the desired result.

Let us consider the first issue. We have y(1) = f(y(0)) and z(1) = g(z(0)). By
definition of System-Y and System-Z, it holds that z(0) = y(0), and thus g(z(0)) =
g(y(0)) ≥ f(y(0)), where the last inequality follows from inequality (4.4) and by
definition of f and g. Therefore, we get y(1) ≤ z(1). Then, we have y(2) = f(y(1))
and z(2) = g(z(1)). Since z(1), y(1) ∈ Rm

≥0, and the elements in matrices A and B are
all non-negative, then y(1) ≤ z(1) implies g(y(1)) ≤ g(z(1)). Using similar arguments,
we can write z(2) ≥ g(y(1)) ≥ f(y(1)) = y(2); therefore, we get y(2) ≤ z(2). Then, it
is immediate by induction that y(i) ≤ z(i) for all i ≥ 0.

Similarly, by definition of System-Y, it holds that x(0) = y(0), and thus x(1) ≤
f(x(0)) = f(y(0)) = y(1). Then, we get x(1) ≤ y(1). Since x(1), y(1) ∈ Rm

≥0, the
elements in matrices A and B are nonnegative, and by the monotonicity of

√
·, then

x(1) ≤ y(1) implies f(x(1)) ≤ f(y(1)). Therefore, we can write x(2) ≤ f(x(1)) ≤
f(y(1)) = y(2); thus, we get x(2) ≤ y(2). Then, it is immediate to show by induction
that x(i) ≤ y(i) for all i ≥ 0, and expression (4.6) holds.

We now turn our attention to the second issue, namely boundedness of trajecto-
ries for System-Z (in equation (4.5)). Notice that System-Z is a discrete-time linear
system. The eigenvalues of A are characterized in the following lemma.

Lemma 4.3. The eigenvalues of A are real and have magnitude strictly less than
1 (i.e., A is a stable matrix).

Proof. Let w ∈ Cm be an eigenvector of A, and µ ∈ C be the corresponding
eigenvalue. Then we have Aw = µw. Define r := (p1s̄1, p2s̄2, . . . , pms̄m). Then the
m eigenvalue equations are

λ̂j w · r + qjwj = µwj , j ∈ {1, . . . ,m}, (4.7)
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where w · r is the scalar product of vectors w and r, and wj is the jth component
of w.

There are two possible cases. The first case is that w · r = 0. (Note that since
each pα > 0, this case can only occur if s̄α = 0 for some α ∈ {1, . . . ,m}.) In this case,
equation (4.7) becomes qj wj = µwj , for all j. Since w 6= 0, there exists j∗ such that
w∗j 6= 0; thus, we have µ = qj∗ . Since qj∗ ∈ R and 0 < qj∗ < 1, we have that µ is real
and |µ| < 1.

Assume, now, that w · r 6= 0. This implies that µ 6= qj and wj 6= 0 for all j, thus
we can write, for all j,

wj =
λ̂j

µ− qj
w · r, (4.8)

and hence

wj =
λ̂j

λ̂1

µ− q1

µ− qj
w1.

Therefore, (4.8) can be rewritten as
m∑

j=1

rj λ̂j

µ− qj
= 1. (4.9)

Equation (4.9) implies that the eigenvalues are real. To see this, write µ = a + ib,
where i is the imaginary unit: then

m∑
j=1

rj λ̂j

a + ib− qj
=

m∑
j=1

rj λ̂j [(a− qj)− ib]
(a− qj)2 + b2

.

Thus equation (4.9) implies

b

m∑
j=1

rj λ̂j

(a− qj)2 + b2︸ ︷︷ ︸
>0

= 0,

that is, b = 0. Equation (4.9) also implies that the eigenvalues (that are real) have
magnitude strictly less than 1. Indeed, assume, by contradiction, that µ ≥ 1. Then
we have µ− qj ≥ 1− qj > 0 (recall that the eigenvalues are real and 0 < qj < 1) and
we can write

m∑
j=1

rj λ̂j

µ− qj
≤

m∑
j=1

rj λ̂j

1− qj
=

m∑
j=1

s̄j λ̂j = % < 1,

which is a contradiction. Assume, again by contradiction, that µ ≤ −1. In this case
we trivially get another contradiction

∑m
j=1 rj λ̂j/(µ− qj) < 0, since µ− qj < 0.

Hence, A ∈ Rm×m has eigenvalues strictly inside the unit disk, and since the
eigenvalues of a matrix depend continuously on the matrix entries, there exists a
sufficiently small ε > 0 such that the matrix A + εB has eigenvalues strictly inside
the unit disk. Accordingly, each solution i 7→ z(i) ∈ Rm

≥0 of System-Z converges
exponentially fast to the unique equilibrium point

z∗ =
(
Im −A− εB

)−1 1
4ε

B1m. (4.10)
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Combining expression (4.6) with the previous statement, we see that the solutions
i 7→ x(i) and i 7→ y(i) are bounded. Thus

lim sup
i→+∞

x(i) ≤ lim sup
i→+∞

y(i) < +∞. (4.11)

Finally, we turn our attention to the third issue, namely the computation of
y := lim supi→+∞ y(i). Taking the lim sup of the left- and right-hand sides of equa-
tion (4.3), and noting that

lim sup
i→+∞

√
yα(i) =

√
lim sup
i→+∞

yα(i) for α ∈ {1, 2, . . . ,m},

since x 7→
√

x is continuous and strictly monotone increasing on R>0, we obtain that

yα = (1− pα)yα + λ̂α

m∑
j=1

pj

(
βTSP

√
|E|√

nv

√
yj + s̄jyj

)
.

Rearranging we obtain

pαyα = λ̂α

m∑
j=1

pj

(
βTSP

√
|E|√

nv

√
yj + s̄jyj

)
. (4.12)

Dividing pαyα by p1y1 (recall that by Algorithm 1 each pα is positive) we obtain

yα =
λ̂αp1

λ̂1pα

y1. (4.13)

Combining equations (4.12) and (4.13), we obtain

p1y1 = % p1y1 +
βTSP

√
|E|√

nv

√
p1λ̂1y1

m∑
j=1

√
λ̂jpj

Thus, recalling that λ̂α = λα/n, we obtain

yα =
β2

TSP|E|
n3v2(1− %)2

λα

pα

 m∑
j=1

√
λjpj

2

.

Noting that from inequality (4.11), lim supi→+∞ N̄α,i ≤ yα, we obtain the desired
result.

4.2. Delay of the SQ Policy in Heavy Load. From Theorem 4.2, and using
Little’s law, the delay of α-demands satisfies

Dα(SQ) ≤ n

λα
lim sup
i→+∞

N̄α,i

≤ β2
TSP|E|

n2v2(1− %)2
1
pα

 m∑
j=1

√
λjpj

2

,
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where we have neglected s̄α, since as % → 1− the constant s̄α becomes negligible
compared to the average delay, which scales as (1− %)−2.

Thus, the delay of the SQ policy satisfies

D(SQ) ≤ β2
TSP|E|

n2v2(1− %)2

m∑
α=1

cα

pα

(
m∑

i=1

√
λipi

)2

, as % → 1−. (4.14)

With this expression we prove our main result on the performance of the SQ policy.
Theorem 4.4 (SQ policy performance). As % → 1−, the delay of the SQ policy

is within a factor 2m2 of the optimal delay. This factor is independent of the arrival
rates λ1, . . . , λm, coefficients c1, . . . , cm, service times s̄1, . . . , s̄m, and the number of
vehicles n.

Proof. We would like to compare the performance of this policy with the lower
bound. To do this, consider setting

pα := cα for each α ∈ {1, . . . ,m}.

Defining Ψ := β2
TSP|E|/(n2v2(1− %)2), inequality (4.14) can be written as

D(SQ) ≤ Ψm

(
m∑

i=1

√
ciλi

)2

.

Next, the lower bound in inequality (3.1) is

D∗ ≥ Ψ
2

m∑
i=1

ci + 2
m∑

j=i+1

cj

λi ≥
Ψ
2

m∑
i=1

(ciλi) .

Thus, comparing the upper and lower bounds

D(SQ)
D∗ ≤ 2m

(∑m
i=1

√
ciλi

)2∑m
i=1 (ciλi)

. (4.15)

Letting xi :=
√

ciλi, and x := [x1, . . . , xm], the numerator of the fraction in inequal-
ity (4.15) is ‖x‖21, and the denominator is ‖x‖22. But the one- and two-norms of a
vector x ∈ Rm satisfy ‖x‖1 ≤

√
m‖x‖2. Thus,

D(SQ)
D∗ ≤ 2m

(
‖x‖1
‖x‖2

)2

≤ 2m2, as % → 1−,

and the policy is a 2m2-factor approximation.
Remark 4.5 (Relation to RP policy in [20]). For m = 2 the SQ policy is within

a factor of 8 of the optimal. This improves on the factor of 12 obtained for the
Randomized Priority (RP) policy in [20]. However, it appears that the RP policy
bound is not tight, since for two classes, simulations indicate it performs no worse
than the SQ policy. •
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4.3. Separate Queues Policy with Queue Merging. In this section we pro-
pose a modification the SQ policy based on queue merging. Queue merging is guaran-
teed to never increase the upper bound on the expected delay, and in certain instances
it significantly decreases the upper bound. The modification can be used when we
have a modest number of classes (fewer than, say, 20), which encompasses most ap-
plications of interest.

To motivate the modification, consider the case when all classes have equal priority
(i.e., c1/λ1 = · · · = cm/λm), and we use the probability assignment pα = cα for each
class α. Then, the upper bound for the Separate Queues policy in inequality (4.14)
becomes

Ψm(λ1 + · · ·+ λm),

where Ψ := β2
TSP|E|/(n2v2(1− %)2).

On the other hand, if we ignore priorities, merge the m classes into a single
class, and run the SQ policy on the merged class (i.e., at each iteration, service all
outstanding demands in E via the TSP tour), then the upper bound becomes

Ψ(λ1 + · · ·+ λm).

Thus, there is a factor of m separating the two upper bounds. This is due to the fact
that the basic SQ policy services each of the m classes separately, even when they
have the same priority.

The above discussion motivates the addition of queue merging to the SQ policy.
We define a merge configuration to be a partition of m classes {1, . . . ,m} into `
sets C1, . . . , C`, where ` ∈ {1, . . . ,m}. The upper bound for a merge configuration
{C1, . . . , C`} is

Ψ`

∑̀
i

√∑
α∈Ci

cα

∑
β∈Ci

λβ

2

. (4.16)

The SQ-policy with merging can be summarized as follows:

Separate Queues with Merging Policy

Find the merge configuration {C1, . . . , C`} which minimizes equation (4.16).1

Run the Separate Queues policy on ` classes, where class i has arrival rate2 ∑
α∈Ci

λα and convex combination coefficient
∑

α∈Ci
cα.

Now, to minimize equation (4.16) in step 1 of the SQ with Merging policy,
one must search over all possible partitions of a set of m elements. The num-
ber of partitions is given by the Bell Number Bm which is defined recursively as
Bm =

∑m−1
k=0 Bk

(
m−1

k

)
. Thus, the search becomes infeasible for more than 10 classes.

If the search space is too large, then one can limit the search to all partitions such
that if i < j, then each class in Ci has higher priority than all classes in Cj . This is
the set of partitions in which only adjacent classes are merged. For m classes, there
are 2m−1 such merge configurations, which is significantly less than the Bell number
Bm, but is still infeasible for more than, say, 20 classes.

4.4. The “Tube” Heuristic for Improving Performance. We now intro-
duce a simple heuristic improvement for the SQ policy that can be used for imple-
mentation. The heuristic improvement is as follows:
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Fig. 4.2. The tube heuristic for two classes of demands with c = 0.8, λ2 = 6λ1, and several
different load factors %. The delay at ε = 0 corresponds to the basic SQ policy.

Tube Heuristic: When following the tour in step 10 of the SQ
policy, service all newly arrived demands that lie within distance
ε > 0 of the tour.

The idea behind the heuristic is to utilize the fact that some newly arrived demands
will be “close” to the demands in the current service batch, and thus can be serviced
with minimal additional travel cost. Analysis of the tube heuristic is complicated by
the fact that it introduces correlation between demand locations. A similar difficulty
arises when attempting to analyze the nearest neighbor policy [3]. However, we can
demonstrate the effectiveness of this heuristic through simulations.

The parameter ε should be chosen such that the total tour length is not increased
by more than, say, 10%. A rough calculation shows that the area of the “tube” of
width 2ε centered around a tour that passes through the card(Q) demands in Q,
has area upper bounded by 2εβTSP

√
card(Q)|E|. While following the tour, a vehicle

will deviate to service no more than 2εβTSP

√
card(Q)/|E|(N̄1 + · · ·+ N̄m) demands.

Finally, since the vehicle will have to travel no more than 2ε to service each demand
in the “tube,” we see that ε should scale as

ε ∼

√
f |E|

N̄1 + · · ·+ N̄m
,

where N̄α is expected number of α-demands in the environment, and f is the fractional
increase in tour length (e.g., 10%).

Fig. 4.2 shows numerical results for the Tube Heuristic for a single unit speed
vehicle in a square environment with side length 50. The simulation is performed
for two classes of demands with c = 0.8, λ2 = 6λ1, and several different load factors
%. Each experimental data point represents the average of the steady state delay
of ten runs, where each run consists of 200 iterations of the SQ policy. To ensure
convergence to steady state and avoid effects due to the transient response, only the
last 50 iterations in each run are used to calculate the delay. The basic policy is
shown in left-most data points (i.e., ε = 0). Fig. 4.2 demonstrates that as the load
factor increases, the value of ε should be chosen smaller in order to achieve the best
performance. Table 4.1 shows the improvement in expected delay when using the
tube heuristic. For the load factors considered, the heuristic decreases the delay by a
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factor of approximately 2. One should note that the heuristic is difficult to accurately
simulate for high load factors. This is due to the additional computations required
to determine if a newly arrived demand lies within a distance ε of the current tour.
A more sophisticated implementation of tube heuristic is to define an εα for each

Load factor % Delay Best ε Delay with best ε Heuristic improvement

0.14 358 (34) 5 183 (11) 0.51 (0.16)
0.28 496 (61) 4 244 (25) 0.49 (0.23)
0.42 774 (78) 3 384 (26) 0.50 (0.17)
0.56 1330 (84) 2 706 (52) 0.53 (0.14)
0.70 3380 (357) 1 1770 (121) 0.52 (0.17)

Table 4.1
A comparison between the expected delay of the basic SQ policy, and the SQ policy with the

tube heuristic. The values in brackets give the standard deviation of the corresponding table entry.

α ∈ {1, . . . ,m}, where the magnitude of εα is proportional to its priority, and thus
proportional to the probability pα.

5. Simulations and Discussion. In this section we discuss, through the use
of simulations, the performance of the SQ policy with the probability assignment
pα := cα, for each α ∈ {1, . . . ,m}. In particular, we study (i) the tightness of the
upper bound in inequality (4.14), (ii) conditions for which the gap between the lower
bound in inequality (3.1) and the upper bound in inequality (4.14) is maximized,
(iii) the suboptimality of the probability assignment pα = cα, and (iv) the difference
in performance between the SQ policy and a policy that merges all classes together
irrespective of priorities. Simulations of the SQ policy were performed using linkern1

as a solver to generate approximations to the optimal TSP tour.

5.1. Tightness of the Upper Bound. We consider one vehicle, four classes of
demands, and several values of the load factor %. For each value of % we perform 100
runs. In each run we uniformly randomly generate arrival rates λ1, . . . , λm, convex
combination coefficients c1, . . . , cm, and on-site service times s̄1, . . . , s̄m, and normalize
the values such that the constraints

∑m
α=1 λαs̄α = % and

∑m
α=1 cα = 1 are satisfied. In

each run we iterate the SQ policy 4000 times, and compute the steady-state expected
delay by considering the number of demands in the last 1000 iterations. For each
value of % we compute the ratio χ between the expected delay and the theoretical
upper bound in inequality (4.14). Table 5.1 reports the ratio, its standard deviation,
and its minimum and maximum values for each % value. One can see that the upper
bound provides a reasonable approximation for load factors as low as % = 0.75.

Load factor (%) E [χ] σχ max χ min χ

0.75 0.803 0.092 1.093 0.354
0.8 0.778 0.108 0.943 0.256
0.85 0.773 0.111 1.150 0.417
0.9 0.733 0.159 1.162 0.203
0.95 0.716 0.131 0.890 0.257

Table 5.1
Ratio χ between experimental results and upper bound for various values of %.

1The TSP solver linkern is freely available for academic research use at
http://www.tsp.gatech.edu/concorde.html.
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Fig. 5.1. Experimental results for the SQ policy in worst-case conditions plotted on a log-log
scale; % = 0.85 and λ1 = 1.

5.2. Maximum deviation from lower bound. In Theorem 4.4 we showed
that the SQ policy performs within a factor of 2m2 of the lower bound for all initial
conditions. The ratio between the upper bound inequality (4.14) and the lower bound
in inequality (3.1) can be made arbitrarily close to 2m2 by choosing λ1 � λ2 � · · · �
λm and c1 � c2 � · · · � cm, with λαcα = a, for each α ∈ {1, . . . ,m} and for some
positive constant a. In these “unfavorable conditions”, the upper bound is equal to
Bm3a and the lower bound is approximately Bma/2.

It is also of interest to consider the actual deviation of the experimental per-
formance from the lower bound in the unfavorable conditions described above. We
simulated the SQ policy for % = 0.85 and for several values of m, with parameter
values of λm = bλm−1 = b2λm−1 = · · · = bm−1λ1 and c1 = bc2 = · · · = bm−1cm,
where b = 2. Fig. 5.1 (plotted on a log-log scale) shows that the ratio between the
actual performance and the lower bound (averaged over 10 simulation runs) increases
as mη, where η ≈ 1.25 according to a least square fit. The figure also shows that the
ratio between the analytic upper bound and the lower bound increases as mη, where
η ≈ 1.61 according to a least square fit. For completeness, the figure also shows the
worst-case ratio between the upper bound and lower bound, which increases as m2.
These experimental results suggest that the upper bound is somewhat conservative.

5.3. Suboptimality of the Approximate Probability Assignment. To
prove Theorem 4.4 we used the probability assignment

pα := cα for each α ∈ {1, . . . ,m}. (5.1)

However, one would like to select [p1, . . . , pm] =: p that minimizes the right-hand
side of inequality (4.14). The minimization of the right-hand side of inequality (4.14)
is a constrained multi-variable nonlinear optimization problem over p, that is, in m
dimensions. Thus, for a general m class problem, solving the optimization problem is
difficult. However, for two classes of demands the optimization is over a single variable
p1 (with the constraint that p2 = 1− p1), and it can be readily solved. A comparison
of optimized upper bound, denoted upbdopt, with the upper bound obtained using
the probability assignment in equation (5.1), denoted upbdc, is shown in Fig. 5.2. In
this figure the ratio of upper bounds is bounded by two.

For m > 2 we approximate the solution of the optimization problem as fol-
lows. For each value of m we perform 1000 runs. In each run we randomly gener-
ate λ1, . . . , λm, c1, . . . , cm, and five sets of initial probability assignments p1, . . . ,p5.
From each initial probability assignment we use a line search to locally optimize the
probability assignment. We take the ratio between upbdc and the least upper bound
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Fig. 5.2. The ratios upbdc/upbdopt for 2 classes of demands.

Number of classes (m) upbdc/upbdlocal opt Max. % variation in ratio

3 1.60 0.12
4 1.51 0.04
5 1.51 0.08
6 1.74 0.02
7 1.88 0.08
8 1.63 0.15

Table 5.2
Ratio of upper bound with pα = cα for each α ∈ {1, . . . , m} and the upper bound with a locally

optimized probability assignment.

upbdlocal opt obtained from the five locally optimized probability assignments. We
also record the maximum variation in the five locally optimized upper bounds. This
is summarized in Table 5.2. The second column shows the largest ratio obtained over
the 1000 runs. The third column shows the largest % variation in the 1000 runs. The
assignment in equation (5.1) seems to perform within a factor of two of the optimized
assignment, and the optimization appears to converge to values close to a global op-
timum since all five random conditions converge to values that are within ∼ 0.1% of
each other on every run.

5.4. The Complete Merge Policy. As described in Section 4.3, a naive pol-
icy for our problem is to ignore priorities, merge all classes into a single class, and
repeatedly form TSP tours through all outstanding demands. We call this policy the
Complete Merge (CM) policy. In this section we briefly verify by simulation that the
performance of the Complete Merge policy can be very poor when compared to that of
the SQ policy. In addition, the poor performance occurs under conditions of interest
for most applications—when low priority demands arrive much more frequently than
high priority demands.

To upper bound the performance of the Complete Merge policy, define the total
arrival rate Λ :=

∑m
α=1 λα and total mean on-site service S̄ :=

∑m
α=1 s̄α. Using

the upper bounds in [3], we immediately obtain that D(CM) ≤ β2
TSP|E|Λ

n2v2(1−%)2 . Thus, the
ratio of upper bounds can be made arbitrarily large by choosing λ1 � λ2 � · · · � λm
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Fig. 5.3. Ratio of experimental delays between Complete Merge policy and SQ policy as a
function of λ2, with m = 2, λ1 = 1, c = 0.995 and % = 0.9.

and c1 � c2 � · · · � cm. This suggests that the ratio between the delay of the CM
policy and that of the SQ policy, D(CM)/D(SQ), can be made very large. Fig. 5.3
shows the experimentally obtained ratio between the delay of the Complete Merge
policy and that of the SQ policy (averaged over 10 simulation runs), and verifies that
the above choice of arrival rates and convex combination coefficients results in large
performance ratios.

6. Conclusions. In this paper we introduced a dynamic vehicle routing problem
with priority classes. We captured the priority levels of classes by writing the system
delay as a convex combination of the delay of each class. We determined a lower
bound on the achievable values of the convex combination of the class delays. We
then presented the Separate Queues (SQ) policy and showed that it performs within
a constant factor of the lower bound, which depends only on the number of the classes.
We believe that it may be possible to improve the lower bound and remove, or reduce,
the constant factor’s dependence on the number of classes. For future work we are
interested in combining the aspects of multi-class vehicle routing with problems in
which demands require teams of vehicles for their service. We are also interested
in extending our results to the case of non-uniform demand densities (possibly class
dependent), and to impatient demands that disappear if they are not serviced within
a certain time window.
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