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ABSTRACT
In this paper we propose distributed algorithms to automat-

ically deploy a group of robotic agents and provide coverageof
a discretized environment represented by a graph. We present
a discrete coverage algorithm which converges to a centroidal
Voronoi partition while requiring only pairwise “gossip” com-
munication between the agents. Our theoretical analysis isbased
on a dynamical system on partitions of the graph’s vertices.We
also establish bounds on the computational requirements ofthe
algorithm and demonstrate its functionality with simulations.

1 INTRODUCTION
This paper deals with distributed partitioning and coverage

control problems for a network of robotic agents in a potentially
non-convex environment. The distributedpartitioning problem
for robotic networks consists of designing control and communi-
cation laws to divide an environment into territories. Typically,
partitioning is done so as to optimize a cost function that mea-
sures the quality of the partitions.Coverage controlalgorithms
are usually designed in a similar way, with an additional crite-
rion of optimizing the placement of the agents. In this paper
we describe a partitioning and coverage control algorithm which
optimizes the configuration of a group of agents in a discreteen-
vironment represented by a graph. Optimality is defined with
reference to a cost function which depends on the locations of
the agents and geodesic distances in the graph. As with all mul-
tiagent coordination applications, the challenge comes from re-
ducing the communication requirements: the proposed algorithm
only requires pairwise “gossip” communication.

A broad discussion of partitioning and coverage control is
presented in [1] which builds on the classic work of Lloyd [2]

on algorithms for optimal quantizer design through “centering
and partitioning.” The relationship between discrete and contin-
uous coverage control laws based on Euclidean distances is stud-
ied in [3]. Coverage control and partitioning of discrete sets are
also related to the literature on the facility location ork-center
problem [4]. Coverage control algorithms for non-convex envi-
ronments are discussed in [5–7] while equitable partitioning is
studied in [8]. In [9] the authors have showed how a group of
robotic agents can optimize the partition of a given environment
using pairwise “gossip” communication: only one pair of regions
is updated at each step of the algorithm. In that work the envi-
ronment is assumed to be a convex bounded subset ofR

d. This
assumption is not suitable for implementation on physical robots
which inherently sense and memorize a quantized environment.

There are three main contributions of this paper. First, we
extend the results for gossip coverage from [9] to perform cover-
age of a connected graph using geodesic distances. In the usage
we envision, the connected graph represents a discretization of
an environment, allowing physical robots to cover complex non-
convex environments with holes. We discuss important proper-
ties of this setup, namely that the centroid of a robot’s region
always belongs to the region (which is a subset of the vertices),
and moreover each robot’s region remains connected during the
evolution of the algorithm. Second, we prove that, under suitable
assumptions on the sequence of updating pairs, the discretegos-
sip coverage algorithm converges in finite time to a single cen-
troidal Voronoi partition. This result, stronger than thatin [9],
is a consequence of the discrete nature of the problem. Third,
we discuss the implementation of the core computations of the
algorithm and provide bounds on their computational complex-
ity. We show that the computations of the algorithm scale well
with the size of the environment and the number of robots used,



meaning the algorithm is truly distributed. Combined with the
extension to a discrete environment, this efficient computation
enables the algorithm to be implemented on a large group of real
robots.

This paper is organized as follows. In Section 2 we formally
describe the discrete coverage control problem and providedef-
initions of discrete Voronoi partitions. We present the discrete
gossip coverage algorithm in Section 3 and discuss some of its
properties. Section 4 contains the main convergence results. In
Section 5 we discuss bounds on the computational complexity
of the algorithm. Simulation results are shown in Section 6 and
some conclusions are given in Section 7.

In our notation,R≥0 denotes the set of non-negative real
numbers andZ≥0 the set of non-negative integers. Given a setX,
|X| denotes the number of elements inX. Given setsX,Y, their
difference isX \Y = {x∈ X | x /∈Y}. A set-valued map, denoted
by T : X ⇉ Y, associates to an element ofX a subset ofY.

2 PROBLEM FORMULATION
We are given a group of robotic agents with limited sensing

and communication capabilities, and a discretized environment.
We want to apportion the environment into smaller regions, each
assigned to one of the agents. Our approach is to iterativelyup-
date the partition in such a way as to minimize a cost functional
which depends on the current partition and the positions of the
agents.

Let the finite setQ be the discretized environment. We
assume that the elements ofQ, which can be thought as loca-
tions, are connected by weighted edges. In other words, we let
G = (Q,E,w) be an (undirected) weighted graph with edge set
E ⊂ Q×Q and weight mapw : E → R>0; we letwe > 0 be the
weight of edgee. We assume thatG is connected and think of
the edge weights as distances between locations.

In any weighted graphG there is a standard notion of dis-
tance between nodes defined as follows. Apath in G is an or-
dered sequence of nodes such that any pair of consecutive nodes
in the sequence is an edge ofG. Theweight of a pathis the sum
of the weights of all the edges in the path. Given two vertices
h andk in G, thedistancebetweenh ank, denoted bydG(h,k),
is the smallest weight of any path fromh to k, or +∞ if there is
no path fromh to k. In other words, the distance between two
nodes is the weight of the shortest path between them. By con-
vention,dG(h,k) = 0 if h = k. Note thatdG(h,k) = dG(k,h), for
anyh,k∈Q. If the graph is connected, then the distance between
any two nodes is finite.

Analogously, we define local distances on induced sub-
graphs ofG = (Q,E,w). Given I ⊂ Q, the subgraph induced
by the restriction of G to I, denoted byG∩ I , is the graph with
the set of nodes equal toI and with the set of weighted edges con-
taining all weighted edges ofG where both vertices belong toI .
In other words, we set(Q,E,w)∩ I = (Q∩ I ,E∩(I × I),w|I×I ).
The induced subgraph is a weighted graph that is equipped with
a notion of distance between nodes. Givenh,k ∈ I , we write
dI (h,k) := dG∩ I (h,k). Note thatdI (h,k) ≥ dG(h,k).

Remark 1 (Discretizaton of an environment) In the motiva-
tional scenario we are considering, a continuous environment is
substituted by anoccupancy grid map, where each grid cell is ei-
ther free space or an obstacle (occupied) [10]. We define two free
cells as adjacent if they border each other in the grid map. The
group of robots is then tasked with partitioning the graph ofthe
free cells. However, there are many other methods to discretize
a space beyond the use of a grid, including triangularization and
other approaches studied in computational geometry [11]. Any
such method which produces a connected graph with positive
edge weights can be used.

In this paper we will deal with partitioningQ into connected
subsets. Given the graphG = (Q,E,w), we defineconnected
subset of Qas a subsetS⊂ Q such thatS 6= /0 andG∩S is con-
nected. Moreover letC (Q) denote the set of such subsets. We
can then define partitions ofQ into connected sets as follows.

Definition 1 (Connected partitions) Given the graph G=
(Q,E,w), we define aconnectedN−partition ofQ as a collection
p = {pi}

N
i=1 of N subsets of Q such that

1.
SN

i=1 pi = Q;
2. pi ∩ p j = /0 if i 6= j;
3. pi 6= /0 for all i ∈ {1, . . . ,N};
4. pi ∈ C (Q) for all i ∈ {1, . . . ,N}.

Let P to be the set of such partitions.

OnQ, we define aweight functionto be a bounded positive func-
tion φ : Q → R>0 which assigns a positive weight to each ele-
ment ofQ. GivenR∈ C (Q), we define theone-center function
H1 : R→ R≥0 as

H1(h;R) = ∑
k∈R

dR(h,k)φ(k).

A technical assumption is then needed to define thegeneral-
ized centroidof a connected subset. In what follows, we assume
that atotal orderrelation,<, is defined onQ: hence, we can also
denoteQ = {1, . . . , |Q|}.

Definition 2 (Centroid) Let Q be a totally ordered set, and R∈
C (Q). We define the set of generalized centroids

C(R) := argmin
h∈R

H1(h;R),

and the mapCd :C (G)→ Q such thatCd(R) := min{c∈ C(R)}.
We callCd(R) the generalized centroidof R.

In subsequent use we will drop the word “generalized” for
brevity. Note that with this definition the centroid is well de-
fined, thanks to the ordering assumption, and the centroid ofa
region belongs to that region. With a slight notational abuse, we



define Cd :P → QN as the map which associates to a partition
the vector of the centroids of its elements.

With these notions we can introduce a performance function;
let themulticenter functionHmulti-center: P ×QN → be defined by

Hmulti-center(p,c) =
N

∑
i=1

∑
x∈pi

dpi (x,ci)φ(x).

We aim to minimize this function with respect to both the parti-
tions p and the pointsc.

Among all the possible ways of partitioningQ, there is one
which is worth of special attention. Givenc∈ QN such that ifi 6=
j, thenci 6= c j , the partitionp∈P is said to be aVoronoi partition
of Q generated by cif, for eachpi and allk ∈ pi , we haveci ∈
pi anddG(k,Cd(pi)) ≤ dG(k,Cd(p j)), ∀ j 6= i (see Section 6 for
visual examples of Voronoi partitions).

Proposition 1 (Properties of multi-center function) Let p ∈
P , c ∈ QN, and let p∗ be a Voronoi partition generated by c.
Then

Hmulti-center(p,Cd(p)) ≤ Hmulti-center(p,c),

Hmulti-center(p∗,c) ≤ Hmulti-center(p,c).

This cost function can be interpreted as the expected dis-
tance from a cell selected uniformly at random in the environ-
ment to the centroid of the partition it is a member of. Our moti-
vation for using this cost function is to serve as a base for a task
servicing setup. After partitioning the environment, the team of
robots will be asked to service tasks which appear at nodes on
the graph. By minimizingHmulti-center, we minimize the expected
time-to-service of a task in the light load case where each robot
has at most one task to service at a time.

These statements motivate the following definition: a par-
tition p ∈ P is a centroidal Voronoi partitionif p is a Voronoi
partition generated by Cd(p). Based on the multicenter function,
we defineHexpected: P → R by

Hexpected(p) = Hmulti-center(p,Cd(p)) =
N

∑
i=1

∑
x∈pi

dpi (x,Cd(pi))φ(x).

Observe thatHexpectedhas the following property as an im-
mediate consequence of Proposition 1: givenp ∈ P , if p∗ is a
Voronoi partition generated by Cd(p) then

Hexpected(p∗) ≤ Hexpected(p).

We are now in a position to state the goal of our
algorithm: solving the distributed optimization problem
minp∈P Hexpected(p), subject to the constraint that the agents use
only gossip communication, namely that only a pair of agents
can communicate at each iteration.

3 GOSSIP COVERAGE ALGORITHM
Here we present a partition-based coverage algorithm that,at

each iteration, requires only a pair of adjacent regions to commu-
nicate. The following definition describe the admissible pairwise
communications.

Definition 3 (Adjacency graph) Let p∈ P . Using the asso-
ciated graph G= (Q,E,w), we can define a graph ofadja-
cency between regionsof the partition, as follows. LetG(p) =
({1, . . . ,N},E(p)), then(i, j) ∈ E(p) if pi ∪ p j ∈ C (Q).

Thediscretized gossip coverage algorithmis stated as follows.

At each timet ∈ Z≥0, each agenti ∈ {1, . . . ,N} maintains
in memory a connected subsetpi(t). The collectionp(0) =
{p1(0), . . . , pN(0)} is an arbitrary connectedN-partition ofQ. At
eacht ∈ Z≥0 a communicating pair, say(i, j) ∈ E(p(t)), is se-
lected by a deterministic or stochastic process to be determined.
Assume thati < j. Every agentk 6∈ {i, j} setspk(t +1) = pk(t),
while agentsi and j perform the following tasks:

1: agenti transmits to agentj its subsetpi(t) and vice-versa
2: both agents compute the centroids Cd(pi(t)) and Cd(p j(t))

and the sets
Wi→ j =

{
x∈ pi : dpi∪p j (x,Cd(p j)) < dpi∪p j (x,Cd(pi))

}

Wj→i =
{

x∈ p j : dpi∪p j (x,Cd(pi)) < dpi∪p j (x,Cd(p j))
}

Wi∼= j =
{

x∈ pi ∪ p j : dpi∪p j (x,Cd(pi)) = dpi∪p j (x,Cd(p j))
}

3: if Wi→ j ∪Wj→i = /0 then
4: pi(t +1) := pi(t) andp j(t +1) := p j(t)
5: else
6: pi(t +1) := ((pi \Wi→ j)∪Wj→i)∪Wj∼=i ,

p j(t +1) := ((p j \Wj→i)∪Wi→ j)\ (Wj∼=i ∩ p j)
7: end if

Observe thatWi→ j (resp. Wj→i) contains the cells ofpi

(resp. p j ) which are closer to Cd(p j) (resp. Cd(pi)), whereas
Wi∼= j represents the set of the tied cells. In other words,
when two robots exchange territory, then their updated regions{

pi(t +1), p j(t +1)
}

are the Voronoi partition of the setpi(t)∪
p j(t) generated by the centroids Cd(pi) and Cd(p j), with all tied
cells assigned to the agent with the lower index.

Now, for any pair(i, j) ∈ {1, . . . ,N}2, i 6= j, we define the
mapTi j : P → P by

Ti j (p)=

{
p, if (i, j) /∈ E(p) and Wi→ j ∪Wj→i = /0
(p1, . . . , p̂i , . . . , p̂ j , . . . , pN), otherwise,

where p̂i = ((pi \Wi→ j)∪Wj→i) ∪ Wj∼=i , and p̂ j =
((p j \Wj→i)∪Wi→ j)\ (Wj∼=i ∩ p j) .

The dynamical system on the space of partitions is therefore
described by, fort ∈ Z≥0,

p(t +1) = Ti j (p(t)), for some(i, j) ∈ E(p(t)),



together with a rule describing what edge(i, j) is selected at each
time. We also define the set-valued mapT : P ⇉ P by

T(p) = {Ti j (p) | (i, j) ∈ E(p)}. (1)

We claim that (1) is well-defined in the sense thatTi j (p)∈ P
for all (i, j) ∈ {1, . . . ,N}2, if p ∈ P . We will prove this fact in
Proposition 2; first we need the following technical lemma.

Lemma 1 Let p+ = Ti j (p). If p+
i 6= pi , then for all k∈ p+

i , every
shortest path in pi ∪ p j from Cd(pi) to k is a subset of p+i .

Proof. Let u = pi ∪ p j . We prove this lemma by contradiction
by assuming that, given a shortest path from Cd(pi) to k in u,
there existsm∈ Q which belongs both to the shortest path and to
p+

j . Consider the case wherei < j. Form to be inp+
j means that

du(m,Cd(pi)) > du(m,Cd(p j)). This implies that

du(k,Cd(pi)) = du(m,Cd(pi))+du(k,m)

> du(m,Cd(p j))+du(k,m)

≥ du(k,Cd(p j))

This is a contradiction, fork ∈ p+
i . Similar considerations hold

for the case wherei > j. �

Proposition 2 Let T be the pairwise algorithm map defined by
(1). If p∈ P , then T(p) ⊂ P .

Proof. Without loss of generality we assume thatp+ = Ti j (p).
To prove the statement of the Proposition we need to show that
p+ satisfies points 1 – 4 from Definition 1. Observe, from the
definition of the mapTi j thatp+

i ∪ p+
j = pi ∪ p j andp+

i ∩ p+
j = /0.

Moreover, since Cd(pi) ∈ p+
i and Cd(p j) ∈ p+

j , it follows also
that p+

i 6= /0 and p+
j 6= /0. These observations imply the validity

of the points 1, 2, and 3 forp+. Finally, Lemma 1 guarantees
that p+

i andp+
j are connected, i.e.p+ satisfies also point 4. �

A couple of remarks are now in order.

Remark 2 (Connected regions)Observe that the previous
Proposition guarantees the connectivity of the regions in the
partition during the evolution of the algorithm. The key piece
which keeps the regions connected is the fact that distancesare
taken inpi ∪ p j : if distances were taken inG then connectivity
would no longer hold.

Remark 3 (Tie breaking rules) It is worth noting that there are
many potential variations in how to handle the tied cells inWi∼= j .
One option would be to giveWi∼= j to the agent with the lowerH1
to achieve a form of load balancing. In fact, any method which
gives all ofWi∼= j to either i or j can be used. However, for a
general graph with non-uniform positive edge weightswe, exact
ties between sums of different paths are highly unlikely. The

tie breaking policy only plays a significant role in small graphs
with regular edge weights, such as those derived from coarsely
gridding the environment.

4 CONVERGENCE
The strength of our results depends on the possibility of en-

forcing a partition to converge to a centroidal Voronoi partition
by means of pairwise communication and territory exchange.We
start our convergence analysis with the following concept.

Definition 4 Consider the connected graph G= (Q,E,w). Let
p ∈ P and let G(p) be the associated adjacency graph. Then
p ∈ P is said to becentroidal Voronoi in pairsif, for any i ∈
{1, . . . ,N} we have that

dpi∪p j (k,Cd(pi)) ≤ dpi∪p j (k,Cd(p j))

for all k ∈ pi and for all j such that(i, j) ∈ E(p).

By definition, partitions which are centroidal Voronoi in
pairs are fixed points for the mapTi j , for all (i, j) ∈ E . The
following Lemma states the equivalence between the set of Cen-
troidal Voronoi in pairs partitions and the set of Centroidal
Voronoi partitions.

Lemma 2 A partition p∈ P is centroidal Voronoi in pairs if and
only if it is centroidal Voronoi.

Proof. We start by proving the “if” part. Assume thatp is a
centroidal Voronoi partition. Letx ∈ pi . Observe that at least
one of the shortest path connectingx to Cd(pi) is all within pi ,
otherwise it would exists a regionp j such thatdG(x,Cd(p j)) <
dG(x,Cd(pi)). hence we can write thatdG(x,Cd(pi)) =
dpi (x,Cd(pi)) = dpi∪p j (x,Cd(pi)) for all p j such that(i, j) ∈
E(p). Moreover observe thatdpi∪p j (x,Cd(p j))≥ dG(x,Cd(p j)).
Hencedpi∪p j (x,Cd(pi)) ≤ dpi∪p j (x,Cd(p j)).

We prove now the ”only if” part by contradiction. To this
aim we assume that there existsp = {p1, . . . , pN} ∈ P which
is centroidal Voronoi in pairs but not centroidal Voronoi. In
other words, there exist two componentspi and p j of p and
an elementx of one of such components, sayx ∈ pi , such that
dG (x,Cd(pi)) > dG (x,Cd(p j)).

Given two nodesa, b of a graphH, let sH
a,b be a shortest path

in H connectinga to b. ConsidersG
x,Cd(p j )

, and observe that it can

be rewritten, for a suitablem∈ N and for a suitable 2m-uple of
nodesy1, . . . ,ym, as

sG
Cd(p j ),x

= s
p j

Cd(p j ),y1
∪

(
m−1
[

h=1

s
pih
y2h,y2h+1

)
∪spi

y2m,x

where the union of two paths means their concatenation. Let
nows

pi1
Cd(pi1),y3

be a shortest path connecting Cd(pi1) to y3. Since



( j, i1)∈E(p) and sincep is Centroidal Voronoi in pairs, we have
that

dpi1
(Cd(pi1),y3)≤dp j (Cd(p j),y1)+dp j∪pi1

(y1,y2)+dpi1
(y2,y3) .

Similarly we can prove that dpi2
(Cd(pi2),y5) ≤

dpi1
(Cd(pi1),y3) + dpi1∪pi2

(y3,y4) + dpi2
(y4,y5) and it-

erating this reasoning thatdpim−1

(
Cd(pim−1),y2m−1

)
≤

dpim−2

(
Cd(pim−2),y2m−3

)
+ dpim−2∪pim−1

(y2m−3,y2m−2) +

dpim−1
(y2m−2,y2m−1) . Plugging together the above inequalities

it turns out that

dpim−1

(
Cd(pim−1),y2m−1

)
+dpim−1∪pi (y2m−1,y2m)+dpi (y2m,x)

≤ dp j (Cd(p j),y1)+dp j∪p1 (y1,y2)+
m−1

∑
h=1

dpih
(y2h+1,y2h)

+
m−2

∑
h=1

dpih
∪pih+1

(y2h+1,y2h+2)+dpim−1∪pi (y2m−1,y2m)

+dpi (y2m,x)

< dpi (Cd(pi),x)

This contradicts the fact that, since(im−1, i)∈E(p) andp is Cen-
troidal Voronoi in pairs,

dpim−1

(
Cd(pim−1),y2m

)
+dpi (y2m,x) ≥ dpi (Cd(pi),x) . �

The following property guarantees that the objective func-
tion decreases along the trajectories ofT.

Proposition 3 Let T : P ⇉ P be the point-to-set map defined
for the pairwise algorithm. If p∈ P and p+ ∈ T(p) \ p, then
Hexpected(p+) < Hexpected(p).

Proof. Without loss of generality we assume thatp+ = Ti j (p).
To prove the statement of the proposition we show that

∑
x∈pi

dpi (x,Cd(pi))+ ∑
y∈p j

dp j (y,Cd(Pj))

> ∑
x∈p+

i

dp+
i

(
x,Cd(p+

i )
)
+ ∑

y∈p+
j

dp+
j

(
y,Cd(p+

j )
)

First, sinceWi→ j ∪Wj→i 6= /0, we have that

∑
x∈Wi→ j

dpi∪p j (x,Cd(pi))+ ∑
x∈Wj→i

dpi∪p j (x,Cd(p j))

> ∑
x∈Wi→ j

dpi∪p j (x,Cd(p j))+ ∑
x∈Wj→i

dpi∪p j (x,Cd(pi)) .

Thus, we further have that

∑
x∈pi

dpi (x,Cd(pi))+ ∑
y∈p j

dp j (y,Cd(Pj))

≥ ∑
x∈pi

dpi∪p j (x,Cd(pi))+ ∑
y∈p j

dpi∪p j (y,Cd(Pj))

> ∑
x∈(pi\Wi→ j)∪Wj∼=i

dpi∪p j (x,Cd(pi))+ ∑
x∈Wi→ j

dpi∪p j (x,Cd(p j))

+ ∑
x∈p j\(Wj→i∪Wj∼=i)

dpi∪p j (y,Cd(p j))+ ∑
x∈Wj→i

dpi∪p j (x,Cd(pi)) .

Using the definition ofp+
i , we can write that

∑
x∈(pi\Wi→ j)∪Wj∼=i

dpi∪p j (x,Cd(pi))+ ∑
x∈Wi→ j

dpi∪p j (x,Cd(p j))

= ∑
x∈p+

i

dpi∪p j (x,Cd(pi)) .

Moreover, by Lemma 1 we have that∑x∈p+
i

dpi∪p j (x,Cd(pi)) =

∑x∈p+
i

dp+
i

(x,Cd(pi)) . Similarly we can see that

∑
x∈p j\(Wj→i∪Wj∼=i)

dpi∪p j (y,Cd(p j))+ ∑
x∈Wi→ j

dpi∪p j (x,Cd(p j))

= ∑
x∈p+

j

dp+
j
(y,Cd(p j)) .

To conclude the proof observe that from the definition of centroid
we have that∑x∈p+

i
dp+

i
(x,Cd(pi)) ≥ ∑x∈p+

i
dp+

i

(
x,Cd(p+

i )
)
,

and that∑x∈p+
j

dp+
j
(x,Cd(p j)) ≥ ∑x∈p+

j
dp+

j

(
x,Cd(p+

j )
)

. �

We can now state the main convergence results.

Theorem 1 (Convergence under uniformly persistent gossip)
Consider the discrete gossip coverage algorithm T defined in(1)
and let p: Z≥0 → P be an evolution of T . Assume that for
each pair(i, j)∈ {1, . . . ,N}2, i 6= j, there exists an increasing se-
quence of times{tk}k∈Z≥0 ⊂ Z≥0 such that(tk+1− tk) is bounded
and p(tk + 1) = Ti j (p(tk)). Then there exist̂t ∈ Z≥0 and a cen-
troidal Voronoi partitionp̂ such that p(t) = p̂ for all t ≥ t̂ .

Proof. Proof is based on verifying the assumptions (i), (ii), (iii),
(iv) of Theorem IV.1 in [9]. We start with the following topolog-
ical consideration.

Let A,B⊂ Q, A∆B be their symmetric difference, and let|A|
be the “points counting measure” ofA, that is the number of ele-
ments ofA. Then if we defined∆(A,B) = |A∆B| , we have thatd∆
is a distance on the set of the subsets ofQ, that we denote by 2Q.
Note that the point counting measure takes integer values. This
makes 2Q a discrete topological space. Consider now the product
space(2Q)N and letq= {q1, . . . ,qN} andq̄= {q̄1, . . . , q̄N} be two



its elements. Then, thanks to results valid for product topologi-

cal spaces we have that the functiond(N)
∆ (q, q̄) = ∑N

i=1d(qi , q̄i) is
a distance on(2Q)N. Hence also(2Q)N is a discrete topological
space. Observe thatP is a subset of(2Q)N. Since 2Q, (2Q)N and
P are finite, they are also trivially compact. Moreover, sincethe
algorithmT : P ⇉ P is well-defined we have thatP is strongly
positively invariant.1

Now, the fact that all maps from a discrete space are continu-
ous, implies the continuity of the mapsTi j andHexpected. Further-
more, thanks to Proposition 3,Hexpectedis guaranteed to decrease
along the trajectories ofT.

The above remarks guarantee the validity of assumptions (i),
(ii) and (iii). Assumption (iv) holds true for the hypothesis of
uniformly persistent gossip made in the statement of Theorem 1.

Hence we are in the position to apply Theorem IV.1, and
conclude convergence to the intersection of the equilibriaof the
mapsTi j , which, according to the definition of the mapsTi j co-
incides with the set of the centroidal Voronoi partitions inpairs.
Thanks to Lemma 2, the set of the centroidal Voronoi partitions
in pairs is equivalent to set of the centroidal Voronoi partitions.

Hence, since that set is finite, we can argue that the system
converges in finite time to one centroidal Voronoi partition. �

We can also state a probabilistic version of the above result.
Its proof is based on applying Theorem IV.2 in [9].

Theorem 2 (Convergence under persistent random gossip)
Consider the discrete gossip coverage algorithm T defined in(1).
Given a stochastic process J: Z≥0 → {(i, j) ∈ {1, . . . ,N}2 | i 6=
j}, consider an evolution p: Z≥0 → P of T satisfying, for
t ∈Z≥0, p(t +1) = TJ(t)(p(t)). Assume that there exists p∈ ]0,1[

and k∈ N such that, for all(i, j) ∈ {1, . . . ,N}2, i 6= j, and for all
t ∈ Z≥0, there exists h∈ {1, . . . ,k} such that

P
[
J(t +h) = (i, j) |J(t), . . . ,J(1)

]
≥ p.

Then almost surely there existt̂ ∈ Z≥0 and a centroidal Voronoi
partition p̂ such that p(t) = p̂ for all t ≥ t̂ .

Proof. The proof follows the line of the previous Theorem. In
this case one can see that the assumptions of Theorem IV.2 in [9]
are met; the application of this theorem assures the almost surely
convergence to the set of the Centroidal Voronoi partitionsin
pairs, and hence, due to the equivalence between the set of the
Centroidal Voronoi partitions in pair and the set of the Centroidal
Voronoi partitions and the finiteness of this set, the almostsurely
convergence in finite time to a centroidal Voronoi partition. �

5 COMPUTATIONAL COMPLEXITY
In this section, we describe the computational requirements

of the algorithm assuming that the environment is discretized us-
ing an occupancy grid as per Remark 1. Our primary interest isin

1Given a set valued mapT : X ⇉ X, a subsetZ of X is said to bestrongly
positively invariantfor T, if for any x0 ∈ Z, all x∈ T(x0) satisfyx∈ Z.

graphs derived from occupancy grids because of their ubiquity in
robotics, but the fact that all edge weights are the same for these
graphs also results in significant computational savings.

5.1 One-to-all Distances
Computing distances from one vertex to all other vertices in

a subgraph ofG (i.e., one-to-all distances) is the core computa-
tion of the algorithm. For the lattice-like graphs from occupancy
grids, each cell can have a maximum of 4 edges, so all compu-
tational bounds can be stated in terms of|Q|. In addition, the
uniform weight of edges means that computing distances in the
graph is equivalent to counting hops. We can therefore use a
Breadth First Search (BFS) approach to compute one-to-all dis-
tances on the fly inO(|Q|) in both time and memory. All of the
subsequent complexity bounds will assume the use of BFS on a
lattice-like graph for this core computation.

However, if the edge weights in the graph are not all the
same, then Dijkstra’s algorithm must be used. Dijkstra requires
O(|Q| log(|Q|)) in time andO(|Q|) in memory, and all subse-
quent bounds must be adjusted accordingly. For small graphsit
is also possible to pre-compute all pairwise distances between
vertices using Johnson’s algorithm inO(|Q|2 log(|Q|)) [12] and
then use a constant-time lookup on line. However, the memory
requirement for storing the pairwise distances scales asO(|Q|2)
and so is intractable for large environments.

5.2 Exchanging Territory
There are three stages to the pairwise computation of which

territory cells to exchange between robotsi and j. First, i and j
must exchange their current subsetspi andp j , requiring a trans-
mission ofO(|pi |+

∣∣p j
∣∣) bits of information. Second, each agent

must compute the centroidsci andc j . As we will describe below,
this computation is the most computationally demanding part of
the algorithm. Finally, fori to update its subset it must compute
which cells inpi ∪ p j are closer toci , and j must perform a sim-
ilar update. These computations requireO(|pi |+

∣∣p j
∣∣) in both

time and memory.

5.3 Centroid Computation
From Definition 2, centroidci is the vertex inpi which min-

imizes cost functionH1, the sum of the distances to all other
vertices inpi . Thus, when a robot is determiningci , it is solving
a 1-median or 1-center problem on the induced subgraphG∩ pi .
The potential for local minima inH1 is what makes this the most
demanding part of exchanging territory. We present three ap-
proaches for determiningci which trade-off fidelity of solution
for reduced computational complexity.

1. Exhaustive Search. To find a vertex inpi with the min-
imum cost requires computing the one-to-all distances for
each vertex. This approach finds the true centroid but re-
quiresO(|pi |

2) time.
2. Linear-time Heuristic. In [9], the centroid of a polygonal

partition is the center of mass of the polygon. If the vertices



of G can be represented as points in a Euclidean space, then
averaging their positions can produce an analogous estimate
of the centroid ofpi in O(|pi |). The vertex ofpi closest to
the computed average would be the new centroid. While this
approach does not guarantee that the cost function always
decreases on each iteration, it is a heuristic which works well
and fast in practice.

3. Gradient Descent. Starting from the prior centroid, a
robot can use a discrete version of gradient descent to find
a local minimum ofH1. This approach will often yield the
same cost as an exhaustive search in onlyO(|pi | log(|pi |)),
but it may not find the lowest cost for some topologies of
pi . For example, if a robot’s territory surrounds an obstacle,
then there can be local minima inH1 around the obstacle.
In practice, however, the final equilibria obtained using gra-
dient descent and exhaustive search are often indistinguish-
able, as we demonstrate in Section 6. The gossip coverage
algorithm modified to use gradient descent to locate cen-
troids can also be proven to converge: its analysis is similar
to the one in this paper and will be presented elsewhere.

6 SIMULATION RESULTS
To demonstrate the utility of the proposed gossip coverage

algorithm, we implemented it in the open-source Player/Stage
robot software system [13], using the Boost Graph Library
(BGL) for the graph representing the environment [14]. All re-
sults presented here were generated using Player version 2.1.1,
Stage 2.1.0, and BGL 1.34.1. Occupancy grid maps were speci-
fied as bitmaps with a 0.1m resolution, producing a lattice-like
graph with all edge weights are equal to 0.1m. To compute
distances on graphs with uniform edge weights we extended
the BGL implementation of breadth-first-search with a distance
recorder event visitor. To compute distances in subgraphs of the
environment we also added an event visitor on vertex discovery
to check whether the vertex was a member of the subgraph.

The first simulation shown in Fig. 1 consists of four robots
partitioning a square 2m×2m environment. In the initial setup
shown in Fig. 1(a), the robot in the top right controls most of
the environment while the robot in the bottom left controls very
little. On each iteration, a random pair of robots with adjacent
territories will consider exchanging territory. After anychange
in territory ownership, the pair of robots involved recompute the
centroid of their region using exhaustive search and move totheir
new centroid. The evolution of the cost function over the itera-
tions of the algorithm is shown in Fig. 2. After 33 iterationsand
17 pairwise territory exchanges, the robots reach the centroidal
Voronoi partition shown in Fig. 1(d).

Fig. 3 shows the second set of simulations, where ten robots
partition a non-convex 4m×4m environment with holes. In the
initial partitioning there is a large discrepancy in territory sizes
as shown in Fig. 3(a). The next two figures, 3(b) and 3(c), show
the final equilibria produced using exhaustive search and gradi-
ent descent, respectively, to locate centroids. The final solutions
are very similar with the exhaustive search approach producing
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a total cost that is only 0.6% lower for this environment.

7 CONCLUSION
We have described a gossip coverage algorithm on a graph

which can guarantee convergence to a centroidal Voronoi parti-
tion using only pairwise communication. We presented simula-
tion results to verify these claims. We have also presented three
strategies for implementing the algorithm, including a gradient
descent heuristic which converges to a stable approximation of
a centroidal Voronoi partition inO( n

m log( n
m)), wheren is the

number of vertices in the map andm is the number of robots.
These time complexity bounds allow the algorithm to scale well
for large maps with a high number of robots.

In future work, we intend to perform hardware experiments
of the algorithm which will require a motion protocol for the
robots to guarantee they make contact with their neighbors.In
addition, the centroidal Voronoi partition which this algorithm
converges to may be only a local minima of the cost function.
Extending this approach with some form of annealing would en-
able the algorithm to better avoid local minima.
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