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ABSTRACT

In this paper we propose distributed algorithms to automat-
ically deploy a group of robotic agents and provide coverafe
a discretized environment represented by a graph. We presen
a discrete coverage algorithm which converges to a ceraitoid
Voronoi partition while requiring only pairwise “gossip” @m-
munication between the agents. Our theoretical analysiased
on a dynamical system on partitions of the graph’s vertid#’s.
also establish bounds on the computational requirementiseof
algorithm and demonstrate its functionality with simubsus.

1 INTRODUCTION

This paper deals with distributed partitioning and coverag
control problems for a network of robotic agents in a potdhti
non-convex environment. The distributpdrtitioning problem
for robotic networks consists of designing control and camm
cation laws to divide an environment into territories. Tadly,
partitioning is done so as to optimize a cost function thaame
sures the quality of the partition€overage controllgorithms
are usually designed in a similar way, with an additionatieeri
rion of optimizing the placement of the agents. In this paper
we describe a partitioning and coverage control algorithmiciy
optimizes the configuration of a group of agents in a dis@ate
vironment represented by a graph. Optimality is defined with
reference to a cost function which depends on the locatiéns o
the agents and geodesic distances in the graph. As with &1 mu
tiagent coordination applications, the challenge comes fre-
ducing the communication requirements: the proposed igthgor
only requires pairwise “gossip” communication.

A broad discussion of partitioning and coverage control is
presented in [1] which builds on the classic work of Lloyd [2]
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on algorithms for optimal quantizer design through “ceingpr
and partitioning.” The relationship between discrete amtio-
uous coverage control laws based on Euclidean distanceslis s
ied in [3]. Coverage control and partitioning of discretéssare
also related to the literature on the facility locationkecenter
problem [4]. Coverage control algorithms for non-convexien
ronments are discussed in [5-7] while equitable partitigris
studied in [8]. In [9] the authors have showed how a group of
robotic agents can optimize the partition of a given enwinent
using pairwise “gossip” communication: only one pair oficetp

is updated at each step of the algorithm. In that work the-envi
ronment is assumed to be a convex bounded subgef .oThis
assumption is not suitable for implementation on physicbbts
which inherently sense and memorize a quantized environmen

There are three main contributions of this paper. First, we
extend the results for gossip coverage from [9] to performeco
age of a connected graph using geodesic distances. In the usa
we envision, the connected graph represents a discretizafi
an environment, allowing physical robots to cover complex-n
convex environments with holes. We discuss important prope
ties of this setup, namely that the centroid of a robot’s oBgi
always belongs to the region (which is a subset of the vex)ice
and moreover each robot’s region remains connected durang t
evolution of the algorithm. Second, we prove that, undeabls
assumptions on the sequence of updating pairs, the digste
sip coverage algorithm converges in finite time to a single ce
troidal Voronoi partition. This result, stronger than thaf9],
is a consequence of the discrete nature of the problem. ,Third
we discuss the implementation of the core computationsef th
algorithm and provide bounds on their computational comple
ity. We show that the computations of the algorithm scald wel
with the size of the environment and the number of robots ,used



meaning the algorithm is truly distributed. Combined witle t
extension to a discrete environment, this efficient contpra
enables the algorithm to be implemented on a large groupadf re
robots.

This paper is organized as follows. In Section 2 we formally
describe the discrete coverage control problem and pralatie
initions of discrete Voronoi partitions. We present thectie
gossip coverage algorithm in Section 3 and discuss soms of it
properties. Section 4 contains the main convergence sedult
Section 5 we discuss bounds on the computational complexity
of the algorithm. Simulation results are shown in Sectiomé a
some conclusions are given in Section 7.

In our notation,R~o denotes the set of non-negative real
numbers and.>q the set of non-negative integers. Given aXget
|X| denotes the number of elements¥n Given setsX,Y, their
difference isX \ Y = {x e X| x ¢ Y}. A set-valued map, denoted
by T : X =Y, associates to an elementXf subset of.

2 PROBLEM FORMULATION

We are given a group of robotic agents with limited sensing
and communication capabilities, and a discretized enwint.

We want to apportion the environment into smaller regioashe
assigned to one of the agents. Our approach is to iteratiyely
date the partition in such a way as to minimize a cost funetion
which depends on the current partition and the positionsief t
agents.

Let the finite setQ be the discretized environment. We
assume that the elements @f which can be thought as loca-
tions, are connected by weighted edges. In other words, twe le
G = (Q,E,w) be an (undirected) weighted graph with edge set
E C Qx Q and weight mapv: E — R q; we letwe > 0 be the
weight of edgee. We assume thdb is connected and think of
the edge weights as distances between locations.

In any weighted graplk® there is a standard notion of dis-
tance between nodes defined as followspathin G is an or-
dered sequence of nodes such that any pair of consecuties nod
in the sequence is an edge®f Theweight of a pathis the sum
of the weights of all the edges in the path. Given two vertices
h andk in G, thedistancebetweerh ank, denoted bydg(h, k),
is the smallest weight of any path frolmto k, or + if there is
no path fromh to k. In other words, the distance between two
nodes is the weight of the shortest path between them. By con-
vention,dg (h,k) = 0 if h= k. Note thatdg(h,k) = dg(k, h), for
anyh,k € Q. If the graph is connected, then the distance between
any two nodes is finite.

Analogously, we define local distances on induced sub-
graphs ofG = (Q,E,w). Givenl| C Q, the subgraph induced
by the restriction of G to,|denoted byGnNlI, is the graph with
the set of nodes equal tand with the set of weighted edges con-
taining all weighted edges @ where both vertices belong to
In other words, we setQ.E,w)N1l = (QNILEN(l x 1), W|ix).

The induced subgraph is a weighted graph that is equippéd wit
a notion of distance between nodes. GiNek € I, we write
d (h,K) := dgni (h,k). Note thatd, (h,k) > dg(h,K).

Remark 1 (Discretizaton of an environment) In the motiva-
tional scenario we are considering, a continuous environinse
substituted by anccupancy grid mapw~vhere each grid cell is ei-
ther free space or an obstacle (occupied) [10]. We definerseo f
cells as adjacent if they border each other in the grid mag Th
group of robots is then tasked with partitioning the grapihef
free cells. However, there are many other methods to digeret
a space beyond the use of a grid, including triangularinadicd
other approaches studied in computational geometry [1hly A
such method which produces a connected graph with positive
edge weights can be used.

In this paper we will deal with partitionin@ into connected
subsets. Given the grapgh = (Q,E,w), we defineconnected
subset of Qas a subse$ C Q such thaiS+# 0 andGNSis con-
nected. Moreover let(Q) denote the set of such subsets. We
can then define partitions @ into connected sets as follows.

Definition 1 (Connected partitions) Given the graph G=
(Q,E,w), we define @&onnected—partition ofQ as a collection
p={pi}}; of N subsets of Q such that

1. UiNzlpi:Q;

2. pNp;=0ifi #j;

3. p#0forallie{1,...,N};

4. pec(Q)foralli e {1,...,N}.

Let P to be the set of such partitions.

OnQ, we define aveight functiorto be a bounded positive func-
tion @: Q — R~ which assigns a positive weight to each ele-
ment of Q. GivenR € C(Q), we define thene-center function
H1:R—Rxpas

Hi(h;R) = Z dr(h, k)@(K).

keR

A technical assumption is then needed to defingygreeral-
ized centroidof a connected subset. In what follows, we assume
that atotal orderrelation,<, is defined orQ: hence, we can also

denoteQ=1{1,...,|Q|}.

Definition 2 (Centroid) Let Q be a totally ordered set, andR
C(Q). We define the set of generalized centroids

C(R) := argmin#; (h;R),
heR

and the mayCd : C(G) — Q such thaCd(R) := min{c € C(R)}.
We callCd(R) the generalized centrowf R.

In subsequent use we will drop the word “generalized” for
brevity. Note that with this definition the centroid is wek-d
fined, thanks to the ordering assumption, and the centroa of
region belongs to that region. With a slight notational a&)uge



define Cd :» — QN as the map which associates to a partition
the vector of the centroids of its elements.

With these notions we can introduce a performance function;
let themulticenter functioHmyi-center: P < QY — be defined by

N

3 3 dn(xc)000,
1I=1XeP;

Hmulti-cented P; C)

We aim to minimize this function with respect to both the part
tions p and the points.

Among all the possible ways of partitionirfg, there is one
which is worth of special attention. Givere QN such that ifi #
j» thenc; # c¢;, the partitionp € 2 is said to be &oronoi partition
of Q generated by @, for eachp; and allk € p;, we havec; €
pi anddg(k,Cd(pi)) < dg(k,Cd(p;j)), Vj # i (see Section 6 for
visual examples of Voronoi partitions).

Proposition 1 (Properties of multi-center function) Let p €
P, ce QN, and let p be a Voronoi partition generated by c.
Then

Hmutti-cented P; CA(P)) < Hmutti-cented P; ),
Hmutti-cented P, €) < Hmulti-cented P; C)-

This cost function can be interpreted as the expected dis-
tance from a cell selected uniformly at random in the environ
ment to the centroid of the partition it is a member of. Ourimot
vation for using this cost function is to serve as a base fash t
servicing setup. After partitioning the environment, tearh of
robots will be asked to service tasks which appear at nodes on
the graph. By minimizing4muiti-centes W€ minimize the expected
time-to-service of a task in the light load case where eabbtro
has at most one task to service at a time.

These statements motivate the following definition: a par-
tition p € 2 is acentroidal Voronoi partitionif p is a Voronoi
partition generated by @@). Based on the multicenter function,
we defineHexpected: P — R by

N

Hexpected P) = Hmulti-cente( P, Cd(p)) = Z z dp; (X, Cd(pi)) @(x).

=1Xep;

Observe thatHexpectedhas the following property as an im-
mediate consequence of Proposition 1: giyea P, if p* is a
Voronoi partition generated by €d) then

%xpecte& p*) < %xpecte& p).

We are now in a position to state the goal of our
algorithm:  solving the distributed optimization problem
MiNpe» Hexpected P), SUbject to the constraint that the agents use
only gossip communication, namely that only a pair of agents
can communicate at each iteration.

3 GOSSIP COVERAGE ALGORITHM

Here we present a partition-based coverage algorithmahat,
each iteration, requires only a pair of adjacent regionstorou-
nicate. The following definition describe the admissiblewise
communications.

Definition 3 (Adjacency graph) Let p€ . Using the asso-
ciated graph G= (Q,E,w), we can define a graph ddja-
cency between regiorf the partition, as follows. Letf(p) =
({1,....N}, E(p)), then(i, ) € Z(p) if piupj € C(Q).

Thediscretized gossip coverage algorithsmstated as follows.

At each timet € Z, each agenit € {1,...,N} maintains
in memory a connected subspt(t). The collectionp(0) =
{p1(0),...,pn(0)} is an arbitrary connected-partition ofQ. At
eacht € Z-o a communicating pair, safi, j) € E(p(t)), is se-
lected by a deterministic or stochastic process to be détern
Assume that < j. Every agenk ¢ {i, j} setspk(t+ 1) = p«(t),
while agents and j perform the following tasks:

1: agent transmits to agentits subsef;(t) and vice-versa
2: both agents compute the centroids(@idt)) and Cdpj(t))
and the sets
W = {x€ pi : dpup; (% Cd(pj)) < dpup; (%, Cd(pi)) }
Wi = {X € pj : dyup; (%, Cd(pi)) < dpup (X7Cd(pi))}
f=j = {x € piuUpj : dyup; (X, Cd(pi)) = dpup; (X, Cd(pj)) }

3: if Wj UWj_j = O then

4: pi(t+1) :=pi(t) andpj(t+1) := pj(t)

5. else

6: Pi(t+1):=((pi\W—j) UWj_i) UWj=i,
pj(t+1) == ((pj \Wj—i) UMW) \ (Wj=i N pj)

7: end if

Observe thatM_,; (resp. W,_;) contains the cells of;
(resp. p;) which are closer to Qab;) (resp. Cdpi)), whereas
W represents the set of the tied cells. In other words,
when two robots exchange territory, then their updatedoregi
{pi(t+1),p;(t+1)} are the Voronoi partition of the sef(t) U
pj(t) generated by the centroids @xl) and Cdp;), with all tied
cells assigned to the agent with the lower index.

Now, for any pair(i, j) € {1,...,N}?,i # j, we define the
mapTj : P — P by

Tij(p)={

where pi = ((pi\W-j)UW—i) U Wi,
(R \Wj—i) UMW) \ (Wi=i N pj).-

The dynamical system on the space of partitions is therefore
described by, fot € Z>o,

it (i.]) ¢ Z(p) and W UWj_; =0

P,
(P1,--+, B+ Bjs-- -5 PN)s otherwise

and pj =

pt+1) =Ti(p(t)), forsome(i,j) € E(p(t)),



together with a rule describing what edggj) is selected at each
time. We also define the set-valued nflap®? = P by

T(P) ={Tij(P |, ]) € E(p)}- 1)

We claim that (1) is well-defined in the sense thatp) € P
forall (i,j) € {1,...,N}?, if pc P. We will prove this fact in
Proposition 2; first we need the following technical lemma.

Lemmal Let p" =Tj(p). If pj" # pi, then for all ke p", every
shortest path in pJ pj from Cd(p;) to k is a subset of;p

Proof. Let u= p;U p;. We prove this lemma by contradiction
by assuming that, given a shortest path fron{|ggdto k in u,
there existsn € Q which belongs both to the shortest path and to
pj+. Consider the case wheire: j. Formto be in pj+ means that
dy(m,Cd(pi)) > du(m,Cd(p;)). This implies that

du(k, Cd(pi)) =
> dy(m, Cd(pj))
> dy(k, Cd(pj))

dy(m,Cd(p;)) + dy(k, m)
+dy(k, m)

This is a contradiction, fok € p;". Similar considerations hold
for the case where> . O

Proposition 2 Let T be the pairwise algorithm map defined by
(1).fpeP, thenT(p)C P

Proof. Without loss of generality we assume that = Ti; (p).

tie breaking policy only plays a significant role in small gina
with regular edge weights, such as those derived from clyarse
gridding the environment.

4 CONVERGENCE

The strength of our results depends on the possibility of en-
forcing a partition to converge to a centroidal Voronoi figmh
by means of pairwise communication and territory exchakge.
start our convergence analysis with the following concept.

Definition 4 Consider the connected graph-6(Q,E,w). Let

p € P and let G(p) be the associated adjacency graph. Then
p € P is said to becentroidal Voronoi in pairsf, for any i €
{1,...,N} we have that

dpiUpj (k,Cd(pi)) < dpiUpj (k,Cd(pj))

for all k € pj and for all j such thati, j) € E(p).

By definition, partitions which are centroidal Voronoi in
pairs are fixed points for the maf;, for all (i,j) € £. The
following Lemma states the equivalence between the setiof Ce
troidal Voronoi in pairs partitions and the set of Centrbida
Voronoi partitions.

Lemma 2 A partition pe P is centroidal Voronoi in pairs if and
only if it is centroidal Voronoi.

Proof. We start by proving the “if” part. Assume thatis a
centroidal Voronoi partition. Lek € p;. Observe that at least

To prove the statement of the Proposition we need to show that one of the shortest path connectixngo Cd(p;) is all within pj,

p" satisfies points 1 — 4 from Definition 1. Observe, from the
definition of the may¥; thatp;” U p;” = piUpj andp;" N p| = 0.
Moreover, since Chi) € p;" and Cdp;) € py, it follows also
thatp” # 0 and p{” # 0. These observations imply the validity

of the points 1, 2, and 3 fop™. Finally, Lemma 1 guarantees
thatp,” and pj+ are connected, i.o" satisfies also point 4. [J

A couple of remarks are now in order.

Remark 2 (Connected regions)Observe that the previous
Proposition guarantees the connectivity of the regionshi t
partition during the evolution of the algorithm. The key q@e
which keeps the regions connected is the fact that distearees
taken inp; U p;j: if distances were taken i@ then connectivity
would no longer hold.

Remark 3 (Tie breaking rules) It is worth noting that there are
many potential variations in how to handle the tied cellgg;.
One option would be to giv{~; to the agent with the lowet;

to achieve a form of load balancing. In fact, any method which
gives all ofW~; to eitheri or j can be used. However, for a
general graph with non-uniform positive edge weiglitsexact
ties between sums of different paths are highly unlikely.e Th

otherwise it would exists a regiop; such thatg(x, Cd(p;)) <
ds(x,Cd(pi)). hence we can write thatg(x,Cd(pi)) =
dpi (X, Cd(pi)) = dpup; (%, Cd(pi)) for all pj such that(i, j) €
E(p). Moreover observe thal, up, (x, Cd(p;)) > dg(x, Cd(pj)).
Hencedpup; (X, Cd(pi)) < dpup; (X, Cd(pj)).

We prove now the "only if” part by contradiction. To this
aim we assume that there exigis= {p1,...,pn} € P which
is centroidal Voronoi in pairs but not centroidal Voronoin |
other words, there exist two componergsand p; of p and
an elemenk of one of such components, s&y p;, such that
de (x,Cd(pi)) > da (x.Cd(py)).

Given two nodes, b of a graphH, Iets';,b be a shortest path
in H connectingatob. Considers)%Cd(pj), and observe that it can

be rewritten, for a suitable € N and for a suitable i2-uple of
nodesyi,...,Ym, as

Pi '
Sgd(pj) - SCd ( U 55’22 YZh+l) Usf/gm:x

where the union of two paths means their concatenation. Let

nowsg'é be a shortest path connecting(@d) to ys. Since



(j,i1) € E(p) and sincep is Centroidal Voronoi in pairs, we have  Thus, we further have that

that

z dpi (X7 Cd(pl)) + Z dpj (ya Cd(P]))
dp, (Cd(piy),y3) < dp; (C(p)),y1) +pjup, (Y1.¥2) +dp, (2,¥3). " Yep

2 z dpiup; (x,Cd(pi)) + z dpiup; (y,Cd(P}))

XEPy YEP
Similarly ~we can prove that dp (Cd(pi,),ys) < - d . _
' : pup; (%, Cd(pi)) + dpup; (X, Cd(p;))

dp, (Cd(piy),y3) + dp up, (¥3,¥4) + dp, (Ya,ys) and it- Xe(pi\ng)vajNi : xeW_ | :

erating this reasoning thatd, Cdpi. ,)Yom-1) <
g_th g o, (CA(piy ) Yom 1) FS g 0GR oy (X CAp).
dpim72 (Cd(p|m,2),yme3) + dpimfzuf’imfl (Yom-3,¥2m-2)  + X Py \ (Wj—i UWj=i ) =i

Ao, , (Yam-2,Y2m-1) . Plugging together the above inequalities

it turns out that . N .
Using the definition ofy", we can write that

doi.. . (Cd(pig, 1), Yam-1) +dp . upi (Yom-1,Y2m) + dp; (Yom, X) z doup; (X, Cd(p1)) % dpup; (. Cd(p}))

=t X (P \W—.j ) UWj=i
<dp; (Cd(pj),y1) +dpjup, (Y1,¥2) + ) dp (Y2h+1,Y2n)
A PR 2, % — S dyup, (6CA(P)).

m-—2 xepi*
+ z dpy, upy,,,, (Y2he1,Y2ne2) + Ao up (Yom-1,Yom)
=1

1y (YamX) Moreover, by Lemma 1 We have thﬁ&epﬁ dpiup; (X, Cd(pi)) =
< dg (Cd(p),x) Y xept dpi+ (x,Cd(pi)) . Similarly we can see that
This contradicts the fact that, sinig, 1,i) € £(p) andpis Cen- > dpup; (%, Cd(py)) +X€% ‘dPiUPJ (x,Cd(pj))
troidal Voronoi in pairs, xepj\ (Wi—i W) -
z d (y,Cd(pj))-
xep)

dp, ., (Cd(piy, 1), Yam) +dp; (Yam, X) > dp, (Cd(pi),x). O

The following property guarantees that the objective func- To conclude the proof observe that from the definition of aEdt
tion decreases along the trajectorie§ of we have thaty, . d (x,Cd(p;)) > % xep+ At (x,Cd(p")),

and thaty, . ;- g+ (x,Cd(p;)) > 5ycpr dpr (X Cd(p]) ). O
Proposition 3 Let T: 2 = © be the point-to-set map defined <P : XPp P ( ! )
for the pairwise algorithm. If pe 2 and p" € T(p)\ p, then We can now state the main convergence results.

%xpectetﬁ p) < %xpecte& p).

Theorem 1 (Convergence under uniformly persistent gossip)

Proof. Without loss of generality we assume that = Ti;(p). Consider the discrete gossip coverage algorithm T definétl)in
To prove the statement of the proposition we show that and let p: Z-o — P be an evolution of T. Assume that for
each pair(i, j) € {1,...,N}?,i # j, there exists an increasing se-

_ _ quence of t|me$tk}k€Z>o C Z>o such thaf(t, 1 —t) is bounded

Xezpidp‘ O C(pi)) +y;j A (¥, Cd(Py)) and pt+ 1) = Tj(p(t)). Then there exidte Z-o and a cen-

troidal Voronoi partltlon p such that ) = p for all t >{.
> z dpi (x.Cd(p")) + z dy+ (y,Cd pj)>

e yepr Proof. Proof is based on verifying the assumptions (i), (ii), {iii)

(iv) of Theorem IV.1 in [9]. We start with the following topod-
ical consideration.

First, sinceW_.; UW,_,; # 0, we have that LetA B C Q, AAB be their symmetric difference, and Il&{
be the “points counting measure” &f that is the number of ele-
ments ofA. Then if we definela (A, B) = |AAB|, we have thatia

Xeg _dpiUpj (x,Cd(pi)) +XE% _dpiup,- (x,Cd(pj)) is a distance on the set of the subset@pfhat we denote by
- - Note that the point counting measure takes integer values T
> dpup; (X, Cd(pj)) + % dpiup; (X, Cd(pi)) - makes 2 a discrete topological space. Consider now the product
Xe —j XeEW] i

spacg29)N and letg = {qy,...,0n} andg= {@,...,qn} be two



its elements. Then, thanks to results valid for product limgie

cal spaces we have that the functi )(q,d) =5sN.d(g,qG)is
a distance orf2?)N. Hence alsd2?)N is a discrete topological
space. Observe thdtis a subset of2Q)N. Since &, (29N and
P are finite, they are also trivially compact. Moreover, sitioe
algorithmT : P = P is well-defined we have tha® is strongly
positively invariant
Now, the fact that all maps from a discrete space are continu-
ous, implies the continuity of the mapig and Hexpected Further-
more, thanks to Proposition BfeypectedS guaranteed to decrease
along the trajectories df.
The above remarks guarantee the validity of assumptions (i)
(ii) and (iii). Assumption (iv) holds true for the hypothesf
uniformly persistent gossip made in the statement of Thedre
Hence we are in the position to apply Theorem IV.1, and
conclude convergence to the intersection of the equilibiide
mapsT;j, which, according to the definition of the mafsg co-
incides with the set of the centroidal Voronoi partitiongaars.
Thanks to Lemma 2, the set of the centroidal Voronoi partio
in pairs is equivalent to set of the centroidal VVoronoi femts.
Hence, since that set is finite, we can argue that the system
converges in finite time to one centroidal Voronoi partition]

We can also state a probabilistic version of the above result
Its proof is based on applying Theorem 1V.2 in [9].

Theorem 2 (Convergence under persistent random gossip)
Consider the discrete gossip coverage algorithm T defin€t)in
Given a stochastic process: Z>o — {(i,]) € {1,...,N}?| i #
i}, consider an evolution pZso — P of T satisfying, for
t € Z>o, p(t+1) =Ty (P(t)). Assume that there exists=g0, 1]
and ke N such that, for all(i, ) € {1,...,N}2,i # |, and for all

t € Z>o, there exists k {1,...,k} such that

P[I(t+h) = (i,j)[I(t),...,d1)] > p.

Then almost surely there exist Z-o and a centroidal Voronoi
partition p such that ft) = p for all t > {.

Proof. The proof follows the line of the previous Theorem. In
this case one can see that the assumptions of Theorem I\@P in [
are met; the application of this theorem assures the almosiys
convergence to the set of the Centroidal Voronoi partitions
pairs, and hence, due to the equivalence between the set of th
Centroidal Voronoi partitions in pair and the set of the Ceidfal
Voronoi partitions and the finiteness of this set, the alrsastly
convergence in finite time to a centroidal Voronoi partition]

5 COMPUTATIONAL COMPLEXITY

In this section, we describe the computational requiresent
of the algorithm assuming that the environment is disceetizs-
ing an occupancy grid as per Remark 1. Our primary interést is

1Given a set valued map : X = X, a subseF of X is said to bestrongly
positively invariantor T, if for any xp € Z, all x € T(Xo) satisfyx € Z.

graphs derived from occupancy grids because of their utyigui
robotics, but the fact that all edge weights are the saménéset
graphs also results in significant computational savings.

5.1 One-to-all Distances

Computing distances from one vertex to all other vertices in
a subgraph o6 (i.e., one-to-all distances) is the core computa-
tion of the algorithm. For the lattice-like graphs from opancy
grids, each cell can have a maximum of 4 edges, so all compu-
tational bounds can be stated in terms|@f. In addition, the
uniform weight of edges means that computing distancesen th
graph is equivalent to counting hops. We can therefore use a
Breadth First Search (BFS) approach to compute one-tasall d
tances on the fly ir0(|Q|) in both time and memory. All of the
subsequent complexity bounds will assume the use of BFS on a
lattice-like graph for this core computation.

However, if the edge weights in the graph are not all the
same, then Dijkstra’s algorithm must be used. Dijkstra iregu
O(|Q|log(|Q])) in time andO(|Q|) in memory, and all subse-
quent bounds must be adjusted accordingly. For small griaphs
is also possible to pre-compute all pairwise distances dmtw
vertices using Johnson’s algorithm @(|Q|?log(|Q|)) [12] and
then use a constant-time lookup on line. However, the memory
requirement for storing the pairwise distances scaleg(:3|%)
and so is intractable for large environments.

5.2 Exchanging Territory

There are three stages to the pairwise computation of which
territory cells to exchange between robbtnd j. First,i and j
must exchange their current subsgtsind p;, requiring a trans-
mission ofO(|pi|+ | pj|) bits of information. Second, each agent
must compute the centroidsandc;. As we will describe below,
this computation is the most computationally demanding qfar
the algorithm. Finally, foi to update its subset it must compute
which cells inp; U p;j are closer ta;, andj must perform a sim-
ilar update. These computations requi?ép;| -+ |p;|) in both
time and memory.

5.3 Centroid Computation

From Definition 2, centroid; is the vertex inp; which min-
imizes cost function#;, the sum of the distances to all other
vertices inp;. Thus, when a robot is determiniigg it is solving
a 1-median or 1-center problem on the induced subg&pip;.
The potential for local minima itt4 is what makes this the most
demanding part of exchanging territory. We present three ap
proaches for determining which trade-off fidelity of solution
for reduced computational complexity.

1. Exhaustive Search. To find a vertex inp; with the min-
imum cost requires computing the one-to-all distances for
each vertex. This approach finds the true centroid but re-
quiresO(|pi|?) time.

2. Linear-time Heuristic. In [9], the centroid of a polygonal
partition is the center of mass of the polygon. If the vegice



of G can be represented as points in a Euclidean space, then
averaging their positions can produce an analogous estimat
of the centroid ofp; in O(|pi|). The vertex ofp; closest to

the computed average would be the new centroid. While this
approach does not guarantee that the cost function always
decreases on each iteration, it is a heuristic which workls we
and fast in practice.

. Gradient Descent. Starting from the prior centroid, a
robot can use a discrete version of gradient descent to find
a local minimum of#4. This approach will often yield the
same cost as an exhaustive search in @n(ypi|log(|pi|)),
but it may not find the lowest cost for some topologies of
pi. For example, if a robot’s territory surrounds an obstacle,
then there can be local minima iH; around the obstacle.

In practice, however, the final equilibria obtained using-gr
dient descent and exhaustive search are often indistimguis
able, as we demonstrate in Section 6. The gossip coverage
algorithm modified to use gradient descent to locate cen-
troids can also be proven to converge: its analysis is simila
to the one in this paper and will be presented elsewhere.

6 SIMULATION RESULTS

To demonstrate the utility of the proposed gossip coverage
algorithm, we implemented it in the open-source Playeg&ta
robot software system [13], using the Boost Graph Library
(BGL) for the graph representing the environment [14]. A&l r
sults presented here were generated using Player verdidh 2.
Stage 2.1.0, and BGL 1.34.1. Occupancy grid maps were speci-
fied as bitmaps with a.@m resolution, producing a lattice-like
graph with all edge weights are equal td®. To compute
distances on graphs with uniform edge weights we extended
the BGL implementation of breadth-first-search with a dis&a
recorder event visitor. To compute distances in subgraptieo
environment we also added an event visitor on vertex diggove
to check whether the vertex was a member of the subgraph.

The first simulation shown in Fig. 1 consists of four robots
partitioning a squarerd x 2m environment. In the initial setup
shown in Fig. 1(a), the robot in the top right controls most of
the environment while the robot in the bottom left contradsyw
little. On each iteration, a random pair of robots with adjatc
territories will consider exchanging territory. After aojange
in territory ownership, the pair of robots involved recortgthe
centroid of their region using exhaustive search and mothetio
new centroid. The evolution of the cost function over theaite
tions of the algorithm is shown in Fig. 2. After 33 iteraticarsd
17 pairwise territory exchanges, the robots reach the aielar
Voronoi partition shown in Fig. 1(d).

Fig. 3 shows the second set of simulations, where ten robots
partition a non-convexm x 4m environment with holes. In the
initial partitioning there is a large discrepancy in tearit sizes
as shown in Fig. 3(a). The next two figures, 3(b) and 3(c), show
the final equilibria produced using exhaustive search aadigr
ent descent, respectively, to locate centroids. The firatisos
are very similar with the exhaustive search approach piiaduc
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Figure 2.  GRAPH OF THE EVOLUTION OF HeypectedFOR THE SIM-
ULATION IN FIG. 1. THE LABELED BLACK LINE SHOWS THE TOTAL

COST DECREASES MONOTONICALLY, THE COST FOR EACH ROBOT
IS PLOTTED BY COLOR.

a total cost that is only.8% lower for this environment.

7 CONCLUSION

We have described a gossip coverage algorithm on a graph
which can guarantee convergence to a centroidal Vorontir par
tion using only pairwise communication. We presented sémul
tion results to verify these claims. We have also presettesbt
strategies for implementing the algorithm, including adigat
descent heuristic which converges to a stable approximatio
a centroidal Voronoi partition irO(2log(&)), wheren is the
number of vertices in the map amdis the number of robots.
These time complexity bounds allow the algorithm to scalé we
for large maps with a high number of robots.

In future work, we intend to perform hardware experiments
of the algorithm which will require a motion protocol for the
robots to guarantee they make contact with their neighblors.
addition, the centroidal Voronoi partition which this afgbm
converges to may be only a local minima of the cost function.
Extending this approach with some form of annealing would en
able the algorithm to better avoid local minima.
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