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Abstract

The most widely applied strategy for workload sharing is to equalize the workload assigned to each resource. In

mobile multi-agent systems, this principle directly leads to equitable partitioning policies in which (i) the workspace

is divided into subregions of equal measure, (ii) there is a bijective correspondence between agents and subregions,

and (iii) each agent is responsible for service requests originating within its own subregion. In this paper, we design

provably correct, spatially-distributed and adaptive policies that allow a team of agents to achieve a convex and

equitable partition of a convex workspace, where each subregion has the same measure. We also consider the issue

of achieving convex and equitable partitions where subregions have shapes similar to those of regular polygons. Our

approach is related to the classic Lloyd algorithm, and exploits the unique features of power diagrams. We discuss

possible applications to routing of vehicles in stochastic and dynamic environments. Simulation results are presented

and discussed.

I. INTRODUCTION

In the near future, large groups of autonomous agents will be used to perform complex tasks including transporta-

tion and distribution, logistics, surveillance, search and rescue operations, humanitarian demining, environmental

monitoring, and planetary exploration. The potential advantages of multi-agent systems are, in fact, numerous. For

instance, the intrinsic parallelism of a multi-agent system provides robustness to failures of single agents, and in

many cases can guarantee better time efficiency. Moreover, it is possible to reduce the total implementation and

operation cost, increase reactivity and system reliability, and add flexibility and modularity to monolithic approaches.

In essence, agents can be interpreted as resources to be shared among customers. In surveillance and exploration

missions, customers are points of interests to be visited; in transportation and distribution applications, customers

are people demanding some service (e.g., utility repair) or goods; in logistics tasks, customers could be troops in

the battlefield. Finally, consider a possible architecture for networks of autonomous agents performing distributed
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sensing: a set of n cheap sensing devices (sensing nodes), distributed in the environment, provides sensor mea-

surements, while m sophisticated agents (cluster heads) collect information from the sensing nodes and transmit it

(possibly after some computation) to the outside world. In this case, the sensing nodes represent customers, while

the agents, acting as cluster heads, represent resources to be allocated.

The most widely applied strategy for workload sharing among resources is to equalize the total workload assigned

to each resource. While, in principle, several strategies are able to guarantee workload-balancing in multi-agent

systems, equitable partitioning policies are predominant [1], [2], [3], [4]. A partitioning policy is an algorithm that,

as a function of the number m of agents and, possibly, of their position and other information, partitions a bounded

workspace A ⊂ Rd into m openly disjoint regions Ai, for i ∈ {1, . . . ,m}. (Voronoi diagrams are an example of a

partitioning policy.) In the resource allocation problem, each agent i is assigned to subregion Ai, and each customer

in Ai receives service by the agent assigned to Ai. Accordingly, if we model the workload for subregion S ⊆ A

as λS
.=

∫
S
λ(x) dx, where λ(x) is a measure over A, then the workload for agent i is λAi . Given this preface,

load-balancing calls for equalizing the workload λAi
in the m subregions or, in equivalent words, to compute an

equitable partition of the workspace A (i.e., a partition where λAi = λA/m, for all i).

Equitable partitioning policies are predominant for three main reasons: (i) efficiency, (ii) ease of design and (iii)

ease of analysis. Equitable partitioning policies are, therefore, ubiquitous in multi-agent system applications. To

date, nevertheless, to the best of our knowledge, all equitable partitioning policies inherently assume a centralized

computation of the workspace partition. This fact is in sharp contrast with the desire of a fully distributed architecture

for a multi-agent system. The lack of a fully distributed architecture limits the applicability of equitable partitioning

policies to limited-size multi-agent systems operating in a known static environment.

The contribution of this paper is three-fold. First, we design provably correct, spatially-distributed, and adaptive

policies that allow a team of agents to achieve a convex and equitable partition of a convex workspace. Our

approach is related to the classic Lloyd algorithm from vector quantization theory [5], [6], and exploits the unique

features of power diagrams, a generalization of Voronoi diagrams (see [7] for another interesting application of

power diagrams in mobile sensor networks). Second, we provide extensions of our algorithms to take into account

secondary objectives, as for example, control on the shapes of the subregions. Our motivation, here, is that equitable

partitions in which subregions are thin slices are, in most applications, impractical: in the case of dynamic vehicle

routing, for example, a thin slice partition would directly lead to an increase in fuel consumption. Third, we

discuss some applications of our algorithms; we focus, in particular, on the Dynamic Traveling Repairman Problem

(DTRP) [1], where equitable partitioning policies are indeed optimal under some assumptions.

Finally, we mention that our algorithms, although motivated in the context of multi-agent systems, are a novel

contribution to the field of computational geometry. In particular we address, using a dynamical system framework,

the well-studied equitable convex partition problem (see [8] and references therein); moreover, our results provide

new insights in the geometry of Voronoi diagrams and power diagrams.

The paper is organized as follows. In Section II we provide the necessary tools from calculus, degree theory and

geometry. Section III contains the problem formulation, while in Section IV we present preliminary algorithms for
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equitable partitioning based on leader-election, and we discuss their limitations. Section V is the core of the paper:

we first prove some existence results for power diagrams, and then we design provably correct, spatially-distributed,

and adaptive equitable partitioning policies that do not require any leader election. In Section VI we extend the

algorithms developed in Section V to take into account secondary objectives. Section VII contains simulations

results. Finally, in Section VIII, we provide an application of our algorithms to the DTRP problem, and we draw

our conclusions.

II. BACKGROUND

In this section, we introduce some notation and briefly review some concepts from calculus, degree theory and

geometry, on which we will rely extensively later in the paper.

A. Notation

Let ‖ · ‖ denote the Euclidean norm. Let A be a compact, convex subset of Rd. We denote the boundary of A as

∂A and the Lebesgue measure of A as |A|. We define the diameter of A as: diameter(A) .= sup{||p−q|| | p, q ∈ A}.

The distance from a point x to a set M is defined as dist(x,M) .= infp∈M ‖x−p‖. We define Im
.= {1, 2, · · · ,m}.

Let G = (g1, · · · , gm) ⊂ Am denote the location of m points. A partition (or tessellation) of A is a collection of

m closed subsets A = {A1, · · · , Am} with disjoint interiors whose union is A. A partition A = {A1, · · · , Am} is

convex if each Ai, i ∈ Im, is convex.

Given a vector space V, let F(V) be the collection of finite subsets of V. Accordingly, F(Rd) is the collection

of finite point sets in Rd. Let G(Rd) be the set of undirected graphs whose vertex set is an element of F(Rd) (we

assume the reader is familiar with the standard notions of graph theory as defined, for instance, in [9, Chapter 1]).

Finally, we define the saturation function sata,b(x), with a < b, as:

sata,b(x) =


1 if x > b

(x− a)/(b− a) if a ≤ x ≤ b

0 otherwise

(1)

B. Variation of an Integral Function due to a Domain Change.

The following result is related to classic divergence theorems [10]. Let Ω = Ω(y) ⊂ A be a region that depends

smoothly on a real parameter y ∈ R and that has a well-defined boundary ∂Ω(y) for all y. Let h be a density

function over A. Then
d

dy

∫
Ω(y)

h(x) dx =
∫

∂Ω(y)

(dx
dy

· n(x)
)
h(x) dx, (2)

where v ·w denotes the scalar product between vectors v and w, where n(x) is the unit outward normal to ∂Ω(y),

and where dx/dy denotes the derivative of the boundary points with respect to y.
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C. A Basic Result in Degree Theory

In this section, we state some results in degree theory that will be useful in the remainder of the paper. For a

thoroughly introduction to the theory of degree we refer the reader to [11].

Let us just recall the simplest definition of degree of a map f . Let f : X → Y be a smooth map between

connected compact manifolds X and Y of the same dimension, and let p ∈ Y a regular value for f (regular values

abound due to Sard’s lemma). Since X is compact, f−1(p) = {x1, . . . , xn} is a finite set of points and since p is a

regular value, it means that fUi : Ui → f(Ui) is a local diffeomorphism, where Ui is a suitable open neighborhood

of xi. Diffeomorphisms can be either orientation preserving or orientation reversing. Let d+ be the number of points

xi in f−1(p) at which f is orientation preserving (i.e. det(Jac(f)) > 0, where Jac(f) is the Jacobian matrix of

f ) and d− be the number of points in f−1(p) at which f is orientation reversing (i.e. det(Jac(f)) < 0). Since X

is connected, it can be proved that the number d+ − d− is independent on the choice of p ∈ Y and one defines

deg(f) := d+ − d−. The degree can be also defined for a continuous map f : X → Y among connected oriented

topological manifolds of the same dimensions, this time using homology groups or the local homology groups at

each point in f−1(p) whenever the set f−1(p) is finite. For more details see [11].

The following result will be fundamental to prove some existence theorems and it is a direct consequence of the

theory of degree of continuous maps among spheres,

Theorem 2.1: Let f : Bn → Bn be a continuous map from a closed n-ball to itself. Call Sn−1 the boundary of

Bn, namely the (n− 1)-sphere and assume that fSn : Sn → Sn is a map with deg(f) 6= 0. Then f is onto Bn.

Proof: Since f as a map from Sn−1 to Sn−1 is different from zero, then the map fSn−1 is onto the sphere.

If f is not onto Bn, then it is homotopic to a map Bn → Sn−1, and then fSn−1 : Sn−1 → Sn−1 is homotopic

to the trivial map (since it extends to the ball). Therefore fSn−1 : Sn−1 → Sn−1 has zero degree, contrary to the

assumption that it has degree different from zero.

In the sequel we will need also the following:

Lemma 2.2: Let f : Sn → Sn a continuous bijective map from the n-dimensional sphere to itself (n ≥ 1). Then

deg(f) = ±1.

Proof: The map f is a continuous bijective map from a compact space to a Hausdorff space, and therefore it

is a homeomorphism. Now, a homeomorphism f : Sn → Sn has degree ±1 (see, for instance, [11, Page 136]).

D. Voronoi Diagrams and Power Diagrams

We refer the reader to [12] and [13] for comprehensive treatments, respectively, of Voronoi diagrams and power di-

agrams. Assume, first, that G is an ordered set of distinct points. The Voronoi diagram V(G) = (V1(G), · · · , Vm(G))

of A generated by points (g1, · · · , gm) is defined by

Vi(G) = {x ∈ A| ‖x− gi‖ ≤ ‖x− gj‖, ∀j 6= i, j ∈ Im}. (3)

We refer to G as the set of generators of V(G), and to Vi(G) as the Voronoi cell or region of dominance of the

i-th generator. For gi, gj ∈ G, i 6= j, we define the bisector between gi and gj as b(gi, gj) = {x ∈ A| ‖x− gi‖ =
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‖x− gj‖}. The face b(gi, gj) bisects the line segment joining gi and gj , and this line segment is orthogonal to the

face (Perpendicular Bisector Property). The bisector divides A into two convex subsets, and leads to the definition

of the set D(gi, gj) = {x ∈ A| ‖x − gi‖ ≤ ‖x − gj‖}; we refer to D(gi, gj) as the dominance region of gi over

gj . Then, the Voronoi partition V(G) can be equivalently defined as Vi(G) =
⋂

j∈Im\{i}D(gi, gj). This second

definition clearly shows that each Voronoi cell is a convex set. Indeed, a Voronoi diagram of A is a convex partition

of A (see Fig. 1(a)). The Voronoi diagram of an ordered set of possibly coincident points is not well-defined. We

define

Γcoinc = {(g1, · · · , gm) ∈ Am | gi = gj for some i 6= j ∈ {1, · · · ,m}}. (4)

Assume, now, that each point gi ∈ G has assigned an individual weight wi ∈ R, i ∈ Im; let W = (w1, · · · , wm).

We define the power distance

dP (x, gi;wi)
.= ‖x− gi‖2 − wi. (5)

We refer to the pair (gi, wi) as a power point. We define GW =
(
(g1, w1), · · · , (gm, wm)

)
. Two power points

(gi, wi) and (gj , wj) are coincident if gi = gj and wi = wj . Assume, first, that GW is an ordered set of distinct

power points. Similarly as before, the Power diagram V(GW ) = (V1(GW ), · · · , Vm(GW )) of A generated by

power points
(
(g1, w1), · · · , (gm, wm)

)
is defined by

Vi(GW ) = {x ∈ A| ‖x− gi‖2 − wi ≤ ‖x− gj‖2 − wj , ∀j 6= i, j ∈ Im}. (6)

We refer to GW as the set of power generators of V(GW ), and to Vi(GW ) as the power cell or region of dominance

of the i-th power generator; moreover we call gi and wi, respectively, the position and the weight of the power

generator (gi, wi). Notice that, when all weights are the same, the power diagram of A coincides with the Voronoi

diagram of A. As before, power diagrams can be defined as intersection of convex sets; thus, a power diagram

is, as well, a convex partition of A. Indeed, power diagrams are the generalized Voronoi diagrams that have the

strongest similarities to the original diagrams [14]. There are some differences, though. First, a power cell might

be empty. Second, gi might not be in its power cell (see Fig. 1(b)). Finally, the bisector of (gi, wi) and (gj , wj),

i 6= j, is

b
(
(gi, wi), (gj , wj)

)
= {x ∈ A| (gj − gi)Tx =

1
2
(‖gj‖2 − ‖gi‖2 + wi − wj)}. (7)

Hence, b
(
(gi, wi), (gj , wj)

)
is a face orthogonal to the line segment gi gj and passing through the point g∗ij given

by

g∗ij =
‖gj‖2 − ‖gi‖2 + wi − wj

2‖gj − gi‖2
(gj − gi);

this last property is crucial in the remaining of the paper: it means that, by changing weights, it is possible to

arbitrarily move the bisector between the positions of two power generators, while still preserving the orthogonality

constraint.

The power diagram of an ordered set of possibly coincident power points is not well-defined. We define

Γcoinc =
{(

(g1, w1), · · · , (gm, wm)
)
∈ (A× R)m | gi = gj and wi = wj for some i 6= j ∈ {1, . . . ,m}

}
. (8)
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Notice that we used the same symbol as in Eq. (4): the meaning will be clear from the context.

For simplicity, we will refer to Vi(G) (Vi(GW )) as Vi. When the two Voronoi (power) cells Vi and Vj are

adjacent (i.e., they share a face), gi ((gi, wi)) is called a Voronoi (power) neighbor of gj ((gj , wj)), and vice-versa.

The set of indices of the Voronoi (power) neighbors of gi ((gi, wi)) is denoted by Ni. We also define the (i, j)-face

as ∆ij
.= Vi ∩ Vj .

Vi
gk

gi

gj

(a) A Voronoi Diagram.

(3,4)

(3,5
)

(5,6)

(1
,5
)

(1,4)

(4,6
)

(3,6
)

(1,3)

g1
g2

g4

g3

g6
g5

√w1

(b) A power diagram. The weights wi are as-

sumed positive. Circles represent the magnitudes

of weights. Power generator (g2, w2) has an

empty cell. Power generator (g5, w5) is outside

its region of dominance.

Fig. 1. Voronoi diagrams and power diagrams.

E. Proximity Graphs and Spatially-Distributed Control Policies for Robotic Networks

Next, we shall present some relevant concepts on proximity graph functions and spatially-distributed control

policies; we refer the reader to [15] for a more detailed discussion. A proximity graph function G : F(Rd) →

G(Rd) associates to a point set P ∈ F(Rd) an undirected graph with vertex set P and edge set EG(P), where

EG : F(Rd) 7→ F(Rd ×Rd) has the property that EG(P) ⊂ P ×P \ diag(P ×P) for any P . Here, diag(P ×P) =

{(p, p) ∈ P ×P| p ∈ P}. In other words, the edge set of a proximity graph depends on the location of its vertices.

To each proximity graph function, one can associate the set of neighbors map NG : Rd ×F(Rd) → F(Rd), defined

by

NG(p,P) = {q ∈ P| (p, q) ∈ EG(P ∪ {p})}.

Two examples of proximity graph functions are:

(i) the Delaunay graph G 7→ GV(G) = (G, EGV(G)) has edge set

EGV(G) = {(gi, gj) ∈ G×G \ diag(G×G)| Vi(G) ∩ Vj(G) 6= ∅},
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where Vi(G) is the i-th cell in the Voronoi diagram V(G);

(ii) the power-Delaunay graph GW 7→ GP(GW ) = (GW , EGP(GW )) has edge set

EGP(GW ) =
{(
gi, wi), (gj , wj)

)
∈ GW ×GW \ diag(GW ×GW )| Vi(GW ) ∩ Vj(GW ) 6= ∅

}
,

where Vi(GW ) is the i-th cell in the power diagram V(GW ).

We are now in a position to discuss spatially-distributed algorithms for robotic networks in formal terms. Let

P (t) = (p1(t), . . . , pm(t)) ∈ Am be the ordered set of positions of m agents in a robotic network. We denote the

state of each agent i ∈ Im at time t as xi(t) ∈ Rq (xi(t) can include the position of agent i as well as other

information). With a slight abuse of notation, let us denote by Ii(t) the information available to agent i at time t. The

information vector Ii(t) is a subset of x(t) .= (x1(t), . . . , xm(t)) of the form Ii(t) = {xi1(t), . . . , xik
(t)}, k ≤ m.

We assume that Ii(t) always includes xi(t). Let G be a proximity graph function defined over P (t) (respectively

over PW (t) if we also consider a weight wi(t) for each robot i ∈ Im); we define ING
i (t) as the information vector

with the property xi(t) ∈ ING
i (t), and, for j 6= i,

xj(t) ∈ ING
i (t) ⇔ pj(t) ∈ NG(pi(t), P (t))

(
⇔ (pj(t), wj(t)) ∈ NG

(
(pi(t), wi(t)), PW (t)

)
, respectively

)
.

In words, the information vector ING
i (t) coincides with the states of the neighbors (as induced by G) of agent i

together with the state of agent i itself.

Let µ(t) = (µ1(I1(t)), . . . , µm(Im(t)) be a feedback control policy for the robotic network. The policy µ is

spatially distributed over G if for each agent i ∈ Im and for all t

µi(Ii(t)) = µi

(
ING
i (t)

)
.

In other words, through information about its neighbors according to G, each agent i has sufficient information to

compute the control µi.

III. PROBLEM FORMULATION

A total of m identical mobile agents provide service in a compact, convex service region A ⊆ Rd. Let λ be

a measure whose bounded support is A (in other words, λ is not zero only on A); for any set S, we define the

workload for region S as λS
.=

∫
S
λ(x) dx. The measure λ models service requests, and can represent, for example,

the density of customers over A, or, in a stochastic setting, their arrival rate. Given the measure λ, a partition {Ai}i

of the workspace A is equitable if λAi = λAj for all i, j ∈ Im.

A partitioning policy is an algorithm that, as a function of the number m of agents and, possibly, of their position

and other information, partitions a bounded workspace A into m openly disjoint subregions Ai, i ∈ Im. Then, each

agent i is assigned to subregion Ai, and each service request in Ai receives service from the agent assigned to

Ai. We refer to subregion Ai as the region of dominance of agent i. Given a measure λ and a partitioning policy,

m agents are in a convex equipartition configuration with respect to λ if the associated partition is equitable and

convex.
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In this paper we study the following problem: find a spatially-distributed (in the sense discussed in Section II)

equitable partitioning policy that allows m mobile agents to achieve a convex equipartition configuration (with

respect to λ). Moreover, we consider the issue of convergence to equitable partitions with some special properties,

e.g., where subregions have shapes similar to those of regular polygons.

IV. LEADER-ELECTION POLICIES

We first describe two simple algorithms that provide equitable partitions. A first possibility is to “sweep” A

from a point in the interior of A using an arbitrary starting ray until λA1 = λA/m, continuing the sweep until

λA2 = λA/m, etc. A second possibility is to slice, in a similar fashion, A. The resulting equitable partitions are

depicted in Fig. 2

(a) Sweeping A (b) Slicing A

Fig. 2. Equitable partitions by sweeping and slicing (assuming a uniform measure λ).

Then, a possible solution could be to (i) run a distributed leader election algorithm over the graph associated

to some proximity graph function G (e.g., the Delaunay graph); (ii) let each agent send its state xi(t) to the

leader; (iii) let the leader execute either the sweeping or the slicing algorithms described above; finally, (iv), let

the leader broadcast subregion’s assignments to all other agents. Such conceptually simple solution, however, can

be impractical in scenarios where the density λ changes over time, or agents can fail, since at every parameter’s

change a new time-consuming leader election is needed. Moreover, the sweeping and the slicing algorithms provide

long and skinny subregions that are not suitable in most applications of interest (e.g., vehicle routing).

We now present spatially-distributed algorithms, based on the concept of power diagrams, that solve both issues

at once.

V. SPATIALLY-DISTRIBUTED GRADIENT-DESCENT LAW FOR EQUITABLE PARTITIONING

We start this section with an existence theorem for equitable power diagrams.
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A. On the Existence of Equitable Power Diagrams

As shown in the next theorem, an equitable power diagram (with respect to any λ) exists for any vector of

distinct points G = (g1, . . . , gn) in A.

Theorem 5.1: Let A be a bounded, connected domain in Rd, and λ be a measure on A. Let G = (g1, . . . , gn)

be the positions of n ≥ 1 distinct points in A. Then, there exist weights wi, i ∈ In, such that the power points(
(g1, w1), . . . , (gn, wn)

)
generate a power diagram that is equitable with respect to λ. Moreover, given a vector of

weights w∗ that yields an equitable power diagram, the set of all vectors of weights yielding an equitable power

diagram is W∗
t
.= {w∗ + t[1, . . . , 1]}, with t ∈ R.

Proof: It is not restrictive to assume that λA = 1 (i.e., we normalize the measure of A), since A is bounded.

The strategy of the proof is to use a topological argument to force existence.

First, we construct a weight space. Let D = diameter(A), and consider the cube C := [−D,D]n. This is the

weight space and we consider weight vectors W taking value in C. Second, consider the standard n-simplex of

measures λA1 , . . . , λAn (where A1, . . . , An are, as usual, the regions of dominance). This can be realized in Rn as

the subset of defined by
∑n

i=1 λAi = 1 with the condition λAi ≥ 0. Let us call this set “the measure simplex A”

(notice that it is (n− 1)-dimensional).

There is a map f : C → A associating, according to the power distance, a weight vector W with the corresponding

vector of measures (λA1 , . . . , λAn). Since the points in G are assumed to be distinct, this map is continuous.

We will now use induction on n, starting with the base case n = 3 (the statement for n = 1 and n = 2 is trivially

checked). We study in detail the case for n = 3, where visualization is easier, in order to make the proof more

transparent. When n = 3, the weight space C is a three dimensional cube with vertices v0 = [−D,−D,−D], v1 =

[D,−D,−D], v2 = [−D,D,−D], v3 = [−D,−D,D], v4 = [D,−D,D], v5 = [−D,D,D], v6 = [D,D,−D] and

v7 = [D,D,D]. The measure simplex A is, instead, a triangle with vertices u1, u2, u3 that correspond to the cases

λA1 = 1, λA2 = 0, λA3 = 0, λA1 = 0, λA2 = 1, λA3 = 0, and λA1 = 0, λA2 = 0, λA3 = 1, respectively. Moreover,

call e1, e2 and e3 the edges opposite the vertices u1, u2, u3 respectively. The edges ei are, therefore, given by the

condition λAi ∈ ei ⇔ λAi = 0.

Let us return to the map f : C → A (now in the case of three generators). Observe that the map f sends v0

the unique point p0 of A corresponding to the measures of usual Voronoi cells (since the weights are all equal).

Call l1 the edge v0v1; then, it is immediate to see that the image of l1 through f is a path γ1 in A joining p0 to

u1. Analogously, the image of l2 = v0v2 through f is a path γ2 in A joining p0 to u2 and, finally, the image of

l3 = v0v3 through f is a path γ3 connecting p0 to u3 (see Fig. 3). Now, we observe that paths {γi}{i=1,2,3} do

not intersect except in p0. To prove this, start by observing that the image through f of all the points on the main

diagonal of the cube joining v0 with v7 is equal to a single point p0 ∈ A. This is due to the fact that only the

differences among weights change the vector (λA1 , λA2 , λA3), i.e., if all weights are increased by the same quantity,

the vector (λA1 , λA2 , λA3) does not change. We will prove this in detail for the case of n-generators in the next few

paragraphs. In particular, the image of the diagonal v0v7 is exactly the point for which the measures are those of a

Voronoi partition. Now let us understand what are the “fibers” of f , that is to say, the loci where f is constant. Since
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the measures of the regions of dominance do not change if the differences among the weights are kept constant,

then the fibers of f in the weight space C are given by the equations w1−w2 = c1 and w2−w3 = c2. Rearranging

these equations, it is immediate to see that w1 = w3 + c1 + c2, w2 = w3 + c2 and w3 = w3, therefore taking w3

as parameter we see that the fibers of f are straight lines parallel to the main diagonal v0v7. On the weight space

C let us define the following equivalence relation: w ≡ w′ if and only if they are on a line parallel to the main

diagonal v0v7. Map f : C → A induces a continuous map (still called f by abuse of notation) from C/ ≡ to A

having the same image. Let us identify C/ ≡. It is easy to see that any line in the cube parallel to the main diagonal

v0v7 is entirely determined by its intersection with the three faces F3 = {w3 = −D} ∩ C, F2 = {w2 = −D} ∩ C

and F1 = {w1 = −D} ∩ C. Call F the union of these faces. We therefore have a continuous map f : F → A that

has the same image of original f ; besides, in the few next paragraphs we will prove in general (i.e for the case

with n generators) that the induced map f : F → A is injective by construction.

Observe that F is homeomorphic to B2, the 2-dimensional ball, like A itself. Up to homeomorphisms, therefore,

the map f : F → A can be viewed as a map (again called f by abuse of notation), f : B2 → B2. Consider

the closed loop α given by v2v5, v5v3, v3v4, v4v1, v1v6, v6v2 with this orientation. This loop is the boundary of

F and we think of it also as the boundary of B2. It is easy to see that f maps α onto the boundary of A, and

since f is injective, the inverse image of any point in the boundary of A is just one element of α. Identifying the

boundary of A with S1 (up to homeomorphisms) and the loop α with S1 (up to homeomorphisms) we have a

bijective continuous map fS1 : S1 → S1. By Lemma (2.2) deg(f) = ±1 and therefore f is onto A, using Theorem

(2.1).

v5

v3

v1

v6

v0 = (-D,-D,-D)

v2

V4

l1

l3

l2

α v7 u2 =  λA1
=0,λA2

=1,λA3
=0[ ]

u3

e 2 
= 

   λ
A 2

=0
{

}

u1

[λA1
=1,λA2

=0,λA3
=0]

= e1 =    λA1
=0{ }

γ1

γ2

p0 γ3

e1 =    λ
A

1 =0
{

}

p*

f

Γ

=

  λA1
=0,λA2

=0,λA3
=1][

Fig. 3. Construction used for the proof of existence of equitable power diagrams.

Now we extend the same idea to the case of n generators and we will use also induction on the number of

agents. Therefore, we suppose that we have proved that the map f is surjective for n− 1 agents and we show how

to use this to show that the map is surjective for n agents.
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If we have n generators, the weight space is given by an n dimensional cube C = [−D,D]n, in complete analogy

with the case of 3 generators. The n simplex of the areas A is again defined as a {(λA1 , . . . , λAn) ∈ Rn} such

that λAi
≥ 0 for i = 1, . . . , n and

∑n
i=1 λAi

= 1. Notice that A is homeomorphic to the (n − 1)-dimensional

ball Bn−1. As before we have a continuous map f : C → A. It is easy to see that f is constant on the sets of

the form W ∗
t := {{w∗ + t(1, . . . , 1)} ∩ C, t ∈ R}, that is whenever two sets of weights differ by a common

quantity, they are mapped to the same point in A. Moreover, fixing a point Q ∈ A we have that f−1(Q) is given

just by a set of the form W ∗
t for a suitable w∗. Indeed, assume this is not the case, then the vector of measures

(λA1 , . . . , λAn) is obtained via f using two sets of weights: W1 := (w1
1, . . . w

1
n) and W2 := (w2

1, . . . w
2
n), and

W1 and W2 don’t belong to the same W ∗
t , namely it is is not possible to obtain W2 as W1 + t(1, . . . , 1) for a

suitable t. This means that the vector difference W2−W1 is not a multiple of (1, . . . , 1). Therefore, there exists a

nonempty set of indexes J , such that w2
j −w1

j ≥ w2
k−w1

k, whenever j ∈ J and for all k ∈ {1, . . . n} and such that

the previous inequality is strict for at least one k∗. Now among the indexes in J , there exists at least one of them,

call it j∗ such that the agent j∗ is a neighbor of agent k∗, due to the fact that the domain A is connected. But since

w2
j∗ − w1

j∗ > w2
k∗ − w1

k∗ , and w2
j∗ − w1

j∗ ≥ w2
k − w1

k for all k ∈ {1, . . . , n}, this implies that the measure λAj∗

corresponding to the choice of weights W2 is strictly greater that λAj∗ corresponding to the choice of weights W1.

This proves that f−1(Q) is given only by sets of the form W ∗
t .

We introduce an equivalence relation on C, declaring that two sets of weights W1 and W2 are equivalent if

and only if they belong to the same W ∗
t . Let us call ≡ this equivalence relation. It is immediate to see that f

descends to a map, still called f by abuse of notation, f : C/ ≡→ A and that f is now injective. It is easy also

to identify C/ ≡ with the union of the (n − 1)-dimensional faces of C given by F = ∪n
i=1(C ∩ {wi = −D}). In

this way we get a continuous injective map f : F → A that has the same image as the original f . Notice also that

F is homeomorphic to the closed (n− 1)-dimensional ball, so up to homeomorphism f can be viewed as a map

f : Bn−1 → Bn−1.

We want to prove that the map f∂F , given by the restriction of f to ∂F is onto ∂A. To see this, consider one

of the (n − 2)-dimensional faces ∂Ai of ∂A, which is identified by the condition λAi = 0. Consider the face Fi

in F , where Fi is given by Fi := C ∩ {wi = −D}. We claim that the Si := ∂Fi ∩ ∂F is mapped onto ∂Ai by f .

Observe that the Si is described by the following equations Si = ∪j 6=i({wi = −D,wj = D}∩F), so Si is exactly

equivalent to a set of type F for n− 1 agents. Moreover observe that ∂Ai can also be identified with the measure

simplex for n − 1 agents. By inductive hypothesis therefore, the map f : Si → ∂Ai is surjective, and therefore

also the map f∂F is onto ∂A. Since f∂F is a bijective continuos map among (n− 2)-dimensional spheres, (up to

homeomorphism), it has degree ±1 by Lemma (2.2). Finally we conclude that f is onto A, using again Theorem

(2.1).

Some remarks are in order.

Remark 5.2: The above theorem holds for any bounded, connected domain in Rd. Thus, the case of a compact,

convex subset of Rd is included as a special case. Moreover, it holds for any measure λ absolutely continuous with
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respect to the Lebesgue measure, and for any vector of distinct points in A.

Remark 5.3: In the proof of the above theorem, we actually proved that for any measure vector {λAi
}i=1,...m in

A, there exists a weight vector w ∈ C realizing it through the map f . This could be useful in some applications.

Remark 5.4: Since all vectors of weights in W yield exactly the same power diagram, we conclude that the

positions of the generators uniquely induces an equitable power diagram.

B. State, Region of Dominance, and Locational Optimization

The first step is to define the state for each agent i. We let xi(t) be the power generator (gi(t), wi(t)) ∈ A×R,

where gi(t) = pi(t) (i.e., the position of the power generator coincides with the position of the agent) 1. We, then,

define the region of dominance for agent i as the power cell Vi = Vi(GW ), where GW =
(
(g1, w1), · · · , (gm, wm)

)
.

We refer to the partition into regions of dominance induced by the set of generators2 GW as V(GW ).

In light of Theorem 5.1, the key idea is to enable the weights of the generators to follow a spatially-distributed

gradient descent law (while maintaining the positions of the generators fixed) such that an equitable partition is

reached. Assume, henceforth, that the positions of the generators are distinct, i.e., gi 6= gj for i 6= j. Define the set

S
.=

{
(w1, . . . , wm) ∈ Rm |λVi > 0 ∀i ∈ Im

}
. (9)

Set S contains all possible vectors of weights such that no region of dominance has measure equal to zero.

We introduce the locational optimization function HV : S 7→ R>0:

HV (W ) .=
m∑

i=1

(∫
Vi(W )

λ(x)dx
)−1

=
m∑

i=1

λ−1
Vi(W ). (10)

where W .= (w1, · · · , wm).

Lemma 5.5: A vector of weights that yields an equitable power diagram is a global minimum of HV .

Proof: Consider the relaxation of our minimization problem:

min
x1,··· ,xm

m∑
i=1

x−1
i ; s.t.

m∑
i=1

xi = a > 0, xi > 0, i ∈ Im,

where the linear equality constraint follows from the fact that
∑m

i=1

∫
Vi(W )

λ(x)dx =
∫

A
λ(x) dx .= a and where

the constant a is greater than zero since λ is a measure whose bounded support is A. By Lagrange multiplier

arguments, it is immediate to show that the global minimum for the relaxation is xi = a/m for all i. Since

Theorem 5.1 establishes that there exists a vector of weights in S that yields an equitable power diagram, we

conclude that this vector is a global minimum of HV .

1Henceforth, we assume that A is a compact, convex subset of R2.
2For short, we will refer to a power generator simply as a generator.
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C. Smoothness and Gradient of HV

We now analyze the smoothness properties of HV . In the following, let γij
.= ‖gj − gi‖.

Theorem 5.6: Assume that the positions of the generators are distinct, i.e., gi 6= gj for i 6= j. Given a measure

λ, the function HV is continuously differentiable on S, where for each i ∈ {1, . . . ,m}
∂HV

∂ wi
=

∑
j∈Ni

1
2γij

( 1
λ2

Vj

− 1
λ2

Vi

) ∫
∆ij

λ(x) dx. (11)

Furthermore, the critical points of HV are vectors of weights that yield an equitable power diagram.

Proof: By assumption, gi 6= gj for i 6= j, thus the power diagram is well defined. Since the motion of a weight

wi affects only power cell Vi and its neighboring cells Vj for j ∈ Ni, we have

∂HV

∂wi
= − 1

λ2
Vi

∂λVi

∂wi
−

∑
j∈Ni

1
λ2

Vj

∂λVj

∂wi
. (12)

Now, the result in Eq. (2) provides the means to analyze the variation of an integral function due to a domain

change. Since the boundary of Vi satisfies ∂Vi = ∪j∆ij ∪ Bi, where ∆ij = ∆ji is the edge between Vi and Vj ,

and Bi is the boundary between Vi and A (if any, otherwise Bi = ∅), we have
∂λVi

∂wi
=

∑
j∈Ni

∫
∆ij

( ∂x

∂wi
· nij(x)

)
λ(x) dx+

∫
Bi

( ∂x

∂wi
· nij(x)

)
λ(x) dx︸ ︷︷ ︸

=0

,
(13)

where we defined nij as the unit normal to ∆ij outward of Vi (therefore we have nji = −nij). The second term is

trivially equal to zero if Bi = ∅; it is also equal to zero if Bi 6= ∅, since the integrand is zero almost everywhere.

Similarly,

∂λVj

∂wi
=

∫
∆ij

( ∂x

∂wi
· nji(x)

)
λ(x) dx. (14)

To evaluate the scalar product between the boundary points and the unit outward normal to the border in Eq.

(13) and in Eq. (14), we differentiate Eq. (7) with respect to wi at every point x ∈ ∆ij ; we get

∂x

∂wi
· (gj − gi) =

1
2
. (15)

From Eq. (7) we have nij = (gj − gi) /‖gj − gi‖, and the desired explicit expressions for the scalar products in

Eq. (13) and in Eq. (14) follow immediately (recalling that nji = −nij).

Collecting the above results, we get the partial derivative with respect to wi. The proof of the characterization of

the critical points is an immediate consequence of the expression for the gradient of HV ; we omit it in the interest

of brevity.

Remark 5.7: The computation of the gradient in Theorem 5.6 is a spatially-distributed over the power-Delaunay

graph, since it depends only on the location of the other agents with contiguous power cells.

Example 5.8 (Gradient of HV for uniform measure): The gradient of HV simplifies considerably when λ is

constant. In such case, it is straightforward to verify that (assuming that λ is normalized)

∂HV

∂ wi
=

1
2|A|

∑
j∈Ni

δij
γij

( 1
|Vj |2

− 1
|Vi|2

)
, (16)

where δij is the length of the border ∆ij .
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D. Spatially-Distributed Algorithm for Equitable Partitioning

Consider the set U .=
{

(w1, . . . , wm) ∈ Rm |
∑m

i=1 wi = 0
}

. Since adding an identical value to every weight

leaves all power cells unchanged, there is no loss of generality in restricting the weights to U ; let Ω .= S ∩ U .

Assume the generators’ weights obey a first order dynamical behavior described by

ẇi = ui.

Consider HV an objective function to be minimized and impose that the weight wi follows the gradient descent

given by (11). In more precise terms, we set up the following control law defined over the set Ω

ui = −∂HV

∂wi
(W ), (17)

where we assume that the partition V(W ) = {V1, . . . , Vm} is continuously updated. One can prove the following

result.

Theorem 5.9: Assume that the positions of the generators are distinct, i.e. gi 6= gj for i 6= j. Consider the

gradient vector field on Ω defined by equation (17). Then generators’ weights starting at t = 0 at W (0) ∈ Ω, and

evolving under (17) remain in Ω and converge asymptotically to a critical point of HV , i.e., to a vector of weights

yielding an equitable power diagram.

Proof: We first prove that generators’ weights evolving under (17) remain in Ω and converge asymptotically

to the set of critical points of HV . By assumption, gi 6= gj for i 6= j, thus the power diagram is well defined. First,

we prove that set Ω is positively invariant with respect to (17). Recall that Ω = S ∩ U . Noticing that control law

(17) is a gradient descent law, we have

λ−1
Vi(W (t)) ≤ HV (W (t)) ≤ HV (W (0)), i ∈ Im, t ≥ 0.

Since the measures of the power cells depend continuously on the weights, we conclude that the measures of all

power cells will be bounded away from zero; thus, the weights will belong to S for all t ≥ 0, that is, W (t) ∈ S

∀t ≥ 0. Moreover, the sum of the weights is invariant under control law (17). Indeed,

∂
∑m

i=1 wi

∂t
= −

m∑
i=1

∂HV

∂wi
= −

m∑
i=1

∑
j∈Ni

1
2γij

( 1
λ2

Vj

− 1
λ2

Vi

) ∫
∆ij

λ(x) dx = 0,

since γij = γji, ∆ij = ∆ji, and j ∈ Ni ⇔ i ∈ Nj . Thus, we have W (t) ∈ U ∀t ≥ 0. Since W (t) ∈ S ∀t ≥ 0 and

W (t) ∈ U ∀t ≥ 0, we conclude that W (t) ∈ S ∩ U = Ω, ∀t ≥ 0, that is, set Ω is positively invariant.

Second, HV : Ω → R≥0 is clearly non-increasing along system trajectories, that is, ḢV ≤ 0 in Ω.

Third, all trajectories with initial conditions in Ω are bounded. Indeed, we have already shown that
∑m

i=1 wi = 0

along system trajectories. This implies that weights remain within a bounded set: If, by contradiction, a weight

could become arbitrarily positive large, another weight would become arbitrarily negative large (since the sum of

weights is constant), and the measure of at least one power cell would vanish, which contradicts the fact that S is

positively invariant.
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Finally, by Theorem 5.6, HV is continuously differentiable in Ω. Hence, by invoking the LaSalle invariance

principle (see, for instance, [6]), under the descent flow (17), weights will converge asymptotically to the set of

critical points of HV , that is not empty as confirmed by Theorem 5.1.

Indeed, by Theorem 5.1, we know that all vectors of weights yielding an equitable power diagram differ by

a common translation. Thus, the largest invariant set of HV in Ω contains only one point. This implies that

limt→∞W (t) exists and it is equal to a vector of weights that yields an equitable power diagram.

Some remarks are in order.

Remark 5.10: By Theorem 5.9, for any set of generators’ distinct positions, convergence to an equitable power

diagram is global with respect to Ω. Indeed, there is a very natural choice for the initial values of the weights.

Assuming that at t = 0 agents are in A and in distinct positions, each agent initializes its weight to zero. Then,

the initial partition is a Voronoi tessellation; since λ is positive on A, each initial cell has nonzero measure, and

therefore W (0) ∈ Ω (the sum of the initial weights is clearly zero).

Remark 5.11: The partial derivative of HV with respect to the i-th weight only depends on the weights of

the agents with neighboring power cells. Therefore, the gradient descent law (17) is indeed a spatially-distributed

control law over the power-Delaunay graph. We mention that, in a power diagram, each power generator has an

average number of neighbors less than or equal to six [14]; therefore, the computation of gradient (17) is scalable

with the number of agents.

Remark 5.12: The focus of this paper is on equitable partitions. Notice, however, that it is easy to extend the

previous algorithm to obtain a spatially-distributed (again over the power-Delaunay graph) control law that provides

any desired measure vector {λAi
}. In particular, assume that we desire a partition such that

λAi
= βiλA,

where βi ∈ (0, 1),
∑m

j=1 βj = 1. If we redefine HV : S 7→ R>0 as

HV (W ) .=
m∑

i=1

β2
i

λVi(W )
,

then, following the same steps as before, it is possible to show that, under control law

ẇi = −∂HV

∂wi
(W ) =

∑
j∈Ni

1
2γij

(
β2

j

λ2
Vj

− β2
i

λ2
Vi

) ∫
∆ij

λ(x) dx,

the solution converges to a vector of weights that yields a power diagram with the property λAi = βiλA (whose

existence is guaranteed by Remark 5.3).

Remark 5.13: Define the set Γ .= Am \ Γcoinc (where Γcoinc is defined in Eq. (4)). It is of interest to define and

characterize the vector-valued function W ∗ : Γ 7→ Ω that associates to each non-degenerate vector of generators’

positions a set of weights such that the corresponding power diagram is equitable. Precisely, we define W ∗(G) as

W ∗(G) .= limt→∞W (t), where W (t) = (w1(t), . . . , wm(t)) is the solution of the differential equation, with fixed
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vector of generators’ positions G,

ẇi(t) = −∂HV

∂wi
(W (t)), wi(0) = 0, i ∈ Im.

By Theorem 5.9, W ∗(G) is a well-defined quantity (since the limit exists) and corresponds to an equitable power

diagram. The next lemma characterizes W ∗(G).

Lemma 5.14: The function W ∗ is continuous on Γ.

Proof: See Appendix.

E. On the Use of Power Diagrams

A natural question that arises is whether a similar result can be obtained by using Voronoi diagrams (of which

power diagrams are a generalization). The answer is positive if we constrain λ to be constant over A, but it is

negative for general measures λ, as we briefly discuss next.

Indeed, when λ is constant over A, an equitable Voronoi diagram always exists. We prove this result in a slightly

more general set-up.

Definition 5.15 (Unimodal Property): Let A ⊂ Rd be a bounded, measurable set (not necessarily convex). We

say that A enjoys the Unimodal Property if there exists a unit vector v ∈ Rd such that the following holds. For

each s ∈ R, define the slice As .= {x ∈ A, v · x = s}, and call ψ(s) .= md−1(As) the (d − 1)-dimensional

Lebesgue measure of the slice. Then, the function ψ is unimodal. In other words, ψ attains its global maximum at

a point s̄, is increasing on (−∞, s̄], and decreasing on [s̄,∞).

The Unimodal Property (notice that every compact, convex set enjoys such property) turns out to be a sufficient

condition for the existence of equitable Voronoi diagrams for bounded measurable sets (with respect to constant λ).

Theorem 5.16: If A ⊂ Rd is any bounded measurable set satisfying the Unimodal Property and λ is constant on

A, then for every m ≥ 1 there exists an equitable Voronoi diagram with m (Voronoi) generators.

Proof: See Appendix.

Then, an equitable Voronoi diagram can be achieved by using a gradient descent law conceptually similar to the

one discussed previously (the details are presented in [16]). We emphasize that the existence result on equitable

Voronoi diagrams seems to be new in the rich literature on Voronoi tessellations.

While an equitable Voronoi diagram always exists when λ is constant over A, in general, for non-constant λ, an

equitable Voronoi diagram fails to exist, as the following counterexample shows.

Example 5.17 (Existence problem on a line): Consider a one-dimensional Voronoi diagram. In this case a Voronoi

cell is a half line or a line segment (called a Voronoi line), and Voronoi vertices are end points of Voronoi lines.

It is easy to notice that the boundary point between two adjacent Voronoi lines is the mid-point of the generators

of those Voronoi lines. Consider the measure λ in Fig. 4, whose support is the interval [0, 1]. Assume m = 5. Let

bi (i = 1, . . . , 4) be the position of the i-th rightmost boundary point and gi be the position of the i-th rightmost

generator (i = 1, . . . , 5). It is easy to verify that the only admissible configuration for the boundary points in order
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Fig. 4. Example of non-existence of an equitable Voronoi diagram on a line. The above tessellation is an equitable partition, but not a Voronoi

diagram.

to obtain an equitable Voronoi diagram is the one depicted in Fig. 4. Now, by the Perpendicular Bisector Property,

we require:  g3 − b2 = b2 − g2

g4 − b3 = b3 − g3

Therefore, we would require g4−g2 = 2(b3−b2) = 1.2; this is impossible, since g2 ∈ [0.1, 0.2] and g4 ∈ [0.8, 0.9].

VI. DISTRIBUTED ALGORITHMS FOR EQUITABLE PARTITIONS WITH SPECIAL PROPERTIES

The gradient descent law (17), although effective in providing convex equitable partitions, can yield long and

“skinny” subregions. In this section, we provide spatially-distributed algorithms to obtain convex equitable partitions

with special properties. The key idea is that, to obtain an equitable power diagram, changing the weights, while

maintaining the generators fixed, is sufficient. Thus, we can use the degrees of freedom given by the positions of

the generators to optimize secondary cost functionals. Specifically, we now assume that both generators’ weights

and their positions obey a first order dynamical behavior ẇi = uw
i ,

ġi = ug
i .

Define the set

S̃
.=

{(
(g1, w1), . . . , (gm, wm)

)
∈ (A× R)m | gi 6= gj for all i 6= j, andλVi > 0 ∀i ∈ Im

}
. (18)

The primary objective is to achieve a convex equitable partition and is captured, similarly as before, by the cost

function H̃V : S̃ 7→ R>0

H̃V (GW ) .=
m∑

i=1

λ−1
Vi(GW ).

We have the following
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Theorem 6.1: Given a measure λ, the function H̃V is continuously differentiable on S̃, where for each i ∈

{1, . . . ,m}

∂H̃V

∂ gi
=

∑
j∈Ni

( 1
λ2

Vj

− 1
λ2

Vi

) ∫
∆ij

(x− gi)
γij

λ(x) dx,

∂H̃V

∂ wi
=

∑
j∈Ni

( 1
λ2

Vj

− 1
λ2

Vi

) ∫
∆ij

1
2γij

λ(x) dx.

(19)

Furthermore, the critical points of H̃V are generators’ positions and weights with the property that all power cells

have measure equal to λA/m.

Proof: The proof of this theorem is very similar to the proof of Theorem 5.6; we omit it in the interest of

brevity (the derivation of the partial derivative ∂H̃V

∂ gi
can be found in [17]).

Notice that the computation of the gradient in Theorem 6.1 is spatially distributed over the power-Delaunay graph.

For short, we define the vectors v±∂H̃i

.= ±∂H̃V

∂gi
.

Three possible secondary objectives are discussed in the remainder of this section.

A. Obtaining Power Diagrams Similar to Centroidal Power Diagrams

Define the mass and the centroid of the power cell Vi, i ∈ Im, as

MVi =
∫

Vi

λ(x) dx, CVi =
1

MVi

∫
Vi

xλ(x) dx.

In this section we are interested in the situation where gi = CVi , for all i ∈ Im. We call such a power diagram a

centroidal power diagram. The main motivation to study centroidal power diagrams is that, as it will be discussed

in Section VI-C, the corresponding cells, under certain conditions, are similar in shape to regular polygons.

A natural candidate control law to try to obtain a centroidal and equitable power diagram (or at least a good

approximation of it) is to let the positions of the generators move toward the centroids of the corresponding regions

of dominance, when this motion does not increase the disagreement between the measures of the cells (i.e., it does

not make the time derivative of H̃V positive).

First we introduce a C∞ saturation function as follows:

Θ(x) .=

{
0 for x ≤ 0 ,

exp
(
− 1

(βx)2

)
for x > 0, β ∈ R>0.

Moreover, we define the vector vC,gi

.= CVi − gi. Then, we set up the following control law defined over the set

S̃, where we assume that the partition V(GW ) = {V1, . . . , Vm} is continuously updated,

ẇi = −∂H̃V

∂wi
,

ġi =
2
π

arctan

[
‖v−∂H̃i

‖2

α

]
Θ(vC,gi · v−∂H̃i

) vC,gi , α ∈ R>0.

(20)

In other words, gi moves toward the centroid of its cell if and only if this motion is compatible with the

minimization of H̃V . In particular, the term arctan
(
‖v−∂H̃i

‖2/α
)

is needed to make the right hand side of (20)
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C1, while the term Θ(vC,gi ·v−∂H̃i
) is needed to make the right hand side of (20) compatible with the minimization

of H̃V . To prove that the vector field is C1 it is simply sufficient to observe that it is the composition and product

of C1 functions. Furthermore, the compatibility condition of the flow (20) with the minimization of H̃V stems from

the fact that ġi = 0 as long as vC,gi
· v−∂H̃i

≤ 0, due to the presence of Θ(·). Notice that the computation of the

right hand side of (20) is spatially distributed over the power-Delaunay graph.

As in many algorithms that involve the update of generators of Voronoi diagrams, it is possible that under control

law (20) there exists a time t∗ and i, j ∈ Im such that gi(t∗) = gj(t∗). In such a case, either the power diagram is

not defined (when wi(t∗) = wj(t∗)), or there is an empty cell (wi(t∗) 6= wj(t∗)), and there is no obvious way to

specify the behavior of control law (20) for these singularity points. Then, to make the set S̃ positively invariant,

we have to slightly modify the update equation for the positions of the generators. The idea is to stop the positions

of two generators when they are close and on a collision course.

Define, for ∆ ∈ R>0, the set

Mi(G,∆) .= {gj ∈ G | ‖gi − gj‖ ≤ ∆, gj 6= gi}.

In other words, Mi is the set of generators’ positions within an (Euclidean) distance ∆ from gi. For δ ∈ R>0,

δ < ∆, define the gain function ψ(ρ, ϑ) : [0,∆]× [0, 2π] 7→ R≥0 (see Fig. 5):

ψ(ρ, ϑ) =



ρ−δ
∆−δ if δ < ρ ≤ ∆ and 0 ≤ ϑ < π,

ρ−δ
∆−δ (1 + sinϑ)− sinϑ if δ < ρ ≤ ∆ and π ≤ ϑ ≤ 2π,

0 if ρ ≤ δ and 0 ≤ ϑ < π,

−ρ
δ sinϑ if ρ ≤ δ and π ≤ ϑ ≤ 2π,

(21)

It is easy to see that ψ(·) is a continuous function on [0,∆] × [0, 2π] and it is globally Lipschitz there. Function

ψ(·) has the following motivation. Let ρ be equal to ‖gj − gi‖, and let vx be a vector such that the tern {vx, (gj −

gi), vx×(gj−gi)} is an orthogonal basis of R3, co-orientied with the standard basis. In the Figure 5, vx corresponds

to the x axis and gj − gi corresponds to the y axis. Then the angle ϑij is the angle between vx and vC,gi
, where

0 ≤ ϑij ≤ 2π. If ρ ≤ δ and 0 ≤ ϑij < π, then gi is close to gj and it is on a collision course, thus we set the

gain to zero. Similar considerations hold for the other three cases; for example, if ρ ≤ δ and π < ϑij < 2π, the

generators are close, but they are not on a collision course, thus the gain is positive.

Thus, we modify control law (20) as follows:

ẇi = −∂H̃V

∂wi

.= ucent,w
i ,

ġi =
2
π

arctan

[
‖v−∂H̃i

‖2

α

]
Θ(vC,gi · v−∂H̃i

) vC,gi

∏
gj∈Mi(G,∆)

ψ
(
‖gj − gi‖, ϑij

)
.= ucent,g

i .

(22)

If Mi(G,∆) is the empty set, then we have an empty product, whose numerical value is 1. Notice that the right

hand side of (22) is Lipschitz continuous, since it is a product of C1 functions and Lipschitz continuous functions,

and it can be still computed in a spatially-distributed way (in fact, it only depends on generators that are neighbors

in the power diagram, and whose positions are within a distance ∆). One can prove the following result.
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ϑij

Zero gain

z

x

y

Fig. 5. Gain function used to avoid that the positions of two power generators can coincide.

Theorem 6.2: Consider the vector field on S̃ defined by equation (22). Then generators’ positions and weights

starting at t = 0 at GW (0) ∈ S̃, and evolving under (22) remain in S̃ and converge asymptotically to the set of

critical points of the primary objective function H̃V (i.e., to the set of vectors of generators’ positions and weights

that yield an equitable power diagram).

Proof: The proof is virtually identical to the one of Theorem 5.9, and we omit it in the interest of brevity. We

only notice that H̃V is non-increasing along system trajectories

˙̃HV =
m∑

i=1

∂H̃V

∂gi
· ġi +

∂H̃V

∂wi
ẇi =

m∑
i=1

∂H̃V

∂gi
· ġi︸ ︷︷ ︸

≤0

−
(∂H̃V

∂wi

)2

≤ 0.

Moreover, the components of the vector field (22) for the position of each generator are either zero or point toward

A (since the centroid of a cell must be within A); therefore, each generator will remain within the compact set A.

B. Obtaining Power Diagrams “Close” to Voronoi Diagrams

In some applications it could be preferable to have power diagrams as close as possible to Voronoi diagrams.

This issue is of particular interest for the setting with non-uniform density, when an equitable Voronoi diagram

could fail to exist. The objective of obtaining a power diagram close to a Voronoi diagram can be translated in the

minimization of the function K : Rm → R≥0:

K(W ) .=
1
2

m∑
i=1

w2
i ;

when wi = 0 for all i ∈ Im, we have K = 0 and the corresponding power diagram coincides with a Voronoi

diagram. To include the minimization of the secondary objective K, it is natural to consider, instead of (17), the

following update law for the weights:

ẇi = −∂HV

∂wi
− ∂K

∂wi
= −∂HV

∂wi
− wi. (23)
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However, HV is no longer a valid Lyapunov function for system (23). The idea, then, is to let the positions of the

generators move so that ∂H̃V

∂gi
· ġi − ∂H̃V

∂wi

∂K
∂wi

= 0. In other words, the dynamics of generators’ positions is used to

compensate the effect of the term −wi (present in the weights’ dynamics) on the time derivative of H̃V .

Thus, we set up the following control law, with ε1, ε2 and ε3 positive small constants, ε2 > ε1,

ẇi = −∂H̃V

∂wi
− wisatε1,ε2

(
‖v∂H̃i

‖
)

sat0,ε3

(
dist(gi, ∂Vi)

)
,

ġi = wi
∂H̃V

∂wi

v∂H̃i

‖ v∂H̃i
‖2

satε1,ε2

(
‖v∂H̃i

‖
)

sat0,ε3

(
dist(gi, ∂Vi)

)
.

(24)

The gain satε1,ε2

(
‖v∂H̃i

‖
)

is needed to make the right hand side of (24) Lipschitz continuous, while the gain

sat0,ε3

(
dist(gi, ∂Vi)

)
avoids that generators’ positions can leave the workspace. Notice that the computation of the

right hand side of (24) is spatially distributed over the power-Delaunay graph.

As before, it is possible that under control law (24) there exists a time t∗ and i, j ∈ Im such that gi(t∗) = gj(t∗).

Thus, similarly as before, we modify the update equations (24) as follows

ẇi = −∂H̃V

∂wi
− wisatε1,ε2

(
‖v∂H̃i

‖
)

sat0,ε3

(
dist(gi, ∂Vi)

)
·

∏
gj∈Mi(G,∆)

ψ
(
‖gj − gi‖, ϑij

)
.= uvor,w

i ,

ġi = wi
∂H̃V

∂wi

v∂H̃i

‖ v∂H̃i
‖2

satε1,ε2

(
‖v∂H̃i

‖
)

sat0,ε3

(
dist(gi, ∂Vi)

)
·

∏
gj∈Mi(G,∆)

ψ
(
‖gj − gi‖, ϑij

)
.= uvor,g

i ,

(25)

where ϑij is defined as in Section VI-A, with wi
∂H̃V

∂wi
v∂H̃i

replacing vC,gi .

One can prove the following result.

Theorem 6.3: Consider the vector field on S̃ defined by equation (25). Then generators’ positions and weights

starting at t = 0 at GW (0) ∈ S̃, and evolving under (25) remain in S̃ and converge asymptotically to the set of

critical points of the primary objective function H̃V (i.e., to the set of vectors of generators’ positions and weights

that yield an equitable power diagram).

Proof: Consider H̃V as a Lyapunov function candidate. First, we prove that set S̃ is positively invariant with

respect to (25). Indeed, by definition of (25), we have gi 6= gj for i 6= j for all t ≥ 0 (therefore, the power diagram

is always well defined). Moreover, it is straightforward to see that ˙̃HV ≤ 0. Therefore, it holds

λ−1
Vi(GW (t)) ≤ H̃V (GW (t)) ≤ H̃V (GW (0)), i ∈ Im, t ≥ 0.

Since the measures of the power cells depend continuously on generators’ positions and weights, we conclude that

the measures of all power cells will be bounded away from zero. Finally, since ġi = 0 on the boundary of A for all

i ∈ Im, each generator will remain within the compact set A. Thus, generators’ positions and weights will belong

to S̃ for all t ≥ 0, that is, GW (t) ∈ S̃ ∀t ≥ 0.

Second, as shown before, H̃V : S̃ → R≥0 is non-increasing along system trajectories, i.e., ˙̃HV (GW ) ≤ 0 in S̃.

Third, all trajectories with initial conditions in S̃ are bounded. Indeed, we have already shown that each generator

remains within the compact set A under control law (25). As far as the weights are concerned, we start by noticing
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that the time derivative of the sum of the weights is

∂
∑m

i=1 wi

∂t
= −

m∑
i=1

wisatε1,ε2

(
‖v∂H̃i

‖
)

sat0,ε3

(
dist(gi, ∂Vi)

) ∏
gj∈Mi(G,∆)

ψ
(
‖gj − gi‖, ϑij

)
,

since, similarly as in the proof of Theorem 5.9,
∑m

i=1
∂H̃V

∂wi
= 0. Moreover, the magnitude of the difference between

any two weights is bounded by a constant, that is,

|wi − wj | ≤ α for all i, j ∈ Im; (26)

if, by contradiction, the magnitude of the difference between any two weights could become arbitrarily large, the

measure of at least one power cell would vanish, since the positions of the generators are confined within A.

Assume, by the sake of contradiction, that weights’ trajectories are unbounded. This means that

∀R > 0 ∃t ≥ 0 and ∃ j ∈ Im such that |wj(t)| ≥ R.

For simplicity, assume that wi(0) = 0 for all i ∈ Im (the extension to arbitrary initial conditions in S̃ is

straightforward). Choose R = 2mα and let t2 be the time instant such that |wj(t2)| = R, for some j ∈ Im. Without

loss of generality, assume that wj(t2) > 0. Because of constraint (26), we have
∑m

i=1 wi(t2) ≥ α
2m(3m+ 1). Let

t1 be the last time before t2 such that wj(t) = mα; because of continuity of trajectories, t1 is well-defined. Then,

because of constraint (26), we have (i)
∑m

i=1 wi(t1) ≤ α
2m(3m− 1) <

∑m
i=1 wi(t2), and (ii)

∂
∑m

i=1
wi(t)

∂t ≤ 0 for

t ∈ [t1, t2] (since wj(t) ≥ mα for all t ∈ [t1, t2] and Eq. (26) imply mini∈Im
wi(t) > 0 for all t ∈ [t1, t2]); thus,

we get a contradiction.

Finally, by Theorem 6.1, H̃V is continuously differentiable in S̃. Hence, by invoking the LaSalle invariance

principle (see, for instance, [6]), under the descent flow (25), generators’ positions and weights will converge

asymptotically to the set of critical points of H̃V , that is not empty by Theorem 5.1.

C. Obtaining Cells Similar to Regular Polygons

In many applications, it is preferable to avoid long and thin subregions. For example, in applications where a

mobile agent has to service demands distributed in its own subregion, the maximum travel distance is minimized

when the subregion is a circle. Thus, it is of interest to have subregions whose shapes show circular symmetry, i.e.,

that are similar to regular polygons.

Define, now, the distortion function LV : (A × R)m \ Γcoinc 7→ R≥0:
∑m

i=1

∫
Vi
‖x − gi‖2λ(x)dx (where Vi is

the i-th cell in the corresponding power diagram). In [18] it is shown that, when m is large, for the centroidal

Voronoi diagram (i.e., centroidal power diagram with equal weights) that minimizes LV , all cells are approximately

congruent to a regular hexagon, i.e., to a polygon with considerable circular symmetry (see Section VII for a more

in-depth discussion about circular symmetry).

Indeed, it is possible to obtain a power diagram that is close to a centroidal Voronoi diagram by combining
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control laws (22) and (25). In particular, we set up the following (spatially-distributed) control law:

ẇi =ucent,w
i + uvor,w

i ,

ġi =ucent,g
i + uvor,g

i .
(27)

Combining the results of Theorem 6.2 and Theorem 6.3, we argue that with control law (27) it is possible to obtain

equitable power diagrams with cells similar to regular polygons, i.e. that show circular symmetry.

VII. SIMULATIONS AND DISCUSSION

In this section we verify through simulation the effectiveness of the optimization for the secondary objectives. Due

to space constraints, we discuss only control law (27). We introduce two criteria to judge, respectively, closeness

to a Voronoi diagram, and circular symmetry of a partition.

A. Closeness to Voronoi Diagrams

In a Voronoi diagram, the intersection between the bisector of two neighboring generators gi and gj , and the

line segment joining gi and gj is the midpoint gvor
ij

.= (gi + gj)/2. Then, if we define gpow
ij as the intersection, in

a power diagram, between the bisector of two neighboring generators (gi, wi) and (gj , wj) and the line segment

joining their positions gi and gj , a possible way to measure the distance η of a power diagram from a Voronoi

diagram is the following:

η
.=

1
2N

m∑
i=1

∑
j∈Ni

‖gpow
ij − gvor

ij ‖
0.5 γij

, (28)

where N is the number of neighboring relationships and, as before, γij = ‖gj − gi‖. Clearly, if the power diagram

is also a Voronoi diagram (i.e., if all weights are equal), we have η = 0. We will also refer to η as the Voronoi

defect of a power diagram.

B. Circular Symmetry of a Partition

A quantitative manifestation of circular symmetry is the well-known isoperimetric inequality which states that

among all planar objects of a given perimeter, the circle encloses the largest area. More precisely, given a planar

region V with perimeter pV and area |V |, then p2
V − 4π|V | ≥ 0, and equality holds if and only if V is a circle.

Then, we can define the isoperimetric ratio as follows: QV = 4π|V |
p2

V

; by the isoperimetric inequality, QV ≤ 1,

with equality only for circles. Interestingly, for a regular n-gon the isoperimetric ratio Qn is Qn = π
n tan π

n
, which

converges to 1 for n→∞. Accordingly, given a partition A = {Ai}m
i=1, we define, as a measure for the circular

symmetry of the partition, the isoperimetric ratio QA
.= 1

m

∑
QAi .

C. Simulation Results

We simulate ten agents providing service in the unit square A. Agents’ initial positions are independently and

uniformly distributed over A, and all weights are initialized to zero. Time is discretized with a step dt = 0.01,

and each simulation run consists of 800 iterations (thus, the final time is T = 8). Define the area error ε as the
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TABLE I

PERFORMANCE OF CONTROL LAW (27).

λ E [ε] max ε E [η] max η E [QV ] min QV

unif 3.8 10−4 0.016 0.01 0.03 0.73 0.66

gauss 3 10−3 5.3 10−3 0.02 0.04 0.75 0.69

difference, at T = 8, between the measure of the region of dominance with maximum measure and the measure of

the region of dominance with minimum measure.

First, we consider a measure λ uniform over A, in particular λ ≡ 1. Therefore, we have λA = 1 and agents

should reach a partition in which each region of dominance has measure equal to 0.1. For this case, we run 50

simulations.

Then, we considered a measure λ that follows a gaussian distribution, namely λ(x, y) = e−5((x−0.8)2+(y−0.8)2),

(x, y) ∈ A, whose peak is at the north-east corner of the unit square. Therefore, we have λA ≈ 0.336, and vehicles

should reach a partition in which each region of dominance has measure equal to 0.0336. For this case, we run 20

simulations.

Table I summarizes simulation results for the uniform λ (λ=unif) and the gaussian λ (λ=gauss). Expectation and

worst case values of area error ε, Voronoi defect η and isoperimetric ratio QV are with respect to 50 runs for uniform

λ, and 20 runs for gaussian λ. Notice that for both measures, after 800 iterations, (i) the worst case area error is

within 16% from the desired measure of dominance regions, (ii) the worst case η is very close to 0, and, finally,

(iii) cells have, approximately, the circular symmetry of squares (since Q4 ≈ 0.78). Therefore, convergence to a

convex equitable partition with the desired properties (i.e., closeness to Voronoi diagrams and circular symmetry)

seems to be robust. Figure 6 shows the typical equitable partitions that are achieved with control law (27) with 10

agents.

VIII. APPLICATION AND CONCLUSION

In this last section, we present an application of our algorithms and we draw our conclusions.

A. Application

A possible application of our algorithms is in the Dynamic Traveling Repairman Problem (DTRP). In the DTRP,

m agents operating in a workspace A must service demands whose time of arrival, location and on-site service

are stochastic; the objective is to find a policy to service demands over an infinite horizon that minimizes the

expected system time (wait plus service) of the demands. There are many practical settings in which such problem

arises. Any distribution system which receives orders in real time and makes deliveries based on these orders (e.g.,

courier services) is a clear candidate. Equitable partitioning policies (with respect to a suitable measure λ related

to the probability distribution of demand locations) are, indeed, optimal for the DTRP when the arrival rate for
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(0,1)

(0,0) (1,0)

(a) Typical equitable partition of A for λ(x, y) = 1.

(0,1)

(0,0) (1,0)

(b) Typical equitable partition of A for λ(x, y) =

e−5((x−0.8)2+(y−0.8)2).

Fig. 6. Typical equitable partitions achieved by using control law (27). The yellow squares represent the position of the generators, while the

blue circles represent the centroids. Notice how each bisector intersects the line segment joining the two corresponding power neighbors almost

at the midpoint; hence both partitions are very close to Voronoi partitions. Compare with Fig. 2.

service demands is large enough (see [1], [19], [20]). Therefore, it is of interest to combine the optimal equitable

partitioning policies in [19] with the spatially-distributed algorithms presented in this paper.

The first step is to associate to each agent i a virtual power generator (virtual generator for short) (gi, wi). We

define the region of dominance for agent i as the power cell Vi = Vi(GW ), where GW =
(
(g1, w1), · · · , (gm, wm)

)
(see Fig. 7(a)). We refer to the partition into regions of dominance induced by the set of virtual generators GW as

V(GW ). A virtual generator (gi, wi) is simply an artificial variable locally controlled by the i-th agent; in particular,

gi is a virtual point and wi is its weight. Virtual generators allow us to decouple the problem of achieving an equitable

partition into regions of dominance from that of positioning an agent inside its own region of dominance.

Then, each agent applies to its virtual generator one of the previous algorithms, while it performs inside its region

of dominance the optimal single-agent policy described in [1] (see Fig. 7(b)).

Notice that, since each agent is required to travel inside its own region of dominance, this scheme is inherently

safe against collisions.

B. Conclusion

We have presented provably correct, spatially-distributed control policies that allow a team of agents to achieve

a convex and equitable partition of a convex workspace. We also considered the issue of achieving convex and

equitable partitions with special properties (e.g., with hexagon-like cells). Our algorithms could find applications in

many problems, including dynamic vehicle routing, and wireless networks. This paper leaves numerous important

extensions open for further research. First, all the algorithms that we proposed are synchronous: we plan to devise

algorithms that are amenable to asynchronous implementation. Second, we envision considering the setting of
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Agent

Generator's 
Location

Dominance
Region

(a) Agents, virtual generators and regions of dominance.

Generator's 
Location

TSP tour

Agent

Demand

(b) Each agent services outstanding demands inside its

own region of dominance.

Fig. 7. Spatially-distributed algorithms for the DTRP.

structured environments (ranging from simple nonconvex polygons to more realistic ground environments). Finally,

to assess the closed-loop robustness and the feasibility of our algorithms, we plan to implement them on a network

of unmanned aerial vehicles.
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APPENDIX

Proof of Theorem 5.16: The proof mainly relies on [21]. Let v be the unit vector considered in the definition

of the Unimodal Property. Then, there exist unique values s0 < s1 < · · · < sm such that s0 = inf{s;As 6= ∅},

sm = sup{s;As 6= ∅}, and

λ{x∈A; v·x≤sk} =
k

m
λA, k = 1, . . . ,m− 1. (29)

Consider the intervals Ii
.= [si−1, si], i ∈ Im. We claim that one can choose points gi = tiv ∈ Rd, i ∈ Im such

that ti ∈ Ii and the corresponding Voronoi diagram is

Ai = {x ∈ A; ‖x− gi‖ = min
k
‖x− gk‖}

= {x ∈ A; v · x ∈ [si−1, si]}.
(30)

Together, Eq. (29) and Eq. (30) yield the desired result.

Since, by assumption, A enjoys the Unimodal Property, there exists an index κ ∈ {1, . . . ,m} such that the length

of the intervals Ii = [si−1, si] decreases as i ranges from 1 to κ, then increases as i ranges from κ to m. Let

Iκ = [sκ−1, sκ] be the smallest of these intervals, and define

tκ
.=
sκ−1 + sκ

2
∈ Iκ.

By induction, for i increasing from κ to m− 1, define ti+1 be the symmetric to ti with respect to si, so that

ti+1 = 2si − ti i = κ, κ+ 1, . . . ,m− 1.

Since the length of Ii+1 is larger than the length of Ii, we have

ti ∈ Ii ⇒ ti+1 ∈ Ii+1. (31)
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Similarly, for i decreasing from κ to 1, we define

ti−1 = 2si−1 − ti, i = κ, κ− 1, . . . , 2.

Since the interval Ii−1 is now larger than the interval Ii, we have

ti ∈ Ii ⇒ ti−1 ∈ Ii−1. (32)

By Eqs. (31)-(32) imply ti ∈ Ii for all i = 1, . . . ,m. Hence the second equality in Eq. (30) holds.

We now specialize the theorem to the case when A is convex.

Corollary 8.1: Let A ⊂ Rd be a compact, convex set, and λ be constant on A. Then for every m ≥ 1 there exist

points g1, · · · , gm all in the interior of A, such that the corresponding Voronoi diagram is equitable.

Proof: Notice that every compact convex set enjoys the Unimodal Property, with an arbitrary choice of the unit

vector v. By compactness, there exist points a, b ∈ A such that ‖b− a‖ = maxz,z′∈A ‖z− z′‖. By a translation of

coordinates, we can assume a = 0. Choose v .= b/‖b‖. Then the previous construction yields an equitable Voronoi

diagram generated by m points gi = tiv all in the interior of A.

Proof of Lemma 5.14: By Theorem 5.9 and by its very definition W ∗(G) is the zero of the vector field

−∂HV

∂wi
(W (t)). Now let us denote with

K(W,G)=̇− ∂HV

∂wi
(W ),

the corresponding continuous function, viewed as a function of two independent set of variables, namely the

weights (w1, . . . , wn) = W and the non-degenerate vector of generators’ locations G. In order to prove that

the assignment G 7→ W ∗(G) is continuous, notice that by Theorem 5.6 the function K(W,G) is identically

zero when restricted to the graph of W ∗, namely K(W ∗(G), G) = 0. The function W ∗ is continuous iff it is

continuous in each of its argument. Fix, first, a generator gi /∈ ∂Γ and consider for any v ∈ R2, the variation

(g1, . . . , gi−1, gi + hv, gi+1, . . . , gm). Since gi /∈ ∂Γ, there always exists an ε > 0, depending on gi and v,

such that for any h with 0 ≤ h < ε, (g1, . . . , gi−1, gi + hv, gi+1, . . . , gm) ∈ Γ. Now K(W ∗(g1, . . . , gi−1, gi +

hv, gi+1, . . . , gm), (g1, . . . , gi−1, gi +hv, gi+1, . . . , gm)) = 0 for any 0 ≤ h < ε by definition. Therefore, taking the

limit for h→ 0+, we still get zero. On the other hand, since K is continuous, we can take the limit inside K and

we get

K( lim
h→0+

W ∗(g1, . . . , gi−1, gi + hv, gi+1, . . . ), (g1, . . . , gi−1, gi, gi+1, . . . )) = 0.

Therefore, we have that limh→0+ W ∗(g1, . . . , gi−1, gi+hv, gi+1, . . . , gm) is equal to W ∗(g1, . . . , gi−1, gi, gi+1, . . . , gm),

by the uniqueness in Ω of the value of W ∗ for which, given G, the function K vanishes.
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