Chapter 1

Network Abstract Linear Programming with
Application to Cooperative Target Localization*

Giuseppe Notarstefano and Francesco Bullo

Abstract We identify a novel class of distributed optimization prafls, namely a

networked version of abstract linear programming. For quoiblems we propose
distributed algorithms for networks with various conneityi and/or memory con-

straints. Finally, we show how a suitable target local@afroblem can be tackled
through appropriate linear programs.

1.1 Introduction

This paper focuses on a class of distributed computing pméland on its appli-
cations to cooperative target localization in sensor ngts/oTo do so, we study
abstract linear programming, that is, a generalized versfdinear programming
that was introduced by Matoéik, Sharir and Welzl in [1] and extended byaer

in [2]. Abstract linear programming is applicable also tongogeometric optimiza-
tion problems, such as the minimum enclosing ball, the mimmenclosing stripe
and the minimum enclosing annulus. These geometric opimiz problems are
relevant in the design of efficient robotic algorithms fomimum-time formation
control problems as shown in [3].

Giuseppe Notarstefano
Department of Engineering, University of Lecce, Via per Moote, 73100 Lecce, Italy,e-mail:
giuseppe.notarstefano@unile.it

Francesco Bullo
Center for Control, Dynamical Systems and Computation, UnitedgiCalifornia at Santa Bar-
bara, Santa Barbara, CA 93106, USA, e-mail: bullo@engingarcsb.edu

* This material is based upon work supported in part by ARO MURI iN&911NF-05-1-0219
and ONR Award N00014-07-1-0721. The research leading to ttesssts has received funding
from the European Community’s Seventh Framework Programme ZB07/2013) under grant
agreement no. 224428 (CHAT Project).

2 Giuseppe Notarstefano and Francesco Bullo

Linear programming and its generalizations have receivieéspread attention
in the literature. The following references are most reiva our treatment. The
earliest (deterministic) algorithm that solves a lineasgsam in a fixed number of
variables subject tnlinear inequalities in tim@®(n) is given in [4]. An efficient ran-
domized incremental algorithm for linear programming isgwsed in [1], where a
linear program ind variables subject ta linear inequalities is solved in expected
time O(d?n+ e2(vd09d)): the expectation is taken over the internal randomizations
executed by the algorithm. An elegant survey on randomizetthads in linear pro-
gramming is [5]; see also [6]. The survey [7], see also [&cdsses the application
of abstract linear programming to a number of geometricnoigtition problems.
Regarding parallel computation approaches to linear jrogring, we only note
that linear programs with linear inequalities can be solved [9] lyparallel pro-
cessors in tim®((loglog(n))¥). The approach in [9] and the ones in the references
therein are, however, limited to parallel random-accesshinas (usually denoted
PRAM), where a shared memory is readable and writable toradlgssors. In this
paper, we focus on networks described by arbitrary graphs.

The problem of target localization has been widely invedéd and the related
literature is therefore quite rich. Recently, the inteiastensor networks and dis-
tributed computation has lightened the attention on thidlem from this new per-
spective. A good reference for localization and trackingensor networks is [10].
Two approaches may be used to tackle target localizatiomchastic and a deter-
ministic one. As regards the deterministic approach (trewe use in this paper),
a set membership estimation technique was proposed in [Redently, a sensor
selection problem for target tracking was studied in [18fdRences for target lo-
calization and tracking in sensor networks, even by use abehastic approach,
may be found therein.

The contributions of this paper are three-fold. First, weniify a class of dis-
tributed optimization problems that appears to be novel @nihtrinsic interest.
Second, we propose a novel simple algorithmic methodologotve these prob-
lems in networks with various connectivity and/or memorgstoaints. Specifically,
we propose three algorithms, prove their correctness atadblesh halting condi-
tions. Finally, we illustrate how these distributed congtiain problems are relevant
for distributed target localization in sensor networkse@fically, we cast the tar-
get localization problem in the problem of approximating ihtersection of convex
polytopes by using a small number of halfplanes (among adietdefining the poly-
topes). We show that suitable linear programs running ialf@yin fact, solve the
problem, so that the proposed distributed algorithms maysiee.

The paper is organized as follows. Section 1.2 introducesradt linear pro-
grams. Section 1.3 introduces network models. Section dndamns the definition
of network abstract linear programs and the proposed blig&d algorithms. Sec-
tion 1.5 shows the relevance of the proposed distributedpating algorithms in
the context of cooperative target localization.

Title Suppressed Due to Excessive Length 3
Notation

We letN, Np, andR ;. denote the natural numbers, the non-negative integer msmbe
and the positive real numbers, respectively. F@r: N — R, we say thatf € O(g)
if there existng € N andk € R such that f(n)| <Kk|g(n)| for all n > no.

1.2 Abstract linear programming

In this section we present an abstract framework that capt@mwide class of opti-
mization problems including linear programming and vasigeometric optimiza-
tion problems. These problems are knowrahstract linear programgor LP-type
problem3. They can be considered a generalization of linear progriaug in the
sense that they share some important properties. A comms®eanalysis of these
problems may be found for example in [7].

1.2.1 Abstract framework

We consider optimization problems specified by a fBirw), whereH is a finite
set, andw : 2" — Q is a function with values in a linearly ordered s&,K); we
assume tha@ has a minimum value-c. The elements dfl are callecdconstraints
and forG C H, w(G) is called thevalueof G. Intuitively, w(G) is the smallest value
attainable by a certain objective function while satisfythe constraints o&. An
optimization problem of this sort is callebstract linear progranif the following
two axioms are satisfied:

(i) Monotonicity if F ¢ G C H, thenw(F) < w(G);
(i) Locality: if F € G C H with —o < w(F) = w(G), then, for allh € H,

w(G) < w(GU{h}) = w(F)<w(Fu{h}).

A setB c H is minimalif w(B) > w(B') for all proper subsets’ of B. A minimal
setB with —o < w(B) is abasis GivenG C H, abasis of Gis a minimal subset
B C G, such that-o < w(B) = w(G). A constrainth is said to beviolatedby G, if
w(G) < w(GU{h}).

The solutionof an abstract linear progra(il, w) is a minimal seBy C H with
the property thato(By) = w(H). Thecombinatorial dimensio of (H, w) is the
maximum cardinality of any basis. Finally, an abstractdinerogram is calledasis
regular if, for any basis with car(B) = é and any constraintt € H, every basis
of BU{h} has the same cardinality & We now define two important primitive
operations that are useful to solve abstract linear program

(i) Violation test given a constrainh and a basi8, it tests whetheh is violated by
B; we denote this primitive byi ol (B,h);

4 Giuseppe Notarstefano and Francesco Bullo

(i) Basis computatiangiven a constrainh and a basi®, it computes a basis of
BU {h}; we denote this primitive basi s(B,h).

Remark 1 (Examples of abstract linear progranWg present three useful geomet-
ric examples; see Figure 1.1.

(i) Smallest enclosing balGivenn points inRY, compute the center and radius of
the ball of smallest volume containing all the points. Thislgem has combina-
torial dimensiord + 1.

(i) Smallest enclosing strip&ivenn points inR? in generic positions, compute the
center and the width of the stripe of smallest width contagrall the points. This
problem has combinatorial dimension 5.

(i) Smallest enclosing annuluSivenn points inR?, compute the center and the two
radiuses of the annulus of smallest area containing all tiretg This problem
has combinatorial dimension 4.

OO

Fig. 1.1 Smallest enclosing ball, stripe and annulus

More examples are discussed in [1, 2, 5, 7]. d

1.2.2 Randomized sub-exponential algorithm

A randomized algorithm for solving abstract linear progsahas been proposed
in [1]. Such algorithm has linear expected running time mmie of the number of
constraints, whenever the combinatorial dimensdois fixed, and subexponential

in 8. The algorithm, calle®UBEX_| p, has a recursive structure and is based on the
two primitives introduced above, i.e., the violation testidhe basis computation
primitives. For simplicity, we assume here that such piirag may be implemented

in constant time, independent of the number of constraBiten a set of constraints

G and a candidate bassC G, the algorithm is as follows.

Title Suppressed Due to Excessive Length 5

function SUBEX_l p(G,C)
if G=C, thenreturnC
else
choose a randofne G\ C
B := SUBEX p(G\{h},C)
if Vi ol (B,h), i.e.,his violated
by B,
return
SUBEX.l p(G,Basi s(B,h))
elsereturnB
end if
end if

For the abstract linear progra(, w), the routine is invoked witSUBEX_| p(H,B),
given any initial candidate basis

In [1] the expected completion time for tIBBEX_| p algorithm in conjunction
with Clarkson’s algorithms was shown to bedxid?n+e®(vd1099)) for basis regular
abstract linear programs. In [5] the result was extendeddblpms that are not basis
regular.

1.3 Network models

Following [13], we define a synchronous network system asofi€ction of com-
puting element$ocated at nodes of a directed network graph.” These comguti
elements are sometimes call@cessors

1.3.1 Digraphs and connectivity

We letl ={1,...,n} and let¥ = (I, E) denote a directed graph, whéris the set of
nodes ande C | x| is the set of edges. For each nad# ¢, the number of edges
going out from (coming into) nodeis calledout-degregin-degreé and is denoted
out degll (i ndegl!). The set of outgoing (incoming) neighbors of nddere the
set of nodes to (from) which there are edges from (tdhey are denoted/o (i)
and._4{ (i), respectively. A directed graph is callsttongly connected, for every
pair of nodeq(i, j) € | x|, there exists a path of directed edges that goes frtam
j- In a strongly connected digraph, the minimum number of sdggween node
i and j is called thedistance from i to jand is denoted dift j). The maximum
dist(i, j) taken over all pairgi, j) is thediameterand is denoted diaf®@). Finally,
we consider time-dependent directed graphs of the form¥(t) = (1,E(t)). The
time-dependent directed graghis jointly strongly connected, for everyt € Ny,

UF%9 (1) is strongly connected.

6 Giuseppe Notarstefano and Francesco Bullo

Moreover, the time-dependent directed gré&pls uniformly strongly connecteid,
there exist$S> 0 s.t. for everyt € Np

Ut (1) is strongly connected.

1.3.2 Synchronous networks and distributed algorithms

Strictly speaking, aynchronous networis a directed grap® = (I, Ecmm) where
the setl = {1,...,n} is the set ofidentifiersof the computing elements, and the
time-dependent maBcmm : Ng — 2'%! is the communication edge magpith the
following property: an edgé, j) belongs toEcmm(t) if and only if processor can
communicate to processpiat timet.

Definition 1 (Distributed algorithm). Let ¢ = (I,Ecmm) be a synchronous net-
work. A distributed algorithm consists of the sets

- W, set of “logical” statesvl’), for all i € I;
- Wp C W, subset of allowable initial values;
- M, message alphabet, including thel | symbol;

and the maps

- msg:W x| — M, message-generation function;
- stf:W x M" — W, state-transition function. [l

Execution of the network begins with all processors in tistart states and all
channels empty. Then the processors repeatedly perforfoltbe@ing two actions.
First, theith processor sends to each of its outgoing neighbors in timeemication
graph a message (possibly thel | message) computed by applying the message-
generation function to the current valuewf!. After a negligible period of time,
theith processor computes the new value of its logical varialfésy applying the
state-transition function to the current valuevgf, and to the incoming messages
(present in each communication edge). The combinationedfitb actions is called
acommunication roundr simply a round.

In this execution scheme we have assumed that each proe&sutes all the
calculations in one round. If it is not possible to upper bbthe execution-time of
the algorithm, we may consider a slightly different netwarkdel that allows the
state-transition function to be executed in multiple raaind/hen this happens, the
message is generated by using the logical state at the pseraand.

The last aspect to consider is thkgorithm halting that is a situation such that
the network (and therefore each processor) is in a idle m8deh status can be
used to indicate the achievement of a prescribed task. Hgrma say that a dis-
tributed algorithm is inhalting statusif the logical state is a fixed point for the
state-transition function (that becomes a self-loop) amthessage (or equivalently
thenul | message) is generated at each node.

Title Suppressed Due to Excessive Length 7

1.4 Network abstract linear programming

In this section we define metwork abstract linear prograrand propose novel dis-
tributed algorithms to solve it.

1.4.1 Problem statement

Informally we can say that@aetwork abstract linear prograrmonsists of three main
elements: a network, an abstract linear program and a mgyplpat associates to
each constraint of the abstract linear program a node ofdtveank. A more formal
definition is the following.

Definition 2. A network abstract linear program (NALP) is a tugié, (H, w), %)
consisting of

() ¢ = (1,Ecmm), @ communication digraph;
(i) (H,w), an abstract linear program;
(i) #:H — 1, a surjective map callecbnstraint distribution map O

The solutionof the network abstract linear program is attained whenralt@ssors
in the network have computed a solution to the abstractdipezgram.

Remark 2 Our definition allows for various versions of network abstiaear pro-
grams. Regarding the constraint distribution map, the mastral case to consider
is when the constraint distribution map is bijective. Irstbase one constraint is as-
signed to each node. More complex distribution laws areiatsvesting depending
on the computation power and memory of the processors ing¢hgonk. In what
follows, we assume? to be bijective. O

1.4.2 Distributed algorithms

Next we define three distributed algorithms that solve netwabstract linear
programs. First, we describe a synchronous version thatlsswited for time-
dependent networks whose nodes have bounded computatiemtid memory, but
also bounded in-degree or equivalently arbitrary in-degbait also arbitrary com-
putation time and memory. Then we describe two variatioastéike into account
the problem of dealing with arbitrary in-degree versus shomputation time and
small memory. The second version of the algorithm is suitedime-dependent
networks that have arbitrary in-degree and bounded cortipntiame, but are al-
lowed to store arbitrarily large amount of information, etsense that the number
of stored messages may depend on the number of nodes of therkeThe third
algorithm considers the case of time-independent netwaitksarbitrary in-degree
and bounded computation time and memory.

8 Giuseppe Notarstefano and Francesco Bullo

In the algorithms we consider a uniform netwarkwith communication digraph
¢ = (1,Ecmm) and a network abstract linear progr&#, (H, w), #). We assume?#
to be bijective, that is, the set of constraiftshas dimensiom, H = {hy,--- ,hn}.
The combinatorial dimension &.

Here is an informal description of what we shall refer to asRlvodBasisalgo-
rithm:

[Informal description] Each processor has a logical statedof 1 variables taking values
in H. The firstd components represent the current value of the basis to comphile, w
the last element is the constraint assigned to that node. At therstard the processor
initializes every component of the basis to its constraint taeeach communication round,
performs the following tasks: (i) it acquires from its neighb¢a message consisting of)
their current basis; (i) it executes tB&BEX_| p algorithm over the constraint set given by
the collection of its and its neighbors’ basis and its consti@mat it maintains in memory),
thus computing a new basis; (iii) it updates its logical stateragdsage using the new basis
obtained in (ii).

In the second scenario we work with a time-dependent netwitkno bounds
on the in-degree of the nodes and on the memory size. In thiisgsthe execution of
the SUBEX_| p may exceed the communication round length. In order to déhl w
this problem, we slightly change the network model as dbedrin Section 1.3,
so that each processor may execute the state transitiotidnriasynchronously”,
in the sense that the time-length of the execution may taképtaurounds. If that
happens, the message generation function in each inteateedund is called using
the logical state of the previous round. Here is an inforneslcdiption of what we
shall refer to as thEloodBasisMultiRounalgorithm:

[Informal description]Each processor has the same message alphabet and logical state as in
FloodBasisand also the same state initialization. At each communicatiordriiyoerforms

the following tasks: i) it acquires the messages from its in-ri@dgst ii) if the execution of

the SUBEX_| p at the previous round was over it starts a new instance, otberivkeeps
executing the one in progress; iii) if the execution of BWBEX_| p ends it updates the logi-

cal state and runs the message-generation function with the atyatherwise it generates

the same message as in the previous round.

In the third scenario we work with a time-independent nekwwith no bounds
on the in-degree of the nodes. We suppose that each pro¢esstimited memory
capacity, so that it can store at m@messages. The memory is dimensioned so to
guarantee that tf@UBEX | p is always solvable during two communication rounds.
The memory constraint is solved by processing only part@frtboming messages
at each round and cycling in a suitable way in order to proaighe messages in
multiple rounds.

Here is an informal description of what we shall refer to asRloodBasisCy-
cling algorithm:

[Informal description] The firstd + 1 components of the logical state are the same as in

FloodBasisand are initialized in the same way. A further component is adtes sim-

ply a counter variable that keeps trace of the current roAhéach communication round

each processor performs the following tasks: (i) it acquires fitsmeighbors (a message

consisting of) their current basis; (ii) it choodesnessages according to a scheduled pro-
tocol, e.g., it labels its in-neighboring edges with natmambers from 1 up td ndegl!

Title Suppressed Due to Excessive Length 9

and cycles over them in increasing order; (iii) it executesSiBEX_| p algorithm over the
constraint set given by the collection of tbemessages plus its basis and its constraint (that
it maintains in memory), thus computing a new basis; (iv) it updasegical state and
message using the new basis obtained in (iii).

Remark 3For the algorithm to converge it is important that each adeeips in
memory its constraint and thus implements $i¢BEX_| p on the bases received
from its neighbors together with its constraint. This regmient is important be-
cause of the following reason: no element of a b8sisr a setG € H needs to be
an element in the basis &U {h} foranyhe H\ G. O

We are now ready to prove the algorithms’ correctness.

Proposition 1 (Correctness ofloodBasis). Let.#’be a synchronous time-dependent
network with communication digrapf = (I,Ecmm) and let(¥, (H, w), #) be a
network abstract linear program. # is jointly strongly connected, then tiéood-
Basisalgorithm solveq¥, (H,w), %), that is, in a finite number of rounds each
node acquires a copy of the solution(bf, w), i.e., the basis B of H.

Proof. In order to prove correctness of the algorithm, observe,dirall, that each
law at every node converges in a finite number of steps. In aihg axioms from
abstract linear programming and finitenessHofeach sequenag(Bl!(t)), t € Ng,

is monotone nondecreasing, upper bounded and can assurite adimber of val-
ues. Then we proceed by contradiction to prove that all thes leonverge to the
samew(B) and that it is exactlyo(B) = w(H). Suppose that far> to > 0 all the
nodes have converged to their limit basis and that therd ekieast two nodes,
call themi and j, such thatw(Bll(t)) = w(Bl!) # w(Bl!) = w(Bl!(t)), for all

t > to. Fort =to+ 1, for everyk; € 45(i), Bl does not violateB*!, otherwise
they would compute a new basis thus violating the assumphiainthey have con-
verged. Using the same argument at to + 2, for everyk, € .45(ky), B! does
not violateBkel. Notice that this does not imply thBf! does not violat@ke!, but it
implies thatw(Bl!) < w(Bk). Iterating this argument we can show that for every
S> 0, everyk connected td in the graphUZ}>#(t) must have a basiBX such
thatw(Bl) < w(B). However, using the joint connectivity assumption, there e
istsS > 0 such thaU{OQOSOg(t) is strongly connected and therefaris connected
to j, thus showing thato(Bl') < w(Bl/!). Repeating the same argument by starting
from nodej we obtain thatw(Bl!) < w(Bl!), that impliesw(B!) = w(Blil), thus
giving the contradiction. Now, the basis at each node sasisfiy construction, the
constraints of that node. Since the basis is the same forreaid it satisfies all the
constraints, them(B) = w(H). [|

Remark 4 Correctness of the other two versions of feodBasisalgorithm may
be established along the same lines. For example, it is inateei establish that the
basis at each node reaches a constant value in finite tinseedisly to show that this
constant value is the solution of the abstract linear proda theFloodBasisMulti-
Roundalgorithm. For the=loodBasisCyclinglgorithm we note that the procedure
used to process the incoming data is equivalent to conegleritime-dependent
graph whose edges change with that law. O

10 Giuseppe Notarstefano and Francesco Bullo

Proposition 2 (Halting condition). Consider a network” with time-independent,
strongly connected digrapf# where theFloodBasisalgorithm is running. Each

processor can halt the algorithm execution if the value ©bdsis has not changed
after 2diam(¥¢) 4+ 1 communication rounds.

Proof. First, notice that, for all € Ng and for every(i, j) € Ecmm,
w(B(1)) < wBU(t+1)). (1.1)

This holds by simply noting thaBli!(t + 1) is not violated byBl!(t) by construc-
tion of the FloodBasisalgorithm. Assume that nodesatisfiesBl!(t) = B for all
t e {to,...,to+2diam¥)}, and pick any other node Without loss of generality as-
sume thaty = 0. Because of equation (1.1) kf € .46(i), thenw(Bk(1)) > w(B)
and, recursively, ik, € .46(k1), then w(Bk!(2)) > w(BMI(1)) > w(B). Iterat-
ing this argument digt, j) times, the nodg satisfiescw(Bl!(dist(i, j))) > w(B).
Now, consider the out-neighbors of nogleFor everyks € 45(j), it must hold
thatew(BMs! (dist(i, j) + 1)) > w(Bl!(t)). Iterating this argument digt, i) times, the
nodei satisfiesw(B!!(dist(i, j) + dist(j,i))) > w(BU(dist(i, j))). In summary, be-
cause digi, j) + dist(j. i) < 2diam(%), we know thaBl! (dist(i, j) + dist(j,i)) = B
and, in turn, that _

w(B) > w(Bl(dist, }))) > w(B).

This shows that, if basisdoes not change for a duration 2 dig#) + 1, then it will
never change afterwards because all b&esfor j e {1,...,n}, have cost equal
to w(B) at least as early as time equal to dig+ 1. Therefore, nodecan safely
stop after a 2diai¥’) + 1 duration. [|

Title Suppressed Due to Excessive Length 11

1.5 Distributed computation of the intersection of convex
polytopes for target localization

In this section we discuss an application of network abstiiaear programming to
sensor networks, namely a distributed solution for targeglization. We consider

a set of (fixed) sensokdl, . ..,n} deployed on a plane. These sensors have to detect
a target located at positione R?. Each sensor detects a region of the plane,
mil(x) ¢ R?, containing the target; we assume that this region, possitihounded,

can be written as the intersection of a finite number of hidfies. For € {1,...,n},

let ¢; denote the number of half-planes defining the sensing regfisensoii. An
example scenario withh = 2 fori € {1,...,n} isillustrated in Figure 1.2. From now
on, in order to simplify the notation, we assume that cforalli € {1,...,n}, so

that the number of half-planes (and thus the number of caings) isnc.

Fig. 1.2 Target localization: set measurements

The intersection of the regions detected by each sensoidethe best estimate
of the target locationM(x) = ﬂie{lmn}mm (x). It easy to see tha¥l(x) is a non
empty convex set, since it is the finite intersection of caraets all containing the
positionx of the target.

Here, we are interested in approximating the intersecti@oovex polytopes by
means of a “small” number of halfplanes. We consider th@falhg approximation
problem. Given a finite collection of convex polytopes witthempty intersection,
find the smallest axis-aligned rectangle that containsritersection. We refer this
rectangle as the “bounding rectangle.”

The bounding rectangle has two important features. Fhistreéctangle provides
bounds for the coordinates of the target. That isplet (pg, p3) be the center of the
rectangle with sides of lengthandb respectively. For anp = (p*, p?) € M(x), then
|pt — p3| < a/2 and|p? — pZ| < b/2. Second, the bounding rectangle is characterized
by at most four points of the polytope or, equivalently, byraist eight halfplanes.

12 Giuseppe Notarstefano and Francesco Bullo

It can be easily shown that computing the bounding rectaisgégjuivalent to
solving four linear programs respectively in the positinel megative directions of
each reference axis. More formally, iet € St be a vector forming an ang®with
the first reference axis. Given a set of half-plahes= {hy,...,hy}, hi C R? for
i €{1,....n}, we denotgH, wy) the linear program

min vjx
subj. toa’ x<b;, ie{1,...,n}
whereh; = {x € R? | a'x < bj,a € R? andb; € R}. The bounding rectangle may

be computed by solving the linear prograift$, wg), 6 € {0,71/2,11,31/2}. An
example is depicted in Figure 1.3

(H,wr)
—

(H, w%ﬂ_)l @ T(H, w%)

—
(Hv WO)

Fig. 1.3 Target localization: bounding rectangle

Remark 5(i) A tighter approximation of the intersection may be ob&d by choos-
ing a finer grid for the angl®. Choosing angles at distancer/k, k > 4, the
intersection is approximated bykapolytope.

(if) An inner approximation to a polytope in dimensidnwith n, facets can also
be computed via the largest ball contained in the polytofes Tenter and ra-
dius of this ball are referred to as the incenter and inradfue polytope. It
is known [14] that the incenter and the inradius may be coetbby solving a
linear program of dimensiod+ 1 with n, constraints.

(iif) The computation of a boundinigpolytope is a sensor selection problem in which
one wants to select a few representative among a large sensbis by optimiz-
ing some appropriate criterion. Indeed, tHes&nsors solving the problem are
the only ones needed to localize the target. O

In the following we want to design a distributed algorithnmning on a network
to approximate the intersection of planar convex polytojés assume the sensor
network may be described by the mathematical model intredicSection 1.3. Let

Title Suppressed Due to Excessive Length 13

¢ = (1,Ewsn) be the associated communication graph, where thesdfl, ..., n}

is the set of identifiers of the sensors dAgk, is the communication edge map.
We assume th&¥ is a fixed undirected connected graph. We consider the nktwor
(abstract) linear programs defined (%, (H, wg), %) where(H, wg) are the linear
programs defined above ard is the mapping associating to each nodedlten-
straints describing its sensing region. Therefore, theidiged algorithm to com-
pute the bounding rectanglk-polytope) consists of 4k} instances ofloodBasis
running in parallel (one for each linear program). We dedd@dRectFloodPoly)

the algorithm consisting of the &)instances oFloodBasisrunning in parallel and
the routine to compute the bounding rectangle (polytope).

Next, we are interested in estimating the position of a mpvarget. The pro-
posed algorithm can be generalized according to the set ewsinip approach, de-
scribed for example in [11]. The idea is to track the targeditian by means of
a prediction and “measurement update” iteration. The idag be summarized as
follows. We consider the sensor network described abovewiit the objective
of tracking a moving target. The sensors can measure thégosf the target ev-
ery T € N communication rounds, so that during therounds they can perform
a distributed computation in order to improve the estimdtéhe target. The tar-
get moves in the sensing area with bounded veldeity vmax. That is, given its
positionx(t), the position after € N communication rounds may be bounded by
X(t+ 1) € B(X(t),VmaxT), Where we have assumed the inter-communication interval
to be of unit duration.

In order to simplify notation we assume that each sensor czasuore only one
halfplane containing the target, i.e., we set 1. Also, we suppose that the sensors
may keep in memork past measures and use them to improve the estimate.

We begin the algorithm description by discussingpteiction stepLethl (t)=
{x e R? | al(t)Tx < bll(t)} be the halfplane (containing the target) measured by
sensorsl! at timet. Since the target moves with bounded velocity, it followsilya
that at instant + T the target will be contained in the halfplah(t + 1|t) = {x &

R? |all (t)T (x—vmaxtall (t) /||al(1)]|) < bl(t)}. The idea s illustrated in Figure 1.4.

B(x(t), Tumax)

Fig. 1.4 Constraint after the prediction step

We are now ready to describe the estimation procedure.n#iy, between
two measurement instants each sensor ruRbadRectalgorithm such that each

14 Giuseppe Notarstefano and Francesco Bullo

FloodBasisinstance has constraints given by the current measurepldnadf and
the prediction at timé of the latesk measures. More formally, each node solves the
network linear program&?, (H(t),wy), %), 6 € {0, 1/2,11,311/2}, whereH (t) =
{HE(),...,HM ()}, with

HIT(t) = (Wt — kT), hi (]t — (k—2)T), ... hil (et —T), hll ().

Then each node computes the corresponding bounding réetdfe following
result follows directly.

Proposition 3. Lett € N be a time instant when a new measure arrives. We denote
Rect! (t+ 1) the estimate of the bounding rectangle at instanttobtained by run-
ning theFloodRectalgorithm for the network linear program#/, (H(t), weg), 8),

6 €{0,m/2,1,31/2}. Then

(i) Forany T € [0,T] and any ic {1,...,n}, the rectangle Rebi(t + 1) is a subset
of the rectangle Rel(t) and it contains the target.

(ii) For sufficiently large T, there exists € [0, T] such that Reét(t + 1) = Rect! (t 4
7o) = Recp for all 1o < 7 < T, where Regtsolves the network linear programs.

Proof. To prove statement i) first note that for aing {1,...,n} each constraints in
HIl(t) contains the target. Therefore each estimate of the bogndirtangle will
contain the target. The monotonicity property of F@E(d:'& 1) follows by the mono-
tonicity property of eaclirloodBasisalgorithm solving the corresponding network
linear program.

Statement ii) follows easily by the fact that edeloodBasisalgorithm running
in parallel solves the respective network linear program. []

1.6 Conclusions

In this paper we have shown how to solve a class of optimizaiioblems, namely
abstract linear programs, over a network in a distributeg. Wée have proposed
distributed algorithms to solve such problems in networthwarious connectivity
and/or memory constraints. The proposed methodology hers beed to compute
an outer approximation of the intersection of convex pge®in a distributed way.
In particular, we have shown that a set approximation pralé this sort may be
posed to perform cooperative target localization in senstworks.

References

1. J. Matousek, M. Sharir, and E. Welzl, “A subexponential botordinear programming,”
Algorithmicg vol. 16, no. 4/5, pp. 498-516, 1996.

2. B. Gartner, “A subexponential algorithm for abstract optimizatmroblems,”SIAM Journal
on Computingvol. 24, no. 5, pp. 1018-1035, 1995.

Title Suppressed Due to Excessive Length 15

3. G. Notarstefano and F. Bullo, “Network abstract linear paogming with application to
minimum-time formation control,” iINEEE Conf. on Decision and ControNew Orleans,
LA, Dec. 2007, pp. 927-932.

4. N. Megiddo, “Linear programming in linear time when the dimenss fixed,”Journal of the
Association for Computing Machineryol. 31, no. 1, pp. 114-127, 1984.

5. B. Gartner and E. Welzl, “Linear programming - randomization ansitralct frameworks,”
in Symposium on Theoretical Aspects of Computer Sciesatelecture Notes in Computer
Science, vol. 1046, 1996, pp. 669-687.

6. M. Goldwasser, “A survey of linear programming in randomized spbeential time,”
SIGACT Newsvol. 26, no. 2, pp. 96—-104, 1995.

7. P.K. Agarwal and S. Sen, “Randomized algorithms for geomepiimization problems,” in
Handbook of RandomizatipR. Pardalos, S. Rajasekaran, J. Reif, and J. Rolim, Eds. Kluwer
Academic Publishers, 2001.

8. P. K. Agarwal and M. Sharir, “Efficient algorithms for geomebptimization,” ACM Com-
puting Surveysvol. 30, no. 4, pp. 412-458, 1998.

9. M. Ajtai and N. Megiddo, “A deterministic poljoglogn)-time n-processor algorithm for
linear programming in fixed dimensionSIAM Journal on Computingvol. 25, no. 6, pp.
1171-1195, 1996.

10. F. Zhao and L. Guibad)\ireless Sensor Networks: An Information Processing Approach
Morgan-Kaufmann, 2004.

11. A. Garruli and A. Vicino, “Set membership localization of nilelyobots via angle measure-
ments,”|EEE Transactions on Robotics and Automatieol. 17, no. 4, pp. 450-463, 2001.

12. V. Isler and R. Bajcsy, “The sensor selection problem for bedndhcertainty sensing mod-
els,” |IEEE Transactions on Automation Sciences and Enginegvivig3, no. 4, pp. 372-381,
2006.

13. N. A. Lynch,Distributed Algorithms Morgan Kaufmann, 1997.

14. F. Bullo, J. Co#és, and S. Mamez, Distributed Control of Robotic Networkser. Applied
Mathematics Series. Princeton University Press, Sept. 2008, stapiuunder contract.
Available electronically at http://www.coordinationdamfo.

