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Abstract

We introduce a problem in which demands arrive stochastically on a limeesggand upon arrival, move with
a fixed velocity perpendicular to the segment. We design a receding ha&wice policy for a vehicle with speed
greater than that of the demands, based on the translational minimum Haamlgath (TMHP). We consider Poisson
demand arrivals, uniformly distributed along the segment. For a fixgtheet width and fixed vehicle speed, the
problem is governed by two parameters; the demand speed and tla @aie. We establish a necessary condition on
the arrival rate in terms of the demand speed for the existence of diljztg policy. We derive a sufficient condition
on the arrival rate in terms of the demand speed that ensures stabilitg @MhRIP-based policy. When the demand
speed tends to the vehicle speed, every stabilizing policy must serviceethands in the first-come-first-served
(FCFS) order; and the TMHP-based policy becomes equivalent to @S Fpolicy which minimizes the expected
time before a demand is serviced. When the demand speed tends ttheesuofficient condition on the arrival rate for
stability of the TMHP-based policy is within a constant factor of the necgssandition for stability of any policy.
Finally, when the arrival rate tends to zero for a fixed demand speed]MHP-based policy becomes equivalent
to the FCFS policy which minimizes the expected time before a demand is exstr¥Me numerically validate our

analysis and empirically characterize the region in the parameter spaeifdh the TMHP-based policy is stable.

Index Terms

Dynamic vehicle routing, autonomous vehicles, queueing theory, minifdamiltonian path.

I. INTRODUCTION

Vehicle routing problems are concerned with planning optiwehicle routes for providing service to a given set
of customers. The routes are planned with complete infaomaif the customers, and thus the optimization is static,
and typically combinatorial [3]. In contrast, Dynamic Vele Routing (DVR) considers scenarios in which not all

customer information is knowa priori, and thus routes must be re-planned as new customer informzg¢comes
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available. DVR problems naturally occur in scenarios whamtonomous vehicles are deployed in complex and
uncertain environments. Examples include search and neggsance missions, and environmental monitoring. An
early DVR problem is the Dynamic Traveling Repairpersonbirm (DTRP) [4], in which customers, or demands
arrive sequentially in a region and a service vehicle seelsetve them by reaching each demand location. In this
paper, we introduce a dynamic vehicle routing problem inclvihe demands move with a specified velocity upon
arrival, and we design a novel receding horizon controlgyofor a single vehicle to service them. This problem
has applications in areas such as surveillance and perimetense, wherein the demands could be visualized as
moving targets trying to cross a region under surveillancarbUnmanned Air Vehicle [5], [6]. Another application

is in the automation industry where the demands are objeatsatrive continuously on a conveyor belt and a robotic

arm performs a pick-and-place operation on them [7].

Contributions

We introduce a dynamic vehicle routing problem in which dedsarrive via a stochastic process on a line
segment of fixed length, and upon arrival, translate with adfixelocity perpendicular to the segment. A service
vehicle, modeled as a first-order integrator having speedtgr than that of the demands, seeks to serve these
mobile demands. The goal is to design stable service pslite the vehicle, i.e., the expected time spent by a
demand in the environment is finite. We propose a novel regeadrizon control policy for the vehicle that services
the translating demands as per a translational minimum ltanian path (TMHP).

In this paper, we analyze the problem when the demands afermty distributed along the segment and the
demand arrival process is Poisson with raté-or a fixed lengti? of the segment and the vehicle speed normalized
to unity, the problem is governed by two parameters; the denspeedv and the arrival rate\. Our results are
as follows. First, we derive a necessary condition)oim terms ofv for the existence of a stable service policy.
Second, we analyze our novel TMHP-based policy and deriwéfcient condition forA in terms ofv that ensures
stability of the policy. With respect to stability of the fnlem, we identify two asymptotic regimes: (d)gh speed
regime when the demands move as fast as the vehicle,u.e:, 1~ (and therefore for stabilityh — 07); and (b)
High arrival regime when the arrival rate tends to infinity, i.e\, —~ +occ (and therefore for stabilityy — 0T).

In the high speed regime, we show that: (i) for existence otabikzing policy, \ must converge to zero as
1/y/—In(1 — v), (ii) every stabilizing policy must service the demandstia first-come-first-served (FCFS) order,
and (iii) the TMHP-based policy becomes equivalent to th&&@olicy which we establish is optimal in terms of
minimizing the expected time to service a demand. In the higival regime, we show that the sufficient condition
on v for the stability of the TMHP-based policy is within a consttdactor of the necessary condition enfor
stability of any policy. Third, we identify another asympitoregime, termed as thlew arrival regime in which
the arrival rate\ — 07 for a fixed demand speed. In this low arrival regime, we eithtthat the TMHP-based
policy becomes equivalent to the FCFS policy which we e&hhb$ optimal in terms of minimizing the expected
time to service a demand. Fourth, for the analysis of the TNid®ed policy, we study the classic FCFS policy

in which demands are served in the order in which they arkiVe.determine necessary and sufficient conditions
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on A for the stability of the FCFS policy. Fifth and finally, we iddte our analysis with extensive simulations
and provide an empirically accurate characterization ef riégion in the parameter space of demand speed and
arrival rate for which the TMHP-based policy is stable. Oumerical results show that the theoretically established
sufficient stability condition for the TMHP-based policytime high arrival asymptotic regime serves as a very good
approximation to the stability boundary, for nearly theirentange of demand speeds.

A plot of the theoretically established necessary and sefficconditions for stability in the-\ parameter space

is shown in Figure 1. The bottom figures are for the asymptetitmes of\ — +oo, andv — 17, respectively.

Related work

Dynamic vehicle routing (DVR) is an area of research thaggrates fundamentals of combinatorics, probability
and queueing theories. One of the early versions of a DVR lgnolis the Dynamic Traveling Repairperson
Problem [4] in which the goal is to minimize the expected tisgent by each demand before being served.
In [4], the authors propose a policy that is optimal in theeca$ low arrival rate, and several policies within a
constant factor of the optimal in the case of high arrivagrdn [8], they consider multiple vehicles, and vehicles
with finite service capacity. In [9], a single policy is pragmal which is optimal for the case of low arrival rate and
performs within a constant factor of the best known policy ttee case of high arrival rate. Recently, there has
been an upswing in versions of DVR such as in [10] where difierclasses of demands have been considered,;
and in [11] which addresses the case of demand impatienc® p\blems addressing motion constraints on
the vehicle have been presented in [12], while limited sensange for the vehicle has been considered in [13].
Problems involving multiple vehicles and with minimal comnication have been considered in [14]. In [15],
adaptive and decentralized policies are developed for thiéipte service vehicle versions, and in [16], a dynamic
team-forming variation of the Dynamic Traveling Repaigmar problem is addressed. Related dynamic problems
include [17], wherein a receding horizon control has beappsed for multiple vehicles to visit target points in
uncertain environments; and [18], wherein pickup and éejiyproblems have been considered.

Another related area of research is the version of the EemtidTraveling Salesperson Problem with moving
points or objects. The static version of the Euclidean TirageSalesperson Problem consists of determining the
minimum length tour through a given set of static points inegion [19]. Vehicle routing with objects moving
on straight lines was introduced in [7], in which a fixed numb&objects move in the negative direction with
fixed speed, and the motion of the service vehicle is coms&dato be parallel to either the or they axis. For a
version of this problem wherein the vehicle has arbitraryiom termed as the translational Traveling Salesperson
Problem, a polynomial-time approximation scheme has begpoged in [20] to catch all objects in minimum time.
Another variation of this problem with object motion on mewise straight line paths, and with different but finite
object speeds has been addressed in [21]. Other variarie duclidean Traveling Salesperson Problem in which
the points are allowed to move in different directions hagerbaddressed in [22].

A third area of research related to this work is a geometigation problem such as [23], and [24], where given

a set of static demands, the goal is to find supply locatioasrttinimize a cost function of the distance from each
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A summary of stability regions for the TMHP-based ppland the FCFS policy. Stable service policies exist onlytfa region
under the solid black curve. In the top figure, the solid blaokve is due to part (i) of Theorem Ill.1 and the dashed blugeis due to
part (i) of Theorem 1l11.2. In the asymptotic regime shown in twtom left, the dashed blue curve is described in part {iiJteeorem 111.2,

and is different than the one in the top figure. In the asympt@gime shown in the bottom right, the solid black curve is ttupart (ii) of
Theorem lII.1, and is different from the solid black curvetive top figure.

demand to its nearest supply location. In our problem, inasgmptotic regime of low arrival, when the arrival
rate \ tends to zero for a fixed demand spagdhe problem becomes one of providing optimal coveragehis t
regime, the demands are served in a first-come-first-serkaet;osuch policies are common in classical queuing
theory [25]. Another related work is [26], in which the authatudy the problem of deploying robots into a region
so as to provide optimal coverage.

Other relevant literature include [27] in which multiple bile targets are to be kept under surveillance by
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multiple mobile sensor agents. The authors in [28] proposedrinteger-linear-program approach to assigning
multiple agents to time-dependent cooperative tasks ssidtaaking mobile targets.

In an early version of this work [1], [2], we analyzed a prehiary version of the TMHP-based policy and the
FCFS policy respectively. In this paper, we present andyaeah unified policy for the problem. We also present
new simulation results to numerically determine the regibistability for the policy proposed in this paper.

As in [17] and in [18], the problem addressed in this papeltiappeveral control theoretic concepts to a relevant
robotic application. In particular, we design policies antrol laws in order to stabilize a stochastic and dynamic
system. The solution that we propose is a version of receddimigon control, in which one computes the optimal
solution based on all of the present information and thereatgaly re-computes as new information becomes
available. Our stability analysis relies on writing thesgd-loop dynamical system as a recursion in a state of the

system, and then ensuring that this state has a boundediexolu

Organization

This paper is organized as follows. A short review of resahisoptimal motion and combinatorics is presented
in Section Il. The problem formulation, the TMHP-based ggliand the main results are presented in Section lll.
The FCFS policy is presented and analyzed in Section 1ViZiig the results of Section 1V, the main results are

proven in Section V. Finally, simulation results are presdrin Section VI.

II. PRELIMINARY RESULTS

In this section, we provide some background results whichlevbe used in the remainder of the paper.

A. Constant bearing control

In this paper, we will use the following result on catching aving demand in minimum time.

Definition 11.1 (Constant bearing control) Given initial locationsp := (X,Y) € R? and q := (z,y) € R? of
the service vehicle and a demand, respectively, with theaddmmoving in the positivg-direction with constant
speedv € |0, 1], the motion of the service vehicle towards the pdinty + vT"), where

VA -0)(X =22+ (Y —y)? oY —y)
1 -2 1—02 "’

T'(p,q) = 1)
with unit speed is defined as tlsgenstant bearing control

Constant bearing control is illustrated in Figure 2 and abtarized in the following proposition.

Proposition 11.2 (Minimum time control, [29]) The constant bearing control is the minimum time controltfar

service vehicle to reach the moving demand.

October 24, 2009 DRAFT



e O =(a,y+0T)

|,

q=(z,y)

w

Fig. 2. Constant bearing control. The vehicle moves towandspointC' := (z,y + vT'), wherez, y,v andT are as per Definition 1.1, to
reach the demand.

B. Euclidean and Translational minimum Hamiltonian patiMiBP/TMHP) problems

Given a set of points in the plane, a Euclidean Hamiltoniaih iga path that visits each point exactly once. A
Euclidean minimum Hamiltonian path (EMHP) is a Euclideamtiltonian path that has minimum length. In this
paper, we also consider the problem of determining a cdnstaEMHP which starts at a specified start point,
visits a set of points and terminates at a specified end point.

More specifically, the EMHP problem is as follows.

Given n static points placed iR?, determine the length of the shortest path which visits gaaint

exactly once.
An upper bound on the length of such a path for points in a uquaee was given by Few [30]. Here we extend
Few’s bound to the case of points in a rectangular region.ceanpleteness, we have included the proof in the

Appendix.

Lemma 1.3 (EMHP length) Givenn points in al x h rectangle in the plane, where € R+, there exists a
path that starts from a unit length edge of the rectangle,spashrough each of the points exactly once, and

terminates on the opposite unit length edge, having lengffeubounded by
V2hn + h+5/2.

Given a setQ of n points in R?, the Euclidean Traveling Salesperson Problem (ETSP) iseteraiine the
shortest tour, i.e., a closed path that visits each pointtBxance. LetETSP(Q) denote the length of the ETSP

tour through@. The following is the classic result by Beardwood, Haltond &dlammersly [31].

Theorem 1.4 (Asymptotic ETSP length, [31]) If a setQ of n points are distributed independently and uniformly
in a compact region of areal, then there exists a constafitsp such that, with probability one,

1, ETSP(Q)

oo \/ﬁ = PBrsp \/Z (2)
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The constanfrsp has been estimated numerically @gsp ~ 0.7120 + 0.0002, [32].
Next, we describe the TMHP problem which was proposed angdah [20]. This problem is posed as follows.
Given initial coordinatess of a start point,Q := {qi,...,q,} of a set of points, andl of a finish point,
all moving with the same constant speednd in the same direction, determine a path that starts at tim
zero from points, visits all points in the se@ exactly once and ends at the finish point, and the length
Lr (s, Q,f) of which is minimum.
In what follows, we wish to determine the TMHP through pointisich translate in the positive direction. We
also assume the speed of the service vehicle to be normatzewity, and hence consider the speed of the points

v €10, 1[. A solution for the TMHP problem is th€onvert-to-EMHPmethod:

(i) Forwv €]0,1][, define the conversion mamvrt, : R? — R? by

t (L _ Y
envrty, (7, y) = ( T 171}2)-

(i) Compute the EMHP that starts aivrt, (s), passes through the set of points giver{byvrt, (qi), . . ., covrt, (q,) }
and ends atnvrt, (f).

(i) Move between any two demands using the constant bgaramtrol.

For the Convert-to-EMHP method, the following result isaédished.

Lemma I1.5 (TMHP length, [20]) Let the initial coordinates = (x5, ys) and f = (x¢, y¢), and the speed of the
pointsv € ]0, 1[. The length of the TMHP is

Lr.y(s,Q,f) = Lp(cnvrt,(s), {envrt,(qi), . . ., cnvrt, (q,) ), cnvrt, (F)) + %

whereL g (cnvrty, (s), {cnvrty,(qy), . . ., cnvrt, (qy ) }, cnvrt, (f)) denotes the length of the EMHP with starting point
cnvrt, (s), passing through the set of poinfsnvrt,(qi), ..., cnvrt,(q,)}, and ending atnvrt, (f).

This lemma implies the following result: given a start poeset of points and an end point all of whom translate
in the positive vertical direction at speed: ]0, 1], the order of the points followed by the optimal TMHP soluatio
is the same as the order of the points followed by the optimdHE solution through a set of static locations

equal to the locations of the moving points at initial timeneerted via the mapnvrt,,.

IIl. PROBLEM FORMULATION AND THE TMHP-BASED POLICY

In this section, we pose the dynamic vehicle routing probigith translating demands and present the TMHP-

based policy along with the main results.

A. Problem Statement

We consider a single service vehicle that seeks to servidglendemands that arrive via a spatio-temporal process
on a line segment with length’ along thez-axis, termed theyenerator The vehicle is modeled as a first-order

integrator with speed upper bounded by one. The demande arriiformly distributed on the generator via a
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temporal Poisson process with intensky> 0, and move with constant speedc |0, 1] along the positivey-axis,
as shown in Figure 3. We assume that once the vehicle reactiesyand, the demand is served instantaneously.

The vehicle is assumed to have unlimited fuel and demandcgsgvcapacity.

(X(1),Y(1)

ﬁ - ﬁ

w

Fig. 3.  The problem set-up. The thick line segment is the ggoeof mobile demands. The dark circle denotes a demand andjtfaees
denotes the service vehicle.

We define the environment &:= [0, W] x R~ C R?, and letp(¢) = [X (t), Y (¢)]T € £ denote the position of
the service vehicle at time Let Q(¢) C £ denote the set of all demand locations at timandn(t) the cardinality
of Q(t). Servicing of a demand; € Q and removing it from the sef occurs when the service vehicle reaches
the location of the demand. A static feedback control potmythe system is a map : £ x F(€) — R?, where
F(€) is the set of finite subsets @f, assigning a commanded velocity to the service vehicle ametibn of the
current state of the system{t) = P(p(t), Q(t)). Let D, denote the time that thi#th demand spends inside the set
Q, that is, the delay between the generation of tinedemand and the time it is serviced. The polRyis stable
if under its action,

limsup E [D;] < +o0,

i—+oo
that is, the steady state expected delay is finite. EquitlgJehe policy P is stable if under its action,
limsup E [n(t)] < 400,
t—-+o0
that is, if the vehicle is able to service demands at a rateishaon average—at least as fast as the rate at which
new demands arrive. In what follows, our goal isdesign stable control policiefor the system.

To obtain further intuition into stability of a policy, coider thev-A parameter space. In the asymptotic regime
of high speed, where — 17, the arrival rate\ musttend to zero for stability, otherwise the service vehicleuldo
have to move successively further away from the generat@xpected value, thus making the system unstable.
Similarly, stability in the asymptotic region of high araly where\ — +oo implies that the demand speedmust
tend to zero. Thus, our primary goals are: (i) to charaaterggions in thes-\ parameter space in which one can
never desigrany stable policy, and (ii) design a novel policy and determisestability region in the-\ parameter

space, with additional emphasis in the above two asymptegitnes. In addition, for the asymptotic regime of low
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arrival, where for a fixed speed< 1, the arrival rate\ — 0%, stability is intuitive as demands arrive very rarely.

Hence, in this regime, we seek to minimize the steady stateat®d delay for a demand.

B. The TMHP-based policy

We now present a novel receding horizon service policy fervibhicle that is based on the repeated computation
of a translational minimum Hamiltonian path through susoesgroups of outstanding demands. For a given arrival
rate A\ and demand speed € ]0, 1], let (X*,Y™*) denote the vehicle location in the environment that minesiz
the expected time to service a demand once it appears on tiegager. The expression for the optimal location
(X*,Y™) is postponed to Section IV-A. The TMHP-based policy is sumzea in Algorithm 1, and an iteration

of the policy is illustrated in Figure 4.

Algorithm 1: The TMHP-based policy
Assumes The optimal locationN X*,Y™*) € £ is given.

1 if no outstanding demands are preseng ithen

2 Move to the optimal positiorf X*, Y*).

3 else

4 Service all outstanding demands by following a translaioninimum Hamiltonian path starting from the
vehicle’s current location, and terminating at the demaiitti ¥he lowesty-coordinate.

5 Repeat.

Fig. 4. An iteration of a receding horizon service policy.eTVehicle shown as a square serves all outstanding demands sisoblack dots
as per the TMHP that begins &K, Y") and terminates ajiast Which is the demand with the leagtcoordinate. The first figure shows a TMHP
at the beginning of an iteration. The second figure shows #fecle servicing the demands through which the TMHP has beempuated
while new demands arrive in the environment. The third figu@ashthe vehicle repeating the policy for the set of new demavit=n it has
completed service of the demands present at the previousidtera

C. Main Results

The following is a summary of our main results and the locetiof their proofs within the paper. We begin

with a necessary condition on the problem parameters failisgaof any policy, the proof of which is presented
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in Section V-A. The condition is policy independent and eséy in the asymptotic regime of high speed, i.e.,

v — 1~ (and therefore\ — 01), we characterize the way in which— 0.

Theorem II.1 (Necessary condition for stability) The following are necessary conditions for the existenca of
stabilizing policy:

(i) For a generalv € 0, 1],

(i) For the asymptotic regime of high speed, where> 1~, every stabilizing policymustserve the demands in
the order in which they arrive. Further, the arrival ratausttend to zero as per
3vV2
= WL/— l\nf(l —v)

Next, we present a sufficient condition on the problem patara¢hat ensures stability of the TMHP-based policy,
the proof of which is presented in Section V-B. We present redition for a general value of the demand speed
and especially in the asymptotic regime of high arrival, ide— +oco (and thereforey — 07), we characterize the
way in whichA — +o0 andv — 07, in order to ensure stability of the TMHP-based policy.

We first introduce the following notation. Let

3 Jl1-w
WV1l+o’

Arcrs(v, W) = Vi2v
W0+ 0) (o= n (552))

whereCsyt = m/2—1n(0.5-/3/1/2), andv s the solution to,/12v* —3./(1 — v*)(Csys — In(1 — v*) + Inv*) = 0,

*
for v < vl

, otherwise,

and is approximately equal &y/3.

Theorem I11.2 (Sufficient condition for stability) The following are sufficient conditions for stability of thIHP-
based policy.
(i) For a generalv € 0, 1],

1 — 2)3/2
/\<max{ ( U) Q,AFCFS(U,W)}-

20W (1 +v)
(i) In the asymptotic regime of high arrival whede— +oo (and sov — 07), the policy is stable if

1

A< —— )
B%SPWU

where Grgp ~ 0.7120.

A plot of the necessary and sufficient conditions is showni@ E. In the asymptotic regime of high speed, the

sufficient condition from part (i) of Theorem 111.2 simplieo

6 _
A< V6 =1 Ayt
Wy/—In(1 —wv)
and the necessary condition established in part (ii) of Témoalll.1 simplifies to
V2 -
T Wy —In(1—-wv) nee
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In the asymptotic regime of high arrival, the sufficient citioth from part (i) of Theorem I11.2 is\ < 1/(B24p W) =:
Agjf, and the necessary condition established in part (i) of Téradll.1 is A < 4/(Wwv) =: Aﬂ;c

Theorems IIl.1 and II.2 immediately lead to the followingrollary.

Corollary 111.3 (Constant factor sufficient condition) In the asymptotic regime of
(i) high speed, which is the limit as— 17, the ratio AL/ ALy — V3.
— 4f%gp = 2.027.

0+
suf

(i) high arrival, which is the limit as\ — +oo, the ratio A%, /A

The third and final result shows optimality of the TMHP-bagadicy with respect to minimizing the expected

delay in the asymptotic regimes of low arrival and high speed

Theorem II1.4 (Optimality of TMHP-based policy) In the asymptotic regimes of
(i) low arrival, where\ — 07 for a fixedv € ]0,1[, and
(i) high speed, where — 1~ (and thereforex — 071),
the TMHP-based policy serves the demands in the order inhathigy arrive, and also minimizes the expected time

to service a demand.

In other words, the TMHP-based policy becomes equivalerda fost-come-first-served (FCFS) policy in the
above two asymptotic regimes. Theorem 111.4 is proven fa BCFS policy in Section V-B. By the equivalence
between FCFS and the TMHP-based policies in the above twmtsyic regimes, the result also holds for the
TMHP-based policy.

To study the stability of the TMHP-based policy, we introdwnd analyze the FCFS policy in the next section.

IV. THE FIRST-COME-FIRST-SERVED (FCFS) POLICY AND ITS ANALYSIS

In this section, we present the FCFS policy and establishesainits properties, and use these properties as tools
to analyze the TMHP-based policy.

In the FCFS policy, the service vehicle uses constant bgamamtrol and services the demands in the order in
which they arrive. If the environment contains no demants, ehicle moves to the locatiopX*, Y*) which

minimizes the expected time to catch the next demand toearfitais policy is summarized in Algorithm 2.

Algorithm 2: The FCFS policy
Assumes The optimal location X*,Y™*) € £ is given.

1 if no outstanding demands are presen€ ithen
2 ‘ Move toward(X™*,Y ™) until the next demand arrives.
3 else

4 L Move using the constant bearing control to service the éstttiemand from the generator.

5 Repeat.
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Figure 5 illustrates an instance of the FCFS policy. Theofwilhg lemma establishes the relationship between

the FCFS policy and the TMHP-based policy.

qi+3

Fig. 5. The FCFS policy. The vehicle services the demandserotter of their arrival in the environment, using the coristearing control.

Lemma IV.1 (Relationship between TMHP-based policy and FCFSolicy) Given an arrival rateX and a de-
mand speed, if the FCFS policy is stable, then the TMHP-based policytéble.

Proof: Consider an initial vehicle position and a set of outstagdilemands, all of which have lower
coordinates than the vehicle. Let us compare the amouningf tequired to service the outstanding demands using
the TMHP-based policy with the amount of time required fa&r FCFS policy. Both policies generate paths through
all outstanding demands, starting at the initial vehicleateoon, and terminating at the outstanding demand with the
lowesty-coordinate. By definition, the TMHP-based policy genesdbes shortest such path. Thus, the TMHP-based
policy will require no more time to service all outstandingntinds than the FCFS policy. Since this holds at every
iteration of the policy, the region of stability of TMHP-k&$ policy contains the region of stability for the FCFS
policy. [ ]

In the following subsections, we analyze the FCFS policy.tiiéan combine these results with the above lemma
to establish analogous results for the TMHP-based policy.
The first question is, how do we compute the optimal positi&ri, Y*)? This will be answered in the following

subsection.

A. Optimal Vehicle Placement

In this subsection, we study the FCFS policy wheg |0, 1] is fixed and\ — 0. In this regime, stability is
not an issue as demands arrive very rarely, and the probleoni®s one of optimally placing the service vehicle
(i.e., determining X*,Y*) in the statement of the FCFS policy).

We seek to place the vehicle at location that minimizes thmeeted time to service a demand once it appears
on the generator. Demands appear at uniformly random positn the generator and the vehicle uses the constant

bearing control to reach the demand. Thus, the expectedtimeach a demand generated at positipa: (x,0)
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from vehicle positionp = (X,Y) is given by

w
E[T(p,q)] = ﬁ/o (VI o)X — 2 + V2 —o¥ )dr. 3)

The following lemma characterizes the way in which this exagon varies with the positiop.

Lemma IV.2 (Properties of the expected time)The expected timp — E [T'(p, q)] is convex inp, for all p €

[0, W] x Rsq. Additionally, there exists a unique poipt := (W/2,Y*) € R? that minimizep — E [T(p, q)].

Proof: Regarding the first statement, it suffices to show that tregnaind in equation (3Y(p, (x,0)) is convex
for all z. To do this we compute the HessianBf(X,Y), (z,0)) with respect toX andY". Thus, forY > 0,

T 9T

X%  9x0Y | _ 1 Y? Y(X —x)
2 2 3/2

a?/g“x gyj; <(1 —02)(X —z)2+ Yg) / Y(X —2) (X-—2)?

The Hessian is positive semi-definite because its detenhisazero and its trace is non-negative. This implies that
T(p,q) is convex inp for eachq = (z,0), from which the first statement follows.

Regarding the second statement, since demands are unifeamiomly generated on the interviéll 1], the
optimal horizontal position isX* = W/2. Thus, it suffices to show that” — E[T((W/2,Y),q)] is strictly
convex. From the)*T/0Y? term of the Hessian we see th&{p, q) is strictly convex for allz # W/2. But,
letting p = (W/2,Y) andq = (z,0) we can write

1
W(l—v?) /:I:E[O,W]\{W/Q}
The integrand is strictly convex for all € [0, W]\ {W/2}, implying thatE [T'(p, q)] is strictly convex on the line

E[T(p,q)] = T(p,q)dz.

X = W/2, and that the pointi¥/2,Y*) is the unique minimizer. [ |
Lemma V.2 tells us that there exists a unique pgnt:= (X*, Y*) which minimizes the expected travel time.

In addition, we know thafX* = 1¥/2. Obtaining a closed form expression fBi* does not appear to be possible.

Computing the integral in equation (3), with = 1¥//2, one can obtain

Y [1 aW? Y a2 a2
]E[T(p,q)]za<2 1‘1‘4}/2—\/51/‘/111(\/1—1—4}/2—\/4}/2) —U>,

wherea = 1 — v2. For each value of and I, this convex expression can be easily numerically minichiaeer

Y, to obtainY™*. A plot of Y* as a function ofv for W = 1 is shown in Figure 6.

For the optimal positiorp*, the expected delay between a demand’s arrival and itscgecampletion is
D* :=E[T(p" (z,0))].

Thus, a lower bound on the steady-state expected delay opeligy is D*. We now characterize the steady-state

expected delay of the FCFS polidyrcrs as A tends to zero.

Lemma IV.3 (FCFS optimality) Fix anyv € ]0,1[. Then in the limit as\ — 0", the FCFS policy minimizes the

expected time to service a demand, iBrcps — D*.
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Fig. 6. The optimal positiory”* of the service vehicle which minimizes the expected distance demand, as a function of In this plot,
the generator has lengiiy’ = 1.

Proof: We have shown how to compute the positiph := (X*,Y*) which minimizes equation (3). Thus,
if the vehicle is located ap*, then the expected time to service the demand is minimizetl. &\ — 01, the
probability that demand + 1 arrives before the vehicle completes service of demiaadd returns tgp* tends to

zero. Thus, the FCFS policy is optimal as— 0. [ |

Remark 1V.4 (Minimizing the worst-case time) Another metric that can be used to determine the optimakplac
ment (X*,Y™*) is the worst-case time to service a demand. Using an arguidentical to that in the proof of
Lemma IV.3, it is possible to show that for fixede 0, 1[, and as\ — 0", the FCFS policy, with X*,Y*) =

(W/2,0W/2), minimizes the worst-case time to service a demand. O

B. A Necessary Condition for FCFS Stability

In the previous subsection, we studied the case of fixadd A\ — 0%. In this subsection, we analyze the problem
when\ > 0, and determine necessary conditions on the magnitudetiwdit ensure the FCFS policy remains stable.
To establish these conditions we utilize a standard resujueueing theory (cf. [25]) which states that a necessary
condition for the existence of a stabilizing policy is thél [7] < 1, whereE [T] is the expected time to service a

demand (i.e., the travel time between demands). We begh thv following result.

Proposition 1V.5 (Special case of equal speeddjor v = 1, there does not exist a stabilizing policy.

Proof: Whenv = 1, each demand and the service vehicle move at the same speedemand has a higher

vertical position than the service vehicle, then clearly #ervice vehicle cannot reach it. The same impossibility
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result holds if the demand has the same vertical positionaagidtinct horizontal position as the service vehicle. In
summary, a demand can be reached only if the service vekielbdve the demand. Next, note that the only policy
that ensures that a demand/scoordinate never exceeds that of the service vehicle that all demands remain
below the service vehicle at all time) is the FCFS policy. Inawvfollows, we prove the proposition statement by
computing the expected time to travel between demands uegCFS policy. First, consider a vehicle location
p == (X,Y) and a demand location with initial locatiaf := (z, y), the minimum timeT" in which the vehicle
can reach the demand is given by

(X —2)* 4+ (Y —y)?

oy Y 4)

T(p,q) =

and is undefined it” < y. Second, assume there are many outstanding demands belsertlice vehicle, and none
above. Suppose the service vehicle completed the servidemand: at timet; and position(z;(¢;), y;(¢;)). Let
us compute the expected time to reach demiand, with location (z;+1(¢;),vi+1(t;)). Since arrivals are Poisson,
it follows that y;(¢;) > yi4+1(¢;), with probability one. To simplify notation, we definkx = |z;(¢;) — x;11(¢;)]
and Ay = y;(t;) — yi;+1(t;). Then, from equation (4)

T(qi, dit+1) = A:chyAyQ = % (AAny +Ay) .
Taking expectation and noting thatz and Ay are independent,

E[T(an i) = 5 (B[22 [ 4] +E[ay]).

Now, we note thaff [Ay] = 1/, thatE [Ax2] is a positive constant independent.gfand that
“+o0 1
E [Ay} /y_o y/\e dy = +oc.

ThusE [T(q;,qi+1)] = +oo, and for everyx > 0,
AE [T(qi, qiv1)] = +oo.

This means that the necessary condition for stability, A&.[T'(q,,q;+1)] < 1, is violated. Thus, there does not
exist a stabilizing policy. ]

Next we look at the FCFS policy and give a necessary condftiorits stability.

Lemma IV.6 (Necessary stability condition for FCFS) A necessary condition for the stability of the FCFS policy
is

3 *
W for v < vjee
< 3V 2v

= , otherwise,

W [(1+0) (Crs—1n (42

whereCrec = 0.5 4+ In(2) — v, where~ is the Euler constant; and/.. is the solution to the equation

20 — (1 4+ v)(Chec— 0.5 - In(1 — v?) +Inv) = 0, and is approximately equal t¢/5.
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Proof: Suppose the service vehicle completed the service of demandime¢; at position(x;(t;), vi(t;)),
and demand + 1 is located at{x; 1 (t;), yi+1(t;)). Define Ax := |z;(t;) — i1 (¢;)| and Ay = y;(t;) — yig1 ().
Forv €]0,1[, the travel time between demands is given by

- 1
T 1 —02

T (\/(1 —02)Az? + Ay? — vAy) : (5)

Observe that the functioft’ is convex inAxz and Ay. Jensen’s inequality leads to

1
1—02

E[T] >

(V=) (E[Aa]? + E[By])? —vE[Ay)).

Substituting the expressions for the expected values, arob

1 W2 w2 2
> 2y S ——
Em—l—v?(\/(l v )\)'

From the necessary condition for stability, we must have

1 (1—v2)W2 2 2
< — — - —) <1
AE[T] <1 A1—1)2(\/ o txwox) <!
By simplifying, we obtain
3
< = 6
A< (6)

This provides a good necessary condition for lewNext, we obtain a much better necessary condition for large

SinceT is convex inAz, we apply Jensen’s inequality to equation (5) to obtain

E[TIAY] > s (VI 2/ 4 A2 — vy) ™

whereE [Az] = W/3. Now, the random variablAy is distributed exponentially with parametgfv and probability

density function

_ i —Ay/v
fly)= e :
Un-conditioning equation (7) oy, we obtain
oo A teo 1—v2)W2 B
E[T] = / E[T|ylf(y)dy > W/ (\/(9) +y? - Uy) € Ay/vdy- (8)
0 - 0

The right hand side can be evaluated using the software Fapted equals

W H AW V1 — 02 vy AWV — 02 B v?
2.3yT—02 | 3v ! A1 —02)’

3v
whereH; : R — R is the 1st order Struve function an¥; : R — R is 1st order Bessel function of thend

kind [33]. Using a Taylor series expansion of the functidn(z) — Y;(z) aboutz = 0, followed by a subsequent

analysis of the higher order terms, one can show that

1 /2
Hi(2) —Yi(z) > — (Z + Checz — zln(z)) , Vz2>0,
T
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whereCrec = 1/2 +In(2) — «, and~ is the Euler constant. This inequality implies that equa{®) can be written

v AW AW V1 — 02
> - 4 — PR
E[T] 2 M1+ v) T <C“e° ln< 3v >> ’

as

where we have used the fact that

v Uz v

A1 =v)2 A1—-22) A1l+w)
To obtain a stability condition on we wish to remove\ from theln term. To do this, note that from equation (6)
we haveAlV/3 < 1, and thus

v AW WA WvV1—? v AW V1 — 0?2
E[T] >~ + 20 —m 2l > A ~1 .
Tz 3050 180 (Cm B T ) N1+ 18 (C”EC n( v ))

The necessary stability condition M [T'] < 1, from which a necessary condition for stability is

2 AT
W<Cnec_1n< ! U))ﬁl— ! = !

18v v 1+wv 14+v

Solving for A whenln(v/1 — v?/v) < Cpee, We obtain that
3v2v

W\/(l +0) (Crec—In (VI22)) |

The conditionCrec > In(v/1 — v2/v), implies that the above bound holds for alb> 1/1/1 + e2Crec. \We now have
two bounds; equation (6) which holds for alle |0, 1[, and equation (9) which holds fer> 1/2. The final step is

A<

)

to determine the values af for which each bound is active. To do this, we set the righitehside of equation (6)
equal to the right-hand side of equation (9) and denote thatiso by v}.. Thus, the necessary condition for

stability is given by equation (6) whem < v, and by equation (9) when > v [ ]

C. A Sufficient Condition for FCFS stability

In Section IV-B, we determined a necessary condition fabistg of the FCFS policy. In this subsection, we will
derive the following sufficient condition on the arrival eéathat ensures stability for the FCFS policy. To establish
this condition, we utilize a standard result in queueingthigcf. [25]) which states that a sufficient condition for
the existence of a stabilizing policy is thaE [T] < 1, whereE [T] is the expected time to service a demand (i.e.,

the travel time between demands).

Lemma V.7 (Sufficient stability condition for FCFS) The FCFS policy is stable if

3 1—w

w\V 1+
A< V120

W/(1+0) (Cout — In (12))

whereCgyt = 7/2—1n(0.5-v/3/v/2), andv ¢ is the solution to/12v* —3./(1 — v*)(Csyt — In(1 — v*) + Inv*) = 0,

and is approximately equal t®/3.

*
for v < vl

, otherwise,
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Proof: We begin with the expression for the travel time between tewosecutive demands using the constant
bearing control (cf. Definition 11.1).
T V(1 —v2)Az2 + Ay? _ vAy - |Az| n Ay
1—v2 1—v2 = V1—02 1-—02%
where we used the inequalitya? + b2 < |a| + |b|. Taking expectation,

(10)

< w n v
T 3V1I—02 A1 —02)’

since the demands are distributed uniformly in thdirection and Poisson in thedirection. A sufficient condition

E[T]

for stability is

3 1—w
AE[T] < 1 A< 2 .
T<t = A<y,

11)

The upper bound ofl" given by equation (10) is very conservative except for theecahenv is very small.
Alternatively, taking expected value @f conditioned onAy, and applying Jensen’s inequality to the square-root

part, we obtain

E[T|Ay] < _102 (\/(1 — 0 W2/6+ Ay? — vAy) ,

sinceE [Az?] = W?2/6. Following steps which are similar to those between eqnaf®) and equation (8), we
obtain

E[T) (12)

- W " AWV =22 v AWV =02\ | 07
T2vevi-a2 |\ Ve U Ve A(L—0?)
In [33], polynomial approximations have been provided fur Struve and Bessel functions in the interjals3]
and[3,+o00). We seek an upper bound for the right-hand side of (12) whé&nsufficiently large, i.e., when the

argument ofH; andY; is small. From [33], we know that

2 1
H,(z) < -, Yl(z)Z(Jl(z)an—>, andJl(z)gg, for 0 < z < 3,
V4

T 2

[N IR

wherez := A\W+/1 —v2/(v/6v), andJ; : R — R denotes the Bessel function of the first kind. To obtain a fowe
bound onY(z), we observe that il < z < 2, then due to thén term in the above lower bound fdr;(z), we
can substitute:/2 in place ofJ;(z). Thus, we obtain

: Yl(z)22(zlnz—1), for0 <z <2. (13)
™

H,(2) <
1(2) < 2 My T

NN RN

Substituting into equation (12), we obtain

- W AW A1 — 02 2 V6v B AV /1 — 02 In AV V1 — 02 B 02
T 2./6vV1—0? 2v/6v T\ AWV — 02 2v/6v 2v/6v A1 —wv?2)’

which yields

E[T]

A1 +0v) (14)

Now, let A* be the least upper bound onfor which the FCFS policy is unstable, i.e., for evexy< \*, the

FCFS policy is stable. To obtair*, we need to solve\*E [T] = 1. Using equation (14), we can obtain a lower
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bound on\* by simplifying

A*27772 <7r WA V3V1 —u2> 1

120 \2 "3 2w ) 1+v

From the condition given by equation (11), the second terrthénparentheses satisfies

NW - 1—wv
3 140
Thus, we obtain,
12v

A* >

)

W/ (1+0) (Cout — In (152))
whereCsys = /2 — In(0.5 - v/3/1/2). Since < \* implies stability, a sufficient condition for stability is
A< 120 . (15)
W/(1+0) (Cout — In (122))

To determine the value of the speef}; beyond which this is a less conservative condition than &ougll), we

solve

V12 3 [1- 0

W (0 m (55)) T T

Forv > vg,, one can verify that the numerical value of the argument ef $truve and Bessel functions is less

than2, and so the bounds given by equation (13) used in this asasysi valid. Thus, a sufficient condition for

stability is given by equation (11) far < v, and by equation (15) for > v, [ ]

Remark V.8 (Tightness in limiting regimes) As v — 07T, the sufficient condition for FCFS stability becomes
A < 3/W, which is exactly equal to the necessary condition givenemina 1V.6. Thus, the condition for stability
is asymptotically tight in this limiting regime.

Figure 7 shows a comparison of the necessary and sufficiabilist conditions for the FCFS policy. It should
be noted that converges t@™ extremely slowly as tends tol~, and still satisfy the sufficient stability condition
in Lemma IV.7. For example, witlh = 1 — 1076, the FCFS policy can stabilize the system for an arrival cdte
3/(5W). O

V. PROOFS OF THEMAIN RESULTS

In this section, we present the proofs of the main result<lvinere presented in Section IlI-C.

A. Proof of Theorem Ill.1

We first present the proof of part (i). We begin by looking & tlistribution of demands in the service region.
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Fig. 7. The necessary and sufficient conditions for the Btwlfor the FCFS policy. The dashed curve is the necessanyglition for stability
as established in Lemma IV.6; while the solid curve is the sefficcondition for stability as established in Lemma IV.7.

Lemma V.1 (Distribution of outstanding demands) Suppose the generation of demands commences at(time
and no demands are serviced in the inter{@lt]. Let Q denote the set of all demands [ih W] x [0, vt] at time
t. Then, given a Borel measurable getof area A contained in[0, W] x [0, vt],

67XA(;\A)7L

PRN Q| =n] = *— 25,

where\ := \/(vW).

Proof: We first establish the result for a rectangle. IRet= [¢, ¢ + Af] x [h, h + Ah] be a rectangle contained
in [0, W] x [0,vt] with areaA = A¢Ah. Let us calculate the probability that at time|R N Q| = n (that is, the
probability thatR containsn points in Q). We have

P[RNQI=n]=> P [z demands arrived ir[

i=n

h h+ Ah .
o +v ” x P[n of i are generated ifY, ¢ + AZ]].
Since the generation process is temporally Poisson anikpaiiform the above equation can be rewritten as

P[RNQ|=n|= ZP[z‘ demands arrived if0, Ah/v]] x P[n of ¢ are generated if0, AZ]]. (16)
Now we compute
e MY (NAR V)

. )

1!

P[n of ¢ are in[0, A]] = (;) (ﬁf)n <1 - ﬁf)i_n’

P[¢ demands arrived if0, Ah/v]] =

and
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so that, substituting these expressions and adopting thehsindsZ := A¢/W and H := Ah/v, equation (16)

becomes . o
P[RNQ|=n]=eML" Zn (Af)l (;) (1-L)™. (17)
Rewriting (AH)* as (AH)™(\H)*~™, and using the definition of binomia(fl) = Wln)' equation (17) reads
PR Q) = n] = o OL” 5 (AH(lﬂ— L)Y _ amoann OLH)" _ ram OLH)"
j=0

Finally, sinceLH = A/(vIV), we obtain

PR N Q| = n] = o34 A"

?

n!
where) := \/(vW). Thus, the result is established for a closed rectanglenBtite that the result also holds for
the case when a rectangle is open. Further, the result hotds ¢ountable union of disjoint rectangles due to the
demand generation process being uniform along the gemeaatbPoisson in time. Now, a Borel measurable set
on [0, W] x [0, vt] can be generated by countable unions and complements ahgtes. But both, the unions and
the complements of rectangles can be written as a disjoiioinuof a countable number of rectangles. Hence, the

result holds for any Borel measurable sef(ni¥] x [0, vt]. [ |

Remark V.2 (Uniformly distributed demands) Lemma V.1 shows us that the number of demands in an unserviced
region with aread is Poisson distributed with parameter /(v1¥), and conditioned on this number, the demands

are distributed uniformly. |

Lemma V.3 (Travel time bound) Consider the se® of demands that are uniformly distributed dhat timet. Let
T, be a random variable giving the minimum amount of time rezplito travel to a demand i@ from a vehicle
position selected priori. Then

oW

1
ET;] > =4/ —.
[d]_2 3

Proof: Let p = (X,Y") denote the vehicle location selectagriori. To obtain a lower bound on the minimum
travel time, we consider the best-case scenario, when nam#snhave been serviced in the time interigak].
Consider a demand i@ with position(x,y) at timet. Using Proposition 1.2, we can write the travel tirfiefrom
p to q := (z,y) implicitly as

T(p.q)* = (X —2)* + (Y —y) —vT(p,q))*. (18)
Next, define the sef; as the collection of demands that can be reached f{&nY") in 7' or fewer time units.
From equation (18) we see that when< 1, the setSt is a disk of radiusl” centered a{X,Y — vT). That is,

Sp={(z,y) €E| (X —2)2+ (Y —oT) —y)? < T?},

where we have omitted the dependenceTobn p and q. The area of the setr, denotedarea(Sr), is upper

bounded byr7?, and the area is equal tol'? if the St does not intersect a boundary &f Now, by Lemma V.1

October 24, 2009 DRAFT



22

the demands in an unserviced region are uniformly randorslyibuted with density\ = \/(vIW). Let us compute
the distribution of7y := mingeo T'(p, q). For every vehicle positiop chosen before the generation of demands,

the probability thatl; > T is given by

P[Ty > T) = P[|Sy N Q| = 0] = e~ *area(S1) > o= AnT?/(wW)

where the second equality is by Lemma V.1, and the last idiégu@mes from the fact thatrea(Sy) < 771
(Note that this is equivalent to assuming that the entiragR? contains demands with density. Hence we have

+oo +oo 5
E[Ty] > / P[Ty > T]dT > / eI Wygp - VT L JoW
0 Jo 2/ A /(W) 2V A

We can now prove part (i) of Theorem IIl.1.

Proof of part (i) of Theorem IIl.1: A necessary condition for the stability of any policy is

AE [T] < 1,

whereE [T] is the steady-state expected travel time between demaanttsi + 1. For every policyE [T'] > E [T,] >

1,/4Y. Thus, a necessary condition for stability is that

1 /oW 4
4 —< < —.
)\2 3 <1l < /\_UW

Remark V.4 (Constant fraction service) A necessary condition for the existence of a policy whichvises a

fraction ¢ € |0, 1] of the demands is that
4
A< )
— cZoW

Thus, for a fixedv € ]0,1[ no policy can service a constant fraction of the demands as +oo. This follows
because in order to service a fractiomve require that\E [Ty] < 1.

In order to service a fraction of the demands, we consider a subset of the generator hasiyghlciV/, with
the arrival rate on that subset being equakio The use of the TMHP-based policy on this subset and with the
arrival ratec)\ gives a sufficient condition for stability analogous to Tiexo 111.2, but with an extra term af? in

the denominator. O

For the proof of part (ii) of Theorem Ill.1, we first recall froLemma V.6 that for stability of the FCFS policy,

although\ must go to zero as — 17, it can go very slowly td). Specifically,\ goes to zero as

v
V/—In(1—v)
This quantity goes to zero more slowly than any polynomia{lin- v). We are now ready to complete the proof

of Theorem Il1.1.
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Proof of part (ii) of Theorem Ill.1: The central idea of this proof is that in the limit as— 1, if the vehicle
skips a demand and services the next one at an instance,alreadh the demand it skipped, the vehicle has to
travel infinitely far from the generator which leads to inslity.

Observe that the condition ok in the statement of part (ii) is the expression given by theessary condition
for FCFS stability in the asymptotic regime as— 1—, from Lemma IV.6. Therefore, suppose there is a polity

that does not serve demands FCFS, but can stabilize thersygth
A= B(1l—v)?,

for somep > 0, and B > 0. Let ¢; be the first instant at which polic} deviates from FCFS. Then, the demand
served immediately afteris demand + & for somek > 1. When the vehicle reaches demaind k at time¢;,
demand; + 1 has moved above the vehicle. To ensure stability, deniandl must eventually be served. The time

to travel to demand + 1 from any demand + j, wherej > 1, is

Az 2 Ay > vAy
T(Qi+j7(1i+1)\/(m> + (1—v2> * 1—v2
Ay vAy Ay

> =
“1—02 1—902 1-—0

where Az and Ay are now the minimum of the andy distances from;.; to the q;.1. The random variable

Ay/v is Erlang distributed with shapg— 1 > 1 and rate), implying
P[Ay < ] <1—e /Y for eachc > 0, and in particular, for: = (1 — v)Y/?77.
Now, sinceX = B(1 —v)? asv — 1~, Ay > (1 — v)'/2~P, with probability one. Thus
T(Qitj Qit1) > (1 —v)~ @2
with probability one, a3 — 1~. Thus, the expected number of demands that arrive dififg;, q,11) is
AT (g, div1) = B(1 —v)P(1 — v)~ P2 > B(1—v) Y2 - to0,

asv — 1. This implies that with probability one, the policy becomes unstable when it deviates from FCFS
and that any deviation must occur with probability zerovas> 1~. Thus, a necessary condition for a policy to
be stabilizing withA = B(1 — v)? is that, asv — 1~, the policy must serve demands in the order in which they
arrive. But this needs to hold for evepy and, by lettingp go to infinity, B(1 — v)? converges to zero for all

v € (0,1]. Thus, a non-FCFS policy cannot stabilize the system noemhtw quicklyA — 01 asv — 1. Hence,
asv — 17, every stabilizing policy must serve the demands in the roirdevhich they arrive. Additionally, notice
that the definition of the FCFS policy is that it uses the mimmtime control (i.e., constant bearing control) to
move between demands, thus the expression in part (ii) obrEne 111.1 is a necessary condition for all stabilizing

policies asv — 1. [ ]
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B. Proofs of Theorem 1.2 and Theorem Ill.4

We first present the proof of Theorem I11.2. We begin with thiegd of part (i).

Proof of part (i) of Theorem I11.2: The central idea is to derive a recurrence relation betweerexpected”
coordinate of the vehicle at the next iteration and the etqoEE coordinate at the present iteration by using the
background results on the computation of the TMHP in theaiten. The stability condition follows by ensuring
that the resulting evolution of the expect&dcoordinate with the number of iterations remains bounded.

Note that if there are any demands “above” the vehicle ihjtiat the end of the first iteration of the TMHP-
based policy, all outstanding demands have their y-coatdless than or equal to that of the vehicle, and hence
would be located “below” the vehicle as shown in the first gjufe 4. Hence at the end of every iteration of the
TMHP-based policy, all outstanding demands would be latébelow” the vehicle.

Let the vehicle be located ai(¢;) = (X (¢;), Y (¢;)) and qiast denote the demand with the least y-coordinate at
time instantt;. Let |Q| denote the number of demands in the getlf there exists a non-empty set of unserviced

demandsQ below the vehicle at time;, then we have

Y(tiv1) = vLro(P(ti), {a1(ti), - - - s Qas—1(ti) }, Quast(ti)) + viast(ti),  W.p. P(|Q| = k), for k € {1,2,...},

where yiasi(t;) is the y-coordinate ofqasi(t;) and L, (p(¢:), {q1(t:), - - .. ias1(ti) }, iast(t:)) is the time taken
for the vehicle as per the TMHP that beginsgt;), serves all demands i@ other thanqast and ends at the
demandqast.

We seek an upper bound for the lendihk , of the TMHP for which we use the Convert-to-EMHP method (cf.

Section II-B). Invoking Lemma 1.5 foQ = {q, ..., quas1}, and writingY; := Y (¢;) for convenience, we have

Lro(P(ti){q1(ti), - - Aiast-1(ti) }, Atast(ts))

= Lp(cnvrt, (p(t;)), {envrty, (qu(t)), - - -, cnvrty (quase-1(t:)) }, envrty, (quasi(ti))) + W

. \/2W<Yi—y.ast(ti))g| Vi~ yas(t) W

) R 21— 02’

o [2Wvlel Y W
VA= T T 2T

where the first inequality is obtained using Lemma 11.3, dmeldecond inequality follows sinegsi(t;) > 0. Thus,

when Q is non-empty at time;,

Yit1 = L7y + Yiasi(ts)-

If Q is empty at timet;, then the vehicle moves towards the optimal locatiéf, Y*). When a new demand
arrives, the vehicle moves towards it. ¥f < W, then in the worst-case, the vehicle is very close to an entipo
of the generator and the next demand arrives at the othemerndmn this case, the vehicle moves with a vertical
velocity component equal to and horizontal component equal {61 — v2. So in the worst-case, the vehicle is at
a heightv/+/1 —v? at the beginning of the next iteration. The other possibikit if Y; > . In this case, to

get an upper bound on the height of the vehicle at the nextiter, we consider the vehicle motion when it first
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moves horizontally so that the-coordinate equals that of the demand, and then moves ayrtidown to meet the
demand. This gives an upper bound on the height of the vehtdlee next iteration as(Y; — vWW)/(1+v). Thus,
if Q is empty, then the sum of these two upper bounds is triviallyypper bound on the height of the vehicle at

the beginning of the next iteration. Thus,df is empty, then

oW v oW vY;
Yipr < + Y, —oW) < +
HS s T WS s T
Conditioned onY;, we have
E Vi |¥i] g(ﬁ )]P’IQI—OIY

= 2WY;k Y; 5W
v; <m+ 1o QW)P(|Q| = kY) +E [ylast(ti) z}

It can be shown thdt {ymt(ti) YZ} < v/\. Collecting the terms withY; /(14v) together and on further simplifying,

we obtain
oW > 202 WYk 50W v
E|Yi1|Y:| £ ——P 0lY;) + P(|Q| = k|Y;) + ~
(Vo] < Tl =0+ 155+ 32 () gy + gy P91 = H + 5

50W

w Y; 202W —
L R VIO 5 2 Pl = kY +

<
SV 1ro N (=2

vY; QUW
<ot 3/2\/ E{

K-]Jr

ToW v
%] ; (19)

FRERLA
V1—0v2 A

Applying Jensen’s inequality to the conditional expeataiin the second term in the right hand side of equation (19),

where the equality follows since the arrival process is fwiswith rate) and for a time interval; /v. Substituting

we have

into equation (19), we obtain

E Vi

Y}< v L 20\W Y+ oW +E
T\ 14w (1—02)3/2 ] 7" " oy/T—02 X

Using the law of iterated expectation, we have

v 20A\W oW v
E[Y; ] = E[E[Y;.,|Y; ElY;] + ———— + —, 20
[Yia] [E[Yin Y]] < <1+v+ (1—1;2)3/2) [ ]+2m+)\ (20)
which is a linear recurrence i [Y;]. Thus,lim,_ . E[Y;] is finite if
LA 2Wer e T V)
14w (1 —v2)3/2 2Wo(l +v)?

Thus, if A satisfies the above condition, then expected number of désnanthe environment is finite and the
TMHP-based policy is stable.
Finally, from Lemma IV.1, the region of stability for the FSFpolicy is contained in the region of stability for

the TMHP-based policy. Thus, the TMHP-based policy is stdbt all arrival rates the FCFS policy is contained
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in the region of stability for the TMHP policy. Thus, the TMHRased policy is stable for all arrival rates satisfying

the bound in Lemma IV.7. This gives us the desired result. [ ]

Remark V.5 (Upper bound on expected delay)Since equation (20) is a linear recurrencéift;], we can easily

obtain an upper bound fdim;_, ., E[Y;]. Moreover, we may upper bound the expected delay for a derbgnd

hi4 v 1
(2m+X> (1/(1—!—1})— \/zwux/u—v?):%/z)' ’
Proof of part (ii) of Theorem 111.2: As the arrival rate\ — +oo, the necessary condition in Theorem IIl.1
states that for stabilityy musttend to zero. Now, for this part, we make use of the following facts. First, as
v — 0T, the length of the TMHP constrained to start at the vehictation and end at the lowest demand, is equal
to the length of the EMHP in the corresponding static instameder the mapnvrt,,, as described in Lemma II.5.
Second, consider a s& of n points which are uniformly distributed in a region with fmiarea. Then, in the limit
asn — +oo, the length of a constrained EMHP throughtends to the length of the ETSP tour through
More specifically, consider théh iteration of the TMHP-based policy, and l&f > 0 be the position of the
service vehicle. In the limit a3 — +oo, the number of outstanding demands in that iteratipn— +o00, and in
addition, conditioned om,;, the demands are uniformly distributed in the regjoriV] x [0,Y;] (cf. Remark V.2).
Now using the above two facts, we can apply Theorem 1.4 t@ioban expression for the length of the TMHP
constrained to start at the vehicle location and ending atldlvest demand. A3 — +oo, the position of the

vehicle at the end of thé&h iteration is given by

Yiy1 = vfrspvVniA = vBrspv/ni YW,

with probability one, whered := Y;WW is the area of the region below the vehicle at tlie iteration. Thus,

conditioned onY; being bounded away frorh, we have

E [Y;41]Y;] = vBrspVYiE [VIVn;] < vfrsp vV WYE [ng],

with probability one, where we have applied Jensen’s inguésing Lemma V.1E [n;] = WY;\/(vW). Thus,
with probability one,
A
E [Yi41]Y;] < vBrsp WQYizm = frspVIWWY;.

Thus, the sufficient condition for stability of the TMHP-leaspolicy as\ — -+oo (and thusy — 07) is

yo L1972
BEpWA WA

Finally, we present the proof of Theorem IIl.4.
Proof of Theorem l111.4:1t follows from Lemma V.3 and Lemma IV.1 that the FCFS mini@s the steady state
expected delay in the asymptotic regime of low arrival. Fgrof Theorem 111.4 follows since in the asymptotic

regime of low arrival, the TMHP-based policy becomes edaivato the FCFS policy. The proof of part (ii)
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follows from part (ii) of Theorem 1ll.1 and Lemma IV.1 alongittv the fact that the TMHP-based policy spends

the minimum amount of time to travel between demands. [ ]

V1. SIMULATIONS

In this section, we present a numerical study of the TMHRetgwolicy. We numerically determine the region
of stability of the TMHP-based policy, and compare it witke ttheoretical results from the previous sections.

In the actual implementation of the TMHP-based policy, tleenputational complexity increases undesirably
as the values of the problem parametéksv) approach the instability region. Therefore, we adopt aedffit
procedure to characterize the stable/unstable regiondasynwhich is based upon the following central idea. For
a given value of(\,v) and a sufficiently high value of the height of the vehicle,hé tpolicy is stable, then after

one iteration of the policy, the vehicle’'s height must dasee In particular, the following procedure was adopted.

(i) For a collection of instructive pairs of the demand speehd \ in the region of interest, we set the generator
width W =1 and we set the initial height, of the environment of interest so that the expected number of
demands in the environment at@00. Thus,hy = 1000v/A.

(i) We repeated 0 times the following procedure. The vehicle is placed at gt/ and at a uniformly random
location in the horizontal direction. A Poisson distrilditeumbern, with parameter)/v, of outstanding
demands are uniformly randomly placed in the environmehtlL@mma V.1). The vehicle uses the TMHP-
based policy to serve all outstanding demands and we sterédlghth, of the vehicle at the end of the
single iteration of the policy. Finally, we compute the age heighth, of the 10 iterations.

(iii) If hy < hg, then the policy is deemed to be stable for the chosen value,of). Otherwise the policy is

deemed to be unstable.

Thel i nker n! solver was used to generate approximations to the TMHP ay étexation of the policy. The
linkern solver takes as an input an instance of the Euclidearelling salesperson problem. To transform the
constrained EMHP problem into an ETSP, we replace the disthetween the start and end points with a large
negative number, ensuring that this edge is included initiiein output.

The results of this numerical experiment are presenteddnrEi8. For the purpose of comparison, we overlay
the plots for the theoretical curves, which were presenteBigure 1. We observe that the numerically obtained
stability boundary for the TMHP-based policy falls betwettie necessary and the sufficient conditions which
were established in parts (i) of Theorems Ill.1 and lll.2pesgively. Further, although the sufficient condition
characterized in part (i) of Theorem IIl.2, is theoretligahn approximation of the stability boundary in the
asymptotic regime of high arrival, our numerical resultewglthat the condition serves as a very good approximation
to the stability boundary, for nearly the entire range of dathspeeds.

For different values of A\, v) in the stable region, we present simulations of the TMHRegsolicy that shed

light on the steady state height of the vehicle. For threferint values ofy, we empirically determine the steady

1The TSP solvet i nker n is freely available for academic research usétat p: / / www. t sp. gat ech. edu/ concor de. htm .
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Fig. 8. Numerically determined region of stability for the TNHbased policy. A lightly shaded (green-coloured) doteeents stability while
a darkly shaded (blue-coloured) dot represents instabilihe uppermost (thick solid) curve is the necessary camdifor stability for any
policy as derived in Theorem Ill.1. The lowest (dashed) eussthe sufficient condition for stability of the TMHP-basgdlicy as established

by Theorem I11.2. The broken curve between the two curve$éssufficient stability condition of the TMHP-based policy the high arrival
regime as derived in part (ii) of Theorem 1l1.2. The environmetdth is W = 1.

state vehicle height at various arrival rates. The resuktssaown in Figure 9. We observe that the steady state

height increases (i) at higher arrival rates for a fixed despeed, and (ii) at higher demand speeds at fixed arrival
rates, which is fairly intuitive to expect for a stable pglic

VII. CONCLUSION AND FUTURE DIRECTIONS

We introduced a dynamic vehicle routing problem with tratisj demands. We determined a necessary condition
on the arrival rate of the demands for the existence of aliizgj policy. In the limit when the demands move as fast
as the vehicle, we showed that every stabilizing policy nsasvice the demands in the FCFS order. We proposed
a novel receding horizon policy that services the moving alels as per a translational minimum Hamiltonian
path. In the asymptotic regime when the demands move as Sasteavehicle, we showed that the TMHP-based
policy minimizes the expected time to service a demand. Wevetk a sufficient condition for stability of the

TMHP-based policy, and showed that in the asymptotic regifnow demand speed, the sufficient condition is
within a constant factor of the necessary condition for iitgbln a third asymptotic regime when arrival rate
tends to zero for a fixed demand speed, we showed that the TiMid&d policy is optimal in terms of minimizing

the expected time to service a demand. Finally, we presemtennplementation of the TMHP-based policy to
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Fig. 9. Variation of the steady state vehicle height with pheductv - A at different demand speeds. The error bars correspordtstandard
deviation about the mean.

numerically determine its region of stability. Our numaticesults show that the theoretically established sufficie
condition in the asymptotic regime of low demand speeds s¢sves as a good approximation to the boundary of
the stability region for a significantly large interval oflvas of demand speed.

As future work, it would be of interest to extend the preseamlgsis or to design an improved policy that is
optimal also in the asymptotic regime of high arrival, in giddh to the two other asymptotic regimes. Another
interesting direction is to have on-site service times fier demands. For the case in which the on-site service times
are independent and identically distributed with a knowpeeted value, and the vehicle is permitted to move with
the demand upon reaching it, the results in this paper coeléxtended using similar analysis. More recently,
in [34], we have addressed a version of the present problemhich the goal for the vehicle is to maximize
the fraction of demands served before they reach a deadlineh is at a given distance from the generator. We
also plan to address versions of the present problem thalvena non-uniform spatial arrival density and multiple

service vehicles.
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APPENDIX

In this Appendix, we present the proof of Lemma I1.3.

Proof: Suppose the rectangular region is givenby¥ = < 1, 0 < y < h. Let m be a positive integer (to be
chosen later) and let the points be denoted byqy,...,q,}. We now construct two paths through the points.
The first consists of (a) thev + 1 linesy = 0, h/m,2h/m, ..., h; (b) then shortest distances from each of the
points to the nearest such line, each traveled twice, anduitdble portions of the lines = 0, 0 < y < h, and
x=1,0 <y < h. This is illustrated in Figure 10. The length of this path is

I :m+1+22n:d1(ch‘) + h,
=1
where the notatio; (q;) denotes the shortest distance of pajpffrom the nearest of the: + 1 lines. The second
path is constructed similarly using the linesy = h/2m,3h/2m, ..., (2m — 1)h/2m. This path also commences
on y = h, passes through the abowe lines (visiting the points whenever they are at the shoréstince from

thesem lines) and ends o = 0. The length of this path is

n

ly=(m+2)+2) da(q) +h,

=1
where the notationls(q;) denotes the shortest distance of paiptfrom the nearest of the new: lines.

Observe thatl;(q;) + d2(q;) = h/2m. Hence,
li +1lo=2m+ 3+ 2h+ hn/m.
Now choosen to be the integer nearest tgin/2, so thatn = 2(m + 0)?/h, where|¢| < 1. Thus,
I 41y =2m+3+2h+2(m +60)%/m
=4(m+0) +2h + 3 +20*/m
< 2v2hn + 2h + 5.

Thus, at least one of the two paths must have length upperdeduby v/2hn + h + 5/2. |

October 24, 2009 DRAFT



32

(Oa h) ¢
|
L q1 g
”””””””””””””””””””””””””””” Y
_ T q2
Yoo
f‘ql‘;
777777777777777777777777777777777777777777777 Y
(0,2h/m) -
| 8ttt e
q
(0, h/m) . 1%
————————————————————————————————————————————— Y
(0,0) h (1,0)

Fig. 10.

lllustration of the proof of Theorem I1.3. The dotwlicate the locations of the points inside a rectangle af six h. The first of

the two paths considered in the proof through the pointsrisegt(1, ) and follows the direction of the arrows, visiting a point wkeer it

is within a distance of/2m for a specific integen from the solid horizontal lines.
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