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Abstract. Future applications in environmental monitoring, delivery of services and transporta-
tion of goods motivate the study of deployment and partitioning tasks for groups of autonomous
mobile agents. These tasks may be achieved by recent coverage algorithms, based upon the classic
methods by Lloyd. These algorithms however rely upon critical requirements on the communication
network: information is exchanged synchronously among all agents and long-range communication
is sometimes required. This work proposes novel coverage algorithms that require only gossip com-
munication, i.e., asynchronous, pairwise, and possibly unreliable communication. Which robot pair
communicates at any given time may be selected deterministically or randomly. A key innovative
idea is describing coverage algorithms for robot deployment and environment partitioning as dynam-
ical systems on a space of partitions. In other words, we study the evolution of the regions assigned
to each agent rather than the evolution of the agents’ positions. The proposed gossip algorithms are
shown to converge to centroidal Voronoi partitions under mild technical conditions.

Our treatment features a broad variety of results in topology, analysis and geometry. First, we
establish the compactness of a suitable space of partitions with respect to the symmetric difference
metric. Second, with respect to this metric, we establish the continuity of various geometric maps,
including the Voronoi diagram as a function of its generators, the location of a centroid as a function
of a set, and the widely-known multicenter function studied in facility location problems. Third, we
prove two convergence theorems for dynamical systems on metric spaces described by deterministic
and stochastic switches.
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1. Introduction. In the not too distant future, networks of coordinated au-
tonomous robots will perform a broad range of environmental monitoring and logistic
tasks. Robotic camera networks will monitor airports and other public infrastruc-
tures. Teams of vehicles will perform surveillance, exploration and search and rescue
operations. Groups of robots will enable novel logistic capacities in the transportation
of goods and the delivery of services and resources to customers. New applications will
be enabled by the ongoing decreases in size and cost and the increases in performance
of sensors, actuators, communication devices and computing elements.

In these future applications, load balancing algorithms will dictate how the work-
load is shared and assigned to the individual robots. In other words, robotic resources
will be assigned and deployed to competing requests in such a way as to optimize
some performance metric. Remarkably, load balancing problems in robotic networks
are often equivalent to robotic deployment and environment partitioning problems.
For example, in surveillance applications, optimal sensor coverage is often achieved by
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partitioning the environment and assigning individual robotic sensors to individual re-
gions of responsibility. Similarly, in the transportation of goods or delivery of services,
minimizing the customer wait-time is equivalent to a multi-vehicle routing problem
and, in turn, to computing optimal depot positions and regions of responsibility.

Motivated by these scenarios, this paper considers the two following interrelated
problems. The deployment problem for a robotic network amounts to the design of
coordination algorithms that lead the robots to be optimally placed in an environ-
ment of interest. Deployment performance is characterized by an appropriate network
utility function that measures the deployment quality of a given configuration. The
partitioning problem is the design of coordination algorithms that lead the robots to
optimally partition the environment into subregions of interest; even here the objec-
tive is usually achieved through the design of appropriate utility functions.

Literature review. The “centering and partitioning” algorithm originally pro-
posed by Lloyd [26] and elegantly reviewed in the survey [15] is a classic approach to
facility location and environment partitioning problems. The Lloyd algorithm com-
putes centroidal Voronoi partitions as optimal configurations of an important class of
objective functions, called multicenter functions. Besides their intended application to
quantization theory [19], centroidal Voronoi partitions have widespread applications
in numerous disciplines, including statistical pattern recognition [23], geometric op-
timization [3] and spatial resource allocation [13]. Recent mathematical interest has
focused on convergence analysis [14], bifurcation analysis of low dimensional prob-
lems [41], and anisotropic partitions [16], among other topics.

Distributed and robotic versions of the Lloyd algorithm have been recently devel-
oped in the multiagent literature; see the text [10, Chapter 5 and literature notes in
Section 5.4]. We briefly review this growing literature in what follows. Generalized
centroidal Voronoi partitions are shown in [18] to be asymptotically optimal for estima-
tion of stochastic spatial fields by sensor networks. Boundary coverage problems and
convergence rates are studied in [38] and [29], respectively. Convergence to centroidal
Voronoi partitions is established in [4] for a class of communication-less sensor-based
algorithms (related to the classic clustering work by MacQueen [28]). In [37] adap-
tive coverage controls are proposed for environments described by unknown density
functions. In [32] partitioning policies are shown to achieve optimal load balancing in
vehicle routing problems, i.e., problems in which a robotic network provides service
to customers that arrive in real time in the environment. Finally, some anisotropic
coverage problems and experimental implementation aspects are treated in [21].

Territory partitioning via competitive behaviors is a classic topic in behavioral
ecology; see the comprehensive survey [1]. For example, it is known [2] that the for-
aging behavior of conflicting colonies of red harvester ants (Pogonomyrmex barbatus)
results in non-overlapping dominance regions that resemble Voronoi partitions. Non-
overlapping dominance regions akin to centroidal Voronoi partitions are documented
in [6, 39, 15] for the mouthbreeder fish (Tilapia mossambica). Territoriality behavior
and competition among prides of African lions (Panthera leo) are discussed in [30].
Overall, numerous animal species achieve territory partitioning without a central co-
ordinating entity and without synchronized communication, but rather relying upon
asynchronous accidental interactions and stigmergy. To the best of our knowledge,
asynchronous territory partitioning has been barely studied, see [39] for introductory
ideas about animal behavior, and mathematical models and analysis are lacking.

To finalize the literature review, here is a synopsis of other mathematical ideas
that we bring to bear on deployment and partitioning problems. First, we adopt
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the so-called gossip communication model, in which only peer-to-peer asynchronous
communication links are required. This communication model is widely studied in
the wireless communication literature; example references include [24, 7]. Moreover,
we consider control systems on a non-Euclidean state space; the interest for non-
Euclidean spaces has a rich history in nonlinear control theory, dynamical systems
and robotics, including the early work [8] and a recent application to multiagent
systems [36]. Finally, we adopt various tools from topology and from the study of
hyperspaces of sets [31].

Statement of contributions. This paper uncovers novel mathematical prin-
ciples and tools of relevance in coordination problems and multiagent systems. We
tackle partitioning and coverage control algorithms in innovative ways. First, we
design algorithms that require only gossip communication, i.e., asynchronous, pair-
wise, and possibly unreliable communication. Gossip communication is a simple,
robust and effective protocol for noisy and uncertain wireless environments. Gossip
communication may be implemented in wandering robots with short-range unreli-
able communication (an illustrative motion coordination strategy is reported in the
report [9]). Second, we propose a change of perspective in coverage control and multi-
center optimization. Classically [10, 18, 11, 32, 37, 41], the state space for the coverage
algorithms are the agents’ positions, i.e., as a function of the agents’ positions the en-
vironment is divided into regions and regions are assigned to each agent. Note that in
this classical approach, every movement of an agent is reflected in a change of both its
own assigned region and its neighboring regions. Clearly, this rigidity conflicts with
allowing unreliable and asynchronous communication. Instead, in our approach, the
agents’ positions are no longer a concern: the state space is the space of partitions
of the environment and the algorithm dictates how to update the regions. As the
space of partitions is much richer than the space of the agents’ positions, we gain
more freedom in the design of partition optimization algorithms, and in particular
the possibility to use gossip communication.

Within the innovative context of gossip communication and partition-based mech-
anisms, we devise a novel algorithm for multicenter and coverage optimization. Our
gossip coverage algorithm is a peer-to-peer version of Lloyd algorithm and aims to
compute centroidal Voronoi partitions. Which robot pair communicates at any given
time is the outcome of either a deterministic or a stochastic process. We also propose
a modified version that restricts communication exchanges to adjacent regions and
that has suitable continuity properties. Simulations illustrate that our algorithms
successfully compute centroidal Voronoi partitions.

To formally establish the convergence properties of our proposed gossip cov-
erage algorithms, we perform a detailed mathematical analysis composed of three
steps. First, we develop suitable versions of the Krasovskii-LaSalle invariance princi-
ple for dynamical systems on metric spaces described by deterministic and stochastic
switches. Convergence to a set of fixed points is achieved under a uniform determinis-
tic or stochastic persistency condition. Second, we establish the continuity of various
geometric maps, including (1) the Voronoi diagram as a function of its generators,
(2) the location of the generalized centroid as a function of a set, (3) the widely-
known multicenter function studied in facility location, and (4) the gossip coverage
algorithms. These continuity properties are established with respect to the symmet-
ric distance metric in the space of partitions. Third, we study the topology of the
space of partitions. With respect to the symmetric difference metric we prove the
compactness of a relevant subset of partitions. Specifically, we focus on partitions
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whose component regions are the union of a bounded number of convex sets.

In summary, relying upon our extensions of the invariance principle, the com-
pactness of a subset of the set of partitions, and the continuity of the various relevant
maps, we establish the convergence properties of the proposed gossip algorithms. In
short, the algorithms converge to the set of centroidal Voronoi partitions under mild
technical assumptions and under the assumption that the gossip communication ex-
changes satisfy either a deterministic or a stochastic persistency condition.

The interest for asynchronous state updates is not new in the coverage control
literature. The asynchronous algorithms in [11] rely upon the theory of deterministic
and stochastic gradient algorithms presented in [40]. However, such stochastic gradi-
ent algorithms entail a significant limitation: convergence can be shown only under
the assumption that the update step be small enough and no estimate of its size is
available. On the contrary, the partitions-based framework presented here has the
following advantages: there are no limitations on the step sizes, an explicit Lyapunov
function is known, and the approach can be easily extended to discrete and more
general setups; see [17] for some preliminary work in this direction.

Organization and notations. The paper is structured as follows. In Section 2
we review multicenter optimization and coverage control ideas. In Section 3 we state
our asynchronous territory partitioning problem, provide a solution via the gossip cov-
erage algorithm, state the convergence properties of the algorithm and report some
simulation results. The following Sections 4, 5 and 6 develop the mathematical ma-
chinery required to prove the convergence results. Section 4 contains the convergence
theorems extending the Krasovskii-LaSalle invariance principle. Section 5 contains
a discussion about the compactness properties of the space of partitions. Section 6
states the continuity properties of the relevant maps and functions and contains the
proof of the main convergence results. Concluding remarks are given in Section 7.

We let R>0 and R≥0 denote the set of positive and non-negative real numbers,
respectively, and Z≥0 denote the set of non-negative integer numbers. Given A ⊂ R

d,
we let int(A), A, ∂A and diam(A) denote its interior, its closure, its boundary and
its diameter, respectively. Given two sets X and Y , a set-valued map T : X ⇉ Y
associates to an element of X a subset of Y .

2. A review of multicenter optimization and distributed coverage con-

trol. In this section we review a variety of known results in geometric optimization
and in robotic coordination. In Subsection 2.1 we review the notion of environment
partitions and we introduce the multicenter function as a way to define optimal en-
vironment partitions and optimal robot or sensor positions in the environment. In
Subsection 2.2 we review some distributed control algorithms for agent motion coor-
dination and environment partitioning based on the classic Lloyd algorithm.

2.1. Partitions, centroids and multicenter optimization. We let Q denote
an environment of interest to be apportioned. We assume Q is a compact convex
subset of R

d with non-empty interior. Partitions of Q are defined as follows.

Definition 2.1 (Partition). An N -partition of Q, denoted by v = (vi)
N
i=1, is an

ordered collection of N subsets of Q with the following properties:

(i) ∪i∈{1,...,N} vi = Q;
(ii) int(vi)∩ int(vj) is empty for all i, j ∈ {1, . . . , N} with i 6= j; and
(iii) each set vi, i ∈ {1, . . . , N}, is closed and has non-empty interior.

The set of N -partitions of Q is denoted by VN .
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Let p = (p1, . . . , pN ) ∈ QN denote the position of N agents in the environment Q.
Given a group of N agents and an N -partition, each agent is naturally in one-to-one
correspondence with a component of the partition; specifically we refer to vi as the
dominance region of agent i ∈ {1, . . . , N}.

On Q, we define a density function to be a bounded measurable positive func-
tion φ : Q → R>0 and a performance function to be a locally Lipschitz, monotone
increasing and convex function f : R≥0 → R≥0. With these notions, we define the
multicenter function Hmulticenter : VN × QN → R≥0 by

(2.1) Hmulticenter(v, p) =

N∑

i=1

∫

vi

f(‖pi − q‖)φ(q)dq.

This function is well-defined because closed sets are measurable. We aim to minimize
Hmulticenter with respect to both the partition v and the locations p.

Remarks 2.2 (Locational optimization). As discussed in the introduction and
in the survey [15], the multicenter function Hmulticenter has numerous interpretations.
Here we review two applications entailing robotic networks. First, in a vehicle routing
and service delivery example [32], given vehicles at locations pi, assume that f(‖pi−q‖)
is the cost incurred by agent i to travel to service an event taking place at point q.
Events take place inside Q with likelihood φ. Accordingly, Hmulticenter quantifies the
expected wait-time between event arrivals and agents servicing them.

Second, in an environmental monitoring application [11], assume the robots aim
to detect acoustic signals that originate and propagate isotropically in the environ-
ment. Because of noise and loss of resolution, the ability to detect a sound source
originating at a point q from a sensor at position pi is proportional to the signal-to-
noise ratio (which degrades with ‖q−pi‖). If the performance function f equals minus
the signal-to-noise ratio, then Hmulticenter quantifies the expected signal-to-noise ratio
and detection capacity for acoustic signals generated at random locations. �

Among all possible ways of partitioning a subset of R
d, one is worth of spe-

cial attention. Define the set of partly coincident locations SN = {p ∈ QN | pi =
pj for some i, j ∈ {1, . . . , N}, i 6= j}. Given p ∈ QN \ SN , the Voronoi partition of
Q generated by p, denoted by V (p), is the ordered collection of the Voronoi regions(
Vi(p)

)N
i=1

, defined by

(2.2) Vi(p) = {q ∈ Q | ‖q − pi‖ ≤ ‖q − pj‖ for all j 6= i}.

In other words, the Voronoi partition is a map V : (QN \ SN ) → VN . The regions
Vi(p), i ∈ {1, . . . , N}, are convex and, if Q is a polytope, they are polytopes. Now,
given two distinct points q1 and q2 in R

d, define the (q1; q2)-bisector half-space by

(2.3) Hbisector(q1; q2) = {q ∈ R
d | ‖q − q1‖ ≤ ‖q − q2‖}.

In other words, the set Hbisector(q1; q2) is the closed half-space containing q1 whose
boundary is the hyperplane bisecting the segment from q1 to q2. Note that bisector
subspaces satisfy Hbisector(q1; q2) 6= Hbisector(q2; q1) and that Voronoi partition of Q
satisfies Vi(p1, . . . , pN ) = Q∩

(
∩j 6=i Hbisector(pi; pj)

)
.

Each region equipped with a density function possesses a point with a special
relationship with the multicenter function. Define the scalar 1-center function H1 by

(2.4) H1(p;A) =

∫

A

f(‖p − q‖)φ(q)dq,
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where p is any point in Q and A is a compact subset of Q. Under the stated assump-
tions on the performance function f , the function p 7→ H1(p;A) is strictly convex in p,
for any set A with positive measure (we postpone the proof to Lemma 6.1). Therefore,
the function p 7→ H1(p;A) has a unique minimum in the compact and convex set Q.
We define the generalized centroid of a compact set A ⊂ Q with positive measure by

(2.5) Cd(A) = argmin{H1(p;A) | p ∈ Q}.

In what follows, it is convenient to drop the word “generalized,” and to denote by
Cd(v) = (Cd(v1), . . . ,Cd(vN )) ∈ QN the vector of regions centroids corresponding to
a partition v ∈ VN .

Remark 2.3 (Quadratic and linear performance functions). If the performance
function is f(x) = x2, then the global minimum of H1 is the centroid (also called the
center of mass) of A, defined by

Cd(A) =
(∫

A

φ(q)dq
)−1

∫

A

qφ(q)dq.

If the performance function is f(x) = x, then the global minimum of H1 is the median
(also called the Fermat–Weber center) of A. See [10, Chapter 2] for more details. �

Voronoi partitions and centroids have useful optimality properties stated in the
following proposition and illustrated in Fig. 2.1.

Proposition 2.4 (Properties of Hmulticenter). For any partition v ∈ VN and any
point set p ∈ QN \ SN ,

Hmulticenter(V (p), p) ≤ Hmulticenter(v, p),(2.6)

Hmulticenter(v,Cd(v)) ≤ Hmulticenter(v, p).(2.7)

Furthermore, inequality (2.6) is strict if any entry of V (p) differs from the correspond-
ing entry of v by a set with positive measure, and inequality (2.7) is strict if Cd(v)
differs from p.

Fig. 2.1. Illustration of Proposition 2.4. The left figure shows a sample 2-partition v and
point set p in a uniform square environment. The value of the cost function Hmulticenter at (v, p)
is diminished by either replacing v with the Voronoi partition generated by p (see central figure), or
replacing p with the centroids of v (see right figure).

The statements in Proposition 2.4 originate in the early work by S. P. Lloyd [26];
modern treatments are given in [15] and [10, Propositions 2.14 and 2.15]. Propo-
sition 2.4 implies the following necessary condition: if a pair (v, p) with p 6∈ SN

minimizes Hmulticenter, then p = Cd(v) and v = V (p) up to a set of measure zero.
Accordingly, the partitions that minimize Hmulticenter have the following property.

Definition 2.5. The partition v ∈ VN is centroidal Voronoi if it has distinct
centroids, that is, Cd(vi) 6= Cd(vj) for all j 6= i, and v = V (Cd(v)).
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2.2. From Lloyd algorithm to distributed coverage control. Here we con-
sider a group of robotic agents with motion, communication and computation capac-
ities and we review a coverage control algorithm that determines the motion of each
robot in a group and the associated partition in such a way as to minimize Hmulticenter.
In what follows, we restrict our attention to d = 2, that is, we assume Q ⊂ R

2.
To explain in what sense our algorithms are distributed, we introduce a useful

graph. The Delaunay graph [12, 10] associated to the distinct positions p ∈ QN \ SN

is the undirected graph with node set {pi}
N
i=1 and with the following edges: (pi, pj)

is an edge if and only if Vi(p)∩Vj(p) is non-empty.
The coverage algorithm we consider is a distributed version of the classic Lloyd

algorithm [15] based on “centering and partitioning” for the computation of centroidal
Voronoi partitions. The algorithm is distributed in the sense that each robot deter-
mines its region of responsibility and its motion plan based upon communication with
only some neighbors. Specifically, communications among the robots takes place along
the edges of the Delaunay graph. The distributed coverage algorithm is described as
follows. At each discrete time instant t ∈ Z≥0, each agent i performs the following
tasks: (i) it transmits its position and receives the positions of its neighbors in the
Delaunay graph; (ii) it computes its Voronoi region with the information received; (iii)
it moves to the centroid of its Voronoi region. In mathematical terms, for t ∈ Z≥0,

(2.8) p(t + 1) = Cd(V (p(t))).

A variation of the function Hmulticenter is useful to analyze this algorithm. We define
the positions-based multicenter function HVoronoi : QN \ SN → R≥0 by

HVoronoi(p) = Hmulticenter(V (p), p) =

N∑

i=1

∫

Vi(p)

f(‖q − pi‖)φ(q)dq.(2.9)

Because of the compactness of Q, a continuity property, and the monotonicity proper-
ties in Proposition 2.4, one can show [10, Theorem 5.5] that HVoronoi is monotonically
non-increasing along the solutions of (2.8) and that all solutions of (2.8) converge
asymptotically to the set of configurations that generate centroidal Voronoi parti-
tions. Additional considerations about convergence are given in [14].

3. Gossip coverage control as a dynamical system on the space of par-

titions. In this section we present the problem of interest, our novel gossip coverage
algorithm and its convergence properties in Subsections 3.1, 3.2 and 3.3, respectively.
In order to reduce the communication requirements of our algorithm, we propose an
adjacency-based and continuous algorithm in Subsection 3.4. Finally, we report some
simulation results in Subsection 3.5.

3.1. Problem statement. The distributed coverage law, based upon the Lloyd
algorithm and described in the previous section, has some important limitations: it
is applicable only to robotic networks with synchronized and reliable communication
along all edges of the Delaunay graph (computed as a function of the robots’ positions).
In other words, the law (2.8) requires that there exists a predetermined common
communication schedule for all robots and, at each communication round, each robot
must simultaneously and reliably communicate its position. Note that the Delaunay
graph, interpreted as a communication graph, has the following drawbacks: for worst-
case robots’ positions, a robot might have N − 1 neighbors in the Delaunay graph
and/or might have a neighbor that is arbitrarily far inside the environment. Therefore,
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each robot must be capable to communicate potentially to all other robots and/or to
robots at large distances.

Given this broad range of undesirable limitations, the aim of this paper is to
reduce the communication requirements of distributed coverage algorithms, in terms
of reliability, synchronization and topology. Here are some relevant questions that
constitute our informal problem statement:

Is it possible to optimize robots positions and environment partition
with asynchronous, unreliable, and delayed communication? Specif-
ically, what if the communication model is that of gossiping agents,
that is, a model in which only a pair of robots can communicate
at any time? Since Voronoi partitions generated by gossiping and
moving agents cannot be computed by gossiping agents, how do we
update the environment partition?

To answer these questions, the next subsections propose an innovative partition-based
gossip approach, in which the robots’ positions essentially play no role and where
instead dominance regions are iteratively updated. Designing coverage algorithms as
dynamical systems on the space of partitions has the key advantage that one is not
restricted to working only with Voronoi or anyway position-dependent partitions.

Example 3.1 (The Lloyd algorithm in the partition-based approach). The dis-
tributed coverage algorithm (2.8) updates the robots’ positions so as to incrementally
minimize the function HVoronoi, while the environment partition is a function of the
robots’ positions. In this paper we take a dual approach: we consider an algorithm
that evolves partitions. From this partition-based viewpoint, the coverage algorithm is
an iterated map on VN and equation (2.8) is rewritten as v(t + 1) = V (Cd(v(t))). �

3.2. The gossip coverage algorithm. In this subsection we present a novel
partition-based coverage algorithm in which, at each communication round, only two
regions communicate. Recall the notion of bisector half-space from equation (2.3).

Gossip Coverage Algorithm

For all t ∈ Z≥0, each agent i ∈ {1, . . . , N} maintains in memory a dominance region
vi(t). The collection (v1(0), . . . , vN (0)) is an arbitrary polygonal N -partition of Q.
At each t ∈ Z≥0 a pair of communicating regions, say vi(t) and vj(t), is selected by a
deterministic or stochastic process to be determined. Every agent k 6∈ {i, j} sets vk(t+
1) := vk(t). Agents i and j perform the following tasks:

1: agent i transmits to agent j its dominance region vi(t) and vice-versa
2: both agents compute the centroids Cd(vi(t)) and Cd(vj(t))
3: if Cd(vi(t)) = Cd(vj(t)) then

4: vi(t + 1) := vi(t) and vj(t + 1) := vj(t)
5: else

6: vi(t + 1) :=
(
vi(t)∪ vj(t)

)
∩Hbisector

(
Cd(vi(t)); Cd(vj(t))

)

vj(t + 1) :=
(
vi(t)∪ vj(t)

)
∩Hbisector

(
Cd(vj(t)); Cd(vi(t))

)

In other words, when two agents with distinct centroids communicate, their dom-
inance regions evolve as follows: the union of the two dominance regions is divided
into two new dominance regions by the hyperplane bisecting the segment between the
two centroids; see Fig. 3.1. As a consequence, if the centroids Cd(vi(t)), Cd(vj(t))
are distinct, then {vi(t + 1), vj(t + 1)} is the Voronoi partition of the set vi(t)∪ vj(t)
generated by the centroids Cd(vi(t)) and Cd(vj(t)).

We claim that the algorithm is well-posed in the sense that the sequence of collec-
tions {v(t)}t∈Z≥0

generated by the algorithm is an N -partition at all times t. Indeed,
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v1

v2

Cd(v1)

Cd(v2)

v+
1

v+
2

Fig. 3.1. The gossip coverage algorithm. The left and right figure contain the initial partition
and the partition after one application of the gossip coverage algorithm. In the middle figure we
show the two centroids and (with a dashed line) the segment determining the bisector half-space.

it is immediate to see that the first two properties in Definition 2.1 are satisfied at
all time if they are satisfied at initial time. Finally, at all times t, each component of
v(t) is clearly closed and has non-empty interior because of the following geometric
fact: there exists no half-plane containing the interior of a region and not containing
the centroid of the same region.

Now, for any i, j ∈ {1, . . . , N} with i 6= j, define the map Tij : VN → VN by

Tij(v) =

{
v, if Cd(vi) = Cd(vj),

(v1, . . . , v̂i, . . . , v̂j , . . . , vN ), otherwise,

where

v̂i =
(
vi ∪ vj

)
∩Hbisector

(
Cd(vi); Cd(vj)

)
,

v̂j =
(
vi ∪ vj

)
∩Hbisector

(
Cd(vj); Cd(vi)

)
.

(3.1)

The dynamical system on the space of partitions is therefore described by, for t ∈ Z≥0,

(3.2) v(t + 1) = Tij(v(t)),

together with a rule describing what pair of regions (i, j) is selected at each time. We
also define the set-valued map T : VN ⇉ VN by T (v) = {Tij(v) | i, j ∈ {1, . . . , N}, i 6=
j}. The map T describes one iteration of the gossip coverage algorithm; an evolution
of the gossip coverage algorithm is one of the solutions to the non-deterministic set-
valued dynamical system v(t + 1) ∈ T (v(t)).

Remark 3.2 (Gossip disk-covering control). We believe that our gossip and
partition-based algorithmic approach is applicable to a broad range of coverage prob-
lems. For example, the worst-case multicenter function [10] is defined by Hworst(p, v) =
maxi∈{1,...,N} maxq∈vi

‖q − pi‖. Maximizing Hworst is equivalent to covering Q with
N disks of smallest radius centered at p. As in Proposition 2.4, for any v ∈ VN and
p ∈ QN \ SN , one can prove Hworst(V (p), p) ≤ Hworst(v, p) and Hworst(v,CC(v)) ≤
Hworst(v, p), where CC(v) is the array of circumcenters of the components of v. Hence,
a gossip coverage algorithm for Hworst is designed by replacing centroid with circum-
center operations in (3.1). We leave this and further extensions to future works. �

3.3. Analysis results for the gossip coverage algorithm. In this subsection
we state the main analysis and convergence results for the gossip coverage algorithm.

We begin by studying the fixed points of T and by introducing an appropriate
cost function with monotonicity properties along T . Regarding the algorithm’s fixed
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points, we extend Definition 2.5 as follows. A partition v is mixed centroidal Voronoi
if, for all pairs (vi, vj) with i 6= j, either Cd(vi) = Cd(vj) or (vi, vj) is a centroidal
Voronoi partition of vi ∪ vj , that is, vi = (vi ∪ vj)∩Hbisector

(
Cd(vi); Cd(vj)

)
.

Lemma 3.3 (Fixed points of T and centroidal Voronoi partitions). For i, j ∈
{1, . . . , N}, j 6= i, denote the set of fixed points of Tij : VN → VN by Fij = {v ∈
VN | Tij(v) = v}. The following statements hold:

(i) ∩j 6=i Fij equals the set of mixed centroidal Voronoi partitions; and
(ii) if v is a mixed centroidal Voronoi partition satisfying Cd(vi) 6= Cd(vj) for

j 6= i, then v is centroidal Voronoi.

Next, we define the partition-based multicenter function Hcentroid : VN → R≥0 by

Hcentroid(v) = Hmulticenter(v,Cd(v)) =

N∑

i=1

∫

vi

f(‖q − Cd(vi)‖)φ(q)dq.(3.3)

Lemma 3.4 (Monotonicity of Hcentroid along T ). For i, j ∈ {1, . . . , N}, i 6= j,

Hcentroid(Tij(v)) ≤ Hcentroid(v), for all v ∈ VN , and

Hcentroid(Tij(v)) < Hcentroid(v), iff Tij(v) and v differ by a set of measure zero.

The proofs of Lemmas 3.3 and 3.4 consist of elementary manipulations and are omit-
ted in the interest of brevity. In short, we have established that the function Hcentroid

monotonically decreases along each Tij when away from fixed points, and that cen-
troidal Voronoi partitions are the fixed points of all Tij provided centroids are distinct.

We now prepare to state the main convergence result for T . We need to introduce
some useful properties for sequences of partitions and for switching signals.

Definition 3.5 (Non-degeneracy). A sequence of N -partitions {v(t)}t∈Z≥0
is

(i) (uniformly) distinct centroidal if there exists ǫ > 0 such that, for all t ∈ Z≥0

and i, j ∈ {1, . . . , N}, i 6= j, one has ‖Cd(vi(t)) − Cd(vj(t))‖ ≥ ǫ;
(ii) (uniformly componentwise) non-vanishing if there exists ǫ > 0 such that, for

all t ∈ Z≥0 and i ∈ {1, . . . , N}, the Lebesgue measure of vi(t) is greater than
ǫ; and

(iii) (uniformly componentwise) finitely convex if there exists ℓ ∈ N such that, for
all t ∈ Z≥0 and i ∈ {1, . . . , N}, the set vi(t) is the union of at most ℓ convex
sets.

Moreover, the sequence v is said to be non-degenerate if it is distinct centroidal, non-
vanishing and finitely convex.

For example, a sequence of partitions is finitely-convex if each component of each
partition in the sequence is the union of a uniformly bounded number of polygons
with a uniformly bounded number of vertices.

Definition 3.6 (Uniform and random persistency). Let X be a finite set.

(i) A map σ : Z≥0 → X is uniformly persistent if there exists a duration ∆ ∈
N such that, for each x ∈ X, there exists an increasing sequence of times
{tk}k∈Z≥0

⊂ Z≥0 satisfying tk+1 − tk ≤ ∆ and σ(tk) = x for all k ∈ Z≥0.
(ii) A stochastic process σ : Z≥0 → X is randomly persistent if there exists a

probability p ∈ ]0, 1[ and a duration ∆ ∈ N such that, for each x ∈ X and for
each t ∈ Z≥0, there exists k ∈ {1, . . . ,∆} satisfying

P
[
σ(t + k) = x |σ(t), . . . , σ(1)

]
≥ p.
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We are now ready to state the main deterministic and stochastic convergence
results for the gossip coverage algorithm. It is convenient to postpone to Section 6.2
the theorem proof and the definition of convergence in the space of partitions.

Theorem 3.7 (Convergence under persistent gossip). Consider the gossip cov-
erage algorithm T and the evolutions {v(t)}t∈Z≥0

⊂ VN defined by

v(t + 1) = Tσ(t)(v(t)), for t ∈ Z≥0,

where σ : Z≥0 → {(i, j) ∈ {1, . . . , N}2 | i 6= j} is either a deterministic map or a
stochastic process. Then the following statements hold:

(i) if σ is a uniformly persistent map, then each non-degenerate evolution v con-
verges to the set of centroidal Voronoi partitions; and

(ii) if σ is a randomly persistent stochastic process, then each evolution v, condi-
tioned upon being non-degenerate, converges almost surely to the set of cen-
troidal Voronoi partitions.

We conjecture that evolutions resulting from initial polygonal partitions are al-
ways non-degenerate. Section 3.5 contains some numerical evidence to this effect.

Lemma 3.4 indicates how the function Hcentroid plays the role of a Lyapunov
function for the dynamical system defined by T . To provide a complete Lyapunov
convergence proof of Theorem 3.7, we set out to establish three sets of relevant results.
First, we need to establish extensions of the Krasovskii-LaSalle invariance principle
for set-valued dynamical systems over compact metric spaces. Second, we need to
establish the compactness properties of the space of non-degenerate partitions. Third,
we need to establish the continuity of the relevant geometric maps. These three topics
are the subjects of Section 4, 5 and 6, respectively.

3.4. Designing an adjacency-based and continuous algorithm. The gos-
sip coverage map T has the undesirable feature that it entails communication ex-
changes between any two regions. This communication requirement might be too
onerous in some multiagent applications. Ideally we would like to require communi-
cations only between adjacent regions, i.e., regions whose boundaries touch, or be-
tween “nearby” regions. We believe such communication requirements may be easily
achieved in practice; for completeness purposes, a sample implementation for robots
with range-dependent unreliable communication is presented in the report [9]. Hence,
we wish to design a modification of the map T which acts only on adjacent regions,
taking into account that the modified update map needs to be continuous for tech-
nical reasons: the invariance principles we adopt for the convergence analysis require
continuity of the dynamical system.

Motivated by this discussion, we modify the map T to rely upon only adjacency-
based communication and to be continuous. First, we introduce a pseudodistance
notion between sets. Given closed A ⊂ Q and B ⊂ Q with non-empty interior, define

pseudodist(A,B) = inf{‖a − b‖ | (a, b) ∈ int(A) × int(B)}.

Second, we select a positive constant δ ≪ diam(Q) and denote by T δ : VN → VN the
modified gossip coverage map to be defined in what follows. For any i, j ∈ {1, . . . , N},
i 6= j, we give the following partial definition:

(3.4) T δ
ij(v) =

{
v, if

(
‖Cd(vi) − Cd(vj)‖ = 0

)
or

(
pseudodist(vi, vj) ≥ δ

)
,

T (v), if
(
‖Cd(vi) − Cd(vj)‖ ≥ δ

)
and

(
pseudodist(vi, vj) = 0

)
.
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Therefore, if either Cd(vi) and Cd(vj) coincide or the pseudodistance between vi

and vj is larger than δ, then T δ
ij(v) = v, that is, the map T δ

ij leaves the partition
unchanged. Additionally, if the pseudodistance between the regions vi and vj is zero
(vi and vj are adjacent) and the distance between Cd(vi) and Cd(vj) is larger than
δ, then T δ

ij(v) = Tij(v).
Next, we consider partitions that do not satisfy either of the two conditions in

definition (3.4). We define the unit saturation function sat : R≥0 → [0, 1] by sat(x) =
x if x ∈ [0, 1], and sat(x) = 1 if x > 1 and the scaling function βij : VN → [0, 1] by

βij(v) = sat
(
‖Cd(vi) − Cd(vj)‖/δ

)(
1 − sat

(
pseudodist(vi, vj)/δ

))
.

The first condition and the second condition in (3.4) correspond precisely to βij(v) = 0
and βij(v) = 1, respectively. For partitions v satisfying 0 < βij(v) < 1, we aim
to define T δ so as to continuously interpolate between the identity map and the
map T ; see Fig. 3.2 for an illustration. Let Ri = vi ∩Hbisector(Cd(vj),Cd(vi)) and

v1

v2

R2

Cd(v1)

Cd(v2)

γ⊥

p̂2

γ⊥

R̂2

v1

v2

v1

Fig. 3.2. Modified gossip between close but not adjacent regions (0 < β12(v) < 1). The bisecting
line γ⊥ borders the set R2 = v2 ∩Hbisector(Cd(v1), Cd(v2)) that, in the map T , is assigned to v1

(see Fig. 3.1). According to T δ instead, only the subset bR2 ( R2 is assigned to v1. Loosely speaking,

the “width” of bR2 equals β12(v) times the “width” of R2, where “width” of a set is the maximum
distance from a point in the set to γ⊥.

Rj = vj ∩Hbisector(Cd(vi),Cd(vj)). Define the line γ⊥ = ∂Hbisector(Cd(vj),Cd(vi))
and

p̂i = a point in int (Ri) that is maximally distant from γ⊥,

p̂j = a point in int (Rj) that is maximally distant from γ⊥.
(3.5)

Next, note that for each q ∈ Ri ∪ Rj there exists a unique line, say γq, that is parallel
to γ⊥ and passes through q. Based on this notion, we define

R̂i = {q ∈ Ri | dist(p̂i, γq) ≤ βij(v) dist(p̂i, γ⊥) or dist(q, γ⊥) ≥ dist(p̂i, γ⊥)},

R̂j = {q ∈ Rj | dist(p̂j , γq) ≤ βij(v) dist(p̂j , γ⊥) or dist(q, γ⊥) ≥ dist(p̂j , γ⊥)}.

We can now complete the partial definition (3.4). For all v with 0 < βij(v) < 1, that
is, for all partitions not already dealt with in definition (3.4), we define

T δ
ij(v) = (v1, . . . ,

(
vi \ R̂i

)
∪ R̂j︸ ︷︷ ︸

ith entry

, . . . ,
(
vj \ R̂j

)
∪ R̂i︸ ︷︷ ︸

jth entry

, . . . , vN ).

As discussed for T , one can prove that the map T δ : VN ⇉ VN defined by T δ(v) =
{T δ

ij(v) | i, j ∈ {1, . . . , N}, i 6= j}, is well-posed and has the following properties.
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Theorem 3.8 (Convergence of modified gossip map). Consider the modified
gossip coverage algorithm T δ and the evolutions {v(t)}t∈Z≥0

⊂ VN defined by

v(t + 1) = T δ
σ(t)(v(t)), for t ∈ Z≥0,

where σ : Z≥0 → {(i, j) ∈ {1, . . . , N}2 | i 6= j} is either a deterministic map or a
stochastic process. Then the following statements hold:

(i) if σ is a uniformly persistent map, then each non-vanishing and finitely-convex
evolution v converges to the set of mixed centroidal Voronoi partitions; and

(ii) if σ is a randomly persistent stochastic process, then each evolution v, condi-
tioned upon being non-vanishing and finitely convex, converges almost surely
to the set of mixed centroidal Voronoi partitions.

3.5. Simulation results and implementation remarks. We have extensively
simulated the partition-based gossip coverage algorithm T on a 2-dimensional polyg-
onal environment with uniform density and performance function f(x) = x2. Sim-
ulations have been implemented as a Matlab program, using the General Polygon

Clipper Library to perform operations on polygons. We adopted the following com-
munication model: at each iteration, a region pair is chosen, uniformly at random,
among all pairs of adjacent regions. Fig. 3.3 is an illustration of a typical evolution.

Fig. 3.3. An example simulation of the gossip coverage algorithm with uniform random edge
selection. The environment Q is a rectangle with uniform density, centroids are computed with per-
formance function f(x) = x2, and N = 6 regions compose the partition. Snapshots of an evolution
are shown for t ∈ {0, 20, 50, 100, 300}. One may verify numerically that the sequence converges
asymptotically to a centroidal Voronoi partition. At t = 20 one of the regions is disconnected.

Our first numerical finding is that the gossip coverage algorithm appears to con-
verge to centroidal Voronoi partitions from all initial conditions. This is the same
property that the Lloyd synchronous coverage algorithm (2.8) is known to possess.
In other words, our numerically-computed sequences of partitions always converge
to centroidal Voronoi partitions – even though our theoretical analysis (1) requires a
continuous interpolation from T to T δ and (2) does not exclude convergence to de-
generate partitions where some component regions might have coincident centroids,
or might have empty interiors, or might be composed of “polygons with an infinite
number of vertices,” that is, arbitrary sets.

A second numerical finding is that, throughout numerous sample executions, the
polygonal regions, which appear during the evolution, rarely have complicated shapes
and large numbers of vertices. This can be intuitively explained by the remark that
whenever two adjacent agents communicate, the border between their regions becomes
a straight line. This limited complexity is good news because of our assumption of
finite convexity and because large numbers of vertices affect both the computation
and the communication burden of the gossip coverage algorithm.

Finally, it is possible, and we have observed it numerically, to have evolutions of
the algorithm that, before converging to centroidal Voronoi partitions, have compo-
nents with disconnected regions. We believe that there might be applications where it



14 FRANCESCO BULLO, RUGGERO CARLI AND PAOLO FRASCA

is desirable to maintain connectivity of the components of the partition and, therefore,
we sketch here how to design a connectivity-preserving algorithm. Note that the up-
date step of the partition-based coverage algorithm amounts to the exchange, among
the agents, of a region, which consists in general of several connected components. In
the connectivity-preserving algorithm, such components are considered individually,
and each of them is traded only if this can be done without loosing connectivity; if
not, the component is kept by the previous owner. Numerical simulations indicate
that such an algorithm leads to centroidal Voronoi partitions as well.

4. On the Krasovskii–LaSalle invariance principle: set-valued maps on

metric spaces. In this section we consider discrete-time set-valued dynamical system
defined on metric spaces. Our goal is to provide some extensions of the classical
Krasovskii-LaSalle Invariance Principle; we refer the interested reader to [5, 22, 35]
for recent invariance principles for switched continuous-time and hybrid systems.

We start by reviewing some preliminary notions including set-valued dynamical
systems, continuity and invariance properties, and Lyapunov functions. On a metric
space (X, d), where X is a set and d is a metric on X, a set-valued map T : X ⇉ X
is non-empty if T (x) 6= ∅ for all x ∈ X. An evolution of the dynamical system
determined by a non-empty set-valued map T is a sequence {xn}n∈Z≥0

⊂ X with the
property that

xn+1 ∈ T (xn), n ∈ Z≥0.

In other words, we regard a set-valued map as a nondeterministic discrete-time dynam-
ical system. For set-valued maps we introduce notions of continuity and invariance as
follows. A set-valued map T is closed at x ∈ X if, for all pairs of convergent sequences
xk → x and x′

k → x′ such that x′
k ∈ T (xk), one has that x′ ∈ T (x). Additionally, T

is closed on W ⊂ X if it is closed at all w ∈ W . A set W ⊂ X is weakly positively
invariant for T if T (w)∩W is non-empty for all w ∈ W . A set W is strongly positively
invariant for T if T (w) ⊂ W for all w ∈ W .

We are ready now to state a Krasovskii-LaSalle invariance principle for set-valued
maps defined on metric spaces. This result extends the Global Convergence Theorem
in [27] to more general Lyapunov functions. Its proof follows the lines of the proof of
Theorem 1.21 in [10], and is thus omitted.

Lemma 4.1 (Krasovskii-LaSalle invariance principle for set-valued maps). Let
(X, d) be a metric space and T : X ⇉ X be non-empty. Assume that:

(i) there exists a compact set W ⊆ X that is strongly positively invariant for T ;
(ii) there exists a function U : W → R such that U(w′) ≤ U(w), for all w ∈ W

and w′ ∈ T (w);
(iii) the function U is continuous on W and the map T is closed on W .

Then there exists c ∈ R such that each evolution of T with initial condition in W
approaches a set of the form S ∩U−1(c), where S is the largest weakly positively
invariant set contained in

{w ∈ W | ∃w′ ∈ T (w) such that U(w′) = U(w)}.

In this paper, given the metric space (X, d), we deal with a set-valued map T :
X ⇉ X defined by a collection of maps T1, . . . , Tm : X → X via the equality T (x) =
{T1(x), . . . , Tm(x)} for x ∈ X. For this kind of set-valued maps, closedness is related
to continuity of ordinary maps.



GOSSIP COVERAGE CONTROL 15

Lemma 4.2. Let T1, . . . , Tm : X → X be continuous on W ⊂ X. The set-valued
map T : X ⇉ X defined by T (x) = {T1(x), . . . , Tm(x)} is closed on W .

Proof. Let wn → w and w′
n → w′ be a pair of convergent sequences in W , such

that w′
n ∈ T (wn). We claim that the continuity of T1, . . . , Tm implies w′ ∈ T (w).

Note that, by hypothesis, for all n ∈ Z≥0 there exists in ∈ {1, . . . ,m} such
that w′

n = Tin
(wn). Because the set {1, . . . ,m} is finite, there exists an index j ∈

{1, . . . ,m} that appears infinitely many times in the sequence {in}n∈N. Consider the
subsequences {wnl

} ⊆ {wn} and {w′
nl
} ⊆ {w′

n}, such that w′
nl

= Tj(wnl
). Clearly,

we have that wnl
→ w and w′

nl
→ w′, where from the continuity of Tj it follows that

w′ = Tj(w). Thus, w′ ∈ T (w) and the claim is proved.
The following result is a stronger version of Lemma 4.1, for a particular class of

set-valued dynamical systems.
Theorem 4.3 (Uniformly persistent switches imply convergence). Let (X, d) be

a metric space. Given a collection of maps T1, . . . , Tm : X → X, define the set-valued
map T : X ⇉ X by T (x) = {T1(x), . . . , Tm(x)} and let {xn}n∈Z≥0

be an evolution of
T . Assume that:

(i) there exists a compact set W ⊆ X that is strongly positively invariant for T ;
(ii) there exists a function U : W → R such that U(w′) < U(w), for all w ∈ W

and w′ ∈ T (w) \ {w};
(iii) the maps Ti, for i ∈ {1, . . . ,m}, and U are continuous on W ; and
(iv) for all i ∈ {1, . . . ,m}, there exists an increasing sequence of times {nk | k ∈

Z≥0} such that xnk+1 = Ti(xnk
) and (nk+1 − nk) is bounded.

If x0 ∈ W , there exists c ∈ R such that the evolution {xn}n∈Z≥0
approaches the set

(F1 ∩ · · · ∩Fm)∩U−1(c),

where Fi = {w ∈ W | Ti(w) = w} is the set of fixed points of Ti in W , i ∈ {1, . . . ,m}.
Loosely speaking, (i) the compactness of a strongly positively invariant set, (ii) a
monotonicity property for a Lyapunov function, (iii) continuity properties, and (iv)
uniformly persistent switches among finitely many maps, together ensure convergence
of each evolution to the intersection of the fixed points of the maps.

Proof. [Proof of Theorem 4.3] Let S be the largest weakly positively invariant set
contained in

{w ∈ W | ∃w′ ∈ T (w) such that U(w′) = U(w)} = F1 ∪ · · · ∪Fm.

Since T is closed by Lemma 4.2, the assumptions of Lemma 4.1 are met; hence there
exists c ∈ R such that U(xn) → c and xn → S ∩U−1(c).

Let ω(xn) denote the ω-limit set of the sequence {xn | n ∈ Z≥0}. If we show that
ω(xn) ⊆ (F1 ∩ · · · ∩Fm)∩U−1(c), then the statement of the theorem is proved. We
proceed by contradiction. To this aim, let x̂ ∈ S ∩U−1(c)\

(
(F1 ∩ · · · ∩Fm)∩U−1(c)

)

and let {xnh
}h∈Z≥0

be a subsequence such that xnh
→ x̂.

Observe that for each x̂ ∈ S \ (F1 ∩ · · · ∩Fm), there exists a non-empty set Ibx ⊂
{1, . . . ,m} such that, x̂ = Ti (x̂) if i ∈ Ibx, and x̂ 6= Ti (x̂) if i /∈ Ibx. By the continuity
of the maps Ti, there exists δ ∈ R>0 such that, if i /∈ Ibx, then Ti(x) 6= x for all
x ∈ Bδ(x̂) = {x ∈ W | d(x, x̂) ≤ δ}. Let now

γδ = min
i∈Ibx

{
min

x∈Bδ(bx)

(
U (x) − U (Ti(x))

)}
≥ 0.

By hypothesis, if i /∈ Ibx, then U(Ti(x)) < U(x) for all x ∈ Bδ(x̂). Hence, since Bδ(x̂)
is closed, and U and the maps Ti are continuous, we deduce that γ > 0.



16 FRANCESCO BULLO, RUGGERO CARLI AND PAOLO FRASCA

Observe now that hypothesis (iv) implies the existence of a duration D ∈ N

such that every map Ti, i ∈ {1, . . . ,m}, is applied at least once within every interval
[n, n + D[, for all n ∈ Z≥0. Consider the set {Ti}i∈Ibx

; this is a collection of continuous
maps having x̂ as fixed point. Then, there exists a suitable ǫ ∈ R>0 such that, given
any r-uple (j1, . . . , jr) ∈ Ir

bx, r ≤ D, we have that Tj1 ◦ Tj2 ◦ Tj3 ◦ . . . ◦ Tjr
(x) ∈ Bδ(x̂)

for all w ∈ Bǫ(x̂).
Select now k such that the element xnk

in the subsequence {xnh
}h∈Z≥0

satisfies
d (xnk

, x̂) < ǫ and U(xnk
) − c < γδ. Let

s = min{t ∈ [1,D[ | ∃ j /∈ Ibx such that xnk+t+1 = Tj (xnk+t)}.

Observe that U(xnk+s) − c < γδ and U(xnk+s) − U
(
Tj(xnk+s)

)
≥ γδ implying that

U (Tj (xnk+s)) < c. This is a contradiction.
Remark 4.4. An alternate proof of this theorem can be given by applying an

invariance principle obtained in [35] on an appropriately-designed dynamical extension
of the discrete-time set-valued system. �

In Appendix A we show how the persistent switching assumption is necessary.
Next, we provide a probabilistic version of the previous theorem.

Theorem 4.5 (Persistent random switches imply convergence). Let (X, d) be
a metric space. Given a collection of maps T1, . . . , Tm : X → X, define the set-
valued map T : X ⇉ X by T (x) = {T1(x), . . . , Tm(x)}. Given a stochastic process
σ : Z≥0 → {1, . . . ,m}, consider an evolution {xn}n∈Z≥0

of T satisfying

xn+1 = Tσ(n)(xn).

Assume that:
(i) there exists a compact set W ⊆ X that is strongly positively invariant for T ;
(ii) there exists a function U : W → R such that U(w′) < U(w), for all w ∈ W

and w′ ∈ T (w) \ {w};
(iii) the maps Ti, for i ∈ {1, . . . ,m}, and U are continuous on W ; and
(iv) there exists p ∈ ]0, 1[ and k ∈ N such that, for all i ∈ {1, . . . ,m} and n ∈ Z≥0,

there exists h ∈ {1, . . . , k} such that

P
[
σ(n + h) = i |σ(n), . . . , σ(1)

]
≥ p.

If x0 ∈ W , then there exists c ∈ R such that almost surely the evolution {xn}n∈Z≥0

approaches the set

(F1 ∩ · · · ∩Fm)∩U−1(c),

where Fi = {w ∈ W | Ti(w) = w} is the set of fixed points of Ti in W , i ∈ {1, . . . ,m}.
Loosely speaking, (i) the compactness of a strongly positively invariant set, (ii) a
monotonicity property for a Lyapunov function, (iii) continuity properties, and (iv)
persistent random switches among finitely many maps, together ensure convergence
of each evolution to the intersection of the fixed points of the maps.

Proof. [Proof of Theorem 4.5] If x0 ∈ W , then the stochastic process σ induces
a stochastic process taking values in W . From now on, we restrict our attention to
sequences {xn}n∈Z≥0

such that x0 ∈ W . In other words we assume that the sample
space containing all the evolutions of our interest is given by

A =
{
{xn}n∈Z≥0

| xn ∈ W for all n ∈ Z≥0

}
.
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Let S be the largest weakly positively invariant set contained in

{w ∈ W | ∃w′ ∈ T (w) such that U(w′) = U(w)} = F1 ∪ · · · ∪Fm.

From Lemma 4.1, we know that there exists c ∈ R such that xn → S ∩U−1(c). This
implies that the following event is certain:

E =
{
{xn}n∈Z≥0

| ∃ c ∈ R such that lim
n→∞

U(xn) = c
}
.

Let ω(xn) denote the ω-limit set of the sequence {xn | n ∈ Z≥0}. If we show that
ω(xn) ⊆

(
(F1 ∩ · · · ∩Fm)∩U−1(c)

)
almost surely, then the statement of the theorem

is proved. Next, consider the event

E1 =
{
{xn}n∈Z≥0

| ∃ x̂ ∈ S \ (F1 ∩ . . .∩Fm) such that x̂ ∈ ω (xn)
}
.

Assume by contradiction that P [E1] > 0. Now we compute P [E|E1]. Note that, for
each x̂ ∈ S \ (F1 ∩ . . .∩Fm), there exists a non-empty set Ibx ⊂ {1, . . . ,m} such that,
x̂ = Ti (x̂) if i ∈ Ibx, and x̂ 6= Ti (x̂) if i /∈ Ibx. Similarly to the proof of Theorem 4.3,
we can associate to each x̂ a positive real number δ such that the inequality x 6= Ti (x)
holds true for all x ∈ Bδ(x̂) = {x ∈ W | d(x, x̂) ≤ δ} and for all i /∈ Ibx. Moreover, we
can define

γδ = min
i∈Ibx

{
min

x∈Bδ(bx)

(
U(x) − U(Ti(x))

)}
,

where the continuity of the maps Tj , j ∈ {1, . . . ,m}, and U , and the closedness of the
set Bδ(x̂) ensure that γδ > 0.

Consider the set {Ti}i∈Ibx
; this is a collection of continuous maps having x̂ as

fixed point. Therefore, there exists a suitable ǫ ∈ R>0 such that, given any r-uple
(j1, . . . , jr) ∈ Ir

bx, r ≤ k, we have Tj1 ◦Tj2 ◦Tj3 ◦ . . . ◦Tjr
(x) ∈ Bδ(x̂) for all x ∈ Bǫ(x̂).

Given {xn}n∈Z≥0
, if there exists x̂ ∈ S \ (F1 ∩ . . .∩Fm) such that x̂ ∈ ω (xn), then

there must exist {nh| h ∈ Z≥0} such that xnh
∈ Bǫ(x̂) for all h ∈ Z≥0. Moreover,

without loss of generality we can assume that nh+1−nh > k for all h ∈ Z≥0. Consider
now the event

E3 =
{
{in ∈ {1, . . . ,m} | n ∈ Z≥0} |

∃ h̄ such that inh+s ∈ Ibx for all s ∈ {1, . . . , k} and h ≥ h̄
}
.

To compute P[E3], we define, for j ∈ Z≥0,

E3,j =
{
{in ∈ {1, . . . ,m} | n ∈ Z≥0} | inh+s ∈ Ibx for all s ∈ {1, . . . , k} and h ≥ j

}
.

Observe that {E3,j | j ∈ Z≥0} is a countable collection of disjoint sets such that
E3 =

⋃∞
j=0 E3,j . By hypothesis we have that

P[E3,j ] ≤ lim
l→∞

l∏

s=j

(1 − p) = 0,

and therefore P[E3] = 0. This implies that, almost surely, there exists a subsequence
{nhs

}s∈Z≥0
⊆ {nh}h∈Z≥0

with the property that, for all s ∈ Z≥0, xnhs
+1 = Ti(xnhs

)
for some i /∈ Ibx and, therefore, also with the property that U(xnhs

)−U(xnhk
+1) > γδ.
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Consequently, almost surely, we have that lims→∞ U(xnhs
) = −∞ thus violating the

fact that E is a certain event. This implies that P [E1] = 0 and that, almost surely,
xn → (F1 ∩ . . .∩Fm)∩U−1(c).

Remark 4.6. The assumption, in Lemma 4.1 and Theorems 4.3 and 4.5, that W
is strongly positively invariant ensures that any evolution of T with initial condition in
W remains in W . By relaxing this assumption, it is possible to provide weaker versions
of these results. Specifically, requiring W to be only compact and not necessarily
strongly positively invariant, the thesis of Lemma 4.1 and Theorems 4.3 and 4.5 do
not hold in general for any evolution of T with initial condition on W , but are still
valid for those evolutions {xn}n∈Z≥0

that take values in W for all n ∈ Z≥0. �

5. On the topology of the space of partitions: compactness properties

in the symmetric difference metric. Motivated by the invariance principles pre-
sented in Section 4, we study metric structures on the set of partitions, with a focus on
compactness and continuity properties. Specifically, we show how a particular subset
of the set of partitions can be regarded as a compact metric space and how certain
relevant maps are continuous over that subspace. In this section, and only in this
section, the assumptions on Q are relaxed to give more general results: we assume
that Q ⊂ R

d is compact and connected and has non-empty interior.
Let C denote the set of closed subsets of Q. We would like to introduce a topology

on C with two properties: C is compact and the Voronoi map, the centroid map, and
the multicenter function, defined in equations (2.2) (2.5), and (3.3) respectively, are
continuous over C. A natural candidate is the topology induced by the well-known [34]
Hausdorff metric on C: given two sets A,B ∈ C, their Hausdorff distance is dH(A,B) =
max {maxa∈A minb∈B d(a, b),maxb∈B mina∈A d(a, b)}. This metric induces a topology
on C which makes it a compact space, but is not suitable for our purpose because,
with respect to this topology, the Voronoi map, the centroid map, and the multicenter
function, are not continuous; see Appendix B. Additionally, note that, unlike the
Hausdorff metric, the centroid map and the multicenter function are insensitive to
sets of measure zero.

In what follows, we introduce the symmetric difference metric, as a metric insen-
sitive to sets of measure zero. Given two subsets A,B ∈ C, we define their symmetric
difference by A ⊖ B = (A ∪ B) \ (A∩B). Moreover, letting µ denote the Lebesgue
measure on R

d, we define the symmetric difference distance, also called the symmetric
distance for simplicity, d⊖ : C × C → R≥0 by

d⊖(A,B) = µ(A ⊖ B),

that is, the symmetric distance between two sets is the measure of their symmetric
difference. Given these notions, it is useful to identify sets that differ by a set of
measure zero: we write A ∼ B whenever µ(A ⊖ B) = 0. Clearly, ∼ is an equivalence
relationship on C and, accordingly, we let C∗ = C/∼ denote the quotient set of closed
subsets of Q. Now, for any two elements A∗ and B∗ of C∗, we define d⊖(A∗, B∗) =
d⊖(A,B) where A and B are any representatives of A∗ and B∗, respectively. With
this notion of d⊖ on C∗ × C∗, it is easy to verify that (C∗, d⊖) is a metric space.
Unfortunately, it is known1 that the metric space (C∗, d⊖) is not compact. For this
reason, we introduce a particular family of subsets of C whose structure is sufficiently

1For Q = [0, 1], the sequence of sets ck = ∪2
k−1

i=1
[2(i − 1)/2k, (2i − 1)/2k], for k ∈ N, satisfies

d⊖(ci, cj) = 1/2 for all i 6= j. Hence, C contains a sequence of 1/2-separated points with respect to
the symmetric difference metric, violating compactness.



GOSSIP COVERAGE CONTROL 19

rich for our algorithm. For ℓ ∈ N, let C(ℓ) ⊂ C denote the set of ℓ-convex and closed
subsets of Q, that is, the set of subsets of Q equal to the union of ℓ convex and closed
subsets of Q. Formally, we set

C(ℓ) =
{
v ⊆ Q | v = ∪ℓ

i=1 Si where S1, . . . , Sℓ ⊆ Q are convex and closed
}
.

Note that we do not require the sets S1, . . . , Sℓ to be distinct so that C(k) ⊂ C(ℓ), for
any k < ℓ. In what follows we study the quotient set of ℓ-convex and closed subsets
C∗
(ℓ) = C(ℓ)/∼. The next result is the main result of this section.

Theorem 5.1 (Compactness of C∗
(ℓ)). The pair (C∗

(ℓ), d⊖) is a metric space and,
with the topology induced by d⊖, the set C∗

(ℓ) is compact.
Proof. It is easy to verify that d⊖ is a metric on C∗

(ℓ). Instead, proving the
compactness of C∗

(ℓ) requires some attention. We aim to show that any sequence in
C∗
(ℓ) has a subsequence that converges to a point in C∗

(ℓ). This fact’s proof is articulated
in several steps and relies upon several known results:

(i) the space C, endowed with the Hausdorff distance dH : C × C → R≥0, is [31,
Theorem 0.8] a compact metric space;

(ii) if a sequence of closed convex subsets of Q converges in the Hausdorff sense
to a set K, then [25, Proposition 1.6.8] K is closed and convex; and

(iii) for any two convex subsets A,B of Q ⊂ R
d, it is known [20, Eq. (1)] that

d⊖(A,B) ≤
( 2κd

21/d − 1

(
D

2

)d−1 )
dH(A,B),

where D = max {diam(A),diam(B)} and where κd is the volume of the unit
sphere in R

d.
Now let {v∗(n)}n∈Z≥0

be any sequence in C∗
(ℓ). For all n ∈ Z≥0, pick any rep-

resentative of the equivalence class v∗(n), denote it by v(n) ∈ C(ℓ) and consider
the sequence {v(n)}n∈Z≥0

. Because {v(n)}n∈Z≥0
is a sequence in C(ℓ) and because

C(ℓ) ⊆ C, it follows from fact (i) above that {v(n)}n∈Z≥0
contains a subsequence that

converges in the Hausdorff sense to an element of C. In other words, there exist

{v(nk)}k∈Z≥0
⊆ {v(n)}n∈Z≥0

and v̄ ∈ C such that limk→∞ v(nk)
(H)
= v̄, where

(H)
= de-

notes convergence in the Hausdorff sense. We claim that v̄ ∈ C(ℓ) so that the set C(ℓ)

is compact in the Hausdorff sense. To show this claim, we plan to exhibit a collection
of convex and closed subsets of Q, say {S1, . . . , Sℓ}, such that v̄ = ∪ℓ

i=1Si. We begin
the construction of v̄ as follows. By definition of C(ℓ), for all k ∈ Z≥0 there exists a
collection {S1(nk), . . . , Sℓ(nk)} of convex and closed subsets of Q whose union equals
v(nk). Now, we consider the sequence {S1(nk)}k∈Z≥0

. Again, since (C, dH) is a com-
pact metric space we have that there exists a subsequence {nk1

}k1∈Z≥0
⊆ {nk}k∈Z≥0

such that limk1→∞ S1(nk1
)

(H)
= S̄1 for some S̄1. Fact (ii) above ensures that S̄1 is a con-

vex closed subset of Q. Consider now the sequence {S2(nk1
)}k1∈Z≥0

. By reasoning
as previously we know that there exists a subsequence {nk2

}k2∈Z≥0
⊆ {nk1

}k1∈Z≥0

such that limk2→∞ S2(nk2
)

(H)
= S̄2 where S̄2 is some convex closed set of Q. More-

over, it is clear that also limk2→∞ S1(nk2
)

(H)
= S̄1. By iterating this procedure we

conclude that there exist a sequence {ns}s∈Z≥0
and a collection of convex and closed

sets {S̄1, . . . , S̄ℓ} such that lims→∞ Si(ns)
(H)
= S̄i for all i ∈ {1, . . . , ℓ}. Next, we aim

to show that v(ns) converges to
⋃ℓ

i=1 S̄i in the Hausdorff sense, that is,

(5.1) lim
s→∞

ℓ⋃

i=1

Si(ns) =

ℓ⋃

i=1

lim
s→∞

Si(ns) =

ℓ⋃

i=1

S̄i.



20 FRANCESCO BULLO, RUGGERO CARLI AND PAOLO FRASCA

For simplicity, let us denote lims→∞

⋃ℓ
i=1 Si(ns) by S∞. For p ∈ Q, note

p ∈ S∞ ⇐⇒ dist

(
p, lim

s→∞

ℓ⋃

i=1

Si(ns)

)
= 0 ⇐⇒ lim

s→∞
dist

(
p,

ℓ⋃

i=1

Si(ns)

)
= 0,

where, for a given closed set X, dist(p,X) denotes the Euclidean distance between p
and X, namely, minx∈X ‖p − x‖. Using the fact that, for given closed sets X and Y ,
dist (p,X ∪ Y ) = min {dist(p,X),dist(p, Y )}, we can write

lim
s→∞

dist

(
p,

ℓ⋃

i=1

Si(ns)

)
= 0 ⇐⇒ lim

s→∞
min {dist(p, S1(ns)), . . . ,dist(p, Sℓ(ns))} = 0

⇐⇒ ∃j ∈ {1, . . . , ℓ} s.t. lim
s→∞

dist(p, Sj(ns)) = 0

⇐⇒ ∃j ∈ {1, . . . , ℓ} s.t. p ∈ S̄j

⇐⇒ p ∈
ℓ⋃

i=1

S̄i.

The above chain of implications proves (5.1). Now observe that, from the uniqueness

of the limit it follows that limk→∞ v(nk) = lims→∞

⋃ℓ
i=1 Si(ns) =

⋃ℓ
i=1 S̄i = v̄. Since

S̄i is closed and convex for all i ∈ {1, . . . , ℓ}, it follows that v̄ ∈ C(ℓ) and, in turn, that
C(ℓ) endowed with the Hausdorff metric is a compact metric space.

To establish the statement of the Theorem we still need to prove that limk→∞

d⊖(v(nk), v̄) = 0, or that lims→∞ d⊖(v(ns), v̄) = 0. To this end, observe that, given
X1,X2, Y1, Y2 ⊆ Q, the following inclusion holds (X1 ∪X2)⊖ (Y1 ∪ Y2) ⊆ (X1 ⊖ Y1)∪
(X2 ⊖ Y2). Hence, we compute

v (ns) ⊖ v̄ =

(
ℓ⋃

i=1

Si(ns)

)
⊖ v̄ =

(
ℓ⋃

i=1

Si(ns)

)
⊖

(
ℓ⋃

i=1

S̄i

)
⊆

ℓ⋃

i=1

(
Si(ns) ⊖ S̄i

)
,

which implies

d⊖ (v (ns) , v̄) = d⊖

(
ℓ⋃

i=1

Si(ns), v̄

)
≤

ℓ∑

i=1

d⊖
(
Si(ns), S̄i

)

≤
ℓ∑

i=1

2κd

21/d − 1

(
max

{
diam (Si(ns)) ,diam

(
S̄i

)}

2

)d−1

dH

(
Si(ns), S̄i

)

≤
2κd

21/d − 1

(
diam(Q)

2

)d−1 ℓ∑

i=1

dH

(
Si(ns), S̄i

)
,

where the second and the third inequalities follow, respectively, from fact (iii) above
and from the upper bounds max{diam (Si(ns)) ,diam

(
S̄i

)
} ≤ diam(Q), for all i ∈

{1, . . . , ℓ}. Since lims→∞ dH

(
Si(ns), S̄i

)
= 0 for all i ∈ {1, . . . , ℓ}, we conclude that

lim
s→∞

d⊖(v(ns), v̄) = 0.

Now, let v̄∗ denote the equivalence class for which v̄ is a representative. Since the met-
ric d⊖ is insensitive to sets of measure zero, it follows that lims→∞ d⊖(v∗(ns), v̄

∗) = 0
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and, in turn, that {v∗(n)}n∈Z≥0
has a subsequence convergent to point of C∗

(ℓ). This
concludes the proof that C∗

(ℓ) is a compact space.

The metric d⊖ naturally extends to a metric over the space (C∗)N , and hence over
(C∗

(ℓ))
N , by defining

(5.2) d⊖(u, v) =

N∑

i=1

d⊖(ui, vi),

for any u = (ui)
N
i=1 and v = (vi)

N
i=1 in (C∗)N . The compactness of (C∗

(ℓ))
N is then a

simple consequence of Theorem 5.1.

Corollary 5.2 (Compactness of (C∗
(ℓ))

N). The pair
(
(C∗

(ℓ))
N , d⊖

)
is a metric

space and, with the topology induced by d⊖, (C∗
(ℓ))

N is compact.

6. On the continuity of some geometric maps and the resulting conver-

gence proofs. In this section we prove the main convergence theorems for our gossip
coverage algorithms. First, however, we need to establish the continuity properties of
certain geometric maps and of the proposed algorithms T and T δ. Before proceeding,
we discuss two significant modeling aspects. First, recall that Section 5 introduces the
spaces C, C(ℓ), C

N , CN
(ℓ) and the corresponding quotient sets C∗, C∗

(ℓ), (C∗)N , (C∗
(ℓ))

N .

We can do the same with the partition space VN . Indeed from Definition 2.1(iii) we
have that each component vi of v ∈ VN can be mapped by the canonical projection
into an equivalence class v∗

i in C∗ \ {∅}; in turn, any v ∈ VN can be naturally associ-
ated to the N -collection of equivalence classes v∗ = (v∗

i )N
i=1 . Accordingly, we denote

the space of equivalence classes of N -partitions by V∗
N . Recall that all these quotient

spaces are metric spaces with respect to the symmetric distance d⊖.

Second, recall the following maps: the centroid map Cd : {A ∈ C | µ(A) > 0} → Q
defined in equation (2.5), the 1-center function H1 : Q × C → R≥0 defined in equa-
tion (2.4), the multicenter function Hcentroid : VN → R≥0 defined in equation (3.3),
the gossip coverage map Tij : VN → VN with i 6= j defined in equation (3.2), and,
for δ > 0 and i 6= j, the modified gossip coverage map T δ

ij : VN → VN defined in
Section 3.4. We claim that all these maps are insensitive to sets of measure zero. To
substantiate this claim, observe that the integrals of a bounded measurable function
over a set A and over a set B are equal if d⊖(A,B) = 0. This observation allows
us to redefine the centroid map, the 1-center function and the multicenter function
as Cd : C∗ \ {∅} → Q, H1 : Q × C∗ → R≥0 and Hcentroid : V∗

N → R≥0, respectively.
Regarding the modified gossip coverage map T δ

ij , we reason as follows. For v∗ ∈ V∗
N ,

let v ∈ VN and v′ ∈ VN be two representatives of v∗ and let v̂ and v̂′ denote, respec-
tively, the images of v and v′ under the map T δ

ij , that is, v̂ = T δ
ij(v) and v̂′ = T δ

ij(v
′).

Since the centroid map and the definitions of the points p̂i and p̂j in equation (3.5)
are insensitive to sets of measure zero, it follows that d⊖(v̂, v̂′) = 0; in other words v̂
and v̂′ belong to the same equivalence class, say v̂∗ ∈ V∗

N . From these facts we can
redefine the modified gossip coverage map as T δ

ij : V∗
N → V∗

N . An analogous argument
applies to the map T . This concludes the justification of our claim. Finally, note that
the Voronoi map V : QN \ SN → VN defined in equation (2.2) can be composed with
the standard quotient projection map and therefore denoted by V : QN \ SN → V∗

N .
In summary, the centroid map, the 1-center function, the multicenter function, the
modified gossip coverage map, and the Voronoi map are indeed insensitive to sets of
measure zero.
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6.1. Continuity of various geometric maps. We start by recalling that the
compact connected set Q is equipped with a bounded measurable positive function
φ : Q → R>0. We define the diameter of Q and the infinity norm of φ by diam(Q) =
max{‖x−y‖ | x, y ∈ Q} and ‖φ‖∞ = maxx∈Q φ(x), respectively. The following lemma
states some important properties of the 1-center cost function.

Lemma 6.1 (Continuity properties of the 1-center function). Given a compact
convex set Q ⊂ R

d, let φ : Q → R>0 be bounded and measurable and let f : R≥0 → R≥0

be locally Lipschitz, increasing, and convex. Define the function H1 : Q × C∗ → R≥0

as in equation (2.4). The following statements hold:

(i) the function p 7→ H1(p;A) is strictly convex in p, for any A ∈ C∗ \ {∅},
(ii) the function p 7→ H1(p;A) is globally Lipschitz in p, for any A ∈ C∗, and
(iii) the function A 7→ H1(p;A) is globally Lipschitz in A with respect to d⊖, for

any p ∈ Q.

We now state the main result of this subsection.

Theorem 6.2 (Continuity properties of centroid, multicenter and Voronoi maps).
Given a compact convex set Q ⊂ R

d, let φ : Q → R>0 be bounded and measurable and
let f : R≥0 → R≥0 be locally Lipschitz, increasing, and convex. With respect to the
topology induced by d⊖, the following maps are continuous:

(i) the centroid map Cd : C∗ \ {∅} → Q,
(ii) the multicenter function Hcentroid : V∗

N → R≥0,
(iii) the Voronoi map V : QN \ SN → V∗

N ,
(iv) for all i, j ∈ {1, . . . , N}, i 6= j, the gossip coverage map Tij : {v ∈ V∗

N | Cd(vi) 6=
Cd(vj)} → V∗

N , and
(v) for all δ > 0, i, j ∈ {1, . . . , N}, i 6= j, the modified gossip coverage map

T δ
ij : V∗

N → V∗
N .

The continuity properties (ii) and (iv) (respectively, (v)) are exactly what is
needed to apply the Krasovskii-LaSalle invariance principles stated in Section 4 to the
gossip coverage algorithm (respectively, to the modified gossip coverage algorithm).
The continuity properties (i) and (iii) are intermediate results of independent interest.

Proof. [Proof of Lemma 6.1] Let Lf be the Lipschitz constant of f : [0,diam(Q)] →
R≥0. We check the claims in order, beginning with statement (i). For λ ∈ (0, 1),
A ∈ C∗ \ {∅}, and p1, p2 ∈ Q, we compute

H1(λp1 + (1 − λ)p2;A) =

∫

A

f(‖λp1 + (1 − λ)p2 − q‖)φ(q)dq

≤

∫

A

f(λ‖p1 − q‖ + (1 − λ)‖p2 − q‖)φ(q)dq(6.1)

≤

∫

A

(
λf(‖p1 − q‖) + (1 − λ)f(‖p2 − q‖)

)
φ(q)dq(6.2)

= λH1(p1;A) + (1 − λ)H1(p2;A),

where inequality (6.1) follows from the triangle inequality and from f being increasing,
and inequality (6.2) follows from the convexity of f . This inequality proves convexity.
Moreover, since the first inequality is strict outside the line passing through p1 and p2

and since A has non-empty interior, the function is in fact strictly convex. Note that
statement (i) implies that p 7→ H1(p;A) is locally Lipschitz, using [33, Theorem 10.4].
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The stronger statement (ii) can be derived as follows. For p1, p2 ∈ Q, we compute

|H1(p1;A) −H1(p2;A)| =

∣∣∣∣
∫

A

f(‖p1 − q‖)φ(q)dq −

∫

A

f(‖p2 − q‖)φ(q)dq

∣∣∣∣

=

∣∣∣∣
∫

A

[f(‖p1 − q‖) − f(‖p2 − q‖)]φ(q)dq

∣∣∣∣

≤

∫

A

|f(‖p1 − q‖) − f(‖p2 − q‖)|φ(q)dq

≤

∫

A

Lf‖p1 − p2‖φ(q)dq ≤ Lf‖φ‖∞µ(A)‖p1 − p2‖.

This implies the Lipschitz condition in statement (ii). Statement (iii) can be proved
as follows. Let A, A′ be two elements of C∗, note A = (A\A′)∪(A∩A′) and compute

|H1(p;A) −H1(p;A′)| =

∣∣∣∣∣

∫

A\A′

f(‖p − q‖)φ(q)dq −

∫

A′\A

f(‖p − q‖)φ(q)dq

∣∣∣∣∣

≤

∣∣∣∣∣

∫

A\A′

f(‖p − q‖)φ(q)dq

∣∣∣∣∣+

∣∣∣∣∣

∫

A′\A

f(‖p − q‖)φ(q)dq

∣∣∣∣∣

=

∫

A⊖A′

f(‖p − q‖)φ(q)dq

≤ max{f(‖p − q‖) | p, q ∈ A ⊖ A′} ‖φ‖∞ µ(A ⊖ A′)

≤ f(diam(Q)) ‖φ‖∞ d⊖(A,A′),

where last inequality follows from f being increasing. The bound implies the Lipschitz
condition.

Before proving Theorem 6.2 we need the following lemma about perturbations of
convex optimization problems.

Lemma 6.3. Given a compact convex set Q ⊂ R
d and a metric space (X, d), let

H : Q × X → R have the properties that
(i) the map x 7→ H(q, x) is globally Lipschitz for all q ∈ Q, and
(ii) the map q 7→ H(q, x) is continuous and strictly convex.

Then the map q∗ : X → Q, defined by q∗(x) = argminq∈Q H(q, x), is continuous.
Proof. Let LH be the Lipschitz constant of x 7→ H(q, x). Thanks to the Lipschitz

condition of the function x 7→ H(q, x), for all x, y ∈ X, the point of minimum q∗(x)
takes value in S = {q ∈ Q | H(q, y) ≤ H(q∗(y), y) + 2LHd(y, x)}. Since S is a sub-
level set of the strictly convex function q 7→ H(q, y), and since the diameter of a
sub-level set depends continuously on the level, the distance ‖q∗(y) − q∗(x)‖ can be
made arbitrary small by reducing d(y, x). This implies the claimed continuity.
We are now ready to prove the main result.

Proof. [Proof of Theorem 6.2] We prove the theorem claims in the order in which
they are presented. Claim (i) follows combining Lemma 6.3 and Lemma 6.1. Since the
multicenter function Hcentroid is a sum of suitable 1-center functions H1, the claim (ii)
is also immediate.

Regarding claim (iii), we begin by discussing in detail the two dimensional case.
Let N = 2, and p1 and p2 be two points in Q. Let 2l = ‖p1 − p2‖. Since p1 6= p2,
l > 0. Up to isometries, we can assume that, in the Euclidean plane (x, y), p1 = (−l, 0)
and p2 = (l, 0). Let d1 and d2 be the distances from the origin of points p1 and p2,
respectively. It is clear that the two Voronoi regions of p1 and p2 are separated by
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the locus of points {x ∈ Q | ‖x − p1‖ = ‖x − p2‖}, that is the vertical axis. Now,
we assume that the positions of p1 and p2 are perturbed by a quantity less than or
equal to ǫ, with 0 < ǫ < l. By effect of the perturbation, the axis separating the two
Voronoi regions is perturbed, but it is contained in the locus of points Y12(ǫ) = {x ∈
Q | ‖x−p1‖−‖x−p2‖ ≤ 2ǫ}. By definition, this is the set comprised between the two

branches of the hyperbola whose equation is x2

ǫ2 − y2

l2−ǫ2 = 1. By elementary geometric
considerations, the area of this region can be upper bounded by

µ(Y12(ǫ)) ≤ 2 ǫ 2 diam(Q) + 4 diam(Q)2
ǫ/l√
1 − ǫ2

l2

≤ 4 diam(Q)
(
1 +

diam(Q)

l

)
ǫ.

This bound implies the continuity. The case in which N > 2 follows because, mov-
ing all points by at most ǫ, the change in all the regions is upper bounded by⋃

1≤i,j≤N Yij(ǫ), which vanishes as ǫ → 0+.
The last remaining step is to prove claims (iv) and (v). We focus on claim (v)

and show claim (iv) as a byproduct. Let v ∈ VN and let v̂ = T δ
ij(v). According to the

definitions in Subsection 3.4, v̂ is characterized by the sets R̂i and R̂j . Recall that
these two sets depend on the sets Ri Rj , on the scalar βij(v) and on the points p̂i and
p̂j . One can see that βij(v) is a continuous function of its arguments vi and vj . Hence,

it suffices to show that also R̂i, R̂j and p̂i, p̂j depend continuously on vi and vj . To
do this, introduce v′ ∈ VN and compute v̂′ = T δ

ij(v
′). Assume Cd(vi) 6= Cd(vj) and

Cd(v′
i) 6= Cd(v′

j). Analogously to how we defined Ri and Rj , we now define the regions
R′

i = v′
i ∩Hbisector(Cd(v′

j),Cd(v′
i)) and R′

j = v′
j ∩Hbisector(Cd(v′

i),Cd(v′
j)). We aim

to upper bound the composite distance d⊖(Ri, R
′
i) + d⊖(Rj , R

′
j). Observe that this

composite distance depends on the difference of the two argument regions vi, v
′
i and

vj , v
′
j both directly and indirectly via the induced difference between the centroids.

Recalling the proof of claim (iii), let ǫ be an upper bound on the displacement between
the two centroids. Then the region Y (ǫ) = {x ∈ Q | |‖x−Cd(vi)‖−‖x−Cd(vj)‖ ≤ 2ǫ}
needs to be included in the upper bound on the composite distance. Combining these
considerations we obtain

(6.3) d⊖(Ri, R
′
i) + d⊖(Rj , R

′
j) ≤

(
d⊖(vi, v

′
i) + d⊖(vj , v

′
j)
)

+ µ
(
Y (max{‖Cd(vi) − Cd(v′

i)‖, ‖Cd(vj) − Cd(v′
j)‖})

)
.

Clearly, if d⊖(vi, v
′
i) → 0 and d⊖(vj , v

′
j) → 0, then ‖Cd(vi) − Cd(v′

i)‖ → 0 and
‖Cd(vi) − Cd(v′

i)‖ → 0 and, in turn, also d⊖(Ri, R
′
i) + d⊖(Rj , R

′
j) → 0. Hence,

we can argue that the sets Ri and Rj depend continuously on the regions vi and
vj . This is enough to prove statement (iv), provided the two regions vi and vj have
distinct centroids. Moreover a direct consequence of this fact is that also the points
p̂i and p̂j depend continuously on vi and vj . Finally, observe that in the limit case
Cd(vi) = Cd(vj) the continuity of Ri and Rj is captured by the fact that βij(v) is a
continuous function of Cd(vi),Cd(vj) and that βij(v) = 0 if Cd(vi) = Cd(vj). The

continuity of Ri, Rj , βij(v), p̂i and p̂j imply also the continuity of R̂i and R̂j and, in
turn, of T δ

ij .

6.2. Convergence proofs. In view of the identification between N -partitions
and their equivalence classes introduced at the beginning of this section, we are now
ready to complete the proof of the convergence results presented in Section 3.3.

We start by clarifying the precise meaning of convergence in Theorems 3.7 and 3.8.
Specifically, we say that a sequence of partitions {v(t)}t∈Z≥0

⊂ VN converges to a set
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of partitions X ⊂ VN if the symmetric distance from {v(t)}t∈Z≥0
to X converges to

zero, that is,

lim
t→∞

inf{d⊖(v(t), x) | x ∈ X} = 0.

Proof. [Proof of Theorem 3.8] We prove the deterministic statement (i). We start
by observing that, through the canonical projection, the evolution {v(t)}t∈Z≥0

⊂ VN

of T δ : VN → VN can be mapped into the evolution {v∗(t)}t∈Z≥0
⊂ V∗

N of T δ :

V∗
N → V∗

N . We aim to apply Theorem 4.3 to the dynamical system T δ : V∗
N → V∗

N

and its evolution {v∗(t)}t∈Z≥0
⊂ V∗

N . In what follows, our goal is to verify whether
Assumptions (i), (ii), (iii) and (iv) of Theorem 4.3 are satisfied.

Since {v(t)}t∈Z≥0
is non-vanishing and finitely convex by assumption, it follows

that there exists ℓ ∈ N such that the ω-limit set of {v(t)}t∈Z≥0
is contained in CN

(ℓ)∩VN ,

that is, ω(v(t)) ⊆ CN
(ℓ)∩VN . This implies also that ω(v∗(t)) ⊆ (C∗

(ℓ))
N ∩V∗

N . As stated
in Theorem 5.1, C∗

(ℓ) is compact in the topology induced by the metric d⊖. Hence,

even though (C∗
(ℓ))

N is not strongly positive invariant for T δ, the weaker version of

Assumption (i) of Theorem 4.3, as given in Remark 4.6, holds true for the sequence
{v∗(t)}t∈Z≥0

∈ V∗
N . Now, as one can deduce from Theorem 6.2(ii) and Lemma 3.4, the

function Hcentroid satisfies the Assumption (ii) of Theorem 4.3, thus playing the role of
a Lyapunov function for the dynamical system T δ. Moreover, from Theorem 6.2(v),
note that the system evolves through maps that are continuous in V∗

N with respect
to the metric d⊖: thus the Assumption (iii) of Theorem 4.3 is satisfied. Finally
observe that the Assumption (iv) of Theorem 4.3 corresponds to the assumption
of uniform persistency in Theorem 3.8. Therefore, we conclude that the evolution
{v∗(t)}t∈Z≥0

converges to the intersection of the fixed points of the maps T δ
ij , for all

i, j ∈ {1, . . . , N}, j 6= i. According to Lemma 3.3, this intersection coincides with the
set of mixed centroidal Voronoi partitions up to sets of measure zero.

The proof of the stochastic statement (ii) follows the same lines, applying Theo-
rem 4.5 instead of Theorem 4.3.

Proof. [Proof of Theorem 3.7] The proof of this result follows the lines of the
proof above with two distinctions. The distinctions come from the assumption that
the evolution v, in addition to being non-vanishing and finitely convex, is also distinct
centroidal. The first distinction is as follows. In order to apply the Krasovskii-LaSalle
invariance principle we require the continuity property stated in Theorem 6.2(iv). Ad-
ditionally, we note that the space of finitely convex and distinct centroidal partitions

{v ∈ VN ∩CN
(ℓ) | ‖Cd(vi) − Cd(vj)‖ ≥ ǫ for all i 6= j}

is a closed and hence compact subspace of VN . The second distinction is as fol-
lows. Since we rule out the case of coincident centroids, we can infer convergence
to centroidal Voronoi partitions instead of convergence to mixed centroidal Voronoi
partitions; see Lemma 3.3(ii).

7. Conclusions. In summary, we have introduced novel coverage, deployment
and partitioning algorithms for robotic networks with minimal communication re-
quirements. To analyze our proposed algorithms, we have developed and characterized
(1) intuitive versions of the Krasovskii-LaSalle Invariance Principle for deterministic
and stochastic switching systems, (2) relevant topological properties of the space of
partitions, and (3) useful continuity properties of a number of geometric and multi-
center functions.
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We believe there remain interesting open issues in the study of gossiping robots
and of dynamical systems on the space of partitions. We are keen on extending these
ideas to non-convex complex environments and discrete environments such as graphs;
see [17] for some preliminary work in this direction. Following Remark 3.2 we plan
to study gossip coverage algorithms for more general multicenter functions, includ-
ing nonsmooth, anisotropic and inhomogeneous functions. Additionally, we plan to
investigate gossip coverage algorithms capable of adapting to time-varying scenarios
such as problems in which robotic agents arrive to and depart from the network.
Finally, inspired by stigmergy in territorial animals, we plan to design communica-
tion protocols for multiagent systems based on the ability of leaving messages in the
environment.

Appendix A. A counterexample showing the necessity of uniformly

persistent switches. Theorem 4.3 contains a persistent switching conditions, that
is, it requires the existence of D ∈ N such that every map Ti, i ∈ {1, . . . ,m}, is applied
at least once within every interval [n, n + D[, n ∈ Z≥0. This appendix contains an
example proving the necessity of this condition.

Consider the plane in polar coordinates X = R>0 × [0, 2π[∪{0, 0}. Define the
standard metric d : X × X → R≥0 as follows: let (ρ1, θ1), (ρ2, θ2) be any pair of
elements of X and

d((ρ1, θ1), (ρ2, θ2)) =

√
(ρ1 cos θ1 − ρ2 cos θ2)

2
+ (ρ1 sin θ1 − ρ2 sin θ2)

2
.

Consider now the continuous maps Ti : X → X, i ∈ {1, 2}, defined by respectively

T1(ρ, θ) =

{
(ρ2, θ), if 0 ≤ ρ ≤ 1,(

2ρ−1
ρ , (θ + ρ − 1) mod 2π

)
, if ρ > 1,

T2(ρ, θ) =

{
((1 − sin θ)ρ, θ) , if 0 ≤ θ ≤ π,

(ρ, θ) if π ≤ θ ≤ 2π.

Define T : X ⇉ X by T (ρ, θ) = {T1 (ρ, θ) , T2 (ρ, θ)} and the function U : X → R≥0

by U (ρ, θ) = ρ. Observe that U is continuous and non-increasing along T . Assume
now that there exists D ∈ N such that, for any n ∈ Z≥0, there exist n1 and n2 within
the interval ]n, n + D] such that xn1+1 = T1(xn1

) and xn2+1 = T2(xn2
). Then, by

Theorem 4.3, the ω-limit set of each evolution of T is a subset of

(A.1) {(ρ, θ) ∈ X | ρ = 1, π ≤ θ ≤ 2π} ∪ {0, 0}.

Next, we relax the condition that the map T2 is applied at least once inside each
interval of arbitrary amplitude D and we show that there exists one sequence that
does not converge to the ω-limit set in equation (A.1). To this aim, assume the
sequence {(ρ(n), θ(n))}n∈Z≥0

satisfies

(i) ρ(0) > 1;
(ii) (ρ(1), θ(1)) = T1 (ρ(0), θ(0)) and
(iii) (ρ(n + 1), θ(n + 1)) = T2 (ρ(n), θ(n)) if and only if π ≤ θ(n) ≤ 2π and

(ρ(n), θ(n)) = T1 (ρ(n − 1), θ(n − 1)).

Note that if π ≤ θ(n) ≤ 2π, then T2 (ρ(n), θ(n)) = (ρ(n), θ(n)). Therefore, the

evolution {(ρ(n), θ(n))} equals
{

(ρ̂(n), θ̂(n))
}

where (ρ̂(0), θ̂(0)) = (ρ(0), θ(0)) and



GOSSIP COVERAGE CONTROL 27

(ρ̂(n), θ̂(n)) = Tn
1

(
ρ̂(0), θ̂(0)

)
. Regarding this new sequence, observe that

1 < ρ̂(i) < 2 and ρ̂(i + 1) < ρ̂(i), for all i ≥ 1,(A.2)

0 < θ̂(i + 1) − θ̂(i) < π, for all i ≥ 1, and lim
i→∞

(
θ̂(i + 1) − θ̂(i)

)
= 0,(A.3)

lim
r→∞

r∑

i=1

(
θ̂(i + 1) − θ̂(i)

)
= lim

r→∞

r∑

i=1

(ρ̂(i) − 1) = lim
r→∞

r∑

i=1

(
1

ρ̂(1) − 1
+ i − 1

)−1

= ∞,

(A.4)

where the equality ρ̂(i) − 1 = ( 1
bρ(1)−1 + i − 1)−1 can be proved by induction over i.

Properties (A.2), (A.3), and (A.4) ensure that there exists a sequence {nh | h ∈ Z≥0}
such that (ρ(nh), θ(nh)) = T2 (ρ(nh − 1), θ(nh − 1))) for all h ∈ Z≥0, and (ρ(t), θ(t)) =
T1 (ρ(t − 1), θ(t − 1))) if t /∈ {nh | h ∈ Z≥0}. Moreover, we have that limh→∞(nh+1 −
nh) = ∞. In other words, both the maps T1 and T2 are applied infinitely often along
the evolution described by {(ρ(n), θ(n))}, but there does not exists D ∈ N such that
T2 is applied at least once within each interval [n, n + D], n ∈ Z≥0. Observe that,
in this case, (ρ(n), θ(n)) converges to the set {(1, θ) | θ ∈ [0, 2π]} ⊂ X. This set is
different from the ω-limit set in equation (A.1).

Appendix B. Discontinuity of the multicenter function in the Hausdorff

metric. To see that Hcentroid : V∗
N → R≥0 is not Hausdorff-continuous, consider the

sequence of 2-partitions {v(t)}t∈Z≥0
of the interval [−1, 1] ⊆ R defined by

v1(t) =

[
−1,−1 +

1

2t+1

]
∪

2t−1−1⋃

h=−(2t−1−1)

[
h

2t−1
−

1

2t+1
,

h

2t−1
+

1

2t+1

]
∪

[
1 −

1

2t+1
, 1

]
,

and by v2(t) = [−1, 1] \ v1(t). Note that both sequences {v1(t)}t∈Z≥0
and {v2(t)}t∈Z≥0

converge to [−1, 1], and that Cd(v1(t)) = Cd(v2(t)) = Cd([−1, 1]) = 0, for all t ≥ 0.
Hence, for φ(s) = 1 and f(s) = s, we compute

H1(0, v1(t)) =

∫

v1(t)

|x|dx = 2

∫

v1(t)∩[0,1]

|x|dx = 1,

and consequently Hcentroid(v(t)) = 2, while Hcentroid(limt→∞ v(t)) = 2H1(0, [−1, 1]) =
4. This shows that limt→∞ Hcentroid(v(t)) 6= Hcentroid(limt→∞ v(t)).
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