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Abstract. Emerging applications for networked and cooperative robots motivate the study of
motion coordination for groups of agents. For example, it is envisioned that groups of agents will
perform a variety of useful tasks including surveillance, exploration, and environmental monitoring.
This paper deals with basic interactions among mobile agents such as “move away from the clos-
est other agent” or “move toward the furthest vertex of your own Voronoi polygon.” These simple
interactions amount to distributed dynamical systems because their implementation requires only
minimal information about neighboring agents. We characterize the close relationship between these
distributed dynamical systems and the disk-covering and sphere-packing cost functions from geo-
metric optimization. Our main results are: (i) we characterize the smoothness properties of these
geometric cost functions, (ii) we show that the interaction laws are variations of the nonsmooth
gradient of the cost functions, and (iii) we establish various asymptotic convergence properties of the
laws. The technical approach relies on concepts from computational geometry, nonsmooth analysis,
and nonsmooth stability theory.

Key words. distributed dynamical systems, coordination and cooperative control, geometric
optimization, disk-covering problem, sphere-packing problem, nonsmooth analysis, Voronoi partitions

AMS subject classifications. 37N35, 68W15, 93D20, 49J52, 05B40

DOI.

1. Introduction. Consider n points (p1, . . . , pn) moving inside a convex polygon
Q according to one of the following interaction laws: (i) each point moves away from
the closest other point or polygon boundary, (ii) each point moves toward the furthest
vertex of its own Voronoi polygon, or (iii) each point moves toward a geometric center
(circumcenter, incenter, centroid, etc.) of its own Voronoi polygon. Recall that the
Voronoi polygon of the ith point is the closed set of points q ∈ Q closer to pi than to
any other pj .

These and related interaction laws give rise to strikingly simple dynamical systems
whose behavior remains largely unknown. What are the critical points of such dynam-
ical systems? What is their asymptotic behavior? Are these systems optimizing any
aggregate function? In what way do these local interactions give rise to distributed
systems? Does any biological ensemble evolve according to these behaviors and are
they of any engineering use in coordination problems? These are the questions that
motivate this paper.

Coordination in robotics, control, and biology. Coordination problems are
becoming increasingly important in numerous engineering disciplines. The deploy-
ment of large groups of autonomous vehicles is rapidly becoming possible because
of technological advances in computing, networking, and miniaturization of electro-
mechanical systems. These future multiple-vehicle networks will coordinate their
actions to perform challenging spatially distributed tasks (e.g., search and recovery
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operations, exploration, surveillance, and environmental monitoring for pollution de-
tection and estimation). This future scenario motivates the study of algorithms for
autonomy, adaptation, and coordination of multiple-vehicle networks. It is also impor-
tant to take into careful consideration all constraints on the behavior of the multiple-
vehicle network. Coordination algorithms need to be adaptive and distributed in order
for the resulting closed-loop network to be scalable, to comply with bandwidth limi-
tations, to tolerate failures, and to adapt to changing environments, topologies, and
sensing tasks. The interaction laws introduced above have these properties and, re-
markably, they optimize network-wide performance measures for meaningful spatially
distributed tasks.

Fig. 1.1. Territories of male Tilapia mossambica. Some species of fish exhibit territorial behav-
ior by globally partitioning the environment into nonoverlapping zones. In this top-view photograph,
each territory is a pit dug in the sand by its occupant. The rims of the pits form a pattern of poly-
gons known as a Voronoi partition. The breeding males are the black fish, which range in size from
about 15 cm to 20 cm. The gray fish are the females, juveniles, and nonbreeding males. Photograph
reprinted from [3] with permission from Elsevier.

Coordinated group motions are also a widespread phenomenon in biological sys-
tems. Some species of fish spend their lives in schools as a defense mechanism against
predators. Others travel as swarms in order to protect an area that they have claimed
as their own. Flocks of birds are able to travel in large groups and act as one unit.
Other animals exhibit remarkable collective behaviors when foraging and selecting
food. Certain foraging behaviors include individual animals partitioning their envi-
ronment in nonoverlapping individual zones whereas other species develop overlapping
team areas. An example environment partition by fish is given in Figure 1.1. These
biological network systems possess extraordinary dynamic capabilities without appar-
ently following a group leader. Yet these complex coordinated behaviors emerge while
each individual has no global knowledge of the network state and can only plan its
motion according to the observation of its closest neighbors.

Facility location, nonsmooth stability analysis, and cooperative control.

To analyze the interaction laws introduced above we rely on concepts and methods
from various disciplines. Facility location problems play a prominent role in the field
of geometric optimization [1, 4]. Facility location pervades a broad spectrum of scien-
tific and technological areas, including resource allocation (where to place mailboxes
in a city or cache servers on the internet), quantization and information theory, mesh
and grid optimization methods, clustering analysis, data compression, and statistical
pattern recognition. Smooth multicenter functions for so-called centroidal Voronoi
configurations and smooth distributed dynamical systems are presented in [15, 18].
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Multicenter functions are studied in resource allocation problems [17, 45] and in quan-
tization theory [22, 29]. The role of Voronoi tessellations and computational geometry
in facility location is discussed in [34, 39].

The notion and computational properties of the generalized gradient are thor-
oughly studied in nonsmooth analysis [11]. In particular, tools for establishing sta-
bility and convergence properties of nonsmooth dynamical systems are presented
in [2, 19, 42, 36]. A survey of nonsmooth analysis and stability is given in [13] and
some applications to robotics are discussed in [9].

With regards to distributed motion coordination algorithms, much progress has
been made on collective pattern formation and flocking [46, 49, 40, 47], formation
control [26, 23, 48], motion camouflage [24], self-assembly [25], swarm aggregation [20],
rendezvous [28], cyclic pursuit [6, 31, 32], motion planning with collision avoidance [30,
37, 41], and cooperative boundary estimation [10, 8, 44]. Two recent surveys on
consensus algorithms are [35, 38]. Since the publication of our original paper [14],
others works have used related tools and concepts; examples include [21] on optimal
network configurations for spatial estimation, [27] on nonuniform coverage, [33] on a
broad collection of deployment laws, and [12] on nonsmooth stability for finite-time
consensus. Finally, a recent text on distributed control and coordination is [7].

Statement of contributions. The aim of this work is to design distributed
coordination algorithms for dynamic networks as well as to provide formal verifica-
tions of their asymptotic correctness. A key aspect of our treatment is the inherent
complexity of studying networks whose communication topology changes along the
system evolution, as opposed to networks with fixed communication topologies.

We consider two facility location functions from geometric optimization that char-
acterize coverage performance criteria. A collection of locations provides optimal ser-
vice to a domain of interest if (i) it minimizes the largest distance from any point in
the domain to one of the locations, or (ii) it maximizes the minimum distance between
any two locations. In other words, if P = (p1, . . . , pn) are n points inside a convex
polygon Q, we extremize the multicenter functions

max
q∈Q

{
min

i∈{1,...,n}
d(q, pi)

}
, min

i6=j∈{1,...,n}

{
1
2d(pi, pj), d(pi, ∂Q)

}
,

where d(p, q) and d(p, ∂Q) are the Euclidean distances between p and q, and between p
and the boundary of Q, respectively. (The role of the 1

2 factor will become clear later.)
We study the differentiable properties of these functions via nonsmooth analysis. We
show the functions are globally Lipschitz and regular, we compute their generalized
gradients, and we characterize their critical points. Under certain technical condi-
tions, we show that the local minima of the first multicenter function are so-called
circumcenter Voronoi configurations, and that these critical points correspond to the
solutions of disk-covering problems. Similarly, under analogous technical conditions,
we show that the local maxima of the second multicenter function are so-called incen-
ter Voronoi configurations, and that these critical points correspond to the solutions
of sphere-packing problems.

Next, we aim to design distributed algorithms that extremize the multicenter
functions. Roughly speaking, by distributed we mean that the motion of each point
depends at most on the location of its own Voronoi neighbors. We study the gener-
alized gradient flows induced by the multicenter functions using nonsmooth stability
analysis. Although these dynamical systems possess some convergence properties,
they are not amenable to distributed implementations. Next, drawing connections
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with quantization theory, we consider two dynamical systems associated to each mul-
ticenter function. First, we consider a novel strategy based on the generalized gradient
of the 1-center functions of each point, and second, we consider a geometric centering
strategy similar to the well-known Lloyd algorithm [22, 29].

Remarkably, these strategies arising from the nonsmooth gradient information
have natural geometric interpretations and are indeed the local interaction rule de-
scribed earlier. For the first (respectively, second) multicenter function, the first
strategy corresponds to the interaction law “move toward the furthest vertex of own
Voronoi polygon” (respectively, “move away from the closest other point or polygon
boundary”), and the second strategy corresponds to the interaction law “move to-
ward circumcenter of own Voronoi polygon” (respectively, “move toward incenter of
own Voronoi polygon”). We prove the uniqueness of the solutions of the resulting
distributed dynamical systems and we analyze their asymptotic behavior using non-
smooth stability analysis, showing that the active point will approach the correspond-
ing centers of their own Voronoi cells.

Two of our results are related to well-known conjectures in the locational opti-
mization literature [17, 45]: (i) that the first multicenter problem is equivalent to
a disk-covering problem (how to cover a region with possibly overlapping disks of
equal minimum radius), and (ii) that the generalized Lloyd strategy “move toward
circumcenter of own Voronoi polygon” converges to the set of circumcenter Voronoi
configurations.

Organization. The paper is organized as follows. Section 2 provides the pre-
liminary concepts on Voronoi partitions, nonsmooth analysis, stability analysis, and
gradient flows, and introduces the multicenter problems. Section 3 presents a complete
treatment on the functions analysis and algorithm design for the 1-center problems.
Section 4 discusses the differentiable properties and the critical points of the multi-
center functions. Section 5 introduces a number of dynamical systems (smooth and
nonsmooth, distributed and non-distributed) and analyzes their asymptotic correct-
ness. For this revised version, we decided to omit the proofs of some statements and
we refer to the original work [14] for the complete treatment.

2. Preliminaries and problem setup. Let N ∈ N. We denote by ‖ · ‖ the
Euclidean distance function on R

N and by v · w the scalar product of the vectors
v, w ∈ R

N . Let vrs(v) denote the unit vector in the direction of 0 6= v ∈ R
N , i.e.,

vrs(v) = v/‖v‖. Given a set S in R
N , we denote its convex hull by co(S) and its

interior set by int(S). If S is a convex set in R
N , let projS : R

N → S denote the
orthogonal projection onto S and let DS : R

N → R denote the distance function to S.
For R > 0, let BN (p,R) = {q ∈ R

N | ‖p− q‖ ≤ R} and BN (p,R) = int(BN (p,R)). A
set {v1, . . . , vM} of vectors in R

N positively spans R
N if any w ∈ R

N can be written

as w =
∑M

l=1 alvl, with al ≥ 0, l ∈ {1, . . . ,M}. The following simple lemma, e.g.,
see [9], characterizes this situation.

Lemma 2.1 (Positive span). Given a set {v1, . . . , vM} of M > N arbitrary
vectors in R

N , the following statements are equivalent:

(i) {v1, . . . , vM} positively spans R
N ;

(ii) 0 ∈ int(co{v1, . . . , vM}); and
(iii) for each w ∈ R

N , there exists vi such that w · vi > 0.

Let Q be a convex simple polygon in R
2. We denote by Ed(Q) = {e1, . . . , eL}

and Ve(Q) = {v1, . . . , vL} the set of edges and vertexes of Q, respectively. Let
P = (p1, . . . , pn) ∈ Qn ⊂ (R2)n denote the location of n points (which we will call
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generators) in the space Q. Let πi : Qn → Q be the canonical projection onto the
ith factor, πi(p1, . . . , pn) = pi. Note that this mapping is surjective, continuous, and
open (the latter meaning that open sets of Qn are mapped onto open sets of Q).

2.1. Voronoi partitions. We present here some relevant concepts on Voronoi
diagrams and refer the reader to [16, 34] for comprehensive treatments. A partition
of Q is a collection of n polygons W = {W1, . . . ,Wn} with disjoint interiors whose
union is Q. Of course, more general types of partitions could be considered (as, for
instance, continuous deformations of the previous ones), but these will be sufficient
for our purposes. The Voronoi partition V(P ) = (V1(P ), . . . , Vn(P )) of Q generated
by the points (p1, . . . , pn) is defined by

Vi(P ) = {q ∈ Q | ‖q − pi‖ ≤ ‖q − pj‖ for all j 6= i},

see Figure 2.1(i) for an illustration. For simplicity, we shall refer to Vi(P ) as Vi. Since
Q is a convex polygon, the boundary of each Vi is the union of a finite number of
segments. If Vi and Vj share an edge, i.e., Vi ∩ Vj is neither empty nor a singleton,
then pi is called a (Voronoi) neighbor of pj (and vice versa). All Voronoi neighboring
relations are encoded in the mapping N : Qn × {1, . . . , n} → 2{1,...,n}, where N (P, i)
is the set of indexes of the Voronoi neighbors of pi. Of course, j ∈ N (P, i) if and only
if i ∈ N (P, j). We will often omit P and instead write N (i).

(i)

va

ve vd

vb

vc

(ii)

Fig. 2.1. (i) shows a Voronoi partition of a polygon. (ii) illustrates the notions of degenerate
and nondegenerate vertexes. Vertexes va, vb, and vc are nondegenerate vertexes of type (a), (b),
and (c), respectively. Vertexes vd and ve are degenerate.

For P ∈ Qn, the vertexes of the Voronoi partition V(P ) are classified as follows:
the vertex v is

• of type (a) if it is the center of the circle passing through three generators
(say, pi, pj , and pk),

• of type (b) if it is the intersection between an edge of Q and the bisector
determined by two generators (say, e, pi, and pj), and

• of type (c) if it is a vertex of Q, i.e., it is determined by two edges of Q and
by the generator of a cell containing it (say, e, f , and pi).

Correspondingly, we shall write v(i, j, k), v(e, i, j), and v(e, f, i), respectively, when-
ever we are interested in making explicit the elements defining the vertex v. The
vertex v ∈ Ve(Vi(P )) is said to be nondegenerate if it is determined by exactly three
elements (e.g., as described above, three generators, or an edge and two generators, or
two edges and one generator), otherwise it is said to be degenerate. Further, the config-
uration P is said to be nondegenerate at the ith generator if all vertexes v ∈ Ve(Vi(P ))
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are nondegenerate, otherwise P is degenerate at the ith generator. Finally, a configu-
ration P is said to be nondegenerate if all its vertexes are nondegenerate, otherwise
it is said to be degenerate. These concepts are illustrated in Figure 2.1(ii).

For P ∈ Qn, the edges of the Voronoi partition V(P ) are classified as follows: the
edge e is

• of type (a) if it is a segment of the bisector determined by two generators
(say, pi, pj), and

• of type (b) if it is contained in the boundary of Q, i.e., it is a subset of an
edge of Q and it belongs to a single cell (say, the cell of the generator pi).

Correspondingly, we shall write e(i, j) and e(i), respectively, whenever we are inter-
ested in making explicit the elements defining the edge e. Further, when considering
an edge of type (a), we let ne(i,j) denote the unit normal to e(i, j) pointing toward
int(Vi(P )). When considering an edge of type (b), we let ne(i) denote the unit normal
to e(i) pointing toward int(Q).

2.2. The disk-covering and the sphere-packing problems. We are inter-
ested in the following locational optimization problems:

min
p1,...,pn

{
max
q∈Q

{
min

i∈{1,...,n}
‖q − pi‖

}}
,(2.1)

max
p1,...,pn





min
i,j∈{1,...,n}
i6=j, e∈Ed(Q)

{
1
2‖pi − pj‖,De(pi)

}




.(2.2)

The optimization problem (2.1) is referred to as the p-center problem in [17, 45].
Throughout the paper, we will refer to it as the multi-circumcenter problem. In the
context of coverage control of mobile sensor networks [15], the multi-circumcenter
problem corresponds to considering the worst case scenario, in which no information
is available on the distribution of the events taking place in the environment Q. The
network therefore tries to minimize the largest possible distance of any point in Q to
one of the generators’ locations given by p1, . . . , pn, i.e., to minimize the function

HDC(P ) = max
q∈Q

{
min

i∈{1,...,n}
‖q − pi‖

}
= max

i∈{1,...,n}

{
max
q∈Vi

‖q − pi‖

}
.

It is conjectured in [45] that this problem can be restated as a disk-covering problem:
how to cover a region with (possibly overlapping) disks of minimum radius. The
disk-covering problem then reads

min{R | ∪i∈{1,...,n} B2(pi, R) ⊇ Q}.

We shall present a proof of this statement in Theorem 4.7 below. Given a polytope
W in R

N , its circumcenter, denoted by CC(W ), is the center of the minimum-radius
sphere that contains W . The circumradius of W , denoted by CR(W ), is the radius
of this sphere. We will say that P is a circumcenter Voronoi configuration if pi =
CC(Vi(P )), for all i ∈ {1, . . . , n}. We denote by VeDC(V(P )) the set of vertexes of the
Voronoi partition where the value HDC(P ) is attained, i.e., v ∈ VeDC(V(P )) if there
exists i such that v ∈ Vi(P ) and ‖v−pi‖ = HDC(P ). In such cases, we will often refer
to both the vertex v and the generator pi as active.

We will refer to the optimization problem (2.2) as the multi-incenter problem. In
the context of applications, this problem corresponds to the situation where we are
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interested in maximizing the coverage of the area Q in such a way that the sensing
radius of the generators do not overlap (in order not to interfere with each other) or
leave the environment. We therefore consider the maximization of the function

HSP(P ) = min
i,j∈{1,...,n}
i6=j, e∈Ed(Q)

{
1
2‖pi − pj‖,De(pi)

}
= min

i∈{1,...,n}

{
min

q 6∈int(Vi)
‖q − pi‖

}
.

A similar conjecture to the one presented above is that the multi-incenter problem
can be restated as a sphere-packing problem: how to maximize the coverage of a
region with nonoverlapping disks (contained in the region) of maximum radius. The
problem reads

max{R | ∪i∈{1,...,n} B2(pi, R) ⊆ Q, B2(pi, R) ∩ B2(pj , R) = ∅}.

In Theorem 4.8 we provide a positive answer to this question. Given a polytope W
in R

N , its incenter set (or Chebyshev center set; see [5]), denoted by IC(W ), is the
set of the centers of maximum-radius spheres contained in W . The inradius of W ,
denoted by IR(W ), is the common radius of these spheres. We will say that P ∈ Qn

is an incenter Voronoi configuration if pi ∈ IC(Vi(P )), for all i ∈ {1, . . . , n}. If P is an
incenter Voronoi configuration and each Voronoi region Vi(P ) has a unique incenter,
IC(Vi(P )) = {pi}, then we will say that P is a generic incenter Voronoi configuration.
We denote by EdSP(V(P )) the set of edges of the Voronoi partition where the value
HSP(P ) is attained; i.e., e ∈ EdSP(V(P )) if there exists i such that e ∈ Ed(Vi(P ))
and De(pi) = HSP(P ). In such cases, we will often refer to both the edge e and the
generator pi as active.

2.3. Nonsmooth analysis. The following facts on nonsmooth analysis [11] will
be helpful in analyzing the properties of the locational optimization functions for
the disk-covering and the sphere-packing problems, as well as the convergence of the
distributed algorithms we will propose to extremize them.

We begin by recalling some basic notions. A function f : R
N → R is said to

be locally Lipschitz at x ∈ R
N if there exist positive constants Lx and ǫ such that

|f(y) − f(y′)| ≤ Lx‖y − y′‖ for all y, y′ ∈ BN (x, ǫ). The function f is said to be
locally Lipschitz on S ⊂ R

N if it is locally Lipschitz at x, for all x ∈ S. Note that
continuously differentiable functions at x are locally Lipschitz at x. On the other
hand, a function f : R

N → R is said to be regular at x ∈ R
N if for all v ∈ R

N the
right directional derivative of f at x in the direction of v, denoted by f ′(x; v), exists
and coincides with the generalized directional derivative of f at x in the direction of v,
denoted by fo(x; v). The interested reader is referred to [11] for the precise definition
of these directional derivatives. Again, a continuously differentiable function at x is
regular at x. Also, a locally Lipschitz function at x which is convex is regular (cf.
Proposition 2.3.6 in [11]).

From Rademacher’s theorem [11], we know that locally Lipschitz functions are
differentiable almost everywhere (in the sense of Lebesgue measure). If Ωf denotes
the set of points in R

N at which f fails to be differentiable and S denotes any other
set of measure zero, the generalized gradient of f is defined by

∂f(x) = co

{
lim

i→+∞
df(xi) | xi → x, xi 6∈ S ∪ Ωf

}
.

Note that this definition coincides with df(x) if f is continuously differentiable at x.
A point x ∈ R

N which verifies that 0 ∈ ∂f(x) is called a critical point of f . The
following result corresponds to Proposition 2.3.12 in [11].
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Proposition 2.2. Let fk : R
N → R, k ∈ {1, . . . ,m} be locally Lipschitz functions

at x ∈ R
N and let f(x′) = max{fk(x′) | k ∈ {1, . . . ,m}}. Then,

(i) f is locally Lipschitz at x,
(ii) if I(x′) denotes the set of indexes k for which fk(x′) = f(x′), we have

(2.3) ∂f(x) ⊂ co{∂fi(x) | i ∈ I(x)},

and if fi, i ∈ I(x), is regular at x, then equality holds and f is regular at x.
The extrema of Lipschitz functions are characterized by the following result.
Proposition 2.3. Let f be a locally Lipschitz function at x ∈ R

N . If f attains
a local minimum or a local maximum at x, then 0 ∈ ∂f(x), that is, x is a critical
point.

Let Ln : 2R
N

→ 2R
N

be the set-valued mapping that associates to each subset
S of R

N the set of its least-norm elements Ln(S). If the set S is convex, then the
set Ln(S) reduces to a singleton and we note the equivalence Ln(S) = projS(0). In
this paper, we shall only apply this function to convex sets. For a locally Lipschitz
function f , we consider the generalized gradient vector field Ln(∂f) : R

N → R
N given

by x 7→ Ln(∂f)(x) = Ln(∂f(x)). The following theorem (cf. [11]) establishes an
important feature of this vector field.

Theorem 2.4. Let f be a locally Lipschitz function at x. Assume 0 6∈ ∂f(x).
Then, there exists T > 0 such that

f(x − t Ln(∂f)(x)) ≤ f(x) −
t

2
‖Ln(∂f)(x)‖2, 0 < t < T.

The vector −Ln(∂f)(x) is called a direction of descent.

2.4. Stability analysis via nonsmooth Lyapunov functions. Throughout
the paper, we will define the solutions of differential equations with discontinuous

right-hand sides in terms of differential inclusions [19]. Let F : R
N → 2R

N

be a
set-valued map. Consider the differential inclusion

ẋ ∈ F (x).(2.4)

A solution to this equation on an interval [t0, t1] ⊂ R is defined as an absolutely
continuous function x : [t0, t1] → R

N such that ẋ(t) ∈ F (x(t)) for almost all t ∈
[t0, t1]. Given x0 ∈ R

N , the existence of at least a solution with initial condition x0

is guaranteed by the following lemma.
Lemma 2.5. Let the mapping F be upper semicontinuous with nonempty, com-

pact, and convex values. Then, given x0 ∈ R
N , there exists a local solution of (2.4)

with initial condition x0.
Now, consider the differential equation

(2.5) ẋ(t) = X(x(t)),

where X : R
N → R

N is measurable and essentially locally bounded. There are various
notions of solutions to discontinuous differential equations (see [13] for a comparative
discussion among them). Here, we will understand the solution of this equation in
the Filippov sense, which we define in the following. For each x ∈ R

N , consider the
set

K[X](x) =
⋂

δ>0

⋂

µ(S)=0

co{X(BN (x, δ) \ S)},
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where µ denotes the usual Lebesgue measure in R
N . Alternatively, one can show [13]

that there exists a set SX of measure zero such that

K[X](x) = co

{
lim

i→+∞
X(xi) | xi → x, xi 6∈ S ∪ SX

}
,

where S is any set of measure zero. A Filippov solution of (2.5) on an interval
[t0, t1] ⊂ R is defined as a solution of the differential inclusion ẋ ∈ K[X](x). Since

the multivalued mapping K[X] : R
N → 2R

N

is upper semicontinuous with nonempty,
compact, convex values and locally bounded (cf. [19]), the existence of Filippov solu-
tions of (2.5) is guaranteed by Lemma 2.5.

A set M is weakly invariant (respectively, strongly invariant) for (2.5) if, for each
x0 ∈ M , the set M contains a maximal solution (respectively, all maximal solutions)
of (2.5). Given a locally Lipschitz function f : R

N → R, the set-valued Lie derivative
of f with respect to X at x is defined by

L̃Xf(x) = {a ∈ R | ∃v ∈ K[X](x) such that ζ · v = a for all ζ ∈ ∂f(x)}.

For each x ∈ R
N , L̃Xf(x) is a closed and bounded interval in R, possibly empty. If f is

continuously differentiable at x, then L̃Xf(x) = {df ·v | v ∈ K[X](x)}. If, in addition,

X is continuous at x, then L̃Xf(x) corresponds to the singleton {LXf(x)}, the usual
Lie derivative of f in the direction of X at x. The importance of the set-valued Lie
derivative stems from the next result [2].

Theorem 2.6. Let x : [t0, t1] → R
N be a Filippov solution of (2.5). Let f be a

locally Lipschitz and regular function. Then d
dt

(f(x(t))) exists a.e. and d
dt

(f(x(t))) ∈

L̃Xf(x(t)) a.e.
The following result is a generalization of the LaSalle Invariance Principle for

differential equations of the form (2.5) with nonsmooth Lyapunov functions. The
formulation is taken from [2] and slightly generalizes the one presented in [42].

Theorem 2.7 (LaSalle Invariance Principle). Let f : R
N → R be a locally

Lipschitz and regular function. Let x0 ∈ R
N and let f−1(≤ f(x0), x0) be the con-

nected component of {x ∈ R
N | f(x) ≤ f(x0)} containing x0. Assume the set

f−1(≤ f(x0), x0) is bounded and assume either max L̃Xf(x) ≤ 0 or L̃Xf(x) = ∅
for all x ∈ f−1(≤ f(x0), x0). Then f−1(≤ f(x0), x0) is strongly invariant for (2.5).
Let

ZX,f = {x ∈ R
N | 0 ∈ L̃Xf(x)}.

Then, any solution x : [t0,+∞) → R
N of (2.5) starting from x0 converges to the

largest weakly invariant set M contained in ZX,f ∩ f−1(≤ f(x0), x0). Furthermore,
if the set M is a finite collection of points, then the limit of all solutions starting at
x0 exists and equals one of those points.

The proof of the last fact in the theorem statement is the same as in the smooth
case, since it only relies on the continuity of the trajectory. The next statement is
based on Theorem 2 of [36].

Proposition 2.8. Under the same assumptions of Theorem 2.7, if max L̃Xf(x) <
−ǫ < 0 a.e. on R

N \ ZX,f , then ZX,f is attained in finite time.
Proof. Let x : [t0,+∞) → R

N be a Filippov solution starting from x0. We argue
that there must exist T such that x(T ) ∈ ZX,f . Otherwise, we have

f(x(t)) = f(x(t0)) +

∫ t

t0

d

ds
f(x(s))ds < f(x(t0)) − ǫ(t − t0)

t→+∞
−→ −∞,
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contradicting the fact that f−1(≤ f(x0), x0) is strongly invariant and bounded.

2.5. Nonsmooth gradient flows. Finally, we are in a position to present the
nonsmooth analog of well-known results on gradient flows. Given a locally Lipschitz
and regular function f , consider the following generalized gradient flow:

(2.6) ẋ(t) = −Ln(∂f)(x(t)).

Theorem 2.4 guarantees that unless the flow is at a critical point, −Ln(∂f)(x) is
always a direction of descent at x. In general, the vector field Ln(∂f) in (2.6) is
discontinuous. We understand its solution in the Filippov sense. Note that since
f is locally Lipschitz, Ln(∂f) = df almost everywhere. An important observation
in this setting is that K[df ](x) = ∂f(x) (cf. [36]). The following result, which is a
generalization of the discussion in [2], guarantees the convergence of this flow to the
set of critical points of f .

Proposition 2.9. Let x0 ∈ R
N and assume f−1(≤ f(x0), x0) is bounded. Then,

any solution x : [t0,+∞) → R
N of (2.6) starting from x0 converges asymptotically to

the set of critical points of f contained in f−1(≤ f(x0), x0).

3. The 1-center problems. In this section we consider the disk-covering and
the sphere-packing problems with a single generator, i.e., n = 1. This treatment will
give us the necessary insight to tackle later the more involved multicenter version of
both problems. When n = 1, the minimization of HDC simply consists of finding the
center of the minimum-radius sphere enclosing the polygon Q. On the other hand, the
maximization of HSP corresponds to determining the center of the maximum-radius
sphere contained in Q. Let us therefore define the functions

lgQ(p) = max{‖q − p‖ | q ∈ Q} = max{‖v − p‖ | v ∈ Ve(Q)},

smQ(p) = min{‖q − p‖ | q 6∈ int(Q)} = min{De(p) | e ∈ Ed(Q)}.(3.1)

When n = 1, we then have that HDC = lgQ : Q → R and HSP = smQ : Q → R.

3.1. Smoothness and critical points. We here discuss the smoothness prop-
erties and the critical points of the 1-center functions. Since the function lgQ is the
maximum of a (finite) set of convex functions in p, it is also a convex function [5].
Therefore, any local minimum of lgQ is also global.

Lemma 3.1. The function lgQ has a unique global minimum, which is the cir-
cumcenter of the polygon Q.

Proof. Let F : R → R be any continuous nondecreasing function. Then

F (lgQ(p)) = max{F (‖v − p‖) | v ∈ Ve(Q)}.

If we take F (x) = x2, each function ‖v − p‖2 is strictly convex, and hence F (lgQ(p))
is also strictly convex. Therefore, this latter function has a single minimum on Q.
Since any global minimum of lgQ is also a global minimum of F (lgQ(p)), we conclude
the result.

The function smQ is the minimum of a (finite) set of affine (hence, concave)
functions defined on the half-planes determined by the edges of Q, and hence it is
also a concave function [5] on the intersection of their domains, which is precisely Q.
Therefore, any local maximum of smQ is also global. However, this maximum is not
unique in general.

Lemma 3.2. The incenter set of the polygon Q is the set of maxima of the
function smQ and it is a segment.
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Proof. It is clear that the set of maxima of smQ is IC(Q). As a consequence of
the concavity of smQ over the convex domain Q, one deduces that IC(Q) is a convex
set. Now, assume there are three points p1, p2, p3 in IC(Q) which are not aligned.
Since B2(q, IR(Q)) ⊂ Q for all q ∈ co(p1, p2, p3) ⊂ IC(Q), and co(p1, p2, p3) has a
nonempty interior, there exist q0 ∈ Q and r > IR(Q) such that B2(q0, r) ⊂ Q, which
is a contradiction.

Note that the circumcenter of a polygon can be computed via the finite-step
algorithm described in [43]. The incenter set of a polygon can be computed via the
following linear program in q and r: maximize the radius r of the sphere centered at q
subject to the constraints that the distance between q and each of the polygon edges
is greater than or equal to r. Formally, the problem can be expressed as follows. For
each e ∈ Ed(Q), select a point qe ∈ Q belonging to e. Then, we set

maximize r,

subject to (q − qe) · ne ≥ r, for all e ∈ Ed(Q).

In what follows, we examine dynamical systems that compute these geometric centers.
Proposition 3.3. The functions lgQ(p), − smQ(p) are locally Lipschitz and

regular, and their generalized gradients are given by

∂ lgQ(p) = co{vrs(p − v) | v ∈ Ve(Q), lgQ(p) = ‖p − v‖},(3.2)

∂ smQ(p) = co{ne | e ∈ Ed(Q), smQ(p) = De(p)}.(3.3)

Moreover,

0 ∈ ∂ lgQ(p) ⇐⇒ p = CC(Q), 0 ∈ ∂ smQ(p) ⇐⇒ p ∈ IC(Q),(3.4)

and, if 0 ∈ int(∂ smQ(p)), then IC(Q) = {p}.
Proof. Given the expressions in (3.1) and Proposition 2.2, we deduce that lgQ

and − smQ are locally Lipschitz and regular, and that their generalized gradients are
given by (3.2) and (3.3), respectively. Concerning (3.4), the implications from right to
left in (3.4) readily follow from Proposition 2.3. As for the other ones, note that it is
sufficient to prove that p is a local minimum (respectively, that p is a local maximum).
We prove the result for the function lgQ. The proof for smQ is analogous. Assume
that 0 ∈ ∂ lgQ(p). Then there exist vertexes vi1 , . . . , viK

of Q with lgQ(p) = ‖vil
− p‖,

l ∈ {1, . . . ,K} such that 0 =
∑

l∈{1,...,K} λl vrs(p − vil
), where

∑
l∈{1,...,K} λl = 1,

λl ≥ 0, l ∈ {1, . . . ,K}. Let U be a neighborhood of p and take q ∈ U . One can
show that there must exist l∗ such that (p − vil∗

) · (q − p) ≥ 0, since otherwise
0 = 0 · (q − p) = (

∑
l∈{1,...,K} λl vrs(p − vil

)) · (q − p) < 0, which is a contradiction.
Then

‖q − vil∗
‖2 = ‖q − p‖2 + ‖p − vil∗

‖2 − 2(q − p) · (vil∗
− p) ≥ ‖p − vil∗

‖2.

Therefore, lgQ(q) ≥ ‖p − vil∗
‖ = lgQ(p), which shows that p is a local minimum.

Finally, if 0 ∈ int(∂ smQ(p)), then one can see that p is a strict local maximum.
Furthermore, there cannot be any other local (hence global) maximum of smQ, as we
now show. Assume p̄ ∈ IC(Q). By hypothesis, the sphere B2(p̄, smQ(p)) centered at
p̄ of radius smQ(p) is contained in Q. Consider the vector p̄−p. By Lemma 2.1, there
exists e ∈ Ed(Q) with De(p) = smQ(p) such that (p̄−p) ·ne > 0. Therefore, there are
points of B2(p̄, smQ(p)) which necessarily belong to the half-plane defined by e where
Q is not contained, which is a contradiction.
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3.2. Convergence properties for nonsmooth gradient flows. Here we study
the generalized gradient flows arising from the two 1-center functions. An immediate
consequence of Propositions 2.9 and 3.3 is the following result: the gradient flows of
the functions lgQ and smQ,

ẋ(t) = −Ln(∂ lgQ)(x(t)),(3.5)

ẋ(t) = Ln(∂ smQ)(x(t)),(3.6)

converge asymptotically to the circumcenter CC(Q) and the incenter set IC(Q), re-
spectively. The following two propositions discuss the convergence properties of the
gradient descents.

Proposition 3.4. If 0 ∈ int(∂ lgQ(CC(Q))), then the flow (3.5) reaches CC(Q)
in finite time.

Note that if 0 ∈ ∂ lgQ(CC(Q))\int(∂ lgQ(CC(Q))), then convergence is generically
achieved over an infinite time horizon.

Proposition 3.5. The flow (3.6) reaches the set IC(Q) in finite time.

Proof. Let p 6∈ IC(Q). We know min L̃Ln[smQ] smQ(p) = ‖Ln[smQ](p)‖2. More-
over, for all p 6∈ IC(Q), we have

‖Ln[smQ](p)‖ ≥ ǫ = min
{
1, {‖Ln(co{ne, nf})‖ | e, f ∈ Ed(Q), ne 6= −nf}

}
> 0.

Resorting to Proposition 2.8, we deduce the desired result.
Figure 3.1 shows an example of the implementation of the gradient descent (3.5)

and (3.6). Note that if the circumcenter CC(Q) (respectively, the incenter set IC(Q))
is first computed offline, then the strategy of directly going toward it would con-
verge in a less “erratic” way. Note also that the move-toward-the-center strategy is
exponentially fast.

{v1, v2}

{v1, v3}

{v1, v4}

v6

v7
v5

v2

v4

v1 v3

{v1, v4, v6}

{v2}

CC(Q)

e1 e2

e3

e4

e5
e6

e7

{e4, e7}

{e2, e4, e7}

{e5, e7}

{e5, e6}
{e5}

IC(Q)

Fig. 3.1. Illustration of the gradient descent of lgQ and smQ. The points where the curve
t 7→ p(t) fails to be differentiable correspond to points where there is a new vertex v of Q such
that ‖p(t) − v‖ = lgQ(p(t)) (respectively, a new edge e of Q such that De(p(t)) = smQ(p(t))). The
circumcenter and the incenter are attained in finite time according to Propositions 3.4 and 3.5.

Finally, we conclude this section with four facts useful for later developments.
Lemma 3.6. Let q ∈ Q, let v(q) be one of the vertexes of Q which is furthest

away from q, and let e(q) be one of the edges of Q which is nearest to q. Then
(i) Ln[lgQ](q) · (q − v(q)) ≥ 0, and the inequality is strict if q 6= CC(Q),
(ii) (q − CC(Q)) · (q − v(q)) ≥ ‖q − CC(Q)‖2/2,
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(iii) Ln[smQ](q) · ne ≥ 0, and the inequality is strict if q 6∈ IC(Q), and
(iv) (x−q) ·ne ≥ IR(Q)−De(q) ≥ 0 for any x ∈ IC(Q), and the second inequality

is strict if q 6∈ IC(Q).

4. Analysis of the multicenter functions. Here we study the locational opti-
mization functions HDC and HSP for the disk-covering and sphere-packing problems.
We characterize their smoothness properties, generalized gradients, and critical points
for arbitrary numbers of generators.

4.1. Smoothness and generalized gradients. We start by providing some
alternative expressions and useful quantities. We write

HDC(P ) = max
i∈{1,...,n}

Gi(P ), HSP(P ) = min
i∈{1,...,n}

Fi(P ),

where

Gi(P ) = max
q∈Vi(P )

‖q − pi‖, Fi(P ) = min
q 6∈int(Vi(P ))

‖q − pi‖.

Note that Gi(P ) = lgVi(P )(pi) and Fi(P ) = smVi(P )(pi), where, for i ∈ {1, . . . , n},

lgVi
: Vi → R, smVi

: Vi → R.

Proposition 3.3 provides an explicit expression for the generalized gradients of lgVi

and smVi
when the Voronoi cell Vi is held fixed. Despite the slight abuse of notation, it

is convenient to let ∂ lgVi(P )(pi) denote ∂ lgV (pi)|V =Vi(P ) and let ∂ smVi(P )(pi) denote
∂ smV (pi)|V =Vi(P ).

In contrast to this analysis at fixed Voronoi partition, the properties of the func-
tions Gi and Fi are strongly affected by the dependence on the Voronoi partition
V(P ). We endeavor to characterize these properties in order to study HDC and HSP.

Proposition 4.1. The functions Gi,−Fi : Qn → R are locally Lipschitz and
regular. As a consequence, the locational optimization functions HDC,−HSP : Qn →
R are locally Lipschitz and regular.

Proof. Here we only prove that Gi is locally Lipschitz and regular and we refer
to [14] for the corresponding result for −Fi. The definition of the function Gi admits
the following alternative expression:

Gi(P ) = max
v∈Ve(Vi)

‖pi − v‖.(4.1)

Let P0 be nondegenerate at the ith generator. Then there exists a neighborhood
U of P0 where the set N (i) does not change. Let {v1, . . . , vM1

}, {w1, . . . , wM2
},

{z1, . . . , zM3
} be the vertexes of Vi of types (a), (b), and (c), respectively. Then Gi

can be locally written as

Gi(P ) = max

{
max

ℓ∈{1,...,M1}
‖vℓ − pi‖, max

ℓ∈{1,...,M2}
‖wℓ − pi‖, max

ℓ∈{1,...,M3}
‖zℓ − pi‖

}

for all P ∈ U . Therefore, Gi restricted to U coincides with the function GN (i) : Qn →
R defined by
(4.2)

GN (i)(P ) = max

{
max

ℓ∈{1,...,M1}
‖vℓ − pi‖, max

ℓ∈{1,...,M2}
‖wℓ − pi‖, max

ℓ∈{1,...,M3}
‖zℓ − pi‖

}
.
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pj

e v

pi

v

pi
pj

e v

pi

pj

e

Fig. 4.1. To illustrate (4.3) we draw the vectors proje(pj − v(e, i, j)) and proje(pj − pi) for
various locations of pi, pj , and e. The left, center, and right figures correspond to λ(e, i, j) > 0,
λ(e, i, j) = 0, λ(e, i, j) < 0, respectively.

The function GN (i) is the maximum of a fixed finite set of locally Lipschitz and regular
functions and, consequently, locally Lipschitz and regular by Proposition 2.2. We
conclude that Gi is both locally Lipschitz and regular at P0.

Let P0 be degenerate at the ith generator. Then in any neighborhood U of
P0 there are different sets of neighbors of the ith generator. Indeed, because the
number of generators, edges of the boundary Q, and vertexes of Q is finite, there is
only a finite number of different sets of neighbors of the ith generator over U , say
N 1(i), . . . ,NL(i). This implies that Gi admits the alternative expression Gi(P ) =
min

{
GN 1(i)(P ), . . . ,GNL(i)(P )

}
over U . From this expression, one can conclude that

Gi is both locally Lipschitz and regular at P0.
Next, one can actually prove the following stronger result.
Proposition 4.2. The locational optimization functions HDC,HSP : Qn → R

are globally Lipschitz, with Lipschitz constant equal to 1.
Proof. Let P , P ′ be two configurations of the n generators. Without loss of

generality, assume that HDC(P ) ≤ HDC(P ′). Let i, j and q0, q′0 ∈ Q be such that
HDC(P ) = Gi(P ) = ‖q0 − pi‖ and HDC(P ′) = Gj(P

′) = ‖q′0 − p′j‖. Now consider

the set B2(q
′
0, Gi(P )). Then there exists a k such that pk ∈ B2(q

′
0, Gi(P )) (otherwise,

‖q′0 − pl‖ > Gi(P ), which contradicts the definition of the function HDC). On the
other hand, we necessarily have that p′k 6∈ B2(q

′
0, Gj(P

′)), since otherwise ‖q′0−p′k‖ <
‖q′0 − p′j‖, which implies that q′0 6∈ V ′

j , a contradiction. Finally, we apply the triangle
inequality to obtain ‖q′0 − p′k‖ ≤ ‖q′0 − pk‖+ ‖pk − p′k‖. Gathering the previous facts,
we have

|HDC(P ′) −HDC(P )| = Gj(P
′) − Gi(P )

≤ ‖q′0 − p′k‖ − ‖q′0 − pk‖ ≤ ‖pk − p′k‖ ≤ ‖P − P ′‖.

This concludes our proof that HDC is globally Lipschitz.
We now introduce some quantities that are useful in characterizing the generalized

gradient of the functions Gi. Given a vertex of type (b), v = v(e, i, j), determined
by the edge e and two generators pi and pj , we consider the scalar function λ(e, i, j)
defined by

(4.3) proje(pj − v(e, i, j)) = λ(e, i, j) proje(pj − pi),

where we recall that proje denotes the orthogonal projection onto the edge e; see
Figure 4.1. One can see that λ(e, i, j) + λ(e, j, i) = 1. If e is a segment in the line
ax + by + c = 0, (∆xij ,∆yij) = pj − pi, (xm, ym) = (pi + pj)/2, then one can show

(4.4) λ(e, i, j) =
1

2
−

(a∆xij + b∆yij)(axm + bym + c)

(a∆yij − b∆xij)2
.
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Given a vertex of type (a), v = v(i, j, k), determined by the three generators pi, pj ,
and pk, we consider the scalar function µ(i, j, k) defined by

(4.5) projejk
(pℓ − v(i, j, k)) = µ(i, j, k) projejk

(pℓ − pi),

where ejk is the bisector of pj and pk and where pℓ = pj if pj belongs to the half-plane
defined by ejk containing pi, and pℓ = pk otherwise. One can see that µ(i, j, k) =
µ(i, k, j) and that µ(i, j, k) + µ(j, k, i) + µ(k, i, j) = 1. From the expression for λ, one
can obtain

(4.6) µ(i, j, k) =
1

2
+

(∆xij∆xjk + ∆yij∆yjk)(∆xik∆xjk + ∆yik∆yjk)

2(xk∆yij − xj∆yik + xi∆yjk)2
.

Note that, in general, λ and µ are not positive functions. Now we are ready to describe
in detail the structure of the generalized gradient of the functions Gi and Fi.

Proposition 4.3. The generalized gradient of Gi : Qn → R at P ∈ Qn is

∂Gi(P ) = co{∂vGi(P ) ∈ (R2)n | v ∈ Ve(Vi(P )) such that Gi(P ) = ‖pi − v‖},

where we consider separately the following cases. If v = v(i, j, k) is a nondegenerate
vertex of type (a), then

∂v(i,j,k)Gi(P ) = ∂v(k,i,j)Gk(P ) = ∂v(j,k,i)Gj(P )

= (0, . . . , µ(i, j, k) vrs(pi − v)︸ ︷︷ ︸
ith place

, . . . , µ(j, k, i) vrs(pj − v)︸ ︷︷ ︸
jth place

, . . . , µ(k, i, j) vrs(pk − v)︸ ︷︷ ︸
kth place

, . . . , 0),

where, without loss of generality, we let i < j < k. If v = v(e, i, j) is a nondegenerate
vertex of type (b), then

∂v(e,i,j)Gi(P ) = ∂v(e,j,i)Gj(P )

= (0, . . . , λ(e, i, j) vrs(pi − v)︸ ︷︷ ︸
ith place

, . . . , λ(e, j, i) vrs(pj − v)︸ ︷︷ ︸
jth place

, . . . , 0),

where, without loss of generality, we let i < j. If v = v(e, f, i) is a nondegenerate
vertex of type (c), then

∂v(e,f,i)Gi(P ) = (0, . . . , 0, vrs(pi − v)︸ ︷︷ ︸
ith place

, 0, . . . , 0).

Finally, if the vertex v is degenerate, i.e., if v is determined by d > 3 elements
(generators or edges), then there are

(
d−1
2

)
pairs of elements which determine the

vertex v together with the generator pi. In this case, ∂vGi(P ) is the convex hull of
∂v(α,β,γ)Gi(P ) for all

(
d−1
2

)
such triplets (α, β, γ).

Note that, at all nondegenerate configurations P , the quantity ∂vGi(P ) is the
generalized gradient of the function (p1, . . . , pn) 7→ ‖pi − v(i, j, k)‖; however, this
interpretation cannot be given when P is degenerate.

Proof. We present the proof for the expression for ∂Gi(P ). Let us consider first
the case when P is a nondegenerate configuration for the ith generator. According to
the proof of Proposition 4.1, Gi coincides with the function GN (i) over a neighborhood
U of P . Hence, ∂Gi(P ) = ∂GN (i)(P ) which, according to (4.2) and Proposition 2.2,
takes the form

co

{
∂

∂P
‖v − pi‖ | v ∈ Ve(Vi(P )) such that ‖v − pi‖ = Gi(P )

}
.
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If v = v(i, j, k) is a nondegenerate vertex of type (a), then one can compute

∂

∂pi

‖pi − v(i, j, k)‖ = vrs(pi − v)

(
I2 −

∂v

∂pi

)
= µ(i, j, k) vrs(pi − v),

∂

∂pj

‖pi − v(i, j, k)‖ = − vrs(pi − v)

(
∂v

∂pj

)
= µ(j, k, i) vrs(pj − v),

∂

∂pℓ

‖pi − v(i, j, k)‖ = 0, ℓ 6= i, j, k,

where in the first and second chain of equalities we have used the expression of µ
given in (4.6). If v = v(e, i, j) is a nondegenerate vertex of type (b), then one can
compute

∂

∂pi

‖pi − v(e, i, j)‖ = vrs(pi − v)

(
I2 −

∂v

∂pi

)
= λ(e, i, j) vrs(pi − v),

∂

∂pj

‖pi − v(e, i, j)‖ = − vrs(pi − v)

(
∂v

∂pj

)
= λ(e, j, i) vrs(pj − v),

∂

∂pℓ

‖pi − v(e, i, j)‖ = 0, ℓ 6= i, j,

where in the first and second chain of equalities we have used the expression of λ
given in (4.4). If v = v(e, f, i) is a nondegenerate vertex of type (c), then

∂

∂pi

‖pi − v(e, f, i)‖ = vrs(pi − v),

∂

∂pℓ

‖pi − v(e, f, i)‖ = 0, ℓ 6= i.

If P is a degenerate configuration at the ith generator, then, following the proof of
Proposition 4.1, the generalized gradient of Gi can be expressed as the convex hull of
the generalized gradients of each of the functions GN 1(i), . . . ,GNL(i). The claim now
follows by reproducing the previous discussion for the generalized gradients of each of
the functions GN ℓ(i), ℓ ∈ {1, . . . , L}.

The expression for ∂Fi(P ) can be deduced in an analogous (and simpler) way
because it is not necessary to establish any distinction between the degenerate and the
nondegenerate configurations in its calculation. Accordingly, we state the following
result without proof.

Proposition 4.4. The generalized gradient of Fi : Qn → R at P ∈ Qn is

∂Fi(P ) = co{∂eFi(P ) ∈ (R2)n | e ∈ Ed(Vi(P )) such that Fi(P ) = De(pi)}

where, if e = e(i, j) is an edge of type (a), then

∂e(i,j)Fi(P ) = ∂e(j,i)Fj(P ) =
1

2
(0, . . . , ne(i,j)︸ ︷︷ ︸

ith place

, . . . ,−ne(i,j)︸ ︷︷ ︸
jth place

, . . . , 0),

and if e = e(i) is an edge of type (b), then

∂e(i)Fi(P ) = (0, . . . , ne(i)︸︷︷︸
ith place

, . . . , 0).

Next, we give conditions under which the functions λ and µ take positive values.
Lemma 4.5. Let P ∈ Qn and let v ∈ VeDC(V(P )). Then
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(i) if v belongs to an edge e of Q, then there exist generators pi and pj such that
λ(e, i, j) and λ(e, j, i) are positive, and

(ii) if v belongs to int(Q), then there exist generators pi, pj, and pk such that
µ(i, j, k), µ(j, k, i), and µ(k, i, j) are positive.

This completes our analysis of the generalized gradients of Gi and Fi and, with
these results, we return to studying the generalized gradients of HDC and HSP. An
immediate consequence of Propositions 2.2 and 4.1 is that

∂HDC(P ) = co{∂Gi(P ) | i ∈ I(P )},

∂HSP(P ) = co{∂Fi(P ) | i ∈ I(P )}.(4.7)

Furthermore, we can provide the following more detailed characterization.
Proposition 4.6. Let P ∈ Qn. For each i ∈ {1, . . . , n}, the image by πi of the

generalized gradients of HDC and HSP at P is given by

πi(∂HDC(P )) =





πi(∂Gi(P )) if i ∈ I(P ), VeDC(V(P )) ⊂ Ve(Vi(P )),

co{πi(∂Gi(P )), 0} if i ∈ I(P ), VeDC(V(P )) 6⊂ Ve(Vi(P )),

0 if i 6∈ I(P );

πi(∂HSP(P )) =





πi(∂Fi(P )) if i ∈ I(P ), EdSP(V(P )) ⊂ Ed(Vi(P )),

co{πi(∂Fi(P )), 0} if i ∈ I(P ), EdSP(V(P )) 6⊂ Ed(Vi(P )),

0 if i 6∈ I(P ).

Proof. From (4.7), if i 6∈ I(P ), then πi(∂HDC(P )) = 0, πi(∂HSP(P )) = 0. If
i ∈ I(P ), then using Proposition 4.3 we deduce that the generators pj such that ∂Gj

has a nonzero entry in the ith place (and hence contributes to the projection by πi

of ∂HDC) must share a vertex with the ith generator. Analogously, if i ∈ I(P ), then
using Proposition 4.4 we deduce that the generators pj such that ∂Fj has a nonzero
entry in the ith place (and hence contributes to the projection by πi of ∂HSP) must
satisfy j ∈ N (i). For the disk-covering function, if v is a common vertex of Vi and
Vj , determined by i, j, and a third element α, then ∂v(α,j,i)Gj = ∂v(α,i,j)Gi, and
the expression for πi(∂HDC(P )) then follows. The argument for the expression of
πi(∂HSP(P )) is analogous.

4.2. Critical points. Having characterized the generalized gradients of HDC

and HSP, we now turn to studying their critical points.
Theorem 4.7 (Minima of HDC). Let P ∈ Qn be a nondegenerate configuration

and 0 ∈ int(∂HDC(P )). Then P is a strict local minimum of HDC, all generators are
active, and P is a circumcenter Voronoi configuration.

Proof. Since P is nondegenerate, note from Proposition 4.3 that ∂vGi is a sin-
gleton for each v ∈ Ve(Vi(P )), i ∈ {1, . . . , n}. Let w ∈ (R2)n. We claim that moving
the configuration of the generators from P in the direction w can only increase the
cost. The hypothesis 0 ∈ int(∂HDC(P )) implies by Lemma 2.1 that there exists i
and v ∈ Ve(Vi(P )) ∩ VeDC(V(P )) such that w · ∂vGi(P ) > 0. Since P is nondegen-
erate, v will still belong to Vi(P + ǫw) for sufficiently small ǫ > 0, and consequently
HDC(P + ǫw) ≥ Gi(P + ǫw) > Gi(P ) = HDC(P ). Therefore, P is a strict local
minimum.

Since πi is an open map, the set πi(int(∂HDC(P ))) is open for each i ∈ {1, . . . , n}.
Therefore, πi(int(∂HDC(P ))) 6= 0, and hence all generators are active, i.e., I(P ) =
{1, . . . , n}. Let us see that all generators must also be centered. Assume P is non-
degenerate and consider the ith generator. Take w ∈ R

2 and let w ∈ (R2)n be the
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2

3

4
1

3

1 4

2

Fig. 4.2. Local extrema of the disk-covering and the sphere-packing functions in a convex
polygonal environment. The configuration on the left corresponds to a local minimum of HDC

with 0 ∈ ∂HDC(P ) and int(∂HDC(P )) = ∅. The configuration on the right corresponds to a local
maximum of HSP with 0 ∈ ∂HSP(P ) and int(∂HSP(P )) = ∅. In both configurations, the 4th
generator is inactive and noncentered.

vector which has w in the ith place and 0 otherwise. By Lemma 2.1, there exist j and
v ∈ Ve(Vj(P ))∩VeDC(V(P )) such that w·∂vGj > 0. Since w·∂vGj = w·πi(∂vGj) > 0,
then necessarily πi(∂vGj) 6= 0, and therefore v ∈ Vi(P ) and πi(∂vGj) = πi(∂vGi). The
vertex v is determined by pi, pj and a third element, say α. Depending on whether
α corresponds to an edge or to another generator, we have that πi(∂vGi) is equal to
λ(α, i, j) vrs(pi − v) or µ(α, i, j) vrs(pi − v). In any case, from Lemma 4.5, we de-
duce that λ(α, i, j) (respectively, µ(α, i, j)) belongs to the interval (0, 1). Therefore,
w · πi(∂vGi) > 0 implies w · vrs(pi − v) > 0. Since vrs(pi − v) ∈ ∂ lgVi(P )(pi) =
∂ lgV (pi)|V =Vi(P ) (cf. (3.2)), we conclude from Lemma 2.1 that 0 ∈ int(∂ lgVi(P )(pi)).
By Proposition 3.3, this implies that pi = CC(Vi). Hence, P is a circumcenter Voronoi
configuration.

Theorem 4.8 (Maxima of HSP). Let P ∈ Qn and 0 ∈ int(∂HSP(P )). Then P is
a strict local maximum of HSP, all generators are active, and P is a generic incenter
Voronoi configuration.

Proof. The proof of this result is analogous to the proof of Theorem 4.7. Note
that 0 ∈ int(∂ smVi(P )(pi)) implies, by Proposition 3.3, that IC(Vi(P )) = {pi}, and
hence P is a generic incenter Voronoi configuration.

Remark 4.9. Theorems 4.7 and 4.8 precisely provide the interpretation of the
multicenter problems that we gave in Section 2.2: since all generators are active, they
share the same radius. If one drops the hypothesis that 0 belongs to the generalized
gradient of the locational optimization function, then one can think of simple examples
where P is a local minimum of HDC (respectively, local maximum of HSP), and there
are generators which are inactive and noncentered; see Figure 4.2.

5. Dynamical systems for the multicenter problems. In this section, we
describe three algorithms that (locally) extremize the multicenter functions for the
disk-covering and the sphere-packing problems. We first examine the gradient flow
descent associated with the locational optimization functions HDC and HSP. This flow
is guaranteed to find a local critical point, but it has the drawback of being centralized,
as we describe later. Then we propose two decentralized flows for each problem. One
roughly consists of a distributed implementation of the gradient descent. As we show,
it is very much in the spirit of behavior-based robotics. The other one follows the
logical strategy given the results in Theorems 4.7 and 4.8: each generator moves
toward the circumcenter (alternatively, incenter set) of its own Voronoi polygon. We
call them Lloyd flows, since they resemble the original Lloyd algorithm for vector
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quantization problems, where each quantizer moves toward the centroid or center of
mass of its own Voronoi region, see [18, 22, 29]. We present continuous-time versions of
the algorithms and discuss their convergence properties. In our setting, the generators’
location obeys a first-order dynamical behavior described by

(5.1) ṗi = ui(p1, . . . , pn), i ∈ {1, . . . , n}.

The dynamical system (5.1) is said to be (strongly) centralized if there exists at
least an i ∈ {1, . . . , n} such that ui(p1, . . . , pn) cannot be written as a function of
the form ui(pi, pi1 , . . . , pim

), with m < n − 1. The dynamical system (5.1) is said
to be Voronoi-distributed if each ui(p1, . . . , pn) can be written as a function of the
form ui(pi, pi1 , . . . , pim

), with ik ∈ N (P, i), k ∈ {1, . . . ,m}. Finally, the dynamical
system (5.1) is said to be nearest-neighbor-distributed if each ui(p1, . . . , pn) can be
written as a function of the form ui(pi, pi1 , . . . , pim

), with ‖pi−pik
‖ ≤ ‖pi−pj‖ for all

j ∈ {1, . . . , n} and k ∈ {1, . . . ,m}. A nearest-neighbor-distributed dynamical system
is also Voronoi-distributed.

It is well known that there are at most 3n − 6 neighborhood relationships in a
planar Voronoi diagram [34, section 2.3]. Therefore, the number of Voronoi neighbors
of each point is on average less than or equal to 6. (Recall that points are Voronoi-
neighbors if they share an edge, not just a vertex.) We refer to [15] for more details
on the distributed character of Voronoi neighborhood relationships.

Note that the set of indexes {i1, . . . , im} for a specific generator pi of a Voronoi-
distributed or a nearest-neighbor-distributed dynamical system is not the same for all
possible configurations P . In other words, the identity of both the Voronoi neighbors
and the nearest neighbors might change along the evolution; i.e., the topology of the
dynamical system is dynamic.

5.1. Nonsmooth gradient dynamical systems. Consider the (signed) gen-
eralized gradient descent flow (2.6) for the locational optimization functions HDC

and HSP,

Ṗ = −Ln(∂HDC)(P ), Ṗ = Ln(∂HSP)(P ).

Alternatively, we may write the following for each i ∈ {1, . . . , n}:

ṗi = −πi(Ln(∂HDC)(p1, . . . , pn)),(5.2)

ṗi = πi(Ln(∂HSP)(p1, . . . , pn)).(5.3)

As noted in Section 2.4, these vector fields are discontinuous, and therefore we under-
stand their solution in the Filippov sense. Equation (4.7) and Propositions 4.3 and 4.4
provide an expression of the generalized gradients at P , ∂HDC(P ) and ∂HSP(P ).
One needs to first compute the generalized gradient, then compute the least-norm
element, and finally project it to each of the n components; therefore, the expressions
in Proposition 4.6 are not helpful. Note that the least-norm element of convex sets
can be computed efficiently, see [5], however closed-form expressions are not available
in general.

One can see that the compact set Qn is strongly invariant for both vector fields
−Ln(∂HDC) and Ln(∂HSP). Indeed, the components for each generator of both
vector fields point always toward Q. Regarding −Ln(∂HDC), this is a consequence
of Proposition 4.3 and of Lemma 4.5. Regarding Ln(∂HSP), this is a consequence of
Proposition 4.4.
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Proposition 5.1. For the dynamical system (5.2) (respectively, (5.3)), the gen-
erators’ location P = (p1, . . . , pn) converges asymptotically to the set of critical points
of HDC (respectively, of HSP).

Proof. From Propositions 4.1 and 4.2, HDC and −HSP are globally Lipschitz and
regular over Qn. The result follows from Proposition 2.9 considering the dynamical
system restricted to the strongly invariant and compact domain Qn.

Remark 5.2. The gradient dynamical systems enjoy convergence guarantees,
but their implementation is centralized for two reasons. First, all functions Gi(P )
(respectively, Fi(P )) need to be compared in order to determine which generator
is active. Second, the least-norm element of the generalized gradients depends on
the relative position of the active generators with respect to each other and to the
environment.

Remark 5.3. As illustrated in Figure 5.1 the evolution of the gradient dynamical
systems may not leave fixed the generators that are already centers (circumcenters or
incenters).

j

k

i

v2

v1

i

k

e1

e2

j

e3

Fig. 5.1. Illustration of the gradient descent. In the left figure, the only active vertexes at the
given configuration are v1 and v2. Although the jth generator is in the circumcenter of its own
Voronoi region, the control law (5.2) will drive it toward the vertex v. In the right figure, the only
active edges at the given configuration are e1, e2, and e3. Although the jth generator is in the
incenter of its own Voronoi region, the control law (5.3) will drive it away from the edge e1.

5.2. Nonsmooth dynamical systems based on distributed gradients. In
this section, we propose a distributed implementation of the previous gradient dy-
namical systems and explore its relation with behavior-based rules in multiple-vehicle
coordination. Consider the following modifications of the gradient dynamical sys-
tems (5.2)–(5.3):

ṗi = −Ln(∂ lgVi(P ))(P ),(5.4)

ṗi = Ln(∂ smVi(P ))(P ),(5.5)

for i ∈ {1, . . . , n}. Note that the system (5.4) is Voronoi-distributed, since
Ln(∂ lgVi(P ))(P ) is determined only by the position of pi and of its Voronoi neighbors
N (P, i). On the other hand, the system (5.5) is nearest-neighbor-distributed, since
Ln(∂ smVi(P ))(P ) is determined only by the position of pi and its nearest neighbors.

For future reference, let Ln(∂ lgV)(P ) = (Ln(∂ lgV1(P ))(P ), . . . ,Ln(∂ lgVn(P ))(P )),
Ln(∂ smV)(P ) = (Ln(∂ smV1(P ))(P ), . . . ,Ln(∂ smVn(P ))(P )), and write

Ṗ = −Ln(∂ lgV)(P ), Ṗ = Ln(∂ smV)(P ).
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As for the previous dynamical systems, note that these vector fields are discontinuous,
and therefore we understand their solutions in the Filippov sense. One can see that the
compact set Qn is strongly invariant for both vector fields −Ln(∂ lgV) and Ln(∂ smV).
This fact is a consequence of the expressions for the generalized gradients of lg and sm
in Proposition 3.3. Note that in the 1-center case, (5.2) (respectively, (5.3)) coincides
with (5.4) (respectively, with (5.5)).

Proposition 5.4. Let P ∈ Qn. Then the solutions of the dynamical sys-
tems (5.4) and (5.5) starting at P are unique.

Remark 5.5 (relation with behavior-based robotics: move toward the furthest-
away vertex). The distributed gradient control law in the disk-covering setting (5.4)
has an interesting interpretation in the context of behavior-based robotics. Consider
the ith generator. If the maximum of lgVi(P ) is attained at a single vertex v of its
Voronoi cell Vi, then lgVi(P ) is differentiable at that configuration and its derivative
corresponds to vrs(pi−v). Therefore, the control law (5.4) corresponds to the behavior
“move toward the furthest vertex in own Voronoi cell.” If there are two or more
vertexes of Vi where the value lgVi(P )(pi) is attained, then (5.4) provides an average
behavior by computing the least-norm element in the convex hull of all vrs(pi − v)
such that ‖pi − v‖ = lgVi(P )(pi).

Remark 5.6 (relation with behavior-based robotics: move away from the nearest
neighbor). The distributed gradient control law in the sphere-packing setting (5.5)
also has an interesting interpretation. For the ith generator, if the minimum of smVi(P )

is attained at a single edge e, then smVi(P ) is differentiable at that configuration,
and its derivative is ne. The control law (5.5) corresponds to the behavior “move
away from the nearest neighbor” (where a neighbor can also be the boundary of the
environment). If there are two or more edges where the value smVi(P )(pi) is attained,
then (5.5) provides an average behavior in an analogous manner as before.

Proposition 5.7. For the dynamical system (5.4), the generators’ location P =
(p1, . . . , pn) converges asymptotically to the largest weakly invariant set contained in
the closure of ADC(Q) = {P ∈ Qn | i ∈ I(P ) =⇒ pi = CC(Vi)}.

Proof. Let a ∈ L̃−Ln(∂ lg
V

)HDC(P ). By definition, a = −Ln(∂ lgV)(P ) · ζ, for
all ζ ∈ ∂HDC(P ). Let v ∈ VeDC(V(P )). From Proposition 4.3 and Lemma 4.5, we
know that, independently of the degenerate/nondegenerate character of the Voronoi
partition at v, there always exist either an edge e of Q and generators pi and pj ,
or generators pi, pj , and pk, such that λ(e, i, j), λ(e, j, i) > 0 (respectively, µ(i, j, k),
µ(j, k, i), µ(k, i, j) > 0). If v is a vertex of type (b), then

a = −Ln(∂ lgV)(P ) · ∂vGi

(5.6)

= −Ln(∂ lgVi(P ))(P ) · λ(e, i, j) vrs(pi − v) − Ln(∂ lgVj(P ))(P ) · λ(e, j, i) vrs(pj − v).

From Lemma 3.6(i) we conclude that a ≤ 0, and the inequality is strict if either
pi 6= CC(Vi) or pj 6= CC(Vj). The same conclusion can be derived if v is a vertex

of type (a). Therefore, max L̃−Ln(∂ lg
V

)HDC(P ) ≤ 0 or L̃−Ln(∂ lg
V

)HDC(P ) = ∅.
Now, resorting to the LaSalle Invariance Principle (Theorem 2.7), we deduce that the
solution P : [0,+∞) → Qn starting from P0 converges to the largest weakly invariant
set contained in Z−Ln(∂ lg

V
),HDC

∩H−1
DC(≤ HDC(P0), P0) ∩ Qn.

Let us see that Z−Ln(∂ lg
V

),HDC
∩ Qn is equal to ADC(Q). Take a configuration

P ∈ ADC(Q). Then Ln(∂ lgVi(P ))(P ) = 0 if i ∈ I(P ), and πi(ζ) = 0 if i 6∈ I(P ), for
any ζ ∈ ∂HDC(P ) (cf. Proposition 4.6). Consequently, 0 = −Ln(∂ lgV)(P ) · ζ, for all

ζ ∈ ∂HDC(P ), and so 0 ∈ L̃−Ln(∂ lg
V

)HDC(P ). Therefore, ADC(Q) ⊂ Z−Ln(∂ lg
V

),HDC
.
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Now, consider P ∈ Z−Ln(∂ lg
V

),HDC
. Then 0 ∈ L̃−Ln(∂ lg

V
)HDC(P ), that is, 0 =

−Ln(∂ lgV)(P ) · ζ, for all ζ ∈ ∂HDC(P ). If P is nondegenerate, then we deduce from
(5.6) and Lemma 3.6 that all the active generators are centered, i.e., P ∈ ADC(Q).
If P is degenerate, then consider a degenerate vertex v where the value of HDC(P )
is attained. For simplicity, we deal with the case where v is contained in an edge e
of Q (the case v ∈ int(Q) is treated analogously). From Lemma 4.5 we know that
there exist generators pi, pj determining v on opposite sides of l, the orthogonal line
to the edge e passing through v. From (5.6) and Lemma 3.6 we deduce that both pi

and pj are centered. Now, for each generator pk with v ∈ Vk in the same side of l
as pi (respectively, pj), we consider the triplet (e, j, k) (respectively, (e, i, k)). Again
resorting to (5.6) and Lemma 3.6, we conclude that pk is also centered. Finally,
if a generator pk with v ∈ Vk is such that pk ∈ l, any of the triplets (e, j, k) or
(e, i, k) can be invoked in a similar argument to ensure that pk is centered. Therefore,
P ∈ ADC(Q), and hence (Z−Ln(∂ lg

V
),HDC

∩ Qn) ⊂ ADC(Q).
Proposition 5.8. For the dynamical system (5.5), the generators’ location P =

(p1, . . . , pn) converges asymptotically to the largest weakly invariant set contained in
the closure of ASP(Q) = {P ∈ Qn | i ∈ I(P ) =⇒ pi ∈ IC(Vi)}.

Remark 5.9. The sets ADC(Q) and ASP(Q) are not closed in general. If dimQ =
1, then it can be seen that they indeed are. In higher dimensions one can find sequences
{Pk ∈ Qn | k ∈ N} in these sets which converge to configurations P where not all
active generators are centered.

5.3. Distributed dynamical systems based on geometric centering. Here,
we propose alternative distributed dynamical systems for the multicenter functions.
Our design is directly inspired by the results in Theorems 4.7 and 4.8 on the critical
points of the multicenter functions HDC and HSP. For i ∈ {1, . . . , n}, consider the
dynamical systems

ṗi = CC(Vi) − pi,(5.7)

ṗi ∈ IC(Vi) − pi.(5.8)

Alternatively, we may write Ṗ = CC(V(P )) − P and Ṗ ∈ IC(V(P )) − P . Note
that both systems are Voronoi-distributed. Also, note that the vector field (5.7) is
continuous, since the circumcenter of a polygon depends continuously on the location
of its vertexes, and the location of the vertexes of the Voronoi partition depends
continuously on the location of the generators; see [34]. However, (5.8) is a differential
inclusion, since the incenter sets may not be singletons. By Lemma 2.5, the existence
of solutions to (5.8) is guaranteed by the following result.

Proposition 5.10. Consider the set-valued map IC(V)− Id : Qn → 2(R2)n

given
by P 7→ IC(V(P )) − P . Then IC(V) − Id is upper semicontinuous with nonempty,
compact, and convex values.

Having established the existence of solutions, one can also see that the compact
set Qn is strongly invariant for the vector field CC(V)− Id and for the differential in-
clusion IC(V)−Id. Next, we characterize the asymptotic convergence of the dynamical
systems under study.

Proposition 5.11. For the dynamical system (5.7) (respectively, (5.8)), the gen-
erators’ location P = (p1, . . . , pn) converges asymptotically to the largest weakly invari-
ant set contained in the closure of ADC(Q) (respectively, in the closure of ASP(Q)).

Proof. The proof of this result is parallel to the proof of Proposition 5.7. The
sequence of steps is the same as before, though now one resorts to Lemma 3.6(ii)
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and Lemma 3.6(iv). The only additional observation is that when computing the set-

valued Lie derivative for (5.8), one has that a ∈ L̃IC(V)−IdHSP(P ) if and only if there
exists x ∈ IC(V(P )) such that a = (x− P ) · ζ, for any ζ ∈ ∂HSP(P ). The application
of Lemma 3.6 guarantees that a ≥ 0 and that the inequality is strict if any of the
active generators is not in its corresponding incenter set.

5.4. Simulations. To illustrate the performance of the distributed coordination
algorithms, we include some simulation results. The algorithms are implemented in
Mathematica as a single centralized program. We compute the bounded Voronoi dia-
gram of a collection of points using the Mathematica package ComputationalGeometry.
We compute the circumcenter of a polygon via the algorithm in [43] and the incenter
set via the LinearProgramming solver in Mathematica. Measuring displacements in
meters, we consider the domain determined by the vertexes

{(0, 0), (2.5, 0), (3.45, 1.5), (3.5, 1.6), (3.45, 1.7), (2.7, 2.1), (1., 2.4), (.2, 1.2)}.

In Figures 5.2 and 5.3, we illustrate the performance of the dynamical systems (5.4)
and (5.7), respectively, minimizing the multi-circumcenter function HDC. In Fig-
ures 5.4 and 5.5, we illustrate the performance of the dynamical systems (5.5) and (5.8),
respectively, maximizing the multi-incenter function HSP. Observing the final config-
urations in the four figures, one can verify, visually and numerically, that the active
generators are asymptotically centered as forecast by our analysis.

Fig. 5.2. “Toward the furthest” algorithm for 16 generators in a convex polygonal environment.
The left (respectively, right) figure illustrates the initial (respectively, final) locations and Voronoi
partition. The central figure illustrates the network evolution. After 2 seconds, the multicenter
function is approximately .39504 meters.

Fig. 5.3. “Move-toward-the-circumcenter” algorithm for 16 generators in a convex polygonal
environment. The left (respectively, right) figure illustrates the initial (respectively, final) locations
and Voronoi partition. The central figure illustrates the network evolution. After 20 seconds, the
multicenter function is approximately 0.43273 meters.
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Fig. 5.4. “Away-from-closest” algorithm for 16 generators in a convex polygonal environment.
The left (respectively, right) figure illustrates the initial (respectively, final) locations and Voronoi
partition. The central figure illustrates the network evolution. After 2 seconds, the multicenter
function is approximately .26347 meters.

Fig. 5.5. “Move-toward-the-incenter” algorithm for 16 generators in a convex polygonal en-
vironment. The left (respectively, right) figure illustrates the initial (respectively, final) locations
and Voronoi partition. The central figure illustrates the network evolution. After 20 seconds, the
multicenter function is approximately .2498 meters.

6. Conclusions. We have introduced two multicenter functions that provide
quality-of-service measures for mobile networks. We have shown that both func-
tions are globally Lipschitz, and we have computed their generalized gradients. Fur-
thermore, under certain technical conditions, we have characterized via nonsmooth
analysis their critical points as center Voronoi configurations and as solutions of disk-
covering and sphere-packing problems. We have also considered various algorithms
that extremize the multicenter functions. First, we considered the nonsmooth gra-
dient flows induced by their respective generalized gradients. Second, we devised a
novel strategy based on the generalized gradients of the 1-center functions of each
generator. Third, we introduced and characterized a geometric centering strategy
with resemblances to the classical Lloyd algorithm. We have unveiled the remarkable
geometric interpretations of these algorithms, discussed their distributed character,
and analyzed their asymptotic behavior using nonsmooth stability analysis.

In summary, this paper has shown the relevance of tools from geometric optimiza-
tion, nonsmooth analysis, and nonsmooth stability in motion coordination problems.
As discussed in the introduction, the concepts adopted in this paper are being devel-
oped in a number of directions. Future directions of research include the following
specific problems: (i) how to sharpen the asymptotic convergence results for the pro-
posed dynamical systems (e.g., proving that all generators will asymptotically be
centered), (ii) how to extend the analysis to the setting of convex polytopes in R

N ,
for N > 2, (iii) in what sense the proposed multi-circumcenter and the multi-incenter
problems can be shown to be dual. From a broader viewpoint, we envision that the
formal analysis of interaction laws in multi-agent systems will continue to prove fertile
ground for research in motion coordination and cooperative control.
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26 JORGE CORTÉS AND FRANCESCO BULLO

trol and Optimization, (2007). Special issue on ”Control and Optimization in Cooperative
Networks.” To appear.

[28] J. Lin, A. S. Morse, and B. D. O. Anderson, The multi-agent rendezvous problem. Part 1:
The synchronous case, SIAM Journal on Control and Optimization, 46 (2007), pp. 2096–
2119.

[29] S. P. Lloyd, Least squares quantization in PCM, IEEE Transactions on Information Theory,
28 (1982), pp. 129–137. Presented as Bell Laboratory Technical Memorandum at a 1957
Institute for Mathematical Statistics meeting.

[30] V. J. Lumelsky and K. R. Harinarayan, Decentralized motion planning for multiple mobile
robots: the cocktail party model, Autonomous Robots, 4 (1997), pp. 121–135.

[31] J. A. Marshall, M. E. Broucke, and B. A. Francis, Formations of vehicles in cyclic pursuit,
IEEE Transactions on Automatic Control, 49 (2004), pp. 1963–1974.

[32] S. Mart́ınez and F. Bullo, Optimal sensor placement and motion coordination for target
tracking, Automatica, 42 (2006), pp. 661–668.

[33] S. Mart́ınez, J. Cortés, and F. Bullo, Motion coordination with distributed information,
IEEE Control Systems Magazine, 27 (2007), pp. 75–88.

[34] A. Okabe, B. Boots, K. Sugihara, and S. N. Chiu, Spatial Tessellations: Concepts and
Applications of Voronoi Diagrams, Wiley Series in Probability and Statistics, John Wiley,
New York, 2 ed., 2000.

[35] R. Olfati-Saber, J. A. Fax, and R. M. Murray, Consensus and cooperation in networked
multi-agent systems, Proceedings of the IEEE, 95 (2007), pp. 215–233.

[36] B. Paden and S. S. Sastry, A calculus for computing Filippov’s differential inclusion with
application to the variable structure control of robot manipulators, IEEE Transactions on
Circuits and Systems, 34 (1987), pp. 73–82.

[37] L. Pallottino, V. G. Scordio, E. Frazzoli, and A. Bicchi, Decentralized cooperative policy
for conflict resolution in multi-vehicle systems, IEEE Transactions on Robotics, 23 (2007),
pp. 1170–1183.

[38] W. Ren, R. W. Beard, and E. M. Atkins, Information consensus in multivehicle cooper-
ative control: Collective group behavior through local interaction, IEEE Control Systems
Magazine, 27 (2007), pp. 71–82.

[39] J.-M. Robert and G. T. Toussaint, Computational geometry and facility location, in In-
ternational Conf. on Operations Research and Management Science, vol. B, Manila, The
Philippines, Dec. 1990, pp. 1–19.

[40] R. Sepulchre, D. Paley, and N. E. Leonard, Stabilization of planar collective motion: All-
to-all communication, IEEE Transactions on Automatic Control, 52 (2007), pp. 811–824.

[41] V. Sharma, M. Savchenko, E. Frazzoli, and P. Voulgaris, Transfer time complexity of
conflict-free vehicle routing with no communications, International Journal of Robotics
Research, 26 (2007), pp. 255–272.

[42] D. Shevitz and B. Paden, Lyapunov stability theory of nonsmooth systems, IEEE Transactions
on Automatic Control, 39 (1994), pp. 1910–1914.

[43] S. Skyum, A simple algorithm for computing the smallest enclosing circle, Information Pro-
cessing Letters, 37 (1991), pp. 121–125.

[44] S. Susca, S. Mart́ınez, and F. Bullo, Monitoring environmental boundaries with a robotic
sensor network, IEEE Transactions on Control Systems Technology, 16 (2008), pp. 288–
296.

[45] A. Suzuki and Z. Drezner, The p-center location problem in an area, Location Science, 4
(1996), pp. 69–82.

[46] I. Suzuki and M. Yamashita, Distributed anonymous mobile robots: Formation of geometric
patterns, SIAM Journal on Computing, 28 (1999), pp. 1347–1363.

[47] H. G. Tanner, A. Jadbabaie, and G. J. Pappas, Flocking in fixed and switching networks,
IEEE Transactions on Automatic Control, 52 (2007), pp. 863–868.

[48] H. G. Tanner, G. J. Pappas, and V. Kumar, Leader-to-formation stability, IEEE Transactions
on Robotics and Automation, 20 (2004), pp. 443–455.

[49] P. Yang, R. A. Freeman, and K. M. Lynch, Multi-agent coordination by decentralized esti-
mation and control, IEEE Transactions on Automatic Control, (2008). To appear.


