
Dynamic Multi-Vehicle Routing with Multiple Classes of Demands

Marco Pavone Stephen L. Smith Francesco Bullo Emilio Frazzoli

Abstract— In this paper we study a dynamic vehicle routing
problem in which there are multiple vehicles and multiple
classes of demands. Demands of each class arrive in the
environment randomly over time and require a random amount
of on-site service that is characteristic of the class. To service
a demand, one of the vehicles must travel to the demand
location and remain there for the required on-site service time.
The quality of service provided to each class is given by the
expected delay between the arrival of a demand in the class,
and that demand’s service completion. The goal is to design a
routing policy for the service vehicles which minimizes a convex
combination of the delays for each class. First, we provide a
lower bound on the achievable values of the convex combination
of delays. Then, we propose a novel routing policy and analyze
its performance under heavy load conditions (i.e., when the
fraction of time the service vehicles spend performing on-site
service approaches one). The maximum deviation of the policy’s
performance from the lower bound depends only on the number
of classes, and is independent of the number of vehicles, the
arrival rates of demands, the on-site service times, and the
convex combination coefficients.

I. INTRODUCTION

Consider a bounded environment E in the plane which
contains n service vehicles. Demands arrive in E sequentially
over time and each demand is a member of one of m
classes. Upon arrival, a demand assumes a location in E , and
requires a class dependent amount of on-site service time.
To service a demand, one of the n vehicles must travel to
the demand location and perform the on-site service. If we
specify a policy by which the vehicles serve demands, then
the expected delay for demands of class α, denoted Dα, is the
expected amount of time between a demands arrival and its
service completion. Then, given coefficients c1, . . . , cm > 0,
the goal is to find the vehicle routing policy that minimizes
the convex combination

c1D1 + · · ·+ cmDm.

By increasing the coefficients for certain classes, a higher
priority level can be given to their demands. This problem
has important applications in areas such as UAV surveillance,
where targets are given different priority levels based on their
urgency or potential importance.

In classical queuing theory (i.e., queuing systems in which
the demands are not spatially distributed), the problem of
priority queues has received much attention, [1]. In [2] the
authors characterize the region of delays that are realizable
by a single server. This analysis is performed under the

M. Pavone and E. Frazzoli are with the Laboratory for Information
and Decision Systems, Aeronautics and Astronautics Department, Mas-
sachusetts Institute of Technology, Cambridge, MA 02139, USA; email:
{pavone,frazzoli}@mit.edu. S. L. Smith and F. Bullo are with
the Center for Control, Dynamical Systems and Computation, Department
of Mechanical Engineering, University of California, Santa Barbara, CA
93106, USA {stephen,bullo}@engineering.ucsb.edu.

assumption that the customer (demand) interarrival times
and service times are distributed exponentially. In [3] the
achievable delays are studied in queuing networks.

If the demands are spatially distributed then the problem
becomes one of vehicle routing. With only one class of
demands, the problem in this paper is known as the Dynamic
Traveling Repairperson Problem (DTRP), which was first
introduced by Bertsimas and van Ryzin [4], [5], [6]. These
papers study the expected delay of demands and propose
several policies that perform within a constant factor of the
optimal in both heavy load (i.e., when the fraction of time the
service vehicles spend performing on-site service approaches
one), and in light load (i.e., when the fraction of time the ser-
vice vehicles spends performing on-site service approaches
zero). They also study vehicles with finite service capacity,
and extend their results to arbitrary renewal arrival processes,
and nonuniform demand location distributions. In [7], and
[8], decentralized policies are developed for the DTRP. Spa-
tial queuing problems have also been studied in the context of
urban operations research [9], where approximations are used
to cast the problems in the traditional queuing framework. In
our previous paper [10], we introduced and studied the multi-
class DTRP for the case of two classes and one vehicle. For
this case we derived a lower bound on the achievable delay
values and proposed the Randomized Priority policy, which
performed within a constant factor of the lower bound, for
all convex combination coefficients.

The contributions of this paper are as follows. We extend
the two-class DTRP to n service vehicles and m classes of
demands. The extension of our previous analysis to multiple
classes of demands is very nontrivial. We derive a new lower
bound on the achievable values of the convex combination
of delays, and propose a new policy in which each class of
demands is served separately from the others. We show that
the maximum deviation of the policy’s performance from
the lower bound is 2m2. Thus, the maximum deviation is
independent of the number of vehicles, the arrival rates of
demands, the on-site service times, and the convex combi-
nation coefficients. We also comment on the source of the
gap between the upper and lower bounds.

The paper is organized as follows. In Section II we give
some asymptotic properties of the traveling salesperson tour.
In Section II-B we formalize the problem and in Section III
we derive a lower bound, and in Section IV we introduce and
analyze the Separate Queues policy. Finally, in Section V we
present simulation results.

II. BACKGROUND AND PROBLEM STATEMENT

In this section we summarize the asymptotic properties of
the Euclidean traveling salesperson tour, and formalize the
multi-class dynamic traveling repairperson problem.

1

1

2
2

3

1

2
2

3
3

Fig. 1. A depiction of the problem for two vehicles and three classes.
Left figure: One vehicle is moving to a class 1 demand, and the other to a
class 2 demand. Right figure: The bottom vehicle has serviced the class 1
demand is moving to a class 2 demand. A new class 3 demand has arrived.

A. The Euclidean Traveling Salesperson Problem
Given a set Q of N points in Rd, the Euclidean traveling

salesperson problem (TSP) is to find the minimum-length
tour of Q (i.e., the shortest closed path through all points).
Let TSP(Q) denote the minimum length of a tour through all
the points in Q. Assume that the locations of the N points are
random variables independently and identically distributed,
uniformly in a compact set E ; in [11] it is shown that there
exists a constant βTSP,d such that, almost surely,

lim
N→+∞

TSP(Q)
N1−1/d

= βTSP,d|E|1/d. (1)

The current estimate of the constant for d = 2 is βTSP,2 '
0.7120, [12]. The bound in Eq. (1) holds for all compact sets
E and the shape of E only affects the convergence rate to
the limit. If E is a “fairly compact and fairly convex” set in
the plane, then Eq. (1) provides an adequate estimate of the
optimal TSP tour length for values of N as low as 15, [9].

B. Problem Statement
Consider a bounded environment E in the plane with

area |E|. The environment contains n vehicles, each with
maximum speed v. Demands of type α ∈ {1, . . . ,m} arrive
in the environment according to a Poisson process with rate
λα. Upon arrival, demands assume an independently and
uniformly distributed location in E . A demand of type α
is serviced when the vehicle spends an on-site service time
that is generally distributed with finite mean s̄α.

Consider the arrival of the ith α-demand. The service
delay for the ith demand, Dα(i), is the time elapsed between
its arrival and its service completion. The wait time is then
given by Wα(i) := Dα(i) − sα(i), where sα(i) is the
on-site service time required by demand i. Given a stable
policy P (i.e., a policy for which the α and β queue lengths
remain finite), the steady-state service delay is defined as
Dα(P) := limi→+∞ E [Dα(i)], and the steady-state wait is
Wα(P) := Dα(P)− s̄α. Then, given a stable policy P , the
average delay per demand is

D(P) =
1
Λ

m∑
α=1

λαDα,

where Λ :=
∑m

α=1 λα. The average delay per demand
is the standard cost functional for queuing systems with
multiples classes of demands. Notice that we can write

D(P) =
∑m

α=1 cαDα with cα = λα/Λ. Then, a possible
way to model priority is to allow any convex combination
of D1, . . . , Dm. We are now ready to state our problem.

Problem Statement: Determine the vehicle rout-
ing policy P which minimizes

D(P) :=
m∑

α=1

cαDα(P), (2)

where cα > 0, α ∈ {1, . . . ,m}, and
∑m

α=1 cα = 1.
Notice that if cα > λα/Λ, then the delay of α-demands
is being weighted more heavily than in the average case.
Thus, the quantity cαΛ/λα gives the priority of α demands
compared to that given in the average delay case. Hence,
without loss of generality we can assume the demand classes
are labeled so that

c1

λ1
≥ c2

λ2
≥ · · · ≥ cm

λm
, (3)

implying that if α < β for some α, β ∈ {1, . . . ,m}, then
α-demands are of a higher priority than β-demands.

A necessary condition for there to exist a policy which
yields a finite D(P) is

% :=
1
n

m∑
α=1

λαs̄α < 1, (4)

The load factor % captures the fraction of time the n service
vehicles must be busy in any stable policy.

III. LOWER BOUND IN HEAVY LOAD

In this section we present two lower bounds on the delay in
Eq. (2). The first holds only in heavy load (i.e., as % → 1−),
while the second (less tight) bound holds for all %.

Theorem III.1 (Heavy load lower bound) In heavy load
(% → 1−), for every routing policy P ,

D(P) ≥ β2
TSP|E|

2n2v2(1− %)2

m∑
α=1

cα + 2
m∑

j=α+1

cj

λα. (5)

where βTSP := βTSP,2, and c1, . . . , cm satisfy Eq. (3).

Proof: Consider a tagged demand i of type α, and
let us quantify its total service requirement. The demand
requires on-site service time sα(i). let us denote by dα(i)
the distance from the location of the demand served prior
to i, to i’s location. In order to compute a lower bound on
the wait time, we will allow “remote” servicing of some
of the demands; in other words, we introduce the variables
rα ∈ {0, 1} for each α ∈ {1, . . . ,m}. If rα = 1, then α-
demands can be serviced remotely (i.e., a service vehicle
can service the ith α-demand from any location, by simply
stopping for the on-site service time sα(i)). If rα = 0 then
α-demands must be serviced on location.

Thus, the total service requirement of α-demand i is
rαdα(i) + sα(i). The steady-state expected service require-
ment is rαd̄α+sα, where d̄α := limi→+∞ E [dα(i)]. In order
to maintain stability of the system we must require that

1
n

m∑
α=1

λα

(
rαd̄α

v
+ s̄α

)
< 1. (6)

Applying the definition of % in Eq. (4), we write Eq. (6) as

m∑
α=1

rαλαd̄α < (1− %)nv. (7)

For a stable policy P , let Nα represent the number of
demands of type α in the queue. From a key result in the
DTRP literature (see [13], page 23), we have in heavy load
(% → 1−) the following

d̄α ≥
βTSP√

2

√
|E|∑

α rαNα
=: d̄, (8)

for each α ∈ {1, . . . ,m}. Combining Eqs. (7) and (8),∑
α rαλα

nv(1− %)
<

1
d̄
.

Applying the definition of d̄, squaring both sides, and rear-
ranging we obtain

β2
TSP

2
|E|(
∑

α rαλα)2

n2v2(1− %)2
<
∑
α

rαNα.

From Little’s law Nα = λαWα for each α ∈ {1, . . . ,m},
and thus

∑
α

rαλαWα >
β2

TSP

2
|E|

n2v2(1− %)2

(∑
α

rαλα

)2

. (9)

Recall that Wα = Dα − s̄α and rα ∈ {0, 1} for each
α ∈ {1, . . . ,m}., Eq. (9) gives us 2m − 1 constraints on
the feasible values of the delays D1(P), . . . , Dm(P).

To simplify notation, let us define

A :=
β2

TSP

2
|E|

n2v2(1− %)2
.

Then, a lower bound is the solution to the linear program:

minimize
m∑

α=1

cαWα,

subject to
m∑

α=1

rαλαWα > A

(∑
α

rαλα

)2

,

rα ∈ {0, 1} ∀α ∈ {1, . . . ,m}.

With the class labeling in Eq. (3), only m of the 2m −
1 constraints are non-redundant and the program can be
rewritten as

minimize
m∑

α=1

cαWα,

subject to
λ1 0 0 · · · 0
λ1 λ2 0 · · · 0
...

...
. . . 0

λ1 λ2 λ3 · · · λm

W1

W2

...
Wm

 ≥ A

λ2

1

(λ1 + λ2)2
...

(λ1 + · · ·+ λm)2

 .

The solution (W ∗
1 , . . . ,W ∗

m) of the linear program is

W ∗
α = A(λ1 + · · ·+ λα)2 −A(λ1 + · · ·+ λα−1)2

= A

λα + 2
α−1∑
j=1

λj

 .

The optimal value of the cost function is

m∑
α=1

cαW ∗
α = A

m∑
α=1

cα

λα + 2
α−1∑
j=1

λj

= A

m∑
α=1

cα + 2
m∑

j=α+1

cj

λα.

Applying the definition of A and noting that for every
policy P , Dα(P) ≥ W ∗

α + s̄α, as % → 1− we obtain the
desired result.

Remark III.2 (Lower bound for all % ∈ [0, 1)) With
slight modifications, it it possible to obtain a less tight lower
bound valid for all values of %. In the above derivation, the
assumption that % → 1− is used in Eq. (8). It is possible to
use, instead, a lower bound valid for all % ∈ [0, 1) (see [5]):

d̄α ≥ γ

√
|E|∑

α rαNα + n/2
,

where γ = 2/(3
√

2π) ≈ 0.266. Using this bound we obtain
the same linear program as in the proof of Theorem III.1,
with the difference that A is now a function given by

A(x) :=
γ2|E|

n2v2(1− %)2
x− n

2
.

Following the procedure in the proof of Theorem III.1

W ∗
1 =

γ2|E|
n2v2(1− %)2

λ1 −
n

2λ1

W ∗
α =

γ2|E|
n2v2(1− %)2

λα + 2
α−1∑
j=1

λj

 ,

for each α ∈ {2, . . . ,m}. Finally, for every policy P ,
Dα(P) ≥ W ∗

α + s̄α, and thus

D(P) ≥ γ2|E|
n2v2(1− %)2

m∑
α=1

cα + 2
m∑

j=α+1

cj

λα

− nc

2λ1
+

m∑
α=1

cαs̄α, (10)

for all % ∈ [0, 1) under the labeling in Eq. (3). �

IV. SEPARATE QUEUES POLICY

In this section we introduce and analyze the Separate
Queues (SQ) policy. We show that this policy is within a
factor of 2m2 of the lower bound in heavy load.

To present the SQ policy we need some notation. We
assume vehicle k ∈ {1, . . . , n} has a service region R[k] ⊂

E , such that {R[1], . . . , R[n]} form a partition of the environ-
ment E . In general the partition could be time varying, but
for the description of the SQ policy this will not be required.
We assume that information on outstanding demands of type
α ∈ {1, . . . ,m} in region R[k] at time t is summarized as
a finite set of demand positions Q

[k]
α (t) with N

[k]
α (t) :=

card(Q[k]
α (t)) . Demands of type α with location in R[k]

are inserted in the set Q
[k]
α as soon as they are generated.

Removal from the set Q
[k]
α requires that service vehicle k

moves to the demand location, and provides the on-site
service. With this notation we describe the policy as follows:

Separate Queues (SQ) Policy
Assumes: A probability distribution p = [p1, . . . , pm].
Partition E into n equal area regions and assign one1

vehicle to each region.
foreach vehicle-region pair k do2

if the set ∪αQ
[k]
α is empty then3

Move vehicle toward the median of its own4

region until a demand arrives.
else5

Select Q ∈ {Q[k]
1 , . . . , Q

[k]
m } according to p.6

if Q is empty then7

Reselect until Q is nonempty.8

Compute TSP tour through all demands in Q.9

Service Q following the TSP tour, starting at the10

demand closest to the vehicle’s current position.
Repeat.11

Optimize over p.12

A. Stability Analysis of the SQ Policy in Heavy Load

In this section we will analyze the SQ policy in heavy
load, i.e., as % → 1−. In the SQ policy each region R[k]

has equal area, and contains a single vehicle. Thus, the n
vehicle problem in a region of area |E| has been turned into
n independent 1 vehicle problems, each in a region of area
|E|/n, with arrival rates λα/n. To determine the performance
of the policy we need only study the performance in a single
region k. For simplicity of notation we omit the label k. We
refer to the time instant ti in which the vehicle computes
a new TSP tour as the epoch i of the policy; we refer to
the time interval between epoch i and epoch i + 1 as the
ith iteration and we will refer to its length as Ti. Finally,
let Nα(ti) := Nα,i, α ∈ {1, . . . ,m}, be the number of
outstanding α-demands at beginning of iteration i.

The following straightforward lemma, proved in [10], will
be essential in deriving our main results.

Lemma IV.1 (Number of outstanding demands) In
heavy load (i.e., % → 1−), after transients, the number of
demands serviced in a single tour of the vehicle in the
SQ policy is very large with high probability (i.e., with
probability that tends to 1 as % approaches 1).

Let TSj be the event that Qj is selected for service at
iteration i of the SQ policy. By the total probability law

E [Nα,i+1] =
m∑

j=1

pjE (Nα,i+1|TSj), α ∈ {1, . . . ,m},

where the conditioning is with respect to the task being
performed at iteration i. During iteration i of the policy,
demands arrive according to independent Poisson processes.
Call N new

α,i the α-demands (α ∈ {1, . . . ,m}) newly arrived
during iteration i; then, by definition of the SQ policy

E (Nα,i+1|TSj) ={
E
(
N new

α,i |TSj

)
, if α = j

E (Nα,i|TSj) + E
(
N new

α,i |TSj

)
, o.w.

By the law of iterated expectation, we can write
E
(
N new

α,i |TSj

)
= (λα/n)E (Ti|TSj). Moreover, since the

number of demands outstanding at the beginning of iteration
i is independent of the task that will be chosen, we have
E (Nα,i|TSj) = E [Nα,i]. Thus we obtain

E (Nα,i+1|TSj) =

{
λα

n E (Ti|TSj), if α = j

E [Nα,i] + λα

n E (Ti|TSj), o.w.

Therefore, we are left with computing the conditional
expected values of Ti. The length of Ti is given by the time
needed by the vehicle to travel along the TSP tour plus the
time spent to service demands. Assuming i large enough,
Lemma (IV.1) holds, and we can apply Eq. (1) to estimate
from the quantities Nα,i, α ∈ {1, . . . ,m}, the length of the
TSP tour at iteration i. Conditioning on task j (when only
demands of type j are serviced), we have

E (Ti|TSj) =
βTSP

√
|E|/n

v
E
(√

Nj,i|TSj

)
+

+ E
(∑Nj,i

k=1 sj,k|TSj

)
≤

βTSP

√
|E|/n

v

√
E [Nj,i] + E [Nj,i]s̄j ,

where we have
• applied Eq. (1);
• applied Jensen’s inequality for concave functions, in the

form E
[√

X
]
≤
√

E [X];
• removed the conditioning on TSj , since random vari-

ables Nα,i are independent from future events, and in
particular from the choice of the task at iteration i;

• used the crucial fact that the on-site service times are
independent from the number of outstanding demands.

Collecting the above results (for short E [X] is denoted by
X̄ , where X is any random variable), we have

N̄α,i+1 ≤ (1− pα)N̄α,i+
m∑

j=1

pj
λα

n

[
βTSP

√
|E|√

nv

√
N̄j,i + N̄j,is̄j

]
,

(11)

for each α ∈ {1, . . . ,m}. The m inequalities above describe
a system of recursive relations for an upper bound on N̄α,i,

α ∈ {1, . . . ,m}. The following theorem (see Appendix for
its proof) bounds the values to which they converge.

Theorem IV.2 (Queue length) For every set of initial con-
ditions {N̄α,0}α∈{1,...,m}, the trajectories i 7→ N̄α,i, α ∈
{1, . . . ,m}, resulting from Eqs. (11), satisfy

lim sup
i→+∞

N̄α,i ≤
β2

TSP|E|
n3v2(1− %)2

λα

pα

 m∑
j=1

√
λjpj

2

.

B. Delay of the SQ Policy in Heavy Load
From Theorem IV.2, and using Little’s law, the delay of

α-demands is

Dα(SQ) ≤ n

λα
lim sup
i→+∞

N̄α,i + s̄α

=
β2

TSP|E|
n2v2(1− %)2

1
pα

 m∑
j=1

√
λjpj

2

.

Thus, the delay (as defined in Eq. (2)) of the SQ policy, is

D(SQ) ≤ β2
TSP|E|

n2v2(1− %)2

m∑
α=1

cα

pα

(
m∑

i=1

√
λipi

)2

. (12)

With this expression we prove out main result on the
performance of the SQ policy.

Theorem IV.3 (SQ policy performance) In heavy load,
the delay of the SQ policy is within 2m2 of the optimal,
independent of the arrival rates λ1, . . . , λm, coefficients
c1, . . . , cm, service times s̄1, . . . , s̄m, and the number of
vehicles n.

Proof: We would like to compare the performance of
this policy with the lower bound. To do this, consider setting

pα := cα for each α ∈ {1, . . . ,m}.

Defining B := β2
TSP|E|/(n2v2(1 − %)2), Eq. (12) can be

written as

D(SQ) ≤ Bm

(
m∑

i=1

√
ciλi

)2

.

Next, the lower bound in Eq. (5) is

D∗ ≥ B

2

m∑
i=1

ci + 2
m∑

j=i+1

cj

λi ≥
B

2

m∑
i=1

(ciλi) .

Thus, comparing the upper and lower bounds

D(SQ)
D∗ ≤ 2m

(∑m
i=1

√
ciλi

)2∑m
i=1 (ciλi)

. (13)

Letting xi :=
√

ciλi, and x := [x1, . . . , xm], the numerator
of the fraction in Eq. (13) is ‖x‖21, and the denominator
is ‖x‖22. But the one- and two-norms of a vector x ∈ Rm

satisfy ‖x‖1 ≤
√

m‖x‖2. Thus, in heavy load we obtain

D(SQ)
D∗ ≤ 2m

(
‖x‖1
‖x‖2

)2

≤ 2m2,

and the policy is a 2m2-factor approximation.

Remark IV.4 (Relation to RP policy in [10]) For m = 2
the SQ policy is within a factor of 8 of the optimal. This
improves on the factor of 12 obtained for the Randomized
Priority (RP) policy in [10]. However, it appears that the RP
policy bound is not tight, since for two classes, simulations
indicate it performs no worse than the SQ policy. �

V. SIMULATIONS AND DISCUSSION

In this section we discuss, through the use of simulations,
the performance of the SQ policy with the probability
assignment pα := cα, α ∈ {1, . . . ,m}. In particular, we
study (i) the tightness of the upper bound in Eq. (12),
(ii) conditions for which the gap between lower bound in
Eq. (5) and upper bound in Eq. (12) is maximized, (iii) the
suboptimality of the probability assignment pα = cα, and,
finally, (iv) how different the cost function in Eq. (2) may
be, in general, for the SQ policy and a policy that services
demands all together irrespective of priorities. Simulations of
the SQ policy were performed using linkern 1 as a solver
to generate approximations to the optimal TSP tour.

A. Tightness of the Upper Bound

We consider n = 1, m = 4, and % = 0.75, 0.8, 0.85, 0.9
and 0.95. For each value of % we perform 100 runs.
In each run we randomly (uniformly in [0, 1]) generate
λ1, . . . , λm, c1, . . . , cm, and s̄1, . . . , s̄m, with the constraints∑m

α=1 λαs̄α = % and
∑m

α=1 cα = 1, we iterate the SQ policy
4000 times, and compute the value of cost function in Eq. (2)
by considering the number of demands in the last 1000
iterations. For each value of %, we record the mean value,
standard deviation, maximum value and minimum value of
the ratio (that we call χ) between experimental results and
theoretical upper bound. This is summarized in Table I.
One can see that the upper bound provides a reasonable
approximation for load factors as low as % = 0.75.

Load factor (%) E [χ] σχ max χ min χ

0.75 0.803 0.092 1.093 0.354
0.8 0.778 0.108 0.943 0.256
0.85 0.773 0.111 1.150 0.417
0.9 0.733 0.159 1.162 0.203
0.95 0.716 0.131 0.890 0.257

TABLE I
RATIO χ BETWEEN EXPERIMENTAL RESULTS AND UPPER BOUND FOR

VARIOUS VALUES OF %.

B. Unfavorable Conditions for the SQ Policy

One may question if for some sets {λα} and {cα}, α ∈
{1, . . . ,m}, the ratio between upper bound (12) and lower
bound (5) is indeed close to 2m2. The answer is affirmative:
consider, e.g., the case λ1 � λ2 � . . . � λm and c1 �
c2 � . . . � cm, with λαcα = a, for some positive constant
a. Then, the upper bound is equal to Bm3a and the lower

1linkern is written in ANSI C and is freely available for academic
research use at http://www.tsp.gatech.edu//concorde.html.

2 3 4 5 6 7
100

101

102

m

Ra
tio

s
wi

th
 lo

we
r b

ou
nd

Worst Case Ratio: 2m2

Upper bound Ratio
Experimental Ratio

Fig. 2. Experimental results for the SQ policy in worst-case conditions;
% = 0.85 and λ1 = 1.

0
0.2

0.4
0.6

0.8
1

0
10

20
30

40
50

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

c1
!2/!1

Ra
tio

 o
f u

pp
er

 b
ou

nd
s

Fig. 3. The ratios upbdc/upbdopt for 2 queues.

bound is approximately equal to Bma/2, thus their ratio is
(arbitrarily) close to 2m2. Then, we simulated the SQ policy
for the case λm = aλm−1 = a2λm−1 = . . . = am−1λ1 and
c1 = ac2 = . . . = am−1cm with a = 2. Fig. 2 shows that
the experimental value of the cost function (averaged over
10 simulation runs) indeed increases proportionally to m2.

C. Suboptimality of Choice pα = cα

To prove Theorem IV.3 we used the probability assignment

pα := cα for each α ∈ {1, . . . ,m}. (14)

However, one would like to select the p that minimizes the
right-hand side of Eq. (12). This is a constrained multi-
variable nonlinear optimization problem over p. However,
for two classes the optimization is over a single variable p1.
A comparison of optimized upper bound (upbdopt) to the up-
per bound (upbdc) obtained with the probability assignment
in Eq. (14) is shown in Fig. 3. In this figure the ratio of
upper bounds is bounded by two.

For m > 2 we make the comparison as follows. For
each value of m we perform 1000 runs. In each run we
randomly generate λ1, . . . , λm, c1, . . . , cm, and five sets of
initial p values, p1, . . . ,p5. For each initial condition we
use a line search to find a local optimum p value. We
take the ratio between upbdc and the least upper bound
upbdopt from the five initial conditions. We also record the
% variation between the largest and the smallest values of
upbdopt obtained starting from the five initial conditions.
This is summarized in Table II. The second column shows
the largest ratio obtained over the 1000 runs. The third
column shows the largest % variation in the 1000 runs. The

Number of classes (m) max upbdc/upbdopt Max. % variation

3 1.60 0.12
4 1.51 0.04
5 1.51 0.08
6 1.74 0.02
7 1.88 0.08
8 1.63 0.15

TABLE II
RATIO OF UPPER BOUND WITH pα = cα AND UPPER BOUND WITH

OPTIMIZED p.

100 101 102 103 104
0

20

40

60

80

100

!2

Ra
tio
s

Fig. 4. Ratio of experimental delays between Merge policy and SQ policy
as a function of λ2, with m = 2, λ1 = 1, c = 0.995 and % = 0.9.

assignment in Eq. (14) seems to perform within a factor
of two of the optimized assignment, and the optimization
appears to converge to values close to a global optimum
since all five random conditions converge to values that are
within ∼ 0.1% of each other on every run.

D. The Merge Policy
The simplest possible policy for our problem would be

to ignore priorities and service demands all together, by
repeatedly forming TSP tours of outstanding demands (i.e.,
by using the SQ policy as though there were only one class).
We call such a policy the Merge policy. However, the per-
formance of the SQ and the Merge policy can be arbitrarily
far apart. Indeed, by defining the overall arrival rate Λ :=∑m

α=1 λα and overall mean on-site service S̄ :=
∑m

α=1 λα,
and by using the upper bounds in [4], we immediately obtain
as an upper bound for the Merge policy: D(Merge) ≤

β2
TSP|E|Λ

n2v2(1−%)2 . Then, we see that D(Merge)/D(SQ) can be
arbitrarily large by choosing λm � λα and cm � cα,
with α ∈ {1, . . . ,m − 1}. This behavior is confirmed by
experimental results, as depicted in Fig. 4 where we show the
experimental ratios of delays between Merge and SQ policy
(the ratios are averaged values over 10 simulation runs).

VI. CONCLUSIONS

In this paper we introduced a dynamic multi-vehicle
routing problem with multiple classes of demands. For
every set of coefficients, we determined a lower bound on
the achievable convex combination of the class delays. We
presented the Separate Queues (SQ) policy and showed that
its deviation from the lower bound depends only on the
number of the classes. We believe that there is room for
improvement in the lower bound, and thus the SQ policy’s
performance may be significantly better than is indicated by
its deviation from the current lower bound. Thus, our main

thrust of future work will be in trying to raise the lower
bound. We are also interested in combining the aspects of
multi-class vehicle routing with problems in which demands
require teams of vehicles for their service.

ACKNOWLEDGMENTS

This research was partially supported by the National
Science Foundation, through grants #0705451 and #0705453,
by the Office of Naval Research through grant #N00014-07-
1-0721, and by the AirForce Office of Scientific Research
through grant #FA9550-07-1-0528. Any opinions, findings,
and conclusions or recommendations expressed in this pub-
lication are those of the author and do not necessarily reflect
the views of the supporting organizations.

REFERENCES

[1] L. Kleinrock, Queueing Systems. Volume II: Computer Applications.
New York, NY: John Wiley and Sons, 1976.

[2] E. G. Coffman Jr. and I. Mitrani, “A characterization of waiting time
performance realizable by single-server queues,” Operations Research,
vol. 28, no. 3, pp. 810–821, 1980.

[3] D. Bertsimas, I. C. Paschalidis, and J. N. Tsitsiklis, “Optimization of
multiclass queueing networks: Polyhedral and nonlinear characteriza-
tions of achievable performance,” The Annals of Applied Probability,
vol. 4, no. 1, pp. 43–75, 1994.

[4] D. J. Bertsimas and G. J. van Ryzin, “A stochastic and dynamic vehicle
routing problem in the Euclidean plane,” Operations Research, vol. 39,
pp. 601–615, 1991.

[5] ——, “Stochastic and dynamic vehicle routing in the Euclidean plane
with multiple capacitated vehicles,” Operations Research, vol. 41,
no. 1, pp. 60–76, 1993.

[6] ——, “Stochastic and dynamic vehicle routing with general interarrival
and service time distributions,” Advances in Applied Probability,
vol. 25, pp. 947–978, 1993.

[7] E. Frazzoli and F. Bullo, “Decentralized algorithms for vehicle routing
in a stochastic time-varying environment,” in Proc CDC, Paradise
Island, Bahamas, Dec. 2004, pp. 3357–3363.

[8] M. Pavone, E. Frazzoli, and F. Bullo, “Decentralized algorithms for
stochastic and dynamic vehicle routing with general target distribu-
tion,” in Proc CDC, New Orleans, LA, Dec. 2007, pp. 4869–4874.

[9] R. C. Larson and A. R. Odoni, Urban Operations Research. Engle-
wood Cliffs, NJ: Prentice Hall, 1981.

[10] S. L. Smith, M. Pavone, F. Bullo, and E. Frazzoli, “Dynamic vehicle
routing with heterogeneous demands,” in Proc CDC, Cancun, Mexico,
Dec. 2008, to appear.

[11] J. M. Steele, “Probabilistic and worst case analyses of classical prob-
lems of combinatorial optimization in Euclidean space,” Mathematics
of Operations Research, vol. 15, no. 4, p. 749, 1990.

[12] G. Percus and O. C. Martin, “Finite size and dimensional dependence
of the Euclidean traveling salesman problem,” Physical Review Letters,
vol. 76, no. 8, pp. 1188–1191, 1996.

[13] H. Xu, “Optimal policies for stochastic and dynamic vehicle rout-
ing problems,” Dept. of Civil and Environmental Engineering, Mas-
sachusetts Institute of Technology, Cambridge, MA., 1995.

APPENDIX

In this appendix we prove Theorem IV.2. Henceforth, we
consider the relation “≤” in Rm as the product order of m
copies of R (in other words, given two vector v, w ∈ Rm,
we interpret v ≤ w component-wise).

Proof: [Proof of Theorem IV.2] Define qj := 1 − pj

and let λ̂α denote the arrival rate in region R[k]. Thus
λ̂α := λα/n for each α ∈ {1, . . . ,m}. Let x(i) :=

(N̄1,i, N̄2,i, . . . , N̄m,i) ∈ Rm and define two matrices

A :=

λ̂1p1s̄1 + q1 λ̂1p2s̄2 . . . λ̂1pms̄m

λ̂2p1s̄1 λ̂2p2s̄2 + q2 . . . λ̂2pms̄m

...
. . .

...
λ̂mp1s̄1 λ̂mp2s̄2 . . . λ̂mpms̄m + qm

 ,

and

B :=
βTSP

√
|E|√

nv

λ̂1p1 λ̂1p2 . . . λ̂1pm

λ̂2p1 λ̂2p2 . . . λ̂2pm

...
. . .

...
λ̂mp1 λ̂mp2 . . . λ̂mpm

 ,

Then Eqs. (11) can be written as

x(i + 1) ≤ Ax(i) + B

√

x1(i)√
x2(i)
...√

xm(i)

 =: f(x(i)) (15)

where f : R≥0 7→ R≥0, and xj(i), j ∈ {1, . . . ,m}, are the
components of vector x(i). We refer to the discrete system in
Eq. (15) as System-X. Next we define two auxiliary systems,
System-Y and System-Z. We define System-Y as

y(i + 1) = f(y(i)). (16)

System-Y is, therefore, equal to System-X, with the excep-
tion that we replaced the inequality with an equality.

Pick, now, any ε > 0. From Young’s inequality
√

a ≤ 1
4ε

+ εa, for all a ∈ R≥0. (17)

Hence, for i 7→ y(i) ∈ Rm
≥0, the Eq. (16) becomes

y(i + 1) ≤ Ay(i) + B
(1

4ε
1m + ε y(i)

)
=
(
A + εB

)
y(i) +

1
4ε

B1m.

where 1m is the vector (1, 1, . . . , 1)T ∈ Rm. Next, define
System-Z as

z(i + 1) =
(
A + εB

)
z(i) +

1
4ε

B1m =: g(z(i)). (18)

The proof now proceeds as follows. First, we show that if
x(0) = y(0) = z(0), then

x(i) ≤ y(i) ≤ z(i), for all i ≥ 0 (19)

Second, we show that the trajectories of System-Z are
bounded; this fact, together with Eq. (19), implies that also
trajectories of System-Y and System-X are bounded. Third,
and last, we will compute lim supi→+∞ y(i); this quantity,
together with Eq. (19), will yield the desired result.

Let us consider the first issue. We have y(1) = f(y(0))
and z(1) = g(z(0)). Since, by assumption z(0) = y(0),
we have that g(z(0)) = g(y(0)) ≥ f(y(0)), where the
last inequality follows from Eq. (17) and by definition of
f and g . Therefore, we get y(1) ≤ z(1). Then, we have
y(2) = f(y(1)) and z(2) = g(z(1)). Since z(1), y(1) ∈

Rm
≥0, and the elements in matrices A and B are all non-

negative, then y(1) ≤ z(1) implies g(y(1)) ≤ g(z(1)). Using
same arguments as before, we can write z(2) ≥ g(y(1)) ≥
f(y(1)) = x(2); therefore, we get y(2) ≤ z(2). Then, it is
immediate by induction that y(i) ≤ z(i) for all i ≥ 0.

Similarly, we have x(1) ≤ f(x(0)) = f(y(0)) = y(1),
where we have used the assumption x(0) = y(0). Then, we
get x(1) ≤ y(1). Since x(1), y(1) ∈ Rm

≥0, the elements in
matrices A and B are nonnegative, and by the monotonicity
of

√
·, then x(1) ≤ y(1) implies f(x(1)) ≤ f(y(1)).

Therefore, we can write x(2) ≤ f(x(1)) ≤ f(y(1)) = y(2);
thus, we get x(2) ≤ y(2). Then, it is immediate to show by
induction that x(i) ≤ y(i) for all i ≥ 0, and Eq. (19) holds.

We now turn our attention to the second issue, namely
boundedness of trajectories for System-Z (in Eq. (18)).
Notice that System-Z is a discrete-time linear system. The
eigenvalues of A are characterized in the following lemma.

Lemma VI.1 The eigenvalues of A are real and with mag-
nitude strictly less than 1 (i.e., A is a stable matrix).

Proof: Let w ∈ Cm be an eigenvector of A, and µ ∈ C
be the corresponding eigenvalue. Then we have Aw = µw.
Define r := (p1s̄1, p2s̄2, . . . , pms̄m). Then the m eigenvalue
equations are

λ̂j w · r + qjwj = µwj , j ∈ {1, . . . ,m}, (20)

where w · r is the scalar product of vectors w and r, and wj

is the jth component of w.
There are two possible cases. If w · r = 0, then Eq. (20)

becomes qj wj = µwj , for all j. Since w 6= 0, there exists
j∗ such that w∗

j 6= 0; thus, we have µ = qj∗ . Since qj∗ ∈ R
and 0 < qj∗ < 1, we have that µ is real and |µ| < 1.

Assume, now, that w ·r 6= 0. This implies that µ 6= qj and
wj 6= 0 for all j, thus we can write for all j

wj =
λ̂j

µ− qj
w · r (21)

Therefore

wj =
λ̂j

λ̂1

µ− q1

µ− qj
w1.

Therefore, (21) can be rewritten as
m∑

j=1

rj λ̂j

µ− qj
= 1. (22)

Eq. (22) implies that the eigenvalues are real. To see this,
write µ = a + ib, where i is the imaginary unit: then

m∑
j=1

rj λ̂j

a + ib− qj
=

m∑
j=1

rj λ̂j [(a− qj)− ib]
(a− qj)2 + b2

Thus Eq. (22) implies

b

m∑
j=1

rj λ̂j

(a− qj)2 + b2︸ ︷︷ ︸
>0

= 0

that is, b = 0. Eq. (22) also implies that the eigenvalues
(that are real) have magnitude strictly less than 1. Indeed,
assume, by contradiction, that µ ≥ 1, then we would have
µ− qj ≥ 1− qj > 0 (recall that the eigenvalues are real and
0 < qj < 1) and we could write

m∑
j=1

rj λ̂j

µ− qj
≤

m∑
j=1

rj λ̂j

1− qj
=

m∑
j=1

s̄j λ̂j = % < 1,

and we get a contradiction. Assume, again by contradiction,
that µ ≤ −1, then we would trivially get another contradic-
tion

∑m
j=1 rj λ̂j/(µ− qj) < 0, since µ− qj < 0.

Hence, A ∈ Rm×m has eigenvalues strictly inside the
unit disk, and since the eigenvalues of a matrix depend
continuously on the matrix entries, there exists a sufficiently
small ε > 0 such that the matrix A + εB has eigenvalues
strictly inside the unit disk. Accordingly, each solution i 7→
z(i) ∈ Rm

≥0 of System-Z converges exponentially fast to the
unique equilibrium point

z∗ =
(
Im −A− εB

)−1 1
4ε

B1m. (23)

Combining Eq. (19) with the previous statement, we see that
the solutions i 7→ x(i) and i 7→ y(i) are bounded. Thus

lim sup
i→+∞

x(i) ≤ lim sup
i→+∞

y(i) < +∞. (24)

Finally, we turn our attention to the third issue, namely the
computation of y := lim supi→+∞ y(i). Taking the lim sup
of the left- and right-hand sides of Eq. (16), and noting that

lim sup
i→+∞

√
yα(i) =

√
lim sup
i→+∞

yα(i) for α ∈ {1, 2, . . . ,m},

since
√
· is continuous and strictly monotone increasing on

R>0, we obtain that

yα = (1− pα)yα + λ̂α

m∑
j=1

pj

(
βTSP

√
|E|√

nv

√
yj + s̄jyj

)
.

Rearranging we obtain

pαyα = λ̂α

m∑
j=1

pj

(
βTSP

√
|E|√

nv

√
yj + s̄jyj

)
. (25)

Dividing pαyα by p1y1 we obtain

yα =
λ̂αp1

λ̂1pα

y1. (26)

Combining Eqs. (25) and (26), we obtain

p1y1 = % p1y1 +
βTSP

√
|E|√

nv

√
p1λ̂1y1

m∑
j=1

√
λ̂jpj

Thus, recalling that λ̂α = λα/n, we obtain

yα =
β2

TSP|E|
n3v2(1− %2)

λα

pα

 m∑
j=1

√
λjpj

2

.

Noting that from Eq. (24), lim supi→+∞ Nα,i ≤ yα, we
obtain the desired result.

