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Randomized Sensor Selection
in Sequential Hypothesis Testing

Vaibhav Srivastava Kurt Plarre Francesco Bullo

Abstract—We consider the problem of sensor selection for
time-optimal detection of a hypothesis. We consider a group of
sensors transmitting their observations to a fusion center. The
fusion center considers the output of only one randomly chosen
sensor at the time, and performs a sequential hypothesis test.
We study a sequential multiple hypothesis test with randomized
sensor selection strategy. We incorporate the random processing
times of the sensors to determine the asymptotic performance
characteristics of this test. For three distinct performance metrics,
we show that, for a generic set of sensors and binary hypothesis,
the time-optimal policy requires the fusion center to consider
at most two sensors. We also show that for the case of multiple
hypothesis, the time-optimal policy needs at most as many sensors
to be observed as the number of underlying hypotheses.

Index Terms—Sensor selection, decision making, SPRT,
MSPRT, sequential hypothesis testing, linear-fractional program-
ming.

I. INTRODUCTION

In today’s information-rich world, different sources are
best informers about different topics. If the topic under con-
sideration is well known beforehand, then one chooses the
best source. Otherwise, it is not obvious what source or
how many sources one should observe. This need to identify
sensors (information sources) to be observed in decision
making problems is found in many common situations, e.g.,
when deciding which news channel to follow. When a person
decides what information source to follow, she relies in general
upon her experience, i.e., one knows through experience what
combination of news channels to follow.

In engineering applications, a reliable decision on the un-
derlying hypothesis is made through repeated measurements.
Given infinitely many observations, decision making can be
performed accurately. Given a cost associated to each obser-
vation, a well-known trade-off arises between accuracy and
number of iterations. Various sequential hypothesis tests have
been proposed to detect the underlying hypothesis within a
given degree of accuracy. There exist two different classes
of sequential tests. The first class includes sequential tests
developed from the dynamic programming point of view.
These tests are optimal and, in general, difficult to imple-
ment [5]. The second class consists of easily-implementable
and asymptotically-optimal sequential tests; a widely-studied
example is the Sequential Probability Ratio Test (SPRT)
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for binary hypothesis testing and its extension, the Multi-
hypothesis Sequential Probability Ratio Test (MSPRT).

In this paper, we consider the problem of quickest decision
making and sequential probability ratio tests. Recent advances
in cognitive psychology [7] show that human performance
in decision making tasks, such as the ”two-alternative forced
choice task,” is well modeled by a drift diffusion process, i.e.,
by the continuous-time version of SPRT. Roughly speaking,
modeling decision making as an SPRT process may be ap-
propriate even for situations in which a human is making the
decision.

Sequential hypothesis testing and quickest detection prob-
lems have been vastly studied [18], [4]. The SPRT for binary
decision making was introduced by Wald in [22], and was
extended by Armitage to multiple hypothesis testing in [1].
The Armitage test, unlike the SPRT, is not necessarily opti-
mal [5]. Various other tests for multiple hypothesis testing
have been developed throughout the years; see [20] and
references there in. A sequential test for multiple hypothesis
testing was developed in [5], and [11], which provides with
an asymptotic expression for the expected sample size. This
sequential test is called the MSPRT and reduces to the SPRT
in case of binary hypothesis. We consider MSPRT for multiple
hypothesis testing in this paper.

Recent years have witnessed a significant interest in the
problem of sensor selection for optimal detection and estima-
tion. Tay et al [21] discuss the problem of censoring sensors
for decentralized binary detection. They assess the quality of
sensor data by the Neyman-Pearson and a Bayesian binary
hypothesis test and decide on which sensors should transmit
their observation at that time instant. Gupta et al [13] focus on
stochastic sensor selection and minimize the error covariance
of a process estimation problem. Isler et al [15] propose
geometric sensor selection schemes for error minimization in
target detection. Debouk et al [10] formulate a Markovian
decision problem to ascertain some property in a dynamical
system, and choose sensors to minimize the associated cost.
Williams et at [24] use an approximate dynamic program over
a rolling time horizon to pick a sensor-set that optimizes
the information-communication trade-off. Wang et al [23]
design entropy-based sensor selection algorithms for target
localization. Joshi et al [16] present a convex optimization-
based heuristic to select multiple sensors for optimal parameter
estimation. Bajović et al [3] discuss sensor selection problems
for Neyman-Pearson binary hypothesis testing in wireless sen-
sor networks. Castañón [9] study an iterative search problem
as a hypothesis testing problem over a fixed horizon.

A third and last set of references related to this paper
are those on linear-fractional programming. Various iterative
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and cumbersome algorithms have been proposed to optimize
linear-fractional functions [8], [2]. In particular, for the prob-
lem of minimizing the sum and the maximum of linear-
fractional functionals, some efficient iterative algorithms have
been proposed, including the algorithms by Falk et al [12] and
by Benson [6].

In this paper, we analyze the problem of time-optimal se-
quential decision making in the presence of multiple switching
sensors and determine a randomized sensor selection strategy
to achieve the same. We consider a sensor network where
all sensors are connected to a fusion center. Such topology
is found in numerous sensor networks with cameras, sonars
or radars, where the fusion center can communicate with
any of the sensors at each time instant. The fusion center,
at each instant, receives information from only one sensor.
Such a situation arises when we have interfering sensors
(e.g., sonar sensors), a fusion center with limited attention
or information processing capabilities, or sensors with shared
communication resources. The sensors may be heterogeneous
(e.g., a camera sensor, a sonar sensor, a radar sensor, etc),
hence, the time needed to collect, transmit, and process data
may differ significantly for these sensors. The fusion center
implements a sequential hypothesis test with the gathered
information. We consider the MSPRT for multiple hypothesis
testing. First, we develop a version of the MSPRT algorithm in
which the sensor is randomly switched at each iteration, and
determine the expected time that this test requires to obtain
a decision within a given degree of accuracy. Second, we
identify the set of sensors that minimize the expected decision
time. We consider three different cost functions, namely, the
conditioned decision time, the worst case decision time, and
the average decision time. We show that the expected decision
time, conditioned on a given hypothesis, using these sequential
tests is a linear-fractional function defined on the probability
simplex. We exploit the special structure of our domain (prob-
ability simplex), and the fact that our data is positive to tackle
the problem of the sum and the maximum of linear-fractional
functionals analytically. Our approach provides insights into
the behavior of these functions. The major contributions of
this paper are:

i) We develop a version of the MSPRT where the sensor
is selected randomly at each observation.

ii) We determine the asymptotic expressions for the thresh-
olds and the expected sample size for this sequential
test.

iii) We incorporate the random processing time of the
sensors into these models to determine the expected
decision time.

iv) We show that, to minimize the conditioned expected
decision time, the optimal policy requires only one
sensor to be observed.

v) We show that, for a generic set of sensors and M
underlying hypotheses, the optimal average decision
time policy requires the fusion center to consider at most
M sensors.

vi) For the binary hypothesis case, we identify the optimal
set of sensors in the worst case and the average decision

time minimization problems. Moreover, we determine an
optimal probability distribution for the sensor selection.

vii) In the worst case and the average decision time mini-
mization problems, we encounter the problem of min-
imization of sum and maximum of linear-fractional
functionals. We treat these problems analytically, and
provide insight into their optimal solutions.

The remainder of the paper is organized in following way.
Some preliminaries are presented in Section II. In Section III,
we present the problem setup. We develop the randomized sen-
sor selection version of the MSPRT procedure in Section IV.
In Section V, we formulate the optimization problems for
time-optimal sensor selection, and determine their solution.
We elucidate the results obtained through numerical examples
in Section VI. Our concluding remarks are in Section VII.

II. PRELIMINARIES

A. Linear-fractional function

Given parameters A ∈ Rl×p, B ∈ Rl, c ∈ Rp, and d ∈ R,
the function g : {z ∈ Rp | cT z + d > 0} → Rl, defined by

g(x) =
Ax+B

cTx+ d
,

is called a linear-fractional function [8]. A linear-fractional
function is quasi-convex as well as quasi-concave. In partic-
ular, if l = 1, then any scalar linear-fractional function g
satisfies

g(νx+ (1− ν)y) ≤ max{g(x), g(y)},
g(νx+ (1− ν)y) ≥ min{g(x), g(y)},

(1)

for all ν ∈ [0, 1] and x, y ∈ {z ∈ Rp | cT z + d > 0}.

B. Kullback-Leibler divergence

Given two probability mass functions f1 : S → R≥0 and
f2 : S → R≥0, where S is some countable set, the Kullback-
Leibler divergence D : L1 × L1 → R∪{+∞} is defined by

D(f1, f2) = Ef1

[
log

f1(X)
f2(X)

]
=

∑
x∈supp(f1)

f1(x) log
f1(x)
f2(x)

,

where L1 is the set of integrable functions and supp(f1) is
the support of f1. It is known that 0 ≤ D(f1, f2) ≤ +∞, that
the lower bound is achieved if and only if f1 = f2, and that
the upper bound is achieved if and only if the support of f2
is a strict subset of the support of f1. Note that equivalent
statements can be given for probability density functions.

C. Multi-hypothesis Sequential Probability Ratio Test

The MSPRT for multiple hypothesis testing was introduced
in [5], [11]. It is described as follows. Given M hypotheses
with probability density functions fk(y) := f(y|Hk), k ∈
{0, . . . ,M − 1}, the posterior probability after τ observations
yt, t ∈ {1, . . . , τ} is given by

pk
τ = P(Hk|y1, . . . , yτ ) =

∏τ
t=1 f

k(yt)∑M−1
j=0

∏τ
t=1 f

j(yt)
. (2)
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Because the denominator is same for each k, the hypothesis
with maximum posterior probability pk

τ at any time τ is
the one maximizing the numerator

∏τ
t=1 f

j(yt). Given these
observations, the MSPRT is described in Algorithm 1. The

Algorithm 1 Multi-hypothesis sequential probability ratio test
1: at time τ ∈ N, collect sample yτ

2: compute the posteriors pk
τ , k ∈ {0, . . . ,M−1} as in (2)

% decide only if a threshold is crossed

3: if ph
τ >

1
1 + ηh

for at least one h ∈ {0, . . . ,M − 1},

4: then accept Hk with maximum pk
τ satisfying step 3:,

5: else continue sampling (step 1:)

thresholds ηk are designed as functions of the frequentist error
probabilities (i.e., the probabilities to accept a given hypothesis
wrongly) αk, k ∈ {0, . . . ,M −1}. Specifically, the thresholds
are given by

ηk =
αk

γk
, (3)

where γk ∈ ]0, 1[ is a constant function of fk (see [5]), and
]·, ·[ represents the open interval.

Let ηmax = max{ηj | j ∈ {0, . . . ,M − 1}}. It is known [5]
that the expected sample size of the MSPRT Nd, conditioned
on a hypothesis, satisfies

E [Nd|Hk] → − log ηk

D∗(k)
, as ηmax → 0+,

where D∗(k) = min{D(fk, f j) | j ∈ {0, . . . ,M − 1}, j 6= k}
is the minimum Kullback-Leibler divergence from the distri-
bution fk to all other distributions f j , j 6= k.

The MSPRT is an easily-implementable hypothesis test and
is shown to be asymptotically optimal in [5], [11]. For M = 2,
the MSPRT reduces to SPRT which is optimal in the sense
that it minimizes the expected sample size required to decide
within a given error probability.

III. PROBLEM SETUP

We consider a group of n agents (e.g., robots, sensors,
or cameras), which take measurements and transmit them to
a fusion center. We generically call these agents “sensors.”
We identify the fusion center with a person supervising the
agents, and call it the “supervisor.” The goal of the supervisor
is to decide, based on the measurements it receives, which
one of M alternative hypotheses or “states of nature” is
correct. To do so, the supervisor implements the MSPRT
with the collected observations. Given pre-specified accuracy
thresholds, the supervisor aims to make a decision in minimum
time.

We assume that there are more sensors than hypotheses
(i.e., n > M ), and that only one sensor can transmit to
the supervisor at each (discrete) time instant. Equivalently,
the supervisor can process data from only one of the n
sensors at each time. Thus, at each time, the supervisor must
decide which sensor should transmit its measurement. This
setup also models a sequential search problem, where one out
of n sensors is sequentially activated to establish the most

Fig. 1. The agents A transmit their observation to the supervisor S, one at
the time. The supervisor performs a sequential hypothesis test to decide on
the underlying hypothesis.

likely intruder location out of M possibilities; see [9] for a
related problem. In this paper, our objective is to determine
the optimal sensor(s) that the supervisor must observe in order
to minimize the decision time.

We adopt the following notation. Let {H0, . . . ,HM−1}
denote the M ≥ 2 hypotheses. The time required by sensor
s ∈ {1, . . . , n} to collect, process and transmit its mea-
surement is a random variable Ts ∈ R>0, with finite first
and second moment. We denote the mean processing time
of sensor s by T̄s ∈ R>0. Let st ∈ {1, . . . , n} indicate
which sensor transmits its measurement at time t ∈ N. The
measurement of sensor s at time t is y(t, s). For the sake of
convenience, we denote y(t, st) by yt. For k ∈ {0, . . . ,M−1},
let fk

s : R → R denote the probability density function of
the measurement y at sensor s conditioned on the hypothesis
Hk. Let fk : {1, . . . , n} × R → R be the probability density
function of the pair (s, y), conditioned on hypothesis Hk. For
k ∈ {0, . . . ,M − 1}, let αk denote the desired bound on
probability of incorrect decision conditioned on hypothesis
Hk. We make the following standard assumption:
Conditionally-independent observations: Conditioned on

hypothesis Hk, the measurement y(t, s) is independent
of y(t̄, s̄), for (t, s) 6= (t̄, s̄).

We adopt a randomized strategy in which the supervisor
chooses a sensor randomly at each time instant; the proba-
bility to choose sensor s is stationary and given by qs, for
s ∈ {1, . . . , n}. Also, the supervisor uses the data collected
from the randomized sensors to execute a multi-hypothesis
sequential hypothesis test. For the stationary randomized strat-
egy, note that fk(s, y) = qsf

k
s (y). We study our proposed

randomized strategy under the following assumptions about
the sensors.
Distinct sensors: There are no two sensors with identical

conditioned probability density fk
s (y) and mean process-

ing time T̄s. (If there are such sensors, we club them
together in a single node, and distribute the probability
assigned to that node equally among them.)

Finitely-informative sensors: Each sensor s ∈ {1, . . . , n}
has the following property: for any two hypotheses k, j ∈
{0, . . . ,M − 1}, k 6= j,

i) the support of fk
s is equal to the support of f j

s ,
ii) fk

s 6= f j
s almost surely in fk

s , and
iii) conditioned on hypothesis Hk, the first and second

moment of log(fk
s (Y )/f j

s (Y )) are finite.
Remark 1: The finitely-informative sensors assumption is
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equivalently restated as follows: each sensor s ∈ {1, . . . , n}
satisfies 0 < D(fk

s , f
j
s ) < +∞ for any two hypotheses k, j ∈

{0, . . . ,M − 1}, k 6= j. �
Remark 2: We study a stationary policy because it is simple

to implement, it is amenable to rigorous analysis and it has
intuitively-appealing properties (e.g., we show that the optimal
stationary policy requires the observation of only as many
sensors as the number of hypothesis). On the contrary, if we do
not assume a stationary policy, the optimal solution would be
based on dynamic programming and, correspondingly, would
be complex to implement, analytically intractable, and would
lead to only numerical results. �

IV. MSPRT WITH RANDOMIZED SENSOR SELECTION

We call the MSPRT with the data collected from n sensors
while observing only one sensor at a time as the MSPRT
with randomized sensor selection. For each sensor s, define
D∗s(k) = min{D(fk

s , f
j
s ) | j ∈ {0, . . . ,M − 1}, j 6= k}.

The sensor to be observed at each time is determined through
a randomized policy, and the probability of choosing sensor
s is stationary and given by qs. Assume that the sensor
st ∈ {1, . . . , n} is chosen at time instant t, then the posterior
probability after the observations yt, t ∈ {1, . . . , τ}, is given
by

pk
τ = P(Hk|y1, . . . , yτ ) =

∏τ
t=1 f

k(st, yt)∑M−1
j=0

∏τ
t=1 f

j(st, yt)

=
∏τ

t=1 qstf
k
st

(yt)∑M−1
j=0

∏τ
t=1 qstf

j
st(yt)

=
∏τ

t=1 f
k
st

(yt)∑M−1
j=0

∏τ
t=1 f

j
st(yt)

, (4)

and, at any given time τ , the hypothesis with maximum
posterior probability pk

τ is the one maximizing
∏τ

t=1 f
k
st

(yt).
Note that the sequence {(st, yt)}t∈N is an i.i.d. realization of
the pair (s, Ys), where Ys is the measurement of sensor s.

For thresholds ηk, k ∈ {0, . . . ,M − 1}, defined in equa-
tion (3), the MSPRT with randomized sensor selection is
defined identically to the Algorithm 1, where the first two in-
structions (steps 1: and 2:) are replaced by:

1: at time τ ∈ N, select a random sensor sτ according to the
probability vector q and collect a sample yτ

2: compute the posteriors pk
τ , k ∈ {0, . . . ,M−1} as in (4)

Lemma 1 (Asymptotics): Assume finitely informative sen-
sors {1, . . . , n}. Conditioned on hypothesis Hk, k ∈
{0, . . . ,M−1}, the sample size for decision Nd →∞ almost
surely as ηmax → 0+.

Proof:

P(Nd ≤ τ |Hk)

= P
(

min
a∈{1,...,τ}

M−1∑
j=1
j 6=v

a∏
t=1

f j
st

(yt)
fv

st
(yt)

< ηv,

for some v ∈ {0, . . . ,M − 1}
∣∣Hk

)

≤ P
(

min
a∈{1,...,τ}

a∏
t=1

f j
st

(yt)
fv

st
(yt)

< ηv,

for some v, and any j 6= v
∣∣Hk

)
= P

(
max

a∈{1,...,τ}

a∑
t=1

log
fv

st
(yt)

f j
st(yt)

> − log ηv,

for some v, and any j 6= v
∣∣Hk

)
≤

M−1∑
v=0
v 6=k

P
(

max
a∈{1,...,τ}

a∑
t=1

log
fv

st
(yt)

fk
st

(yt)
> − log ηv

∣∣∣∣Hk

)

+ P
(

max
a∈{1,...,τ}

a∑
t=1

log
fk

st
(yt)

f j∗
st (yt)

> − log ηk

∣∣Hk

)
,

for some j∗ ∈ {0, . . . ,M − 1} \ {k}. Observe that since 0 <
D(fk

s , f
j
s ) < ∞, for each j, k ∈ {0, . . . ,M − 1}, j 6= k,

and s ∈ {1, . . . , n}, the above right hand side goes to zero
as ηmax → 0+. Hence, conditioned on a hypothesis Hk, the
sample size for decision Nd →∞ in probability. This means
that there exists a subsequence such that Nd → ∞ almost
surely. We further observe that Nd is a non decreasing as we
decrease ηmax. Hence, conditioned on hypothesis Hk, Nd →
∞, almost surely, as ηmax → 0+.

Lemma 2 (Theorem 5.2, [5]): Assume the sequences of
random variables {Zj

t }t∈N, j ∈ {1, . . . , d}, converge to µj

almost surely as t → ∞, with 0 < minj∈{1,...,d} µj < ∞.
Then as t→∞, almost surely,

−1
t

log
( d∑

j=1

e−tZj
t

)
→ min

j∈{1,...,d}
µj .

�
Lemma 3 (Corollary 7.4.1, [19]): Let {Zt}t∈N be indepen-

dent sequence of random variables satisfying E[Z2
t ] <∞, for

all t ∈ N, and {bt}t∈N be a monotone sequence such that
bt →∞ as t→∞. If

∑∞
i=1 Var (Zi/bi) <∞, then∑t

i=1 Zi − E[
∑t

i=1 Zi]
bt

→ 0, almost surely as t→∞.

�
Lemma 4 (Theorem 2.1 in [14]): Let {Zt}t∈N be a se-

quence of random variables and {τ(a)}a∈R≥0 be a family
of positive, integer valued random variables. Suppose that
Zt → Z almost surely as t → ∞, and τ(a) → ∞ almost
surely as a→∞. Then Zτ(a) → Z almost surely as a→∞.
�

We now present the main result of this section, whose proof
is a variation of the proofs for MSPRT in [5].

Theorem 1 (MSPRT with randomized sensor selection):
Assume finitely-informative sensors {1, . . . , n}, and
independent observations conditioned on hypothesis Hk,
k ∈ {0, . . . ,M − 1}. For the MSPRT with randomized sensor
selection, the following statements hold:

i) Conditioned on a hypothesis, the sample size for deci-
sion Nd is finite almost surely.
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ii) Conditioned on hypothesis Hk, the sample size for
decision Nd, as ηmax → 0+, satisfies

Nd

− log ηk
→ 1∑n

s=1 qsD∗s(k)
almost surely.

iii) The expected sample size satisfies

E[Nd|Hk]
− log ηk

→ 1∑n
s=1 qsD∗s(k)

, as ηmax → 0+. (5)

iv) Conditioned on hypothesis Hk, the decision time Td, as
ηmax → 0+, satisfies

Td

− log ηk
→

∑n
s=1 qsT̄s∑n

s=1 qsD∗s(k)
almost surely.

v) The expected decision time satisfies

E [Td|Hk]
− log ηk

→
∑n

s=1 qsT̄s∑n
s=1 qsD∗s(k)

≡ q · T
q ·Dk

, (6)

where T ,Dk ∈ Rn
>0 are arrays of mean process-

ing times T̄s and minimum Kullback-Leibler distances
D∗s(k).

Proof: We start by establishing the first statement. We
let ηmin = min{ηj | j ∈ {0, . . . ,M − 1}}. For any fixed
k ∈ {0, . . . ,M − 1}, the sample size for decision, denoted by
Nd, satisfies

Nd ≤
(

first τ ≥ 1 such that
M−1∑

j=0
j 6=k

τ∏
t=1

f j
st

(yt)
fk

st
(yt)

< ηmin

)

≤
(

first τ ≥ 1 such that
τ∏

t=1

f j
st

(yt)
fk

st
(yt)

<
ηmin

M − 1
,

for all j ∈ {0, . . . ,M − 1}, j 6= k

)
.

Therefore, it follows that

P(Nd > τ |Hk)

≤ P
( τ∏

t=1

f j
st

(yt)
fk

st
(yt)

≥ ηmin

M−1
, j ∈ {0, . . . ,M−1} \ {k}

∣∣∣Hk

)

≤
M−1∑

j=0
j 6=k

P
( τ∏

t=1

f j
st

(yt)
fk

st
(yt)

≥ ηmin

M − 1

∣∣∣∣Hk

)

=
M−1∑

j=0
j 6=k

P
( τ∏

t=1

√
f j

st(yt)
fk

st
(yt)

≥
√

ηmin

M − 1

∣∣∣∣Hk

)

≤
M−1∑

j=0
j 6=k

√
M − 1
ηmin

E

[√√√√f j
s∗(j)(Y )

fk
s∗(j)(Y )

∣∣∣∣Hk

]τ

(7)

≤ (M − 1)
3
2

√
ηmin

(
max

j∈{0,...,M−1}\{k}
ρj

)τ
,

where s∗(j) = argmaxs∈{1,...,n}E

[√
fj

s (Y )
fk

s (Y )

∣∣∣∣Hk

]
, and

ρj = E

[√√√√f j
s∗(j)(Y )

fk
s∗(j)(Y )

∣∣∣∣Hk

]
=
∫

R

√
f j

s∗(j)(Y )fk
s∗(j)(Y )dY

<

√∫
R
f j

s∗(j)(Y )dY

√∫
R
fk

s∗(j)(Y )dY = 1.

The inequality (7) follows from the Markov inequality, while
ρj < 1 follows from the Cauchy-Schwarz inequality. Note
that the Cauchy-Schwarz inequality is strict because f j

s∗(j) 6=
fk

s∗(j) almost surely in fk
s∗(j). To establish almost sure con-

vergence, note that

∞∑
τ=1

P(Nd > τ |Hk)

≤
∞∑

τ=1

(M − 1)
3
2

√
ηmin

(
max

j∈{0,...,M−1}\{k}
ρj

)τ
<∞.

Therefore, by Borel-Cantelli lemma [19], it follows that

P(lim sup
τ→∞

[Nd > τ ]) = 1− P(lim inf
τ→∞

[Nd ≤ τ ]) = 0.

Thus, for τ large enough, all realizations in the set
lim infτ→∞[Nd ≤ τ ], converge in finite number of steps.
This proves the almost sure convergence on the MSPRT with
randomized sensor selection.

To prove the second statement, for hypothesis Hk, let

Ñd =
(

first τ ≥ 1 such that
M−1∑

j=0
j 6=k

τ∏
t=1

f j
st

(yt)
fk

st
(yt)

< ηk

)
,

and, accordingly, note that

M−1∑
j=0
j 6=k

Ñd−1∏
t=1

f j
st

(yt)
fk

st
(yt)

≥ ηk, and
M−1∑

j=0
j 6=k

Ñd∏
t=1

f j
st

(yt)
fk

st
(yt)

< ηk.

Some algebraic manipulations on these inequalities yield

−1
Ñd − 1

log
(M−1∑

j=0
j 6=k

exp
(
−

Ñd−1∑
t=1

log
fk

st
(yt)

f j
st(yt)

))
≤ − log ηk

Ñd − 1
,

−1
Ñd

log
(M−1∑

j=0
j 6=k

exp
(
−

Ñd∑
t=1

log
fk

st
(yt)

f j
st(yt)

))
>
− log ηk

Ñd

.

(8)

Observe that Ñd ≥ Nd, hence from Lemma 1, Ñd → ∞
almost surely as ηmax → 0+. In the limit Ñd → ∞, the
supremum and infimum in inequalities (8) converge to the
same value. From Lemma 3, and Lemma 4

1
Ñd

Ñd∑
t=1

log
fk

st
(yt)

f j
st(yt)

→ 1
Ñd

Ñd∑
t=1

E
[

log
fk

st
(yt)

f j
st(yt)

∣∣∣∣Hk

]
→

n∑
s=1

qsD(fk
s , f

j
s ), almost surely,
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as Ñd →∞. Lemma 2 implies that the left hand sides of the
inequalities (8) almost surely converge to

min
j∈{0,...,M−1}\{k}

E
[

log
fk

s (Y )
f j

s (Y )

∣∣∣∣Hk

]
=

n∑
s=1

qsD∗s(k).

Hence, conditioned on hypothesis Hk

Ñd

− log ηk
→ 1∑n

s=1 qsD∗s(k)

almost surely, as ηmax → 0+.
Now, notice that

P
(∣∣∣∣ Nd

− log ηk
− 1∑n

s=1 qsD∗s(k)

∣∣∣∣ > ε

∣∣∣∣Hk

)
=

M−1∑
v=0

P
(∣∣∣∣ Nd

− log ηk
− 1∑n

s=1 qsD∗s(k)

∣∣∣∣ > ε & accept Hv

∣∣∣∣Hk

)
=P
(∣∣∣∣ Ñd

− log ηk
− 1∑n

s=1 qsD∗s(k)

∣∣∣∣ > ε

∣∣∣∣Hk

)
+

M−1∑
v=0
v 6=k

P
(∣∣∣∣ Nd

− log ηk
− 1∑n

s=1 qsD∗s(k)

∣∣∣∣ > ε & accept Hv

∣∣∣∣Hk

)
.

Note that αj → 0+, for all j ∈ {0, . . . ,M−1}, as ηmax → 0+.
Hence, the right hand side terms above converge to zero
as ηmax → 0+. This establishes the second statement. We
have proved almost sure convergence of Nd

− log ηk
. To establish

convergence in expected value, we construct a Lebesgue
integrable upper bound of Nd. Define ξ0 = 0, and for all
m ≥ 1,

ξm =
(

first τ ≥ 1 such that

ξm−1+τ∑
t=ξm−1+1

log
fk

st
(yt)

f j
st(yt)

> 1, for j ∈ {0, . . . ,M − 1} \ {k}
)
.

Note that the variables in the sequence {ξi}i∈N are i.i.d., and
moreover E[ξ1|Hk] < ∞, since D(fs

k , f
s
j ) > 0, for all s ∈

{1, . . . , n}, and j ∈ {0, . . . ,M − 1} \ {k}.
Choose η̃ = dlog M−1

ηk
e. Note that

ξ1+...+ξη̃∑
t=1

log
fk

st
(yt)

f j
st(yt)

> η̃, for j ∈ {0, . . . ,M − 1} \ {k}.

Hence, ξ1 + . . .+ ξη̃ ≥ Nd. Further, ξ1 + . . .+ ξη̃ is Lebesgue
integrable. The third statement follows from the Lebesgue
dominated convergence theorem [19].

To establish the next statement, note that the decision time
of MSPRT with randomized sensor selection is the sum of
sensor’s processing time at each iteration, i.e.,

Td = Ts1 + . . .+ TsNd
.

From Lemma 3, Lemma 1 and Lemma 4, it follows that

Td

Nd
→ 1

Nd

Nd∑
t=1

E[Tst ] →
n∑

s=1

qsT̄s,

almost surely, as ηmax → 0+. Thus, conditioned on hypothesis
Hk,

lim
ηmax→0+

Td

− log ηk
= lim

ηmax→0+

Td

Nd

Nd

− log ηk

= lim
ηmax→0+

Td

Nd
lim

ηmax→0+

Nd

− log ηk
=

∑n
s=1 qsT̄s∑n

s=1 qsD∗s(k)
,

almost surely. Now, note that {(st, Tst)}t∈N is an i.i.d. realiza-
tion of the pair (s, Ts). Therefore, by the Wald’s identity [19]

E[Tξ1 ] = E
[ ξ1∑

t=1

Tst

]
= E[ξ1]E[Ts] <∞.

Also, Td ≤ Tξ1 + . . . + Tξη̃
∈ L1. Thus, by the Lebesgue

dominated convergence theorem [19]

E[Td|Hk]
− log ηk

→
∑n

s=1 qsT̄s∑n
s=1 qsD∗s(k)

=
q · T
q ·Dk

as ηmax → 0+.

Remark 3: The results in Theorem 1 hold if we have at
least one sensor with positive minimum Kullback Leibler
divergence D∗s(k), which is chosen with a positive probability.
Thus, the MSPRT with randomized sensor selection is robust
to sensor failure and uninformative sensors. In what follows,
we assume that at least M sensors are finitely informative. �

Remark 4: In the remainder of the paper, we assume that
the error probabilities are chosen small enough, so that the
expected decision time is arbitrarily close to the expression in
equation (6). �

Remark 5: The MSPRT with randomized sensor selection
may not be the optimal sequential test. In fact, this test
corresponds to a stationary open-loop strategy. In this paper
we wish to determine a time-optimal stationary open-loop
strategy, as motivated in Remark 2. �

Remark 6: If the minimum Kullback-Leibler divergence
D∗s(k) is the same for any given s ∈ {1, . . . , n}, and for
each k ∈ {0, . . . ,M − 1}, and all thresholds ηk are identical,
then the expected decision time is the same conditioned on
any hypothesis Hk. For example, if conditioned on hypothesis
Hk, k ∈ {0, . . . ,M − 1}, and sensor s ∈ {1, . . . , n}, the
observation is generated from a Gaussian distribution with
mean k and variance σ2

s , then the minimum Kullback-Leibler
divergence from hypothesis k, for sensor s is D∗s(k) = 1/2σ2

s ,
which is independent of k. �

V. OPTIMAL SENSOR SELECTION

In this section we consider sensor selection problems with
the aim to minimize the expected decision time of a sequential
hypothesis test with randomized sensor selection. As exempli-
fied in Theorem 1, the problem features multiple conditioned
decision times and, therefore, multiple distinct cost functions
are of interest. In Scenario I below, we aim to minimize the
decision time conditioned upon one specific hypothesis being
true; in Scenarios II and III we will consider worst-case and
average decision times. In all three scenarios the decision
variables take values in the probability simplex.

Minimizing decision time conditioned upon a specific hy-
pothesis may be of interest when fast reaction is required
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in response to the specific hypothesis being indeed true. For
example, in change detection problems one aims to quickly
detect a change in a stochastic process; the CUSUM algorithm
(also referred to as Page’s test) [17] is widely used in such
problems. It is known [4] that, with fixed threshold, the
CUSUM algorithm for quickest change detection is equivalent
to an SPRT on the observations taken after the change has
occurred. We consider the minimization problem for a single
conditioned decision time in Scenario I below and we show
that, in this case, observing the best sensor each time is the
optimal strategy.

In general, no specific hypothesis might play a special role
in the problem and, therefore, it is of interest to simultane-
ously minimize multiple decision times over the probability
simplex. This is a multi-objective optimization problem, and
may have Pareto-optimal solutions. We tackle this problem
by constructing a single aggregate objective function. In the
binary hypothesis case, we construct two single aggregate
objective functions as the maximum and the average of the two
conditioned decision times. These two functions are discussed
in Scenario II and Scenario III respectively. In the multiple
hypothesis setting, we consider the single aggregate objective
function constructed as the average of the conditioned decision
times. An analytical treatment of this function for M > 2, is
difficult. We determine the optimal number of sensors to be
observed, and direct the interested reader to some iterative
algorithms to solve such optimization problems. This case is
also considered under Scenario III.

Before we pose the problem of optimal sensor selection, we
introduce the following notation. We denote the probability
simplex in Rn by ∆n−1, and the vertices of the probability
simplex ∆n−1 by ei, i ∈ {1, . . . , n}. We refer to the line
joining any two vertices of the simplex as an edge. Finally,
we define gk : ∆n−1 → R, k ∈ {0, . . . ,M − 1}, by gk(q) =
q · T /q · Ik, where Ik = −Dk/ log ηk.

A. Scenario I (Optimization of conditioned decision time):

We consider the case when the supervisor is trying to
detect a particular hypothesis, irrespective of the present hy-
pothesis. The corresponding optimization problem for a fixed
k ∈ {0, . . . ,M − 1} is posed in the following way:

minimize gk(q)
subject to q ∈ ∆n−1.

(9)

The solution to this minimization problem is given in the
following theorem.

Theorem 2 (Optimization of conditioned decision time):
The solution to the minimization problem (9) is q∗ = es∗ ,
where s∗ is given by

s∗ = argmin
s∈{1,...,n}

Ts

Ik
s

,

and the minimum objective function is

E [T ∗d |Hk] =
Ts∗

Ik
s∗
. (10)

Proof: We notice that objective function is a linear-
fractional function. In the following argument, we show that
the minima occurs at one of the vertices of the simplex.

We first notice that the probability simplex is the convex hull
of the vertices, i.e., any point q̃ in the probability simplex can
be written as

q̃ =
n∑

s=1

αses,

n∑
s=1

αs = 1, and αs ≥ 0.

We invoke equation (1), and observe that for some β ∈ [0, 1]
and for any s, r ∈ {1, . . . , n}

gk(βes + (1− β)er) ≥ min{gk(es), gk(er)}, (11)

which can be easily generalized to

gk(q̃) ≥ min
s∈{1,...,n}

gk(es), (12)

for any point q̃ in the probability simplex ∆n−1. Hence,
minima will occur at one of the vertices es∗ , where s∗ is
given by

s∗ = argmin
s∈{1,...,n}

gk(es) = argmin
s∈{1,...,n}

Ts

Ik
s

.

B. Scenario II (Optimization of the worst case decision time):
For the binary hypothesis testing, we consider the multi-

objective optimization problem of minimizing both decision
times simultaneously. We construct single aggregate objective
function by considering the maximum of the two objective
functions. This turns out to be a worst case analysis, and the
optimization problem for this case is posed in the following
way:

minimize max
{
g0(q), g1(q)

}
,

subject to q ∈ ∆n−1.
(13)

Before we move on to the solution of above minimization
problem, we state the following results.

Lemma 5 (Monotonicity of conditioned decision times):
The functions gk, k ∈ {0, . . . ,M − 1} are monotone on
the probability simplex ∆n−1, in the sense that given two
points qa, qb ∈ ∆n−1, the function gk is monotonically
non-increasing or monotonically non-decreasing along the
line joining qa and qb.

Proof: Consider probability vectors qa, qb ∈ ∆n−1. Any
point q on line joining qa and qb can be written as q(ν) =
νqa + (1 − ν)qb, ν ∈ ]0, 1[. We note that gk(q(ν)) is given
by:

gk(q(ν)) =
ν(qa · T ) + (1− ν)(qb · T )
ν(qa · I

k) + (1− ν)(qb · I
k)
.

The derivative of gk along the line joining qa and qb is
given by

d

dν
gk(q(ν)) =

(
gk(qa)− gk(qb)

)
× (qa · I

k)(qb · I
k)

(ν(qa · I
k) + (1− ν)(qb · I

k))2
.
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We note that the sign of the derivative of gk along the line
joining two points qa, qb is fixed by the choice of qa and
qb. Hence, the function gk is monotone over the line joining
qa and qb. Moreover, note that if gk(qa) 6= gk(qb), then gk

is strictly monotone. Otherwise, gk is constant over the line
joining qa and qb.

Lemma 6 (Location of min-max): Define g : ∆n−1 → R≥0

by g = max{g0, g1}. A minimum of g lies at the intersection
of the graphs of g0 and g1, or at some vertex of the probability
simplex ∆n−1.

Proof: The idea of the proof is illustrated in Figure 2. We
now prove it rigorously.
Case 1: The graphs of g0 and g1 do not intersect at any point
in the simplex ∆n−1.

In this case, one of the functions g0 and g1 is an upper
bound to the other function at every point in the probability
simplex ∆n−1. Hence, g = gk, for some k ∈ {0, 1}, at every
point in the probability simplex ∆n−1. From Theorem 2, we
know that the minima of gk on the probability simplex ∆n−1

lie at some vertex of the probability simplex ∆n−1.
Case 2: The graphs of g0 and g1 intersect at a set Q in the

probability simplex ∆n−1, and let q̄ be some point in the set
Q.

Suppose, a minimum of g occurs at some point q∗ ∈
relint(∆n−1), and q∗ /∈ Q, where relint(·) denotes the relative
interior. With out loss of generality, we can assume that
g0(q∗) > g1(q∗). Also, g0(q̄) = g1(q̄), and g0(q∗) < g0(q̄)
by assumption.

We invoke Lemma 5, and notice that g0 and g1 can intersect
at most once on a line. Moreover, we note that g0(q∗) >
g1(q∗), hence, along the half-line from q̄ through q∗, g0 > g1,
that is, g = g0. Since g0(q∗) < g0(q̄), g is decreasing along
this half-line. Hence, g should achieve its minimum at the
boundary of the simplex ∆n−1, which contradicts that q∗ is
in the relative interior of the simplex ∆n−1. In summary, if
a minimum of g lies in the relative interior of the probability
simplex ∆n−1, then it lies at the intersection of the graphs of
g0 and g1.

The same argument can be applied recursively to show that
if a minimum lies at some point q† on the boundary, then
either g0(q†) = g1(q†) or the minimum lies at the vertex.

In the following arguments, let Q be the set of points in the
simplex ∆n−1, where g0 = g1, that is,

Q = {q ∈ ∆n−1 | q · (I0 − I1) = 0}. (14)

Also notice that the set Q is non empty if and only if I0−I1

has at least one non-negative and one non-positive entry. If the
set Q is empty, then it follows from Lemma 6 that the solution
of optimization problem in equation (13) lies at some vertex of
the probability simplex ∆n−1. Now we consider the case when
Q is non empty. We assume that the sensors have been re-
ordered such that the entries in I0−I1 are in ascending order.
We further assume that, for I0−I1, the first m entries, m < n,
are non positive, and the remaining entries are positive.

Lemma 7 (Intersection polytope): If the set Q defined in
equation (14) is non empty, then the polytope generated by

Fig. 2. Linear-fractional functions. Both the functions achieve their minima
at some vertex of the simplex. The maximum of the two functions achieves
its minimum at the intersection of two graphs.

the points in the set Q has vertices given by:

Q̃ = {q̃sr | s ∈ {1, . . . ,m} and r ∈ {m+ 1, . . . , n}},

where for each i ∈ {1, . . . , n}

q̃sr
i =


(I0

r − I1
r )

(I0
r − I1

r )− (I0
s − I1

s )
, if i = s,

1− q̃sr
s , if i = r,

0, otherwise.

(15)

Proof: Any q ∈ Q satisfies the following constraints

n∑
s=1

qs = 1, qs ∈ [0, 1], (16)

n∑
s=1

qs(I0
s − I1

s ) = 0, (17)

Eliminating qn, using equation (16) and equation (17), we get:

n−1∑
s=1

βsqs = 1, where βs =
(I0

n − I1
n)− (I0

s − I1
s )

(I0
n − I1

n)
. (18)

The equation (18) defines a hyperplane, whose extreme points
in Rn−1

≥0 are given by

q̃sn =
1
βs

es, s ∈ {1, . . . , n− 1}.

Note that for s ∈ {1, . . . ,m}, q̃sn ∈ ∆n−1. Hence, these
points define some vertices of the polytope generated by points
in the set Q. Also note that the other vertices of the polytope
can be determined by the intersection of each pair of lines
through q̃sn and q̃rn, and es and er, for s ∈ {1, . . . ,m}, and
r ∈ {m+1, . . . , n− 1}. In particular, these vertices are given
by q̃sr defined in equation (15).

Hence, all the vertices of the polytopes are defined by q̃sr,
s ∈ {1, . . . ,m}, r ∈ {m + 1, . . . , n}. Therefore, the set of
vertices of the polygon generated by the points in the set Q
is Q̃.
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Before we state the solution to the optimization problem
(13), we define the following:

(s∗, r∗) ∈ argmin
r∈{m+1,...,n}

s∈{1,...,m}

(I0
r − I1

r )Ts − (I0
s − I1

s )Tr

I1
s I

0
r − I0

s I
1
r

, and

gtwo-sensors(s∗, r∗) =
(I0

r∗ − I1
r∗)Ts∗ − (I0

s∗ − I1
s∗)Tr∗

I1
s∗I

0
r∗ − I0

s∗I
1
r∗

.

We also define

w∗ = argmin
w∈{1,...,n}

max
{
Tw

I0
w

,
Tw

I1
w

}
, and

gone-sensor(w∗) = max
{
Tw∗

I0
w∗
,
Tw∗

I1
w∗

}
.

Theorem 3 (Worst case optimization): For the optimization
problem (13), an optimal probability vector is given by:

q∗ =

{
ew∗ , if gone-sensor(w∗) ≤ gtwo-sensors(s∗, r∗),
q̃s∗r∗ , if gone-sensor(w∗) > gtwo-sensors(s∗, r∗),

and the minimum value of the function is given by:

min {gone-sensor(w∗), gtwo-sensors(s∗, r∗)} .

Proof: We invoke Lemma 6, and note that a minimum
should lie at some vertex of the simplex ∆n−1, or at some
point in the set Q. Note that g0 = g1 on the set Q, hence the
problem of minimizing max{g0, g1} reduces to minimizing
g0 on the set Q. From Theorem 2, we know that g0 achieves
the minima at some extreme point of the feasible region. From
Lemma 7, we know that the vertices of the polytope generated
by points in set Q are given by set Q̃. We further note that
gtwo-sensors(s, r) and gone-sensor(w) are the value of objective
function at the points in the set Q̃ and the vertices of the
probability simplex ∆n−1 respectively, which completes the
proof.

C. Scenario III (Optimization of the average decision time):

For the multi-objective optimization problem of minimizing
all the decision times simultaneously on the simplex, we for-
mulate the single aggregate objective function as the average
of these decision times. The resulting optimization problem,
for M ≥ 2, is posed in the following way:

minimize
1
M

(g0(q) + . . .+ gM−1(q)),

subject to q ∈ ∆n−1.
(19)

In the following discussion we assume n > M , unless
otherwise stated. We analyze the optimization problem in
equation (19) as follows:

Lemma 8 (Non-vanishing Jacobian): The objective func-
tion in optimization problem in equation (19) has no critical
point on ∆n−1 if the vectors T , I0, . . . , IM−1 ∈ Rn

>0 are
linearly independent.

Proof: The Jacobian of the objective function in the
optimization problem in equation (19) is

1
M

∂

∂q

M−1∑
k=0

gk = Γψ(q),

where Γ =
1
M

[
T −I0 . . . −IM−1

]
∈ Rn×(M+1), and

ψ : ∆n−1 → RM+1 is defined by

ψ(q) =

[
M−1∑
k=0

1
q · Ik

q · T
(q · I0)2

. . .
q · T

(q · IM−1)2

]T

.

For n > M , if the vectors T , I0, . . . , IM−1 are linearly
independent, then Γ is full rank. Further, the entries of ψ
are non-zero on the probability simplex ∆n−1. Hence, the
Jacobian does not vanish anywhere on the probability simplex
∆n−1.

Lemma 9 (Case of Independent Information): For M = 2,
if I0 and I1 are linearly independent, and T = α0I

0 +α1I
1,

for some α0, α1 ∈ R, then the following statements hold:
i) if α0 and α1 have opposite signs, then g0 + g1 has no

critical point on the simplex ∆n−1, and
ii) for α0, α1 > 0, g0+g1 has a critical point on the simplex

∆n−1 if and only if there exists v ∈ ∆n−1 perpendicular
to the vector

√
α0I

0 −√α1I
1.

Proof: We notice that the Jacobian of g0 + g1 satisfies

(q · I0)2(q · I1)2
∂

∂q
(g0 + g1)

= T
(
(q · I0)(q · I1)2 + (q · I1)(q · I0)2

)
− I0(q · T )(q · I1)2 − I1(q · T )(q · I0)2.

(20)

Substituting T = α0I
0 + α1I

1, equation (20) becomes

(q · I0)2(q · I1)2
∂

∂q
(g0 + g1)

=
(
α0(q · I0)2 − α1(q · I1)2

) (
(q · I1)I0 − (q · I0)I1

)
.

Since I0, and I1 are linearly independent, we have

∂

∂q
(g0 + g1) = 0 ⇐⇒ α0(q · I0)2 − α1(q · I1)2 = 0.

Hence, g0 + g1 has a critical point on the simplex ∆n−1 if
and only if

α0(q · I0)2 = α1(q · I1)2. (21)

Notice that, if α0, and α1 have opposite signs, then equation
(21) can not be satisfied for any q ∈ ∆n−1, and hence, g0+g1

has no critical point on the simplex ∆n−1.
If α0, α1 > 0, then equation (21) leads to

q · (
√
α0I

0 −
√
α1I

1) = 0.

Therefore, g0 +g1 has a critical point on the simplex ∆n−1 if
and only if there exists v ∈ ∆n−1 perpendicular to the vector√
α0I

0 −√α1I
1.

Lemma 10 (Optimal number of sensors): For n > M , if
each (M + 1)× (M + 1) sub-matrix of the matrix

Γ =
[

T −I0 . . . −IM−1
]
∈ Rn×(M+1)
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is full rank, then the following statements hold:
i) every solution of the optimization problem (19) lies on

the probability simplex ∆M−1 ⊂ ∆n−1; and
ii) every time-optimal policy requires at most M sensors

to be observed.
Proof: From Lemma 8, we know that if T , I0, . . . , IM−1

are linearly independent, then the Jacobian of the objective
function in equation (19) does not vanish anywhere on the
simplex ∆n−1. Hence, a minimum lies at some simplex ∆n−2,
which is the boundary of the simplex ∆n−1. Notice that, if n >
M and the condition in the lemma holds, then the projections
of T , I0, . . . , IM−1 on the simplex ∆n−2 are also linearly
independent, and the argument repeats. Hence, a minimum
lies at some simplex ∆M−1, which implies that optimal policy
requires at most M sensors to be observed.

Lemma 11 (Optimization on an edge): Given two vertices
es and er, s 6= r, of the probability simplex ∆n−1, then for
the objective function in the problem (19) with M = 2, the
following statements hold:

i) if g0(es) < g0(er), and g1(es) < g1(er), then the
minima, along the edge joining es and er, lies at es,
and optimal value is given by 1

2 (g0(es) + g1(es)); and
ii) if g0(es) > g0(er), and g1(es) < g1(er), or vice versa,

then the minima, along the edge joining es and er, lies
at the point q∗ = (1− t∗)es + t∗er, where

ν∗ =
1

1 + µ
∈ ]0, 1[,

µ =
I0
r

√
TsI1

r − TrI1
s − I1

r

√
TrI0

s − TsI0
r

I1
s

√
TrI0

s − TsI0
r − I0

s

√
TsI1

r − TrI1
s

> 0,

and the optimal value is given by

1
2
(g0(q∗) + g1(q∗))

=
1
2

(√
TsI1

r − TrI1
s

I0
s I

1
r − I0

r I
1
s

+

√
TrI0

s − TsI0
r

I0
s I

1
r − I0

r I
1
s

)2

.

Proof: We observe from Lemma 5 that both g0, and g1

are monotonically non-increasing or non-decreasing along any
line. Hence, if g0(es) < g0(er), and g1(es) < g1(er), then
the minima should lie at es. This concludes the proof of the
first statement. We now establish the second statement. We
note that any point on the line segment connecting es and er

can be written as q(ν) = (1−ν)es+νer. The value of g0+g1

at q is

g0(q(ν)) + g1(q(ν)) =
(1− ν)Ts + νTr

(1− ν)I0
s + νI0

r

+
(1− ν)Ts + νTr

(1− ν)I1
s + νI1

r

.

Differentiating with respect to ν, we get

g0′(q(ν)) + g1′(q(ν))

=
I0
sTr − TsI

0
r

(I0
s + ν(I0

r − I0
s ))2

+
I1
sTr − TsI

1
r

(I1
s + ν(I1

r − I1
s ))2

. (22)

Notice that the two terms in equation (22) have opposite
sign. Setting the derivative to zero, and choosing the value of
ν in [0, 1], we get ν∗ = 1

1+µ , where µ is as defined in the
statement of the theorem. The optimal value of the function

can be obtained, by substituting ν = ν∗ in the expression for
1
2 (g0(q(ν)) + g1(q(ν))).

Theorem 4 (Optimization of average decision time): For
the optimization problem (19) with M = 2, the following
statements hold:

i) If I0, I1 are linearly dependent, then the solution lies
at some vertex of the simplex ∆n−1.

ii) If I0 and I1 are linearly independent, and T = α0I
0 +

α1I
1, α0, α1 ∈ R, then the following statements hold:

a) If α0 and α1 have opposite signs, then the optimal
solution lies at some edge of the simplex ∆n−1.

b) If α0, α1 > 0, then the optimal solution may lie in
the interior of the simplex ∆n−1.

iii) If every 3× 3 sub-matrix of the matrix
[
T I0 I1

]
∈

Rn×3 is full rank, then a minimum lies at an edge of
the simplex ∆n−1.

Proof: We start by establishing the first statement. Since,
I0 and I1 are linearly dependent, there exists a γ > 0 such
that I0 = γI1. For I0 = γI1, we have g0 + g1 = (1 + γ)g0.
Hence, the minima of g0 + g1 lies at the same point where
g0 achieves the minima. From Theorem 2, it follows that g0

achieves the minima at some vertex of the simplex ∆n−1.
To prove the second statement, we note that from Lemma 9,

it follows that if α0, and α1 have opposite signs, then the
Jacobian of g0 + g1 does not vanish anywhere on the simplex
∆n−1. Hence, the minima lies at the boundary of the simplex.
Notice that the boundary, of the simplex ∆n−1, are n simplices
∆n−2. Notice that the argument repeats till n > 2. Hence, the
optima lie on one of the

(
n
2

)
simplices ∆1, which are the edges

of the original simplex. Moreover, we note that from Lemma 9,
it follows that if α0, α1 > 0, then we can not guarantee the
number of optimal set of sensors. This concludes the proof of
the second statement.

To prove the last statement, we note that it follows im-
mediately from Lemma 10 that a solution of the optimization
problem in equation (19) would lie at some simplex ∆1, which
is an edge of the original simplex.

Note that, we have shown that, for M = 2 and a generic
set of sensors, the solution of the optimization problem in
equation (19) lies at an edge of the simplex ∆n−1. The optimal
value of the objective function on a given edge was determined
in Lemma 11. Hence, an optimal solution of this problem can
be determined by a comparison of the optimal values at each
edge.

For the multiple hypothesis case, we have determined
the time-optimal number of the sensors to be observed in
Lemma 10. In order to identify these sensors, one needs to
solve the optimization problem in equation (19). We notice
that the objective function in this optimization problem is non-
convex, and is hard to tackle analytically for M > 2. Interested
reader may refer to some efficient iterative algorithms in
linear-fractional programming literature (e.g., [6]) to solve
these problems.

VI. NUMERICAL EXAMPLES

We now elucidate on the results obtained in previous
sections through some numerical examples. We present three
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examples, which provide further insights into the scenarios
considered in Section V. In the first one, we consider four
sensors with ternary outputs, and three hypotheses. We com-
pare the conditioned asymptotic decision times, obtained in
Theorem 1, with the decision times obtained numerically
through Monte-Carlo simulations. In the second example, for
the same set of sensors and hypothesis, we compare the
optimal average decision time, obtained in Theorem 4, with
some particular average decision times. In the third example,
we compare the worst case optimal decision time obtained in
Theorem 3 with some particular worst-case expected decision
times.

Example 1 (Conditional expected decision time): We con-
sider four sensors connected to a fusion center, and three
underlying hypothesis. We assume that the sensors take ternary
measurements {0, 1, 2}. The probabilities of their measure-
ment being zero and one, under three hypotheses, are randomly
chosen and are shown in Tables I and II, respectively. The
probability of measurement being two is obtained by subtract-
ing these probabilities from one. The processing times on the
sensors are randomly chosen to be 0.68, 3.19, 5.31, and 6.55
seconds, respectively.

TABLE I
CONDITIONAL PROBABILITIES OF MEASUREMENT BEING ZERO

Sensor Probability(0)
Hypothesis 0 Hypothesis 1 Hypothesis 2

1 0.4218 0.2106 0.2769
2 0.9157 0.0415 0.3025
3 0.7922 0.1814 0.0971
4 0.9595 0.0193 0.0061

TABLE II
CONDITIONAL PROBABILITIES OF MEASUREMENT BEING ONE

Sensor Probability(1)
Hypothesis 0 Hypothesis 1 Hypothesis 2

1 0.1991 0.6787 0.2207
2 0.0813 0.7577 0.0462
3 0.0313 0.7431 0.0449
4 0.0027 0.5884 0.1705

We performed Monte-Carlo simulations to numerically ob-
tain the expected decision time, conditioned on hypothesis H0.
For different sensor selection probabilities, a comparison of the
numerically obtained expected decision times with the theo-
retical expected decision times is shown in Figure 3. These
results suggest that the asymptotic decision times obtained in
Theorem 1 provide a lower bound to the conditional expected
decision times for the larger error probabilities. It can be seen
from Figure 3, and verified from Theorem 2 that conditioned
on hypothesis H0, sensor 4 is the optimal sensor. Notice the
processing time and information trade-off. Despite having the
highest processing time, conditioned on hypothesis H0, the
sensor 4 is optimal. This is due to the fact that sensor 4 is
highly informative on hypothesis H0.

Example 2 (Optimal average expected decision time): For
the same set of data in Example 1, we now determine the
optimal policies for the average expected decision time. A
comparison of average expected decision time for different
sensor selection probabilities is shown in Figure 4. An optimal

Fig. 3. Expected decision time conditioned on hypothesis H0 plotted on
semi-log axes. The dotted magenta line and magenta ”+” represent the
theoretical and numerical expected decision time for average expected decision
time-optimal sensor selection policy, respectively. The dashed blue line and
blue ”×” represent the theoretical and numerical expected decision time for
the uniform sensor selection policy, respectively. The solid black line and
black triangles represent the theoretical and numerical expected decision time
when only optimal sensor 4 is selected.

average expected decision time sensor selection probability
distribution is q = [0 0.98 0 0.02]. It can be seen that the
optimal policy significantly improves the average expected
decision time over the uniform policy. The sensor 4 which
is the optimal sensor conditioned on hypothesis H0 is now
chosen with a very small probability. This is due to the poor
performance of the sensor 4 under hypothesis H1 and H2

and its high processing time. Good performance under one
hypothesis and poor performance under other hypothesis is
common in weather-sensitive sensors, e.g., sensor performs
extremely well in sunny conditions, but in cloudy or rainy
conditions its performance deteriorates significantly.

Fig. 4. Average expected decision times plotted on semi-log axes. The
black solid line represents the policy where only sensor 4 is selected. The
blue dashed line represents the uniform sensor selection policy. The magenta
dotted line is average expected decision time-optimal policy.

Example 3 (Optimal worst case decision time): For the
same set of data in Example 1, we now determine the optimal
policies for the average expected decision time. For this data,
the optimal worst-case sensor selection probability distribution
is q = [0 0.91 0 0.09]. A comparison of the optimal worst
case expected decision time with some particular worst case
decision times is shown in Figure 5. It may be verified that
for the optimal sensor selection probabilities, the expected
decision time, conditioned on hypothesis H0 and H2 are the
same. This suggests that even for more that two hypothesis,
the optimal policy may lie at the intersection of the graphs of
the expected decision times.

Remark 7: The optimal results we obtained, may only be
sub-optimal because of the asymptotic approximations in
equations (6). We further note that, for small error probabilities
and large sample sizes, these asymptotic approximations yield
fairly accurate results [5], and in fact, this is the regime
in which it is of interest to minimize the expected decision
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Fig. 5. Worst case expected decision times plotted on semi-log axes. The
black solid line represents the policy where only sensor 4 is selected. The
blue dashed line represents the uniform sensor selection policy. The magenta
dotted line is worst expected decision time-optimal policy.

time. Therefore, for all practical purposes the obtained optimal
scheme is very close to the actual optimal scheme. �

VII. CONCLUSIONS

In this paper, we considered a sequential decision making
problem with randomized sensor selection. We developed
version of the MSPRT algorithm where the sensor switches
at each observation. We used this sequential procedure to
decide reliably. We studied the set of optimal sensors to be
observed in order to decide in minimum time. We observed
the trade off between the information carried by a sensor and
its processing time. A randomized sensor selection strategy
was adopted. It was shown that, conditioned on a hypothesis,
only one sensor is optimal. Indeed, if the true hypothesis is
not known beforehand, then a randomized strategy is justified.
For the binary hypothesis case, three performance metrics were
considered and it was found that for a generic set of sensors at
most two sensors are optimal. Further, it was shown that for M
underlying hypotheses, and a generic set of sensors, an optimal
policy requires at most M sensors to be observed. It was
observed that the optimal set of the sensors is not necessarily
the set of optimal sensors conditioned on each hypothesis. A
procedure for the identification of the optimal sensors was
developed. In the binary hypothesis case, the computational
complexity of the procedure for the three scenarios, namely,
the conditioned decision time, the worst case decision time,
and the average decision time, was O(n), O(n2), and O(n2),
respectively.
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[3] D. Bajović, B. Sinopoli, and J. Xavier. Sensor selection for hypothesis

testing in wireless sensor networks: a Kullback-Leibler based approach.
In IEEE Conf. on Decision and Control, pages 1659–1664, Shanghai,
China, December 2009.

[4] M. Basseville and I. V. Nikiforov. Detection of Abrupt Changes: Theory
and Application. Prentice Hall, 1993.

[5] C. W. Baum and V. V. Veeravalli. A sequential procedure for multihy-
pothesis testing. IEEE Transactions on Information Theory, 40(6):1994–
2007, 1994.

[6] H. P. Benson. On the global optimization of sums of linear fractional
functions over a convex set. Journal of Optimization Theory &
Applications, 121(1):19–39, 2004.

[7] R. Bogacz, E. Brown, J. Moehlis, P. Holmes, and J. D. Cohen. The
physics of optimal decision making: A formal analysis of performance in
two-alternative forced choice tasks. Psychological Review, 113(4):700–
765, 2006.

[8] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge
University Press, 2004.
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