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Abstract

The dynamic team forming problem (DTFP) for a heterogeneous group of robots
is described as follows. Each robot is capable of providing a specific service.
Tasks arrive sequentially over time, assume random locations in the environ-
ment, and require several different services. A task is completed when a team of
robots travels to the task location and provides the required services. The goal
is to minimize the expected delay between a task’s arrival and its completion.
We restrict our attention to unbiased policies for the DTFP, i.e., policies for
which the expected delay is the same for all tasks. We introduce three intuitive
policies, and in certain asymptotic regimes we analyze their delay as a function
of the arrival rate of tasks (or throughput). For each policy we show that there is
a broad class of system parameters for which the policy’s performance is within
a constant factor of the optimal.

Key words: dynamic vehicle routing, team/coalition forming, robotic
networks

1. Introduction

Consider a heterogeneous fleet of mobile robotic agents deployed in an en-
vironment E ⊂ R

2. Each robot is capable of providing one of k services. Tasks
appear in the environment sequentially over time, assume a random location
in E , and require some subset of the k services. To complete a task, all re-
quired services must be present at the task location. Thus, for each task, a
team of robots which can provide the required services must be formed, and
must travel to the task location. The goal is to minimize the expected delay
between a task’s arrival and its completion. We refer to this problem as the
dynamic team forming problem (DTFP). This problem arises, for example, in
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UAV surveillance [1] where the services represent waveforms for interrogation
of a target/region, such as electro-optical, infra-red, synthetic aperture radar,
foliage penetrating radar, and moving target indication radar.

The DTFP is a dynamic vehicle routing problem [2] since tasks arrive se-
quentially over time. A special case of the DTFP is the dynamic traveling
repairperson problem (DTRP) [3, 4]. In this problem the robots are homo-
geneous, and each task consists of a location which requires on-site service.
Spatially distributed algorithms for the DTRP were developed in [5] and [6].
Another dynamic vehicle routing problem is the dynamic pickup delivery prob-
lem (DPDP) [7] where each task consists of a source-destination pair. A message
must be picked up from the source, and delivered to the destination. For both
the DTRP and the DPDP, lower bounds are found on the expected task delay
(which depend on quantities such as the task arrival rate, environment size, and
the number of robots), and policies are proposed which provide delays within
a constant factor of this lower bound. In both problems the expected delay in-
creases with the task arrival rate. This trade-off is well known in ad hoc wireless
networks [8, 9]; If nodes increase the rate at which they send messages (i.e., the
throughput), then this increases the expected delay a message will incur before
arriving at its destination.

The contributions of this paper are the following. First, we introduce the
novel dynamic team forming problem. Second, we propose three policies for
dynamic team forming; the complete team policy where teams are formed that
consist of all possible services; the task-specific team policy where teams are
formed for each type of task; and the scheduled task-specific team policy where
each type of task is serviced by a task-specific team, but only during certain
intervals of time, as defined by a schedule. All three policies utilize Euclidean
traveling salesperson tours to compute optimal routes through sets of tasks.
Third, by making some assumptions on the system parameters (e.g., on relative
number of robots, task-type frequency, etc.), we study the expected task delay
as a function of the throughput of the robotic network (i.e., the rate at which
tasks are serviced). We derive a lower bound on the expected delay of the
DTFP, upper bounds for the delay each of the three policies, and show that
for certain classes of system parameters each policy performs within a constant
factor of the optimal.

2. Background Material

Here we review results on the Euclidean traveling salesperson problem, en-
vironment partitioning, queueing theory, and vertex coloring. We let R, R>0,
and N denote the set of real numbers, positive real numbers, and positive in-
tegers, respectively. For A ⊂ R

2 we let |A| denote its area. For two functions
f, g : N → R>0, we write f(n) ∈ O(g) (respectively, f(n) ∈ Ω(g)) if there ex-
ist N ∈ N and c ∈ R>0 such that f(n) ≤ cg(n) for all n ≥ N (respectively,
f(n) ≥ cg(n) for all n ≥ N). If f(n) ∈ O(g) and f(n) ∈ Ω(g), then we write
f(n) ∈ Θ(g).
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The Euclidean traveling salesperson problem (ETSP): For a set Q
of n points in R

2, let ETSP(Q) denote the length of the shortest closed path
through all points in Q. The following result characterizes this length when the
point set Q lies inside a square environment E with area |E|.

Theorem 2.1 (ETSP tour length, [10]). There exists β > 0 such that for every
set Q of n points in E, ETSP(Q) ≤ β

√

n|E|.

The problem of computing an optimal ETSP tour is NP-hard. However,
there exist efficient approximation algorithms such as the Christofides’ algo-
rithm [11].

Partitioning an environment: The following definition formalizes the
idea of partitioning a square environment E ⊂ R

2 into n regions, such that each
region is “approximately” a square of area |E|/n.

Definition 2.2 (c-square partition). A partition of E into n regions is c-square
if each region can be contained in a square of area c|E|/n.

One can easily create a 4-square partition by 1) gridding E into ⌈√n⌉2
squares, 2) selecting ⌈√n⌉2 − n pairs of edge adjacent squares, such that no
square appears in more than one pair, and 3) fusing each pair into a single
region.

Queueing theory: Consider a queueing system with Poisson arrivals at rate
λ, and a single server providing bulk service. As customers arrive they form a
queue and are served in batches. Every tbatch seconds a batch is served contain-
ing either the first M customers in the queue, or the entire queue, whichever is
smaller. In [12] the following result is established.

Theorem 2.3 (Expected waiting time, [12]). If M > λtbatch, then the expected
waiting time W satisfies

W ≤ M − 1

2λ
+

tbatch

2(M − λtbatch)
. (1)

Vertex coloring: An undirected graph G = (V,E) consists of a set of
vertices V and a set of edges E ⊂ V × V . An edge {v, w} ∈ E is incident to v
and w, and v and w are neighbors. The degree of v ∈ V is the number of edges
incident to v. A vertex-coloring of G is a mapping f : V → N with f(v) 6= f(w)
for all {v, w} ∈ E. The number f(v) is the color of v. The vertex-coloring
problem is to find the vertex coloring f : V → N which minimizes the number
of required colors; that is, which minimizes maxv∈V f(v). The problem is NP-
hard, and no approximation algorithms exist. However, the following theorem
gives an upper bound on the number of colors required.

Theorem 2.4 (Vertex coloring, [13]). Let G be an undirected graph with n
nodes and with maximum degree α. Then G has a vertex coloring with at most
α + 1 colors, and such a coloring can be found in O(n) computation time using
the Greedy coloring heuristic.
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Greedy coloring heuristic of G = ({v1, . . . , vn}, E).

for i = 1 to n do1

Set f(vi) to the minimum color k ∈ N such that k 6= f(vj) for all2

neighboring vertices vj , j < i.

3. The Dynamic Team Forming Problem (DTFP)

Robot model: Consider n robotic agents contained in a square environment
E ⊂ R

2. Each robot has first order dynamics with speed bounded by vmax > 0.
Each robot is capable of providing one of k services. We assume there are nj > 0
robots capable of providing service j (called robots of service-type j), for each
j ∈ {1, . . . , k}, and thus

n :=

k
∑

j=1

nj .

Task model: There are K different types of tasks. Tasks of type α ∈
{1, . . . ,K} arrive in the environment over time according to a Poisson process
with rate λα. Upon arrival each task assumes an independent and identically
distributed (i.i.d.) location uniformly in E . Each task-type α ∈ {1, . . . ,K}
requires a subset of the k services. It will be useful to record the required
services in a zero-one vector Rα ∈ {0, 1}k. The jth entry of Rα is 1 if service
j is required for task-type α, and 0 otherwise. The on-site service time for a
task of type α is an i.i.d. random variable with mean s̄α and finite variance. To
complete a task of type α, a team of robots capable of providing the required
services must travel to the task location and remain there for the on-site service
time. Note that the total task arrival rate is

λ :=

K
∑

α=1

λα.

Performance metric: We define a control policy for the group of robots as
a map P which assigns a commanded velocity to each robot as a function of the
current state of the system; that is, as a function of the current robot positions,
and state of all unserviced tasks.1 For a given policy P , let Di

α,P denote the
difference between the service completion time and the arrival time of the ith
task of type α. Let Dα,P := lim supi→+∞ E[Di

α,P ] denote the limiting expected
delay of task-type α under policy P . Then, the DTFP is to find policies which
minimize some cost function of the delays. In particular we consider two cost

1We assume that computations are centralized, and leave the problem of decentralizing our
policies to future work.
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functions; the worst-case delay, and the average delay:

min
P

max
α

Dα,P or min
P

∑

α

Dα,P .

As in the classical queueing literature [14], we can give a necessary condition for
the existence of a stabilizing policy (i.e., a policy for which the limiting expected
delays are all finite). First, we define the matrix

R := [R1 · · · RK] ∈ {0, 1}k×K. (2)

Then, a necessary condition for stability is that

R[λ1s̄1 · · · λKs̄K]T < [n1 · · · nk]T (3)

component-wise. The jth inequality in equation (3) states that the fraction of
time a robot of type j is busy performing on-site service must be less than 1 for
any stable policy.

Dynamic traveling repairperson problem (DTRP): The DTRP is a
special case of the dynamic team forming problem in which there is only one
service (i.e., k = 1), and thus only one task-type. When k = 1 equation (3)
becomes λs̄ < n, or ρ := λs̄/n < 1. In queueing theory [14], the quantity ρ
is known as the load factor. In [4], two lower bounds on the optimal expected
delay D∗ are presented which will be useful in the upcoming analysis. First,

D∗ ≥ 1

vmax

E

[

min
p∈{p1,...,pn}

‖q − p‖
]

+ s̄, (4)

where p1, . . . ,pn are the n locations which minimize the expected distance to
a uniformly distributed location q. Second, there exists a γ > 0 such that

D∗ ≥ γ2 λ|E|
n2v2

max(1 − ρ)2
− s̄(1 − 2ρ)

2ρ
=: DDTRP(n, λ). (5)

Several policies are developed in [4]. A policy which we will utilize in this paper
is the ETSP partitioning policy. We slightly alter the policy and use the c-square
partition in Definition 2.2.

The ETSP partitioning policy

Optimize: over task set-size M .
Partition E into n approximately square regions and assign one robot to each1

region.
foreach region-robot pair do2

As tasks arrive in the region, form sets of size M .3

As sets are formed, deposit them in a queue.4

Service the queue first-come, first-served, following an optimal ETSP tour5

on each set of M tasks.
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From [4], the optimal value of M is Cλ2|E|/(n2v2
max(1−ρ)2), for some C > 0.

While we will utilize the ETSP partitioning policy in what follows, it should be
noted that we could equivalently utilize the receding-horizon policy in [15].

4. Dynamic Team Forming Policies

In what follows we will consider task-type unbiased policies; policies P for
which the delay of each task is equal and thus

D1,P = D2,P = · · · = DK,P .

For task-type unbiased policies, the worst-case delay and average delay problems
are equivalent. Policies of this type are amenable to analysis because the task-
type unbiased constraint collapses the feasible set of delays from a subset of R

K

to a subset of R. Because of this, we can simply talk about the delay of a policy
P as DP , and the least achievable delay as D∗.

We will now introduce three policies for the dynamic team forming problem.
Their performance will be analyzed in Section 5.

Policy 1 (complete team): We begin by proposing a policy which essen-
tially turns the problem into a dynamic traveling repairperson problem.

Policy 1: Complete team

Form Nct := min{n1, . . . , nk} teams of k robots, where each team contains one1

robot of each service-type.
Have each team meet and move as a single entity.2

As tasks arrive, service them by one of the Nct teams according to the ETSP3

partitioning policy.

Policy 2 (task-specific team): Recalling that R := [R1, . . . , RK] ∈ R
k×K,

the vector R1K records in its jth entry the number of task-types that require
service j, where 1K is a K × 1 vector of ones. Thus, if

R1K ≤ [n1, . . . , nk]T (6)

component-wise, then there are enough robots of each service-type to create a
dedicated team for every task-type. More specifically, we could create

Ntst :=

⌊

min

{

nj

eT
j R1K

∣

∣

∣

∣

j ∈ {1, . . . , k}
}⌋

teams for each task-type, where ej is the jth vector of the standard basis of R
k.

Thus, when equation (6) is satisfied, we have the following policy.
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Policy 2: Task-specific team

Assumes: Equation (6) is satisfied.
For each of the K task-types, create Ntst teams of robots, where there is one1

robot in the team for each service required by the task-type.
Service each task by one of its Ntst corresponding teams, according to the2

ETSP partitioning policy.

Policy 3 (scheduled task-specific team):
The task-specific team policy can be applied only when equation (6) is sat-

isfied; that is, when there is a sufficient number of robots of each service-type.
Here we propose a policy which requires only a single robot of each service
type. The policy partitions the task-types into groups, where each group is
chosen such that there is a sufficient number of robots to create a dedicated
team for each task-type in the group. The task-specific team policy is then run
on each group sequentially. We begin by introducing a service schedule which
defines the partition of task-types into groups.

Definition 4.1 (Service schedule). A service schedule S is a partition of the
K task-types into L time slots, such that each task-type appears in precisely one
time slot, and the task-types in each time slot are pairwise disjoint (i.e., In a
given time slot, each service appears in at most one task-type).

With the definition of a service schedule we can present the third policy.

Policy 3: Scheduled task-specific team

Assumes: A service schedule with time slot duration tB.
Optimize: over time slot duration tB and task set-size M .
Partition E into Nct := min{n1, . . . , nk} approximately square regions and1

assign one robot of each service-type to each region.
foreach region do2

Form a queue for each of the K task-types.3

foreach time slot in the schedule do4

For each task-type in the time slot, create a team containing one robot5

for each required service.
For each team, service the first M tasks in the corresponding queue, or6

as many as can be served in time tB, by following an optimal ETSP
tour.

When the end of the service schedule is reached, repeat.7

5. Analysis of the Dynamic Team Forming Problem

In this section we present simplifying assumptions, scaling laws, and the
canonical throughput-delay profile which will allow us to study the asymptotic
expected delay of the three team forming policies. We derive a lower bound on
the achievable delay (independent of policy), and upper bounds for the delay of
each policy.
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5.1. Simplifying assumptions and asymptotic regime

To analyze the performance of the three policies we assume the following:

(A1) There are n/k robots of each service-type (i.e., nj = n/k for each j ∈
{1, . . . , k}).

(A2) The arrival rate is λ/K for each task-type, (i.e., λα = λ/K for each task
α ∈ {1, . . . ,K}).

(A3) The on-site service time has mean s̄ and is upper bounded by smax for all
task-types (i.e., s̄α = s̄ for each task-type α ∈ {1, . . . ,K}).

(A4) There exists p ∈ [1/k, 1] such that for each j ∈ {1, . . . , k}, the service j
appears in pK of the K task-types. Thus, each task will require service j
with probability p.

With these assumptions, the stability condition in equation (3) simplifies to

λ

n
<

1

pks̄
. (7)

For a stable policy P we say that λ is the total throughput of the system (i.e.,
the total number of tasks served per unit time), and Tn := λ/n is the per-robot
throughput (we use the notation Tn to remind the reader that the throughput
depends on the number of robots n).

We are interested in studying the expected delay of each task-type as a
function of the per-robot throughput Tn. In particular, in the next sections we
study the performance as the number of robots n becomes large. As n increases,
if the density of robots is to remain constant, then the environment must grow.
In fact, the ratio

√

|E|/vmax must scale as
√

n, [16]. In [17] this scaling is
referred to as a critical environment. Thus we will study the performance in the
following regime.

Definition 5.1 (Asymptotic regime). In the asymptotic regime (i) the num-
ber of robots n → +∞; (ii) on-site service times are independent of n; (iii)
|E(n)|/(nv2

max(n)) → constant > 0.

5.2. Canonical throughput-delay profile

In what follows we will characterize the way in which the delay varies with
the per-robot throughput Tn. We will see that there is a canonical throughput-
delay profile fDmin,Dord,Tcrit

: R>0 → R>0 ∪ {+∞} which has the form

Tn 7→







max

{

Dmin,
Dord(Tn/Tcrit)

(1 − Tn/Tcrit)2

}

, if Tn < Tcrit,

+∞, if Tn ≥ Tcrit.
(8)

This profile is described by the three positive parameters Dmin, Dord and Tcrit,
where Dord ≥ Dmin. These parameters have the following interpretation:

• Dmin is the minimum achievable delay for any positive throughput.
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Figure 1: The canonical throughput-delay profile for the dynamic team forming problem. The
semi-log plot is for parameter values of Dmin = 1, Dord = 10, and Tcrit = 1. If Tn ≥ Tcrit,
then the delay is +∞.

• Tcrit is the maximum achievable throughput (or capacity).

• Dord is the delay when operating at (3 −
√

5)/2 ≈ 0.38 of capacity Tcrit.
Additionally, Dord captures the order of the delay when operating at a
constant fraction of capacity.

An example of the throughput-delay profile with parameters Dmin = 1, Dord =
10, and Tcrit = 1 is shown in Figure 1 on a semi-log graph. In what follows we
will use these three parameters to compare the performance of our policies.

5.3. Lower bound on the achievable delay

We now lower bound the achievable delay D∗ for task-type unbiased policies.
Note that all parameters are potentially a function of n. However, to simplify
the notation we omit the explicit dependence. For convenience, Table 1 contains
all parameters and their definitions.

Table 1: Parameters used in the dynamic team forming problem.

Parameter Definition

k number of different services
K number of different task-types
p fraction of tasks requiring an individual service

s̄, smax expected and maximum on-site service time
L number of time slots in service schedule
b maximum number of services required for a task
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Theorem 5.2 (Optimal delay). In the asymptotic regime, the optimal delay of
the DTFP as a function of the per-robot throughput Tn is in Ω

(

fDmin,Dord,Tcrit
(Tn)

)

,
where

Dmin =
√

k, Dord = k, Tcrit =
1

pks̄
.

Proof. By assumption (A4), service j ∈ {1, . . . , k} is required in pK of the K
task-types. By assumption (A2), the arrival rate of tasks requiring service j is
pλ. By assumption (A1), nj = n/k robots can provide service j. Thus, we can
use the results on the DTRP to lower bound the achievable delay of n/k robots
servicing tasks arriving at rate pλ. That is, for every policy P we have

∑

tasks α requiring service j

λα

pλ
Dα,P ≥ DDTRP(n/k, pλ). (9)

By assumption (A2), λα = λ/K for each α ∈ {1, . . . ,K}, and by restricting our
attention to task-type unbiased policies, Dα,P = DP for each α ∈ {1, . . . ,K}.
Applying the bound in equation (5), we can write equation (9) as

D∗(n) ≥ DDTRP(n/k, pλ) ∈ Ω

(

pλ|E|
(n/k)2v2

max(1 − pks̄λ/n)2

)

,

In the asymptotic regime the above equation becomes

D∗(n) ∈ Ω

(

pk2Tn

(1 − pks̄Tn)2

)

.

In addition, in the asymptotic regime, equation (4) yields D∗(n) ∈ Ω(
√

k). Com-
bining the two results we obtain a lower bound of Ω(fDmin,Dord,Tcrit

(Tn)), where
fDmin,Dord,Tcrit

is the canonical throughput-delay profile defined in equation (8),

and the parameters are Dmin =
√

k, Dord = k and Tcrit = 1/(pks̄).

5.4. Upper bounds on the policy throughput-delay

In this section we characterize the performance of each policy in terms of
the canonical throughput-delay profile of equation (8).

Policy 1: Complete team

The complete team policy is simply the ETSP partitioning policy with n/k
robots and with arrival rate λ. In the limiting regime as ρ → 1−, the perfor-
mance of this policy [4] is within a known constant factor of the lower bound
in equation (5). The proof in [4] utilizes the following facts: as ρ → 1−, the
number of unserviced tasks M tends to +∞, and for a set Q of M i.i.d. uniform
points in a square environment of area |E|

lim
M→+∞

ETSP(Q)√
M

= βETSP

√

|E|, (10)
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for some constant βETSP > 0. Following the same proof as in [4] but replacing
equation (10) with the result in Theorem 2.1 (which is not as tight, but holds for
all values of M), and using the fact that the partition is approximately square,
one can prove that the delay of the ETSP partitioning policy with n robots and
with arrival rate λ is in

O

(

max

{

1

vmax

√

|E|
n

,
λ|E|

n2v2
max(1 − λs̄/n)2

})

, (11)

in the asymptotic regime. Combining equation (11) with the throughput-delay
profile in equation (8) we obtain the following result.

Theorem 5.3 (Complete team delay). In the asymptotic regime, the expected
delay of the complete team policy as a function of the per-robot throughput Tn

is in O
(

fDmin,Dord,Tcrit
(Tn)

)

, where

Dmin =
√

k, Dord = k, Tcrit =
1

ks̄
.

Notice that if p ∼ 1 (i.e., each service is required in a constant fraction of
the tasks), then the policy is within a constant factor of the optimal. However,
in certain instances policy 1 may be inefficient as each robot visits every task,
not just the ones which require its service. This inefficiency appears as a limit
on the per-robot throughput of 1/k, independent of p.

Remark 5.4 (Dynamic traveling repairperson delay). In the DTRP we have
k = p = K = 1, and thus combining Theorems 5.2 and 5.3 we see that
the expected delay in the asymptotic regime is in Θ

(

fDmin,Dord,Tcrit
(Tn)

)

, where
Dmin = Dord = 1, and Tcrit = 1/s̄. •

Policy 2: Task-specific team

With assumptions (A1)-(A4), the necessary condition on the number of
robots required for this policy, given in equation (6), becomes pK ≤ n/k, and
thus Ntst := ⌊n/(kpK)⌋. In the following theorem we characterize the delay of
the task-specific team policy.

Theorem 5.5 (Task-specific team delay). In the asymptotic regime, if pK ≤
n/k, then the expected delay of the task-specific team policy as a function of the
per-robot throughput Tn is in O

(

fDmin,Dord,Tcrit
(Tn)

)

where

Dmin =
√

pkK, Dord = pkK, Tcrit =
1

Cs̄pk
,

and C ∈ [1, 2[ is defined as C = n/(kpKNtst).

Proof. The arrival rate for each task-type is λ̄ = λ/K (by assumption (A2)),
and the number of teams that provide service to each task-type is Ntst. Since

11



Ntst ≥ 1, and Ntst ≤ n/(kpK), we can define

C :=
n

kpKNtst

∈ [1, 2[.

From the ETSP partitioning policy result in equation (11), the delay is

DTST(n) ∈ O



max







1

vmax

√

|E|
Ntst

,
λ̄|E|

N2
tst

v2
max(1 − λ̄s̄/Ntst)2











= O

(

√

pkK,
p2k2KTn

(1 − Cs̄pkTn)2

)

.

Letting Dmin =
√

pkK, Dord = pkK and Tcrit = 1/(2s̄pk) we obtain the desired
result.

From this analysis we see that the task-specific team policy can achieve near
optimal throughput. However, it requires that there are a sufficient number of
robots. The following policy requires only a single robot of each service-type.

Policy 3: Scheduled task-specific team

The following theorem bounds the delay of policy 3.

Theorem 5.6 (Scheduled task-specific team delay). In the asymptotic regime,
the expected delay of the scheduled task-specific team policy as a function of the
per-robot throughput Tn is in O

(

fDmin,Dord,Tcrit
(Tn)

)

where

Dmin = L
√

k, Dord = Lk, Tcrit =
K

νsmaxLk
,

for any fixed ν > 1.

Proof. Consider a service schedule with length L and time slot duration tB.
In each of the n/k regions (assumption (A1)), each task-type has arrival rate
λ̄ := λk/(Kn) (assumption (A2)), and the queue for that task-type is serviced
for tB seconds every LtB seconds. (Notice that for stability we require that
tB ≥ s̄λ̄LtB, which implies that the per-robot throughput must satisfy Tn <
K/(Ls̄k).) Since each region can be contained in a square of area c|E|k/n, where
c ≤ 4, we can use Theorem 2.1 to upper bound the amount of time required
to service M tasks by (2β/vmax)

√

M |E|k/n + smaxM. Using the fact that there

exists C ∈ R>0 such that
√

|E|/vmax ≥ C
√

n, and redefining β := 2Cβ, the
upper bound becomes

β
√

Mk + smaxM. (12)

Now, fix ǫ > 0, and let us set M := ηλ̄(LtB), where η ≥ 1 + ǫ is the smallest
number such that M ∈ N. With this value of M we are guaranteed to service
more tasks in time slot tB than are expected to arrive in time LtB. Let us now
consider two cases: M = 1, and M > 1. If M = 1, then in order to service one
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task in time tB, we require from equation (12) that

tB ≥ β
√

k + smax. (13)

In the other case, when M = ηλ̄(LtB) ∈ N \ {1}, in order to service M tasks
in time tB, we require from equation (12) that

tB ≥ √
ηβ
√

λ̄LtBk + ηsmaxλ̄LtB.

If ηsmaxλ̄L < 1, or equivalently M ≤ tB/smax, then the previous condition can
be rewritten as

tB ≥ ηβ2λ̄Lk

(1 − ηsmaxλ̄L)2
. (14)

The condition for tB to be finite (i.e., ηsmaxλ̄L < 1) depends on η ≥ (1+ǫ), which
is not desirable since the exact value of η is implicitly defined. However, notice
that as ηsmaxλ̄L → 1−, we have tB → +∞, and thus M = ηλ̄(LtB) → +∞.
This implies that as ηsmaxλ̄L → 1−, we have (1 + ǫ)/η → 1−. Thus, we can
replace denominator of equation (14) by a constant times (1− (1 + ǫ)smaxλ̄L)2.
Making this replacement and substituting λ̄ = kTn/K, we obtain

tB ≥ βLk2Tn

K(1 − (1 + ǫ)smaxLkTn/K)2
, (15)

where the constant β has been redefined.
Let us now examine the queue for a particular task-type and compute the

expected delay. In this queue, tasks arrive at a rate λ̄, and every LtB seconds,
M are served (i.e., tbatch = LtB). Thus, from equation (1), the expected time
W that a task spends waiting in the queue is

W ≤ M − 1

2λ̄
+

LtB
2(M − λ̄LtB)

.

If M = 1, then we easily obtain that W ∈ O(LtB).
On the other hand, if M > 1, then

W ≤ ηλ̄LtB − 1

2λ̄
+

LtB
2(ηλ̄LtB − λ̄LtB)

≤ ηLtB
2

+
1

2(η − 1)λ̄
.

Noticing that M > 1 implies that 1/λ̄ ≤ ηLtB, we again obtain that W ∈
O(LtB). The expected delay for a task to be completed is DSTST(n) ≤ W +tB ∈
O(LtB). Choosing tB to be the smallest value that satisfies both equations (13)
and (15), we can upper bound DSTST(n) by the canonical throughput-delay
profile, where Dmin = L

√
k, Dord = LK, and Tcrit = K/

(

(1+ǫ)smaxLk
)

, for any
positive constant ǫ.
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Figure 2: Creating a service schedule using the greedy vertex coloring heuristic. In this figure,
k = 6, K = 18, p = 1/3, and the resulting schedule has length L = 6.

Next, we will describe a method for creating a service schedule, and bound
the schedule length L. The following lemma, lower bounding L, follows from
assumption (A4).

Lemma 5.7 (Schedule length I). If S is a service schedule, then it contains at
least pK time slots. (i.e., L ≥ pK).

From Lemma 5.7, every service schedule must contain at least pK slots. We
now give a method for creating a schedule. Consider the graph consisting of
K vertices, one for each task-type, and edges connecting any two vertices that
contain a common service. This is known as an intersection graph [18]. A service
schedule is then simply a vertex coloring of this graph. From Section 2, the
problem of determining the optimal (minimal) coloring is NP-hard. However,
we can color the graph using the greedy heuristic in Section 2. An example is
shown in Figure 2. Using Theorem 2.4 we arrive at the following result.

Lemma 5.8 (Schedule length II). If each task requires no more than b ≤ k
services, then a service schedule with L ≤ Kmin{bp, 1} can be found in O(K)
computation time.

5.5. Policy comparison

We have shown that the lower bound and the three policies all have delay
profiles of the form

D(n) ∼ max

{

Dmin,
Dord(Tn/Tcrit)

(1 − Tn/Tcrit)2

}

.
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Figure 3: Service schedule created by the coloring in Figure 2. The task-types serviced during
each time slot are shown (e.g., in time slot [tB, 2tB[, robots of service-type 1 and 2 meet to
service tasks with task-type {1, 2}).

Table 2: A comparison the canonical throughput-delay parameters for the three policies. Two
entries for the scheduled task-specific policy are shown depending on the value of p ∈ [1/k, 1].
Only the order of the capacity is shown, with the constant omitted.

Dmin Dord Capacity Tcrit

Lower bound
√

k k 1/(pk)

Policy 1: Complete team
√

k k 1/k
Policy 2: Task-specific team

√
pkK pkK 1/(pk)

Policy 3: Scheduled task-specific (p ∼ 1
k
) p

√
kK pkK 1/(pk)

Policy 3: Scheduled task-specific (p ∼ 1)
√

kK kK 1/k

The parameters Dmin, Dord, and Tcrit are summarized for the lower bound and
each of the three policies in Table 2. From these results, we can make several
conclusions. First, if the throughput is very low, then Policy 1 has an expected
delay of Θ(

√
k), which is within a constant factor of the optimal. In addition,

if p ∼ 1 and each task requires nearly every service, then Policy 1 is within a
constant factor of the optimal in terms of capacity and delay. Second, if p ∼ 1/k
and each task requires few services, then the capacity of Policy 1 is sub-optimal,
and the capacity of both Policies 2 and 3 are within a constant factor of optimal.
However, the delay of Policies 2 and 3 may be much higher than the lower bound
when the number of task-types K is very large. Third, Policy 2 performs at least
as well as Policy 3, both in terms of capacity and delay. Thus, one should use
Policy 2 if there are a sufficient number of robots of each service-type. However,
if p ∼ 1/k and if resources are limited such that Policy 2 cannot be used, then
Policy 3 should be used to maximize capacity.

From this discussion we see that the policies are complementary, and have
large parameter regimes for which their performance, either in terms of capacity
or delay, is within a constant factor of the optimal.

6. Conclusions

In this paper we introduced the novel dynamic team forming problem for
robotic networks. We proposed three policies for team forming and character-
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ized their performance in certain asymptotic regimes. There are many areas
for future work. We would like to relax or remove some of the simplifying as-
sumptions in Section 5.1. Also, we would like to look into creating distributed
versions of our policies, and extending our analysis to task-type biased policies.
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