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Abstract— Deployment, coverage and partitioning are fun-
damental tasks for robotic networks. Recently proposed algo-
rithms achieve these tasks under a critical assumption: infor-
mation is exchanged synchronously among all agents and long-
range communication is possibly required. This work proposes
novel deployment and partitioning algorithms that require
only asynchronous pairwise (so-called gossip) communication.
Which robot pair communicates at any given time may be
selected deterministically or randomly. A key novel idea is
the description of the coverage control problem as a control
system on the space of partitions – in other words, we study
the evolution of the regions assigned to each agent, rather than
the evolution of the agents’ positions. The novel gossip algo-
rithms are shown to converge to multicenter Voronoi partitions
through various results of independent interest: we establish the
compactness of the space of partitions, the continuity of certain
geometric maps (e.g., the Voronoi and the centroid maps), and
two convergence theorems for switching dynamical systems on
metric spaces.

I. I NTRODUCTION

This paper considers deployment and partitioning prob-
lems for robotic networks, that is, groups of robots that have
basic motion, communication and computation capacities
and that coordinate their actions based on simple interaction
laws and protocols. Thedeployment problemfor a robotic
network amounts to the design of control and communi-
cation laws that lead the robots to be optimally placed
in an environment of interest; the usual approach consists
of identifying an appropriate “network cost function” that
measures the deployment quality of a given configuration and
designing control and communication laws that optimize this
measure. Thepartitioning problemis the design of control
and communication laws that lead the robots to optimally
partition the environment into subregions of interest; even
here the objective is usually achieved through the design
of appropriate cost functions. Coverage control algorithms
typically solve both deployment and partitioning problems
simultaneously.

Broad discussions about distributed control algorithms
for coverage, deployment and partitioning are presented
in [1], [2]; these discussions build on the classic work by
Lloyd [3] on “centering and partitioning” algorithms for
optimal quantizer design. In [4] partitioning policies are
shown to achieve optimal load balancing in vehicle routing
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problems, i.e., problems in which a robotic network has the
task of visiting points generated over time by a stochastic
process. Multicenter Voronoi partitions are shown in [5]
to be asymptotically optimal for estimation of stochastic
spatial fields. Convergence to multicenter Voronoi partitions
is established in [6] for a class of communication-less sensor-
based algorithm (related to the classic clustering work [7].
Dynamic environments and corresponding dynamic coverage
problems are treated in [8]. Nonconvex environments, maxi-
mization of detection probability and heterogeneous robotic
networks are discussed in [9], [10], [11].

In our work we adopt methods from distinct disciplines.
For example, the pairwise “gossip” approach to agents com-
munication is widely adopted in the wireless communication
and consensus literature; see [12] and subsequent works.
Additionally, we adopt various tools from topology; the
application of topological methods to multiagent systems and
distributed coverage verification has received much recent
attention [13], [14]. Finally, we consider control systemson
a non-Euclidean state space; the interest for non-Euclidean
spaces has a rich history in nonlinear control theory and
robotics, e.g., see the early work [15].

The main contributions of the present paper are three.
First, we describe coverage control algorithms in a novel
way. Classically, the state space for the coverage algorithms
are the agent positions: based on their positions, the agents
apportion the environment into regions, which are assigned
to each agent. In our approach, the agents positions are
no longer the main concern: the state space is a space of
partitions of the given environment. We discuss important
properties of such a space, namely its compactness with
respect to a suitable metric, and the continuity of several
functions defined on it.

Second, as key motivating application, we devise a novel
algorithm for coverage optimization, a “gossip” algorithm, in
which only one pair of agents communicates per time step.
We do this, because we know that reducing the communi-
cation burden is a critical issue for coverage control: indeed
pairwise communication can be more effective in practical
situations if connections between agents are not guaranteed
to be fully reliable. Additionally, this asynchronous pairwise
mechanism may be implemented also for robots with limited
range communication. We propose a “novel random destina-
tion + wait” algorithm that achieves the required persistent
communication requirements.

Third, we provide convergence theorems which extend
the LaSalle invariance principle to a special class of set-
valued maps on metric spaces. Convergence to a certain set
of fixed points is achieved under uniform deterministic or
stochastic persistency conditions. Applying these extensions



of the LaSalle invariance principle and the properties of the
state of partitions, we are able to give conditions for the
proposed algorithm to converge to the critical points of a
natural cost functional.

A. Organization and notations

The paper is structured as follows. In Section II we
formally describe the coverage control problem. In Sec-
tion III we present the gossip coverage algorithm, we state
its convergence properties, and we show simulation results.
Section IV contains the convergence theorems extending the
LaSalle invariance principle; Section V describes the space
of partitions; and Section VI states the continuity properties
of the relevant maps and functions. Some conclusions are
given in Section VII. In the interest of brevity we removed
all proofs and placed them in a freely available technical
report athttp://arXiv.org/abs/0903.3642.

We let R>0 andR≥0 denote the set of positive and non-
negative real numbers, respectively, andZ≥0 denote the set
of non-negative integer numbers. Given a subsetA of the
Euclidean spaceRd, we let int(A) denote its interior,A
denote its closure,∂A denote its boundary anddiam(A)
its diameter. Given two setsX and Y , a set-valued map
T : X ⇉ Y associates to an element ofX a subset ofY .

II. COVERAGE OPTIMIZATION AND DISTRIBUTED

CONTROL VIA MULTICENTER FUNCTIONS

We are given a group of robots (also called agents)
with limited communication and sensing capabilities, and
an environment, and we want the agents to deploy in the
area in an optimal way. The environment is apportioned into
smaller regions, each assigned to an agent. Iteratively, the
partition, and the agents configuration, are updated in a way
to minimize a cost functional, which depends on the current
partition and agents’ positions.

A. Partitions, centroids and multicenter optimization

In what follows, let the environment to apportion beQ,
a compact convex subset ofRd with non-empty interior.
Partitions ofQ are defined as follows.

Definition II.1 (Partition) An N -partition ofQ, denoted by
v = {vi}

N
i=1, is a collection ofN subsets ofQ with the

following properties:

(i) each setvi, i ∈ {1, . . . , N}, is closed, has non-empty
interior, and its boundary has measure zero;

(ii) int(vi)∩ int(vj) is empty wheneveri 6= j; and
(iii) ∪i∈{1,...,N} vi = Q.

We letVN denote the set ofN -partitions ofQ.

Let p = (p1, . . . , pN ) ∈ QN denote the position ofN
agents in the environmentQ. Givenv ∈ VN and almost any
p ∈ QN , each agent is naturally in one-to-one correspon-
dence with an element ofv; specifically we sometimes refer
to vi as thedominance regionof agenti ∈ {1, . . . , N}.

On Q, we define adensity functionto be a bounded mea-
surable positive functionφ : Q → R>0 and aperformance
function to be a locally Lipschitz, monotone increasing and
convex functionf : R≥0 → R≥0. With these notions, we

next define themulticenter functionHmulticenter : VN ×QN →
R≥0 by

Hmulticenter(v, p) =

N∑

i=1

∫

vi

f(‖pi − q‖)φ(q)dq. (1)

We aim to minimize this function with respect to both the
partition v and the locationsp.

Remark II.2 (A word about locational optimization)
The function Hmulticenter has the following interpretation.
Given an agent at locationpi, assume thatf(‖pi−q‖) is the
cost incurred by agenti to “service” an event taking place
at point q. Events take place insideQ with likelihood φ.
Accordingly, the multicenter functionHmulticenter quantifies
how well the environmentQ is partitioned and how well the
agents are placed insideQ. This and related optimal sensor
placement problems are studied in locational and geometric
optimization, spatial resource allocation, quantizationtheory,
clustering analysis, and statistical pattern recognition; see [1,
Chapter 2] and references therein. �

Among all possible ways of partitioning a subset ofR
d,

there is one which is worth of special attention. Define the
set of partly coincident locationsSN = {p ∈ QN | pi =
pj for somei, j ∈ {1, . . . , N}, i 6= j}. Givenp ∈ QN \SN ,
theVoronoi partition ofQ generated byp, denoted byV (p),
is the collection of theVoronoi regions{Vi(p)}N

i=1, defined
by

Vi(p) = {q ∈ Q | ‖q − pi‖ ≤ ‖q − pj‖ for all j 6= i}. (2)

In other words, the Voronoi partition is a mapV : (QN \
SN ) → VN . The regionsVi(p), i ∈ {1, . . . , N}, are convex
and, if Q is a polytope, they are polytopes. Now, given two
distinct pointsq1 and q2 in R

d, define the(q1; q2)-bisector
half-spaceby

Hbs(q1; q2) = {q ∈ R
d | ‖q − q1‖ ≤ ‖q − q2‖}. (3)

In other words,Hbs(q1; q2) is the closed half-space con-
taining q1 whose boundary is the hyperplane bisecting1 the
segment fromq1 to q2. Note thatHbs(q1; q2) 6= Hbs(q2; q1)
and that Voronoi partition ofQ satisfiesVi(p1, . . . , pn) =
Q∩

(
∩j 6=i Hbs(pi; pj)

)
.

Each region equipped with a density function possesses
a point with a special relationship with the multi-center
function. GivenA, a measurable subset ofQ, for eachp ∈ Q
we define the scalar1-center functionH1 by

H1(p;A) =

∫

A

f(‖p − q‖)φ(q)dq. (4)

One can show that, under the stated assumptions on the
performance functionf , the function p 7→ H1(p;A) is
strictly convex inp, for any setA with positive measure
(Lemma VI.1). Since this function is strictly convex, it hasa
unique minimum inQ. Therefore, we define thegeneralized
centroid of A by

Cd(A) = argmin{H1(p;A) | p ∈ Q}. (5)

1A hyperplane bisects a segment if it is perpendicular to and passes
through the midpoint of the segment.



In what follows, it is convenient to drop the word “general-
ized,” and to denote byCd(v) = (Cd(v1), . . . ,Cd(vN )) ∈
QN the vector of regions centroids corresponding to a
partition v ∈ VN .

Remark II.3 (Quadratic and linear performance func-
tions) If the performance function isf(x) = x2, then the
global minimum ofH1 is thecentroid(also called the center
of mass) ofA, defined by

Cd(A) =
( ∫

A

φ(q)dq
)−1

∫

A

qφ(q)dq.

If the performance function isf(x) = x, then the global
minimum ofH1 is themedian(also called the Fermat–Weber
center) ofA. See [1, Chapter 2] for more details. �

Proposition II.4 (Properties of Hmulticenter) For any parti-
tion v ∈ VN and any point setp ∈ QN \ SN ,

Hmulticenter(V (p), p) ≤ Hmulticenter(v, p), (6)

Hmulticenter(v,Cd(v)) ≤ Hmulticenter(v, p). (7)

Furthermore, inequality(6) is strict if any entry ofV (p)
differs from the corresponding entry ofv by a set with non-
empty interior, and inequality(7) is strict if Cd(v) differs
from p.

These statements, proved in [1, Propositions 2.14 and 2.15],
motivate the following definition: a partitionv∗ ∈ VN is a
centroidal Voronoi partitionif v∗ = V (Cd(v∗)). Based on
the multicenter function, we defineHcentroid : VN → R≥0 by

Hcentroid(v) = Hmulticenter(v,Cd(v)) (8)

=

N∑

i=1

∫

vi

f(‖q − Cd(vi)‖)φ(q)dq.

The novel functionHcentroid plays a key role in later devel-
opments and has the following property that is an immediate
consequence of Proposition II.4: given a partitionv with
Cd(v) /∈ SN ,

Hcentroid(V (Cd(v))) ≤ Hcentroid(v), (9)

and this inequality is strict if any entry ofV (Cd(v)) differs
from the corresponding entry ofv by a set with non-empty
interior.

B. Distributed coverage control and its limitations

Given a network of robots, coverage control algorithms
move the robots in order to minimizeHmulticenter. To discuss
these algorithms, we introduce a useful graph. TheDelaunay
graph [16], [1] associated to the distinct positionsp ∈
QN \SN is the undirected graph with node set{pi}

N
i=1 and

with the following edges:(pi, pj) is an edge if and only if
Vi(p)∩Vj(p) is non-empty. In other words, two agents are
neighbors if and only if their Voronoi regions intersect.

The distributed coverage algorithmpresented in [1] is
described as follows. At each discrete time instantt ∈ Z≥0,
each agenti performs the following tasks: (i) it transmits
its position and receives the positions of its neighbors in
the Delaunay graph; (ii) it computes its Voronoi region with

Fig. 1. The Voronoi partition and the corresponding Delaunay graph

the information received; (iii) it moves to the centroid of its
Voronoi region. In mathematical terms, fort ∈ Z≥0,

p(t + 1) = Cd(V (p(t))). (10)

Because of the smoothness of the various maps, compactness
of Q, and monotonicity properties in Proposition II.4, one
can show [1] that the solutions of (10) converge asymptot-
ically to the set of the centroidal Voronoi partitions. This
distributed coverage algorithm requiressynchronizedand
reliablecommunication alongall edges of a Delaunay graph.

This paper aims to reduce the reliability, synchroniza-
tion and communication requirements of distributed cov-
erage algorithms. Relevant questions are: Is it possible to
optimize agents positions and environment partition with
asynchronous, unreliable, delayed communication? What if
the communication model is that ofgossiping agents, that is,
a model in which only a pair of robots can communicate at
any time? How do we overcome the limitation that Voronoi
partitions generated by moving agents can not be computed
with only asynchronous pairwise communication?

III. PARTITIONS-BASED GOSSIP COVERAGE ALGORITHM

In the partitions-based approach, the position of the robot
essentially plays no role anymore and we instead describe
how to update the dominance regions. Designing coverage
algorithms as dynamical systems on partitions has an im-
portant advantage: we do not restrict our attention only to
Voronoi partitions.

A. The gossip coverage algorithm

Here we present an novel partition-based coverage algo-
rithm that, at each iteration, requires only a pair of adjacent
regions to communicate. We adopt the following convention:
we allow communication between adjacent regions. The
following definition generalizes the notion of Delaunay graph
and the notion of dual graph of a planar graph [16].

Definition III.1 (Adjacency graph of a partition)
Given a partition v ∈ VN , its adjacency graphG(v) is
the undirected graph with node setv (or equivalently
{1, . . . , N}) and with the edge setE(v) defined as follows:
(vi, vj) is an edge if and only if the two regionsvi and vj

are adjacent in the sense thatint(vi)∩ int(vj) is non-empty.

Recalling the notion of bisector half-space from equa-
tion (3), thegossip coverage algorithmis stated as follows.



At each timet ∈ Z≥0, each agenti maintains in memory a
dominance regionvi(t). The collection{v1(0), . . . , vN (0)}
is an arbitrary N -partition of Q. At each t ∈ Z≥0 a
communicating pair, say(i, j) ∈ E(v(t)), is selected by a
deterministic or stochastic process to be determined. Every
agentk 6∈ {i, j} setsvk(t + 1) = vk(t), whereas agentsi
andj perform the following tasks:

1: agenti transmits to agentj its dominance regionvi(t)
and vice-versa

2: both agents compute the centroidsCd(vi(t)) and
Cd(vj(t))

3: if Cd(vi(t)) = Cd(vj(t)) then
4: vi(t + 1) := vi(t) andvj(t + 1) := vj(t)
5: else
6: vi(t+1) :=

(
vi(t)∪ vj(t)

)
∩Hbs

(
Cd(vi(t)); Cd(vj(t))

)

vj(t+1) :=
(
vi(t)∪ vj(t)

)
∩Hbs

(
Cd(vj(t)); Cd(vi(t))

)

7: end if

In other words, when two agents with distinct centroids
communicate, their dominance regions evolve as follows:
the union of the two dominance regions is divided into
two new dominance regions by the hyperplane bisecting
the segment between the two centroids; see Figure 2. As
a consequence, if the centroidsCd(vi(t)), Cd(vj(t)) are
distinct, then{vi(t + 1), vj(t + 1)} is the Voronoi partition
of the setvi(t)∪ vj(t) generated by the centroidsCd(vi(t))
andCd(vj(t)). We claim that the algorithm is well-posed in

v1

v2

Cd(v1)

Cd(v2)

v+
1

v+
2

Fig. 2. The gossip coverage algorithm. The left and right figure contain
the initial partition and the partition after one application of the gossip
coverage algorithm. In the middle figure we show the two centroids and
(with a dashed line) the segment determining the bisector half-space.

the sense that the sequence of collectionsv(t) generated by
the algorithm is anN -partition at all timest, that is, satisfies
the three properties in Definition II.1.

Now, for any pair(i, j) ∈ {1, . . . , N}2, i 6= j, we define
the mapTij : VN → VN by

Tij(v) =

{
v, if Cd(vi) = Cd(vj),

(v1, . . . , v̂i, . . . , v̂j , . . . , vN ), otherwise,

where

v̂i =
(
vi ∪ vj

)
∩Hbs

(
Cd(vi); Cd(vj)

)
,

v̂j =
(
vi ∪ vj

)
∩Hbs

(
Cd(vj); Cd(vi)

)
.

The dynamical system on the space of partitions is therefore
described by, fort ∈ Z≥0,

v(t + 1) = Tij(v(t)), for some(i, j) ∈ E(v(t)), (11)

together with a rule describing what edge(i, j) is selected at
each time. We also define the set-valued mapT : VN ⇉ VN

by T (v) = {Tij(v) | (i, j) ∈ E(v)}. The mapT describes

one iteration of the gossip coverage algorithm; an evolution
of the gossip coverage algorithm is one of the solutions to
the non-deterministic set-valued dynamical system

v(t + 1) ∈ T (v(t)). (12)

B. Designing a continuous gossip coverage algorithm

The gossip coverage mapT does not satisfy certain
continuity properties. In general given two regionsvi and
vj , problems arise either when‖Cd(vi) − Cd(vj)‖ → 0 or
whenvi andvj share a piece of boundary whose length tends
to 0. In our convergence analysis continuity properties are
necessary. Therefore, we introduce a minor modification of
the gossip coverage mapT , which does possess the needed
continuity properties, as stated in Theorem VI.2.

Given v = {v1, . . . , vN} ∈ VN , consider two regionsvi

andvj such thatCd(vi) 6= Cd(vj). Pick δ > 0 and define2

β(vi, vj) = satδ (‖Cd(vi) − Cd(vj)‖)

· (1 − satδ(dist(int(vi), int(vj)))) ,

where satδ : R≥0 → [0, 1] is such thatsatδ(x) = x/δ if
x ∈ [0, δ], and satδ(x) = 1 if x > δ. We aim to define a
“smoothed” mapT δ

ij , parameterized byδ, with the following
properties. Ifβ(vi, vj) = 1, i.e., if the distance between the
regionsvi and vj is zero (vi and vj are adjacent) and the
distance betweenCd(vi) and Cd(vj) is larger thanδ, then
T δ

ij(v) = Tij(v); in this case the mapT δ
ij reduces to the

mapTij introduced in the previous section. Additionally, if
β(vi, vj) = 0, i.e., eitherCd(vi) andCd(vj) coincide or the
distance betweenvi andvj is larger thanδ, thenT δ

ij(v) = v,
that is, the mapT δ

ij leaves the regions unchanged.
To define such a mapT δ

ij , we proceed as follows, see
Figure 3. DefineRi = vi ∩Hbs(Cd(vj),Cd(vi)) = {q ∈
vi | ‖q − Cd(vi)‖ ≥ ‖q − Cd(vj)‖}, and similarlyRj =
vj ∩Hbs(Cd(vi),Cd(vj)). Let γ⊥ be the hyperplane bisect-
ing the segment fromCd(vi) to Cd(vj), that is,

γ⊥ = {q ∈ Q | ‖q − Cd(vj)‖ = ‖q − Cd(vi)‖}.

Observe that for eachq ∈ Ri ∪ Rj there exists only one
hyperplaneγ parallel toγ⊥ and passing throughq; we denote
this hyperplane asγq. Now define two pointŝpi ∈ Ri and
p̂j ∈ Rj such that

p̂i ∈ argmax
q∈int (Ri)

min
y∈γ⊥

‖q − y‖,

p̂j ∈ argmax
q∈int (Rj)

min
y∈γ⊥

‖q − y‖,

and define two sets

R̂i = {q ∈ Ri | dist(p̂i, γq) ≤ β(vi, vj) dist(p̂i, γ⊥)},

R̂j = {q ∈ Rj | dist(p̂j , γq) ≤ β(vi, vj) dist(p̂j , γ⊥)}.

Now, we introduce the mapT δ
ij : VN → VN ,

T δ
ij(v) =

{
v, if Cd(vi) = Cd(vj),

(v1, . . . , v̂i, . . . , v̂j , . . . , vN ), otherwise,

2Given two subsetsA and B of Q, define dist(A, B) = inf{‖a −
b‖ | (a, b) ∈ A × B}.
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Fig. 3. Demonstration of the mapT δ
ij , for two regions which are close to each other.

where

v̂i =
(
vi \ int(R̂i)

)
∪ R̂j , and v̂j =

(
vj \ int(R̂j)

)
∪ R̂i.

Finally we define themodified gossip coverage mapT δ :
VN ⇉ VN by

T δ = {T δ
ij(v) | (i, j) ∈ {1, . . . , N}2, i 6= j}. (13)

C. Analysis and convergence results

Here we state the main convergence results of the present
paper. We begin by characterizing a useful set.

Definition III.2 A partition v ∈ VN is a mixed equal-
centroidal and centroidal-Voronoi partitionif, for all (i, j) ∈
G(v), either Cd(vi) = Cd(vj) or (vi, vj) is a centroidal
Voronoi partition ofvi ∪ vj .

It is easy to show that the set of mixed equal-centroidal and
centroidal Voronoi partitions is equal to the set of fixed points

{v ∈ VN | v = Tij(v) for all i, j ∈ {1, . . . , N}, j 6= i}.

Remark III.3 Let v ∈ VN . If {vi, vj} is a centroidal
Voronoi partition of vi ∪ vj for any (i, j) ∈ E(v), then v
is a centroidal Voronoi partition. �

Before stating the convergence results for the modified
gossip coverage algorithm, we introduce one last notion. We
say that (1) the boundary of a set isdegenerateif it has
positive measure; and (2) a partition has degenerate boundary
if at least one component of the partition has degenerate
boundary. Note that, if each component of a partition is a
collection of polygons with a finite number of vertices, then
the partition boundary is not degenerate.

We now state the main deterministic convergence result
for the gossip coverage algorithm.

Theorem III.4 (Convergence under uniformly persistent
gossip)Givenδ > 0, consider the modified gossip coverage
algorithm T δ defined in(13) and let v : Z≥0 → VN be an
evolution ofT δ. Assume that

(i) the trajectoryv does not have an accumulation point
with degenerate boundary; and

(ii) for each pair(i, j) ∈ {1, . . . , N}2, i 6= j, there exists
an increasing sequence of times{tk}k∈Z≥0

⊂ Z≥0

such that(tk+1 − tk) is bounded andv(tk + 1) =
T δ

ij(v(tk)).

Then the trajectoryv converges to the set of the mixed equal-
centroidal and centroidal-Voronoi partitions.

We now state the main stochastic convergence result for
the gossip coverage algorithm.

Theorem III.5 (Convergence under persistent random
gossip)Givenδ > 0, consider the modified gossip coverage
algorithm T δ defined in (13). Given a stochastic process
J : Z≥0 → {(i, j) ∈ {1, . . . , N}2 | i 6= j}, consider an
evolutionv : Z≥0 → VN of T δ satisfying, fort ∈ Z≥0,

v(t + 1) = T δ
J(t)(v(t)).

Assume that
(i) the trajectoryv does not have an accumulation point

with degenerate boundary; and
(ii) there existsp ∈ ]0, 1[ and k ∈ N such that, for all

(i, j) ∈ {1, . . . , N}2, i 6= j, and for all t ∈ Z≥0, there
existsh ∈ {1, . . . , k} such that

P
[
J(t + h) = (i, j) |J(t), . . . , J(1)

]
≥ p.

Then the trajectoryv almost surely converges to the set of the
mixed equal-centroidal and centroidal-Voronoi partitions.

The proof of these two theorems is based upon the
following basic result and three more complex sets of ideas.
First, the basic result is a monotonicity property that clarifies
the relationship between the multicenter functionHcentroid

and the gossip coverage algorithms.

Lemma III.6 Let v ∈ VN , i, j ∈ {1, . . . , N}, i 6= j,
and β ∈ R>0. Then the gossip coverage map has the
following property: Hcentroid(Tij(v)) ≤ Hcentroid(v), and
Hcentroid(Tij(v)) = Hcentroid(v) if and only if Tij(v) = v.
Additionally, the same result holds for the modified gossip
coverage map, that is,Hcentroid(T

δ
ij(v)) ≤ Hcentroid(v), and

Hcentroid(T
δ
ij(v)) = Hcentroid(v) if and only if T δ

ij(v) = v.

This lemma indicates how the functionHcentroidplays the role
of a Lyapunov function for the dynamical system defined by
T or T δ. However, to provide a complete Lyapunov con-
vergence proof, one needs to develop three sets of relevant
results. First, we need to establish extensions of the LaSalle
invariance principle for set-valued dynamical systems over
compact metric spaces. Second, we need to prove that the
space of partitions is a compact metric space. Third, we need
to establish the continuity properties of the relevant mapsand



functions. These three topics are the subjects of Section IV,
V and VI, respectively.

D. Simulation results and implementation remarks

We have extensively simulated the partition-based gossip
coverage algorithm described by (11) on a 2-dimensional
polygonal environment with uniform density and perfor-
mance functionf(x) = x2. Simulations have been imple-
mented as aMatlab program, using theGeneral Polygon
Clipping library to perform operations on polygons. At
each iteration, one edge is chosen, uniformly at random,
among the edges belonging to the current adjacency graph.
From these simulations, the effectiveness of the algorithm
above introduced appears evident: all solutions converge to
a centroidal Voronoi partition(Figure 4).

Our first numerical finding is that, although it is theoret-
ically possible to converge to partitions containing regions
with coincident centroids, such events do not happen in simu-
lations. Specifically, our numerically-computed sequences of
partitions always converge to centroidal Voronoi partitions,
as does the synchronous coverage algorithm (10).

A second numerical finding is that, throughout numerous
sample executions, regions rarely have complicated shapes
and large numbers of vertices. This is good news because
large numbers of vertices affect both the computation and
the communication burden of the gossip coverage algorithm.

Finally, it is possible, and we have observed it numeri-
cally, to have evolutions of the algorithm that, before con-
verging to centroidal Voronoi partitions, have components
with disconnected regions. From an applications’ point of
view, a connected region can be covered by an agent in a
more natural way. This reason suggests keeping the regions
connected when applying the algorithm. We simulated the
following modification of the gossip coverage algorithm
which keeps the dominance regions connected: during the
update step, every connected component is traded between
the interacting regions only if this can be done without
loosing connectivity. Our simulations show that such an
algorithm leads to centroidal Voronoi partitions as well.

E. A robotic implementation of gossip coverage algorithms

Consider a group of agents all having the following capa-
bilities: (C1) each agenti ∈ {1, . . . , N} knows its positions
and moves at positive speedui to any position in the compact
convex environmentQ ⊂ R

2; (C2) each agent may store an
arbitrary number of locations inQ and has a clock that is not
necessarily synchronized with other agents’ clocks; and (C3)
if any two agents are within distancercomm of each other for a
positive time durationtcomm and they have not communicated
during the immediately prior interval of time of duration
tcomm, then there is a positive probabilitypcomm that they
establish a communication link and exchange information. It
is realistic to assumetcomm≪ diam(Q)/(Nui) for eachi.

The random destination+wait motion algorithmis de-
scribed as follows. Given a parameterǫ < rcomm/4, each
agent i ∈ {1, . . . , N} maintains in memory a dominance
regionvi and determines its motion by repeatedly performing
certain actions over periods of time that we labelepochs. An
epoch is the amount of time that agenti requires to perform
the following three actions:

1: it selects uniformly randomly adestination pointqi in
the set{q ∈ R

2 | dist
(
q, ∂vi \ ∂Q

)
≤ ǫ};

2: it moves in such a way as to reach pointqi in time equal
to ti = diam(Q)/(N min{u1, . . . , uN}); and

3: it waits at pointqi for a time duration that is uniformly
randomly distributed in the interval[ti, 3ti].

We have assumed that agents may move outsideQ and reach
locations at a distance up toǫ away fromQ. This assumption
may be removed at the cost of additional notation.

The random destination+wait motion algorithmis to be
implemented concurrently with the modified gossip coverage
algorithm with parameterδ < rcomm/4. The two algorithms
jointly determine the evolution of the agents positions and
the evolution of the agents dominance regions as follows.
If at any instant of time during any epoch, an agenti is
within communication rangercomm of any other agentj for a
durationtcomm, then, with a probabilitypcomm, the two agents
exchange sufficient information to update their respective
regionsvi andvj via the modified gossip coverage mapT δ

ij .

Proposition III.7 (Random destination+wait ensures per-
sistent random gossip)Consider a group of agents with
capacities (C1), (C2) and (C3) and parametersui, rcomm,
tcomm, andpcomm. Assume the agents implement the random
destination+wait motion algorithm and the modified gossip
coverage algorithm with parameterǫ < rcomm/4 and δ <
rcomm/4. Then, the sequence of applications of the modified
gossip coverage map satisfies the “persistent random gossip
assumption” in Theorem III.5 (Assumption (ii)). Therefore, if
the generated trajectory does not have an accumulation point
with degenerate boundary, then the set of dominance regions
maintained by the agents converges to the set of mixed equal-
centroidal and centroidal-Voronoi partitions.

IV. L ASALLE INVARIANCE PRINCIPLE FOR SET-VALUED

MAPS ON METRIC SPACES

In this section we consider discrete-time continuous-space
set-valued dynamical system defined on metric spaces. Our
goal is to provide some extensions of the classical LaSalle
invariance principle; we refer the interested reader to [17],
[18] for recent Lasalle invariance principles for switched
continuous-time and hybrid systems.

We start by reviewing some preliminary notions. Consider
a metric space(X, d), whereX is a set andd a metric on
X. A set-valued mapT : X ⇉ X is non-empty ifT (x) 6=
∅ for all x ∈ X. An evolution of the dynamical system
determined by a non-empty set-valued mapT over X is a
sequence{xn | n ∈ Z≥0} ⊂ X with the property that

xn+1 ∈ T (xn), n ∈ Z≥0.

Given any initialx0 ∈ X, an evolution ofT is computed by
recursively settingxn+1 equal to an element inT (xn).

A set W is weakly positively invariantfor T if, for any
x0 ∈ W , there existsx ∈ T (x0) such thatx ∈ W . A setW
is strongly positively invariantfor T if, for any x0 ∈ W , all
x ∈ T (x0) satisfyx ∈ W .

The following result is a version of the LaSalle invari-
ance principle for a particular class of switching dynamical
systems.



Fig. 4. Simulations of randomized gossip algorithm, withN = 6, Q ⊂ R
2, φ ≡ 1 andf(x) = x2. The figure shows snapshots of a time evolution of

the partitions, fort = 0, 20, 50, 100, 300. Remark that the dominance regions can loose connectivity during the evolution.

Theorem IV.1 (Uniformly persistent switches) Let (X, d)
be a metric space. Given a collection of mapsT1, . . . , Tm :
X → X, define the set-valued mapT : X ⇉ X by T (x) =
{T1(x), . . . , Tm(x)} and let{xn | n ∈ Z≥0} be an evolution
of T . Assume that:

(i) there exists a setW ⊆ X that is strongly positively
invariant for T and whose closure is compact;

(ii) there exists a functionU : W → R such thatU(w′) <
U(w), for all w ∈ W and w′ ∈ T (w) \ {w};

(iii) the functionsTi, for i ∈ {1, . . . ,m}, and U are
continuous onW ; and

(iv) for all i ∈ {1, . . . ,m}, there exists an increasing
sequence of times{nk | k ∈ Z≥0} such thatxnk+1 =
Ti(xnk

) and (nk+1 − nk) is bounded.
If x0 ∈ W , then there existsc ∈ R such that the evolution
xn approaches the set

(
(F1 ∩ · · · ∩Fm)∪(∂W \ W )

)
∩U−1(c),

where, fori ∈ {1, . . . ,m}, Fi = {w ∈ W | Ti(w) = w} is
the set of fixed points of the mapTi in W .

We also provide a probabilistic version of Theorem IV.1.

Theorem IV.2 (Persistent random switches)Let
(X, d) be a metric space. Given a collection of maps
T1, . . . , Tm : X → X, define the set-valued map
T : X ⇉ X by T (x) = {T1(x), . . . , Tm(x)}. Given a
stochastic processJ : Z≥0 → {1, . . . ,m}, consider an
evolution{xn | n ∈ Z≥0} of T satisfying

xn+1 = TJ(n)(xn).

Assume that:
(i) there exists a setW ⊆ X that is strongly positively

invariant for T and whose closure is compact;
(ii) there exists a functionU : W → R such thatU(w′) <

U(w), for all w ∈ W and w′ ∈ T (w) \ {w};
(iii) the functionsTi, for i ∈ {1, . . . ,m}, and U are

continuous onW ; and
(iv) there existsp ∈ ]0, 1[ and k ∈ N such that, for alli ∈

{1, . . . ,m} and n ∈ Z≥0, there existsh ∈ {1, . . . , k}
such that

P
[
J(n + h) = i |J(n), . . . , J(1)

]
≥ p.

If x0 ∈ W , then there existsc ∈ R such that almost surely
the evolutionxn approaches the set

(
(F1 ∩ · · · ∩Fm)∪(∂W \ W )

)
∩U−1(c),

where, fori ∈ {1, . . . ,m}, Fi = {w ∈ W | Ti(w) = w} is
the set of fixed points of the mapTi in W .

V. THE SPACE OF PARTITIONS

Motivated by the results in Section IV, we study a metric
structure on the set of partitions; specifically, we show
how the set of partitions can be regarded as a compact
metric space. In this section, and only in this section, the
assumptions onQ are relaxed to give more general results:
we assume thatQ ⊂ R

d is compact and connected and has
non-empty interior.

Let C denote theset of the closed subsetsof Q. Ad-
ditionally, a setC ∈ C is said to beregularly closed if
int(C) = C. Given a closed setC ∈ C, we sayint(C) to be
its regularization. We want to introduce a suitable metric and
topology onC; since the cost functions defined in Section II
are insensitive to sets of zero measure, we look for a metric
with the same property.

Let µ be the Lebesgue measure of a subset ofR
d. Given

two subsetsA,B ∈ C, define theirsymmetric differenceby
A∆B = (A ∪ B) \ (A∩B) and theirsymmetric distance
d∆ : C × C → R≥0 by

d∆(A,B) = µ(A∆B).

In other words, the symmetric distance is the measure of the
symmetric difference of the two sets. Given these definitions,
it is useful to identify sets that differ by a set of measure zero.
More formally, let us writeA ∼ B wheneverd∆(A,B) = 0,
and remark that∼ is an equivalence relationship. In what
follows we will study thequotient set of closed subsetsC∗ =
C/ ∼. The next result is the main result of this section.

Theorem V.1 (Metric structure and compactness ofC∗)
The pair (C∗, d∆) is a metric space. Moreover, with the
topology induced by the metricd∆, the setC∗ is compact.

Next, we characterize the metric structure and compact-
ness of the set of partitions. The space of partitionsVN ,
introduced in Section II, is mapped by the canonical projec-
tion into aV∗

N , whose components belong toC∗. The metric
d∆ naturally extends to a metric on the product space(C∗)N

and onV∗
N as follows. The symmetric distance on partitions

d∆ : VN × VN → R≥0 is defined by

d∆(u, v) =

N∑

i=1

d∆(ui, vi). (14)

The compactness of the space of partitions is then a simple
consequence of Theorem V.1.

Corollary V.2 (Metric structure and compactness ofV∗
N )

The pair (V∗
N , d∆) is a metric space. Moreover, with the



topology induced by the metricd∆, the closure ofV∗
N is a

compact set.

In the rest of the paper,V∗
N and VN are treated as one

and the same: one may think toVN as the space of the
actual dynamics for the agents, andV∗

N as a space which
is introduced for analysis purposes. Note that, thanks to the
definition of VN , V∗

N can as well be depicted as a space
of “partitions” made of regularly closed sets, representing
the actual regions, in the sense that they differ by a set
of measure zero. In general, the equivalence classes of
closed sets can not be treated by means of regularly closed
representatives, since the regularization of a closed set can
differ from it by a set of positive measure. However, the
identification can be done for closed sets satisfying the
assumptions in Definition II.1, since they have zero-measure
boundary.

It can be checked that all considered functions and maps
of C or VN are independent of the chosen representative
and depend only on the equivalence class, that is, all such
functions and maps are defined up to sets of measure zero.
Thus, not only a sequence inVN is mapped into a sequence
in V∗

N , but the dynamics inVN induces a dynamics inV∗
N ;

it is the latter dynamics that we are able to study. Some
additional useful equivalence properties are stated as follows.

Corollary V.3 Let u, v ∈ VN and d∆(u, v) = 0. Then
(i) the adjacency graphs ofu and ofv are equal;

(ii) u and v have the same regularization; and
(iii) if each set inu and v is regularly closed, thenu = v.

VI. CONTINUITY PROPERTIES OF RELEVANT MAPS

The following lemma states some important properties of
the one-center cost function.

Lemma VI.1 Let Q be the environment, andφ andf be the
density and performance functions, respectively. Forp ∈ Q,
and A a compact subset ofQ with positive measure, let
H1(p,A) =

∫
A

f(‖p − q‖)φ(q)dq as in equation(4). Then
(i) the mapp 7→ H1(p,A) is strictly convex inp, for any

A;
(ii) the mapp 7→ H1(p,A) is globally Lipschitz inp, for

any A; and
(iii) the mapA 7→ H1(p,A) is globally Lipschitz inA, for

any p.

This lemma is a key step to prove the following results.

Theorem VI.2 (Continuity) (i) The centroid mapCd :
C∗\{∅} → Q, as defined in equation(5), is continuous.

(ii) The Voronoi mapV : QN \ SN → VN , as defined in
equation(2), is continuous.

(iii) The functionHcentroid : VN → R≥0, as defined in
equation(8), is continuous.

(iv) For all δ > 0, (i, j) ∈ {1, . . . , N}2, i 6= j, the modified
gossip coverage mapT δ

ij : VN → VN , as defined in
Section III-B, is continuous.

Statements (iii) and (iv) are exactly what is needed to apply
the LaSalle invariance principles stated in Section IV to the
modified gossip coverage algorithm. Statements (i) and (ii)
are intermediate results of independent interest.

VII. C ONCLUSIONS

In summary, we have introduced novel multiagent cover-
age and partitioning algorithms, established novel versions of
the LaSalle Invariance Principle, studies the topology of the
space of partitions and the continuity of certain multicenter
functions. Further research will focus on gossiping agents
model and partition-based approaches to coverage control.
First, we are keen on extending these ideas to non-convex
environments: indeed parts of our analysis hold with the
weaker assumption ofQ being compact. Second, discrete
environments like metric graphs are interesting. Third, we
plan to investigate gossip coverage algorithms for robotic
networks with agent arrivals and departures.
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