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Abstract— Deployment, coverage and partitioning are fun-
damental tasks for robotic networks. Recently proposed algo-
rithms achieve these tasks under a critical assumption: infor-
mation is exchanged synchronously among all agents and long-
range communication is possibly required. This work proposes
novel deployment and partitioning algorithms that require
only asynchronous pairwise (so-called gossip) communication.
Which robot pair communicates at any given time may be
selected deterministically or randomly. A key novel idea is
the description of the coverage control problem as a control
system on the space of partitions — in other words, we study
the evolution of the regions assigned to each agent, rather than
the evolution of the agents’ positions. The novel gossip algo-
rithms are shown to converge to multicenter Voronoi partitions
through various results of independent interest: we establish the
compactness of the space of partitions, the continuity of certain
geometric maps (e.g., the Voronoi and the centroid maps), and
two convergence theorems for switching dynamical systems on
metric spaces.

I. INTRODUCTION

This paper considers deployment and partitioning prolsitention 1131. 1141. Finall
lems for robotic networks, that is, groups of robots thateha ention [13], [14]. Finally
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problems, i.e., problems in which a robotic network has the
task of visiting points generated over time by a stochastic
process. Multicenter Voronoi partitions are shown in [5]
to be asymptotically optimal for estimation of stochastic
spatial fields. Convergence to multicenter Voronoi patisi

is established in [6] for a class of communication-less sens
based algorithm (related to the classic clustering work [7]
Dynamic environments and corresponding dynamic coverage
problems are treated in [8]. Nonconvex environments, maxi-
mization of detection probability and heterogeneous rigbot
networks are discussed in [9], [10], [11].

In our work we adopt methods from distinct disciplines.
For example, the pairwise “gossip” approach to agents com-
munication is widely adopted in the wireless communication
and consensus literature; see [12] and subsequent works.
Additionally, we adopt various tools from topology; the
application of topological methods to multiagent systend a
distributed coverage verification has received much recent
we consider control systeors

a non-Euclidean state space; the interest for non-Euclidea

basic motion, communication and computation capacitieg,;ces has a rich history in nonlinear control theory and

and that coordinate their actions based on simple intemcti

laws and protocols. Theeployment problenfior a robotic

robotics, e.g., see the early work [15].
The main contributions of the present paper are three.

network amounts to the design of control and communigg; \ve describe coverage control algorithms in a novel

cation laws that lead the robots to be optimally placeq,y " classically, the state space for the coverage algosith

in an environment of interest; the usual approach Consisige the agent positions: based on their positions, the sgent
of identifying an appropriate *network cost function” that, portion the environment into regions, which are assigned

measures the deployment quality of a given configuration ang o401 agent. In our approach, the agents positions are
designing control and communication laws that optimize thi,, longer the main concern: the state space is a space of
measure. Theartitioning problemis the design of control 45 iions of the given environment. We discuss important

and communication laws that lead the robots to optimall roperties of such a space, namely its compactness with
partition the environment into subregions of mterest;rvevereSpect to a suitable metric, and the continuity of several

here the objective is usually achieved through the desig{ ctions defined on it.

of appropriate cost functions. Coverage control algorshm  ggocqnq as key motivating application, we devise a novel
typically solve both deployment and partitioning problems;qqrithm for coverage optimization, a “gossip” algorithim
simultaneously. L ___which only one pair of agents communicates per time step.
Broad discussions about distributed control algorithmg, 44 this, because we know that reducing the communi-
for coverage, deployment and partitioning are presentedyinn pyrden is a critical issue for coverage control: awte

:_r: [1c]i’ [g]; these d;sgussmn; bu"?t.on.thf cllass!t(:hworl: BYsairwise communication can be more effective in practical
oy [3] on centering and partitioning” algorithms 107" gy ations if connections between agents are not guamhntee
optimal quantizer design. In [4] partitioning policies arey, o 1y reliable. Additionally, this asynchronous peise
shown to achieve optimal load balancing in vehicle routing, s -nanism may be implemented also for robots with limited
range communication. We propose a “novel random destina-
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of the LaSalle invariance principle and the properties ef thnext define thenulticenter functiomuicenter: Vv X QY —
state of partitions, we are able to give conditions for th&®>, by
proposed algorithm to converge to the critical points of a

. N
natural cost functional. Humutticentel(V, p) = Z/ fllpi —qlhe(q)dg. (1)
i=1""Yi

A. Organization and notations

The paper is structured as follows. In Section Il WeWe aim to minimize this function with respect to both the

formally describe the coverage control problem. In Secgartmonv and the locationg.

Fion lll we present the gossip coverage algprithm, we Stai8emark 11.2 (A word about locational optimization)
Its convergence properties, and we show simulation r_esult§he function Hmuricenter has the following interpretation.
Section IV contains the convergence theorems extending the ., an agent at location, assume thaf (||p; — q||) is the
. . . . . . . ’ 7
LaSalle invariance principle; Section V describes the epag. «t incurred by agent to “service” an event taking place

of partitions; and Section VI states the continuity projesrt at point g. Events take place insid® with likelihood ¢.

of the relevant maps and functions. Some conclusions a):\%cordingly, the multicenter functioftmyicenter quantifies

g:}/en infSectijon |V”' (;nﬂt]he interesft oflbrevitﬁ Vt\)IF rfmﬁvedagow well the environmen® is partitioned and how well the
a prtootitin ) /p/acex. em "} ab r/eggogv‘ggﬂe echnic gents are placed insidg. This and related optimal sensor
report a p-//arxiv.orgliabs : ' placement problems are studied in locational and geometric

WelletR>(; and E{ZO denote the Iset of pgsmve aﬂd NoN-qhtimization, spatial resource allocation, quantizatiogory,
negative real numbers, respectively, dg, denote the set . stering analysis, and statistical pattern recognitiee [1,
of non-negative integer numbers. Given a subdetf the

Euclidean spacéR?, we let int(A) denote its interior,A Chapter 2] and references therein. H

denote its closure)A denote its boundary andiam(A) Among all possible ways of partitioning a subsetRff,
its diameter. Given two setX and Y, a set-valued map there is one which is worth of special attention. Define the

T : X = Y associates to an element &f a subset ofY". set of partly coincident locations§y = {p € QV | p; =

p; for somei,j € {1,...,N}, i # j}. Givenp € QV\ Sy,

Il. COVERAGE OPTIMIZATION AND DISTRIBUTED the Voronoi partition ofQ generated by, denoted by (p),

CONTROL VIA MULTICENTER FUNCTIONS is the collection of thévoronoi regions{V;(p)}~_,, defined

We are given a group of robots (also called agentd)y
with limited communication and sensing capabilities, and -/, \ _ . o S
an environment, and we want the agents to deploy in theVl(p) =ta€Qllla=pill < lla—pjl forall j i} (2)
area in an optimal way. The environment is apportioned intth other words, the Voronoi partition is a map : (Q" \
smaller regions, each assigned to an agent. Iterativedy, t¥~) — Vn. The regionsVi(p), i € {1,..., N}, are convex
partition, and the agents configuration, are updated in a wgpd, if Q is a polytope, they are polytopes. Now, given two
to minimize a cost functional, which depends on the currerfistinct pointsg; and ¢, in R?, define the(q; ; ¢2)-bisector
partition and agents’ positions. half-spaceby

. _ d _ _
A. Partitions, centroids and multicenter optimization Hps(q15q2) = {q € R | lg — a1l < llg — a2l[}. (3)

In what follows, let the environment to apportion g !N other words, Hps(q1;¢2) is the closed half-space con-
a compact convex subset @¢ with non-empty interior. t@ining ¢ whose boundary is the hyperplane bisectitige

Partitions of(Q are defined as follows. segment fromy; to go. Note thatHps(q1; q2) # Hos(q2; q1)
and that Voronoi partition of) satisfiesV;(p1,...,pn) =

Definition 1.1 (Partition) An N-partition ofQ, denoted by © (s Hoslpis ;) . . .
v = {v;}}N,, is a collection of N subsets ofQ with the Ea_ch region equ_ped W'th a d_ensﬂy function POSSESSes
foIIowinZg Frgperties a point with a special relationship with the multi-center

function. GivenA, a measurable subset @f for eachp € @

(i) each set;, i € {1,..., N}, is closed, has non-empty \y define the scalar-center functiori, by
interior, and its boundary has measure zero;
(ii) int(v;) Nint(v;) is empty whenever# j; and Ha(p; A) = / flp = ql)o(q)dg. (4)
(i) Uieqr,...nyvi=Q A
We letVy denote the set aV-partitions of Q). One can show that, under the stated assumptions on the

performance functionf, the functionp — Hi(p; A) is

Let p = (p1,...,pn) € QY denote the position ofV  strictly convex inp, for any setA with positive measure
agents in the environmei. Givenv € Vy and almost any (Lemma VI.1). Since this function is strictly convex, it has
p € QV, each agent is naturally in one-to-one corresponunique minimum inQ. Therefore, we define thgeneralized
dence with an element af, specifically we sometimes refer centroid of A by
to v; as thedominance regiorof agenti € {1,...,N}. .

On @, we define alensity functiorto be a bounded mea- Cd(A) = argmin{Ha(p; 4) | p € @} ®)
surable positive functio® : Q — R~ and aperformance
functionto be a locally Lipschitz, monotone increasing and 1a hyperplane bisects a segment if it is perpendicular to arsbem
convex functionf : R>o — R>o. With these notions, we through the midpoint of the segment.




In what follows, it is convenient to drop the word “general-
ized,” and to denote byd(v) = (Cd(vy),...,Cd(vy)) €

Q" the vector of regions centroids corresponding to a
partitionv € Vy.

Remark 11.3 (Quadratic and linear performance func-
tions) If the performance function ig(z) = 22, then the
global minimum ofH; is thecentroid (also called the center
of mass) ofA, defined by

ca(a) = ([ slaas)” [ aotayin

If the performance function ig’(z) = z, then the global the information received; (iii) it moves to the centroid & i
minimum of H; is themedian(also called the Fermat—Weber Voronoi region. In mathematical terms, fok Zx,
center) of A. See [1, Chapter 2] for more details. |

Fig. 1. The Voronoi partition and the corresponding Delgugeaph

p(t+1) = Cd(V(p(t)))- (10)
Proposition 1.4 (Properties of Hmul]t{;:enter) For any parti-  gecause of the smoothness of the various maps, compactness
tion v € Vy and any point sep € Q' \ Sy, of @@, and monotonicity properties in Proposition 1.4, one
Ho e V(p),p) < Hmuti p), g) can show [1] that the solutions of (10) converge asymptot-
muticerel Cg d) P) ; muldcented U, ) (7) ically to the set of the centroidal Voronoi partitions. This
Hmuticente(v, Cd(v)) < Hmuicentev; P)- (7) " distributed coverage algorithm requiraynchronizedand
Furthermore, inequality(6) is strict if any entry ofV/(p) reliablecommunication alongll edges of a Delaunay graph
differs from the corresponding entry ofby a set with non-  This paper aims to reduce the reliability, synchroniza-
empty interior, and inequality7) is strict if Cd(v) differs tion and communication requirements of distributed cov-
from p. erage algorithms. Relevant questions are: Is it possible to

optimize agents positions and environment partition with
These statements, proved in [1, Propositions 2.14 and,2.18kynchronous, unreliable, delayed communication? What if
motivate the following definition: a partition* € Vy is @ the communication model is that gbssiping agentghat is,
centroidal Voronoi partitionif v* = V(Cd(v*)). Based on a model in which only a pair of robots can communicate at
the multicenter function, we defircentoia: Vv — R>0 by  any time? How do we overcome the limitation that Voronoi

partitions generated by moving agents can not be computed

Heentroid v) = Hmuticente(v, Cd(v)) () With only asynchronous pairwise communication?
N
= Z/ f(llg = Cd(vi)[))o(q)dg. [1l. PARTITIONS-BASED GOSSIP COVERAGE ALGORITHM
i=1"vi

In the partitions-based approach, the position of the robot
The novel functionHcentroia Plays a key role in later devel- essentially plays no role anymore and we instead describe
opments and has the following property that is an immediatgow to update the dominance regions. Designing coverage
consequence of Proposition 11.4: given a partitionwith  gjgorithms as dynamical systems on partitions has an im-
Cd(v) & Sw, portant advantage: we do not restrict our attention only to

Hcentroid(V(Cd(U))) < Hcentroid(v)a (9) \Voronoi partitions.

and this inequality is strict if any entry df (Cd(v)) differs A. The gossip coverage algorithm
from the corresponding entry of by a set with non-empty  Here we present an novel partition-based coverage algo-
Interior. rithm that, at each iteration, requires only a pair of adjace
B. Distributed coverage control and its limitations regions to communi_catg. We adopt the fpllowing cqnvention:
we allow communication between adjacent regions. The
Given a network of robots, coverage control algorithmso|lowing definition generalizes the notion of Delaunayygra

move the robots in order to MiniMiZEmuticenter T0 diSCUSS  and the notion of dual graph of a planar graph [16].
these algorithms, we introduce a useful graph. Detaunay

graph [16], [1] associated to the distinct positions €
Q"'\ Sy is the undirected graph with node st} and 5o o : - -

. : ) e . partitionv € Vy, its adjacency graphg(v) is
with the following edgesip;, p;) is an edge if and only if 0"\ directed graph with node set (or equivalently
V"(.p) mvj(}?) is non-empty. In other words, two agents are{l ..., N}) and with the edge sef(v) defined as follows:
neighbors if and only if their Voronoi regions intersect. (Uf U.)’ is an edge if and only if the two regions and v;

1Y) J

The distributed coverage algorithnpresented in [1] is . . - < 3 <
described as follows. At each discrete time instaatZ.,, ¢ 2diacentin the sense thait(v;) Nint(v;) is non-empty.

each agent performs the following tasks: (i) it transmits_ Recalling the notion of bisector half-space from equa-

its position and receiyeg the positio_ns of its .neig_hbors_ ilon (3), thegossip coverage algorithris stated as follows.
the Delaunay graph; (ii) it computes its Voronoi region with

Definition 1.1 (Adjacency graph of a partition)




At each timet € Zx>(, each agent maintains in memory a one iteration of the gossip coverage algorithm; an evatutio
dominance region;(t). The collection{v;(0),...,vn5(0)}  of the gossip coverage algorithm is one of the solutions to
is an arbitrary N-partition of (). At eacht € Z>, a the non-deterministic set-valued dynamical system
communicating pair, sayi, j) € £(v(t)), is selected by a
deterministic or stochastic process to be determined.yEver v(t+1) € T(v(t)). (12)
agentk ¢ {i,j} setswy(t + 1) = v (t), whereas agents B. Designing a continuous gossip coverage algorithm

andj perfgrm the Tollowmg ta's!<s: ) . The gossip coverage map does not satisfy certain
1: agenti transmits to agenf its dominance regiom;(t)  continuity properties. In general given two regionsand

and vice-versa ) vj, problems arise either whepCd(v;) — Cd(v;)|| — 0 or
2: both agents compute the centroidsd(v;(t)) and  wheno, andv, share a piece of boundary whose length tends
_Cd(vj () to 0. In our convergence analysis continuity properties are
3: if Cd(vi(t)) = Cd(v;(?)) then necessary. Therefore, we introduce a minor modification of
4 wi(t+1) :=wvi(t) andw;(t +1) := v;(t) the gossip coverage map, which does possess the needed
5 else continuity properties, as stated in Theorem VI.2.
6: vi(t+1) == (vi(t) Uw;(t)) N Hps( Cd(vi(t)); Cd(v;(1))) Givenv = {vy,...,ux} € Vu, consider two regions;

v;(t+1) == (vi(t) Uv;(t)) N Hps( Cd(v;(t)); Cd(vi(t)))  andw; such thatCd(v;) # Cd(v;). Pick > 0 and definé

7. end if

In other words, when two agents with distinct centroids Blvs, vy) = sats (|| Cd(vi) Cd(_%),n) .
communicate, their dominance regions evolve as follows: - (1 —sats(dist(int(v;), int(vy)))) ,
the union of the two dominance regions is divided intqyheresat; : R~ — [0,1] is such thatsats(z) = x/4 if
two new dominance regions by the hyperplane bisecting c [0, 4], andsats(z) = 1 if = > 8. We aim to define a
the segment between the two centroids; see Figure 2. ASmoothed” mapp%, parameterized by, with the following
a consequence, if the centroidsd(v;(¢)), Cd(v;(t)) are properties. If3(v;, v;) = 1, i.e., if the distance between the
distinct, then{v;(t 4 1), v;(¢ + 1)} is the Voronoi partition regionsw; and v; is zero ¢; andv; are adjacent) and the
of the setw; (t) Uv;(t) generated by the centroidsl(v;(¢))  distance betweefid(v;) and Cd(v;) is larger thans, then
andCd(v;(t)). We claim that the algorithm is well-posed in Tg(v) = T;;(v); in this case the maf?. reduces to the
map 7;; introduced in the previous section. Additionally, if
B(vi,vj) =0, i.e., eitherCd(v;) andCd(v;) coincide or the
distance between; andv; is larger thary, thenTg(v) =,
that is, the mapl“;} leaves the regions unchanged.

To define such a maf’., we proceed as follows, see
Figure 3. DefineR; = v; N Hps(Cd(v;),Cd(v;)) = {q €
vi | llg — Cd(v)|| > |lg — Cd(v;)||}, and similarly R; =
vj N Hps(Cd(v;), Cd(v;)). Let v, be the hyperplane bisect-

Fig. 2. The gossip coverage algorithm. The left and right igeontain  ing the segment fron€d(v;) to Cd(v;), that is,

the initial partition and the partition after one applicatiof the gossip

coverage algorithm. In the middle figure we show the two ceds$r@ind 1L ={q€ Q| l|lg—Cd(v;)| = |lg — Cd(v; .
(with a dashed line) the segment determining the bisectorspaite. K { | ” ( J)H ” ( z)H}

Observe that for each € R; U R; there exists only one
the sense that the sequence of collectioft3 generated by hyperplaney parallel toy, and passing througt we denote
the algorithm is anV-partition at all timeg, that is, satisfies this hyperplane as,. Now define two point®; € R; and
the three properties in Definition 11.1. pj € R; such that

Now, for any pair(i,j) € {1,...,N}2, i # j, we define

the mapT}; : Vy — Vy by pi € argmax min |lg — yl|,

g€int (R;)
Tii(w) =4 if Cd(v;) = Cd(v,), pj € argmax min g —yll,
ij (V1,3 Uiy oy Ujy oo, UND, otherwise q€int (Ry)

and define two sets
B = (11 Uy) 1 Hi{ Cel(un): G(0;) R; = {q € R;| dist(p;,7g) < B(vi,v;) dist(p;,71)},
i — 7 j S i) 1)) -~ . ~ . ,\
’ ’ R; = {q € R;| dist(p;,7,) < B(vi,v;) dist(5;,71)}.

?]\j = (UiU’Uj) ﬁHbs( Cd(’UJ),Cd(’UZ)) . s
The dynamical system on the space of partitions is therefoptleow’ we introduce the mafj; : Vi — Vi,
described by, fot € Z~, i ) — )
> Ti‘;(v) _ v R R if Cd(v;) Cd(vj'),
v(t+1) =T;;(v(t)), forsome(s,j) € E(v(t)), (11) (V1,e o, Uiy ey Ty e, UN), otherwise
together with a rule describing what edgej) is selected at

each time. We also define the set-valued riapVy = VN 2Given two subsetsd and B of Q, definedist(A, B) = inf{|ja —
by T'(v) = {T;;(v)| (,7) € E(v)}. The mapT describes b| | (a,b) € A x B}.




L

Cd (’Ul)

U1

Fig. 3. Demonstration of the maﬁfj, for two regions which are close to each other.

where Then the trajectory converges to the set of the mixed equal-
R L ~ % PN ~ centroidal and centroidal-Voronoi partitions.
Vi = (Ui \ ll’lt(Ri)) U Rj, and v = (’Uj \mt(Rj)) UR;.

We now state the main stochastic convergence result for

Finally we define themodified gossip coverage map’ : the gossip coverage algorithm.

VN = Vn by
T = {T?.(v)| (i, 5) € {1 NY2 i # 5} (13) Theorem IIl.5 (Convergence under persistent random
(%] ) A ) N . . . . pe .
gossip)Givend > 0, consider the modified gossip coverage
C. Analysis and convergence results algorithm 7° defined in(13). Given a stochastic process
Here we state the main convergence results of the preseht: Z>o0 — {(i,j) € {1,.. % N}?| i # j}, consider an
paper. We begin by characterizing a useful set. evolutionv : Z>o — Vi of T° satisfying, fort € Z>,

v(t+1) =T9,(v(t)).
Definition 111.2 A partition v € Vy is a mixed equal- ( ) i (v(1)

centroidal and centroidal-Voronoi partitiofy for all (i, j) € ~ Assume that
G(v), either Cd(v;) = Cd(v;) or (v;,v;) is a centroidal (i) the trajectoryv does not have an accumulation point

Voronoi partition ofv; Uw;. with degenerate boundary; and
) ) ) (i) there existsp € ]0,1[ and & € N such that, for all
Itis easy to show that the set of mixed equal-centroidal and ~ (; j) e {1,...,N12,i # j, and for allt € Z>,, there
centroidal Voronoi partitions is equal to the set of fixedisi existsh € {1,...,k} such that -
{veVn|v="T;(v)foralli,je{l,...,N}, j#i}. P[J(t+h) = (i,5) | J(t),..., ()] > p.

Then the trajectory almost surely converges to the set of the

Remark 111.3 Let € Vn. If {v;,v;} is a centroidal , ; ; . ”
Y N {oi, v} mixed equal-centroidal and centroidal-Voronoi partitin

Voronoi partition ofv; Uv; for any (¢,j) € £(v), thenw
is a centroidal Voronoi partition. 0 The proof of these two theorems is based upon the
llowing basic result and three more complex sets of ideas.
rst, the basic result is a monotonicity property thatiies

ﬁe relationship between the multicenter functi®faentroid
gnd the gossip coverage algorithms.

Before stating the convergence results for the modifiefi
gossip coverage algorithm, we introduce one last notion.
say that (1) the boundary of a set degeneratef it has
positive measure; and (2) a partition has degenerate bound
if at least one component of the partition has degeneralz(%mma 6 Letv € Vi, ij € {1,....N}, i # J,

boundary. Note that, if each component of a partition is d R Then th . has th
collection of polygons with a finite number of vertices, therfr?l ﬂ € R>o. ; _22 e' gT055|p cgve;?ge map asd €
the partition boundary is not degenerate. ollowing property: Heenwoid 73 (v)) < Heentroidv), an

; et centroio(Tij(U)) = 7‘(cen’(roio('U) if and Only if T%j(U) = .
for\/\{ﬁeng(\;vsssi:)afo\%?a;ea;}gcé?ittir;]'msuc convergence reSJI,Edditionally, the same result holds for the modified gossip
' COVEI’age map, that |§,-{CGntro|c(7‘ig ('U)) S Hcentroi(('(}), and

7S _ o i T
Theorem IIl.4 (Convergence under uniformly persistent Heenod 73 (v)) = Heentroid v) if and only if 775 (v) = v.

gossi_p)Giveéné > 0, consider the modified gossip coveragerhis lemma indicates how the functidtvenroiaplays the role
algorithm 7 defined in(13) and letv : Z>o — Vi be an  of a Lyapunov function for the dynamical system defined by

evolution of7°. Assume that T or T9. However, to provide a complete Lyapunov con-
(i) the trajectoryv does not have an accumulation pointvergence proof, one needs to develop three sets of relevant

with degenerate boundary; and results. First, we need to establish extensions of the laSal

(i) for each pair(i,j) € {1,...,N}?, i # j, there exists invariance principle for set-valued dynamical systemsrove
an increasing sequence of timés;}.cz., C Z>o compact metric spaces. Second, we need to prove that the
such that(ty1 — tx) is bounded andv(t; + 1) = space of partitions is a compact metric space. Third, we need

Tz@-(v(tk)). to establish the continuity properties of the relevant neams



functions. These three topics are the subjects of Section IV1: it selects uniformly randomly aestination pointg; in

V and VI, respectively. the set{q € R?| dist (¢, dv; \ 0Q) < €};
, ) ) ) 2: it moves in such a way as to reach pajnin time equal
D. Simulation results and implementation remarks t0 t; = diam(Q) /(N min{us, ..., ux}); and

We have extensively simulated the partition-based gossifs: it waits at pointg; for a time duration that is uniformly
coverage algorithm described by (11) on a 2-dimensional randomly distributed in the intervad,, 3¢;].

polygonal environment with uniform density and perfor4ye have assumed that agents may move out3ided reach
mance functionf(z) = . Simulations have been imple- |ocations at a distance up taway fromQ. This assumption
mented as aMatlab program, using theGeneral Polygon may be removed at the cost of additional notation.
Clipping library to perform operations on polygons. At The random destination+wait motion algorithmis to be
each iteration, one edge is chosen, uniformly at randonplemented concurrently with the modified gossip coverage
among the edges belonging to the current adjacency grapflgorithm with parametes < reomm/4. The two algorithms
From these simulations, the effectiveness of the algOfithljBinﬂy determine the evolution of the agents positions and
above introduced appears evident: all solutions converge fhe evolution of the agents dominance regions as follows.
a centroidal Voronoi partition(Figure 4). If at any instant of time during any epoch, an agéris
Our first numerical finding is that, although it is theoret+yithin communication rangeomm of any other agent for a
ically possible to converge to partitions containing regio durationtcomm then, with a probabilityycomm the two agents
with coincident centroids, such events do not happen in-simdychange sufficient information to update their respective

lations. Specifically, our numerically-computed sequsre  regionsy; andv;, via the modified gossip coverage ma.
partitions always converge to centroidal Voronoi partitip

as does the synchronous coverage algorithm (10).

A second nu_merical f_inding is that, throughoyt NUMETOUistent random gossip)Consider a group of agents with
sample executions, regions rarely have complicated sha

; . acities (C1), (C2) and (C3) and parameters rcomm
and large numbers of vertices. This is good news becauge ;
. . , an . Assume th nts implement the random
large numbers of vertices affect both the computation ang’e,: and peomm: ASSUMe the agents implement the rando

- . . stination+wait motion algorithm and the modified gossip
the communication burden of the gossip coverage algorlthqgoverage algorithm with parameter < reomm/4 and 6 <

ﬁmatl"y,h It Is posl,slple, ar]:dthwe Pavgethobs{ﬁr\;e% 'J]E numerl%comm/4. Then, the sequence of applications of the modified
cally, 1o have evolutions ot the algorithm that, beiore Cor;?ossip coverage map satisfies the “persistent random gossip

Proposition IIl.7 (Random destination+wait ensures per-

verging to centroidal Voronoi partitions, have component ssumption” in Theorem 111.5 (Assumption (ii)). Theretcife

with disconnected regions. From an applications’ point he generated trajectory does not have an accumulationtpoin

view, a connected region can be covered by an agent in @"jeqenerate boundary, then the set of dominance regions

more natural way. This_reason suggests "eep"!g the regior'?\%lintained by the agents converges to the set of mixed equal-
connected when applying the algorithm. We simulated th

. oo : ¢ Nentroidal and centroidal-Voronoi partitions.
following modification of the gossip coverage algorithm
which keeps the dominance regions connected: during thﬂ/ L ASALLE INVARIANCE PRINCIPLE FOR SEFVALUED
update step, every connected component is traded between MAPS ON METRIC SPACES

the interacting regions only if this can be done without In thi i ider di to-ti i
loosing connectivity. Our simulations show that such an n this section we consider discrete-ime continuous-spac

algorithm leads to centroidal Voronoi partitions as well. set-valued dynamical system defined on metric spaces. Our
goal is to provide some extensions of the classical LaSalle
E. A robotic implementation of gossip coverage algorithménvariance principle; we refer the interested reader td,[17
Consider a group of agents all having the following capa[ls] for recent Lasalle invariance principles for switched

bilities: (C1) each agente {1,..., N} knows its positions continuous-time z'ind.hybnd systems. . .
and moves at positive speegto any position in the compact Ve Start by reviewing some preliminary notions. Consider
convex environmen® C R2: (C2) each agent may store an® Metric spacéX, d), where X is a set andl a metric on
arbitrary number of locations i and has a clock that is not X. A set-valued maf” : X = X is non-empty'|fT(x) 7
necessarily synchronized with other agents’ clocks; arg) (c? for all @ € X. An evolution of the dynamical system
if any two agents are within distaneg,mm of each other for a determined by a non-empty se_t—valued miapver X is a
positive time duratioreommand they have not communicatedS€AUeNcez, | n € Z>o} C X with the property that

during the immedjately prigr interval p_f time of duration Zpi1 € T(zn), n € L.

tcomm then there is a positive probabilitycomm that they

establish a communication link and exchange informatibn. Given any initialzg € X, an evolution ofl" is computed by
is realistic to assumeé;omm < diam(Q)/(Nw;) for eachi. recursively settinge,, 1 equal to an element iff"(x,,).

The random destination+wait motion algorithns de- A set W is weakly positively invarianfor 7' if, for any
scribed as follows. Given a parameter< remm/4, €ach x, € W, there existsc € T'(z() such thatr € W. A setiWW
agenti € {1,...,N} maintains in memory a dominanceis strongly positively invariantor 7" if, for any zo € W, all
regionv; and determines its motion by repeatedly performing: € T'(z() satisfyz € W.
certain actions over periods of time that we labpbchs An The following result is a version of the LaSalle invari-
epoch is the amount of time that agémequires to perform ance principle for a particular class of switching dynarhica
the following three actions: systems.
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Fig. 4. Simulations of randomized gossip algorithm, with= 6, Q C R?, ¢ = 1 and f(z) = 22. The figure shows snapshots of a time evolution of
the partitions, fort = 0, 20, 50, 100, 300. Remark that the dominance regions can loose connectiviipgitine evolution.

Theorem IV.1 (Uniformly persistent switches) Let (X, d) V. THE SPACE OF PARTITIONS
be a metric space. Given a collection of mafs. .., Ty, : Motivated by the results in Section IV, we study a metric
X — X, define the set-valued map: X = X by T'(x) =  structure on the set of partitions; specifically, we show
{T1(x),...,Trm(x)} and let{z, | n € Z>o} be an evolution Koy the set of partitions can be regarded as a compact
of T'. Assume that: metric space. In this section, and only in this section, the
(i) there exists a selV’ C X that is strongly positively assumptions o)) are relaxed to give more general results:
invariant for 7' and whose closure is compact; we assume thaf) ¢ R? is compact and connected and has
(i) there exists a functioy : W — R such thatU (w') <  non-empty interior.
U(w), for all w e W andw' € T'(w) \ {w}; Let C denote theset of the closed subsets Q. Ad-
(i) the functionsT;, for i € {1,...,m}, and U are ditionally, a setC' € C is said to beregularly closedif
continuous oriV; and int(C) = C. Given a closed sef' € C, we sayint(C) to be
(iv) for all i € {1,...,m}, there exists an increasing its regularization We want to introduce a suitable metric and
sequence of time§ny, | k € Z>o} such thatr,,+1 =  topology onC; since the cost functions defined in Section II
T;(x,,) and (ng1 — ny) is bounded. are insensitive to sets of zero measure, we look for a metric
If zo € W, then there exists € R such that the evolution with the same property.
x, approaches the set Let 11 be the Lebesgue measure of a subseRbf Given
((Fy0-- N F,) U(OW \ W) NU~1(e), two subsetsd, B € C, define theirsymmetric differencéy

AAB = (AU B) \ (AN B) and theirsymmetric distance
where, fori € {1,...,m}, F; = {w € W|Tj(w) = w}iS dp :C xC — Rxq by
the set of fixed points of the m&p in W. -
da(A, B) = n(AAB).

We also provide a probabilistic version of Theorem V.1, L .
In other words, the symmetric distance is the measure of the

Theorem IV.2 (Persistent random switches)Let symmetric difference of the two sets. Given these defingjon
(X,d) be a metric space. Given a collection of mapdtis useful to identify sets that differ by a set of measumoze
T,....,Tm : X — X, define the set-valued map More formally, let us writed ~ B wheneverda (4, B) =0,
T:X = X by T(x) = {T\(2),...,T)n(x)}. Given a and remark that- is an equivalence relationship. In what
stochastic process/ : Zso — {1,...,m}, consider an follows we will study thequotient set of closed subsets =
evolution{z, | n € Zs,} of T satisfying C/ ~. The next result is the main result of this section.
Tnt1 = Tyn)(Tn). Theorem V.1 (Metric structure and compactness ofC*)
Assume that: The pair (C*,da) is a metric space. Moreover, with the

(i) there exists a seli’ C X that is strongly positively topology induced by the metrit,, the setC* is compact.
invariant for 7" and whose closure is compact;

(i) there exists a functioly : W — R such thatU (w') <
U(w), forall w e W andw’ € T'(w) \ {w};

(iiiy the functionsT;, for i € {1,...,m}, and U are
continuous onV; and

(iv) there exist® € ]0,1[ and k& € N such that, for alli €
{1,...,m} andn € Z>, there existsh € {1,...,k}

Next, we characterize the metric structure and compact-
ness of the set of partitions. The space of partitidhs,
introduced in Section Il, is mapped by the canonical projec-
tion into aV;,, whose components belong@. The metric
da naturally extends to a metric on the product spate™”
and onV}; as follows. The symmetric distance on partitions
da 1 VN x Vn — R is defined by

such that
N
P[J(n+h)=1i[J(n),...,J(1)] > p. da(u,v) =3 da(ui,v,). (14)
If xg € W, then there exists € R such that almost surely i=1
the evolutionz,, approaches the set The compactness of the space of partitions is then a simple
((FyN-- N E) UEW \ W) nU(c), consequence of Theorem V.1.
where, fori € {1,...,m}, F; = {w € W| T;(w) = w} is  Corollary V.2 (Metric structure and compactness of Vi)

the set of fixed points of the map in W. The pair (V§;,da) is a metric space. Moreover, with the



topology induced by the metri¢,, the closure ofV} is a VIl. CONCLUSIONS

compact set. In summary, we have introduced novel multiagent cover-

In the rest of the paped;, and Vy are treated as one a9€ and partitioni_ng algori_thms, establ_ished novel vessaf

and the same: one may think @y as the space of the the LaSalle Inyarlance PrlnC|pIe,_ stgdles the tqpolog)_/nm‘t
actual dynamics for the agents, ab, as a space which SPace of partitions and the continuity of certain multleent

is introduced for analysis purposes. Note that, thanks o tfunctions. Further research will focus on gossiping agents
definition of Vyy, Vi can as well be depicted as a Spacégn'odel and partition-based ap_proaches to coverage control.
of “partitions” made of regularly closed sets, represaptinFirst, we are keen on extending these ideas to non-convex
the actual regions, in the sense that they differ by a s€fvironments: indeed parts of our analysis hold with the
of measure zero. In general, the equivalence classes Wgaker assumption of) being compact. Second, discrete
closed sets can not be treated by means of regularly closggvironments like metric graphs are interesting. Third, we
representatives, since the regularization of a closed et d°lan to investigate gossip coverage algorithms for robotic

differ from it by a set of positive measure. However, the'€tworks with agent arrivals and departures.

identification can be done for closed sets satisfying the
assumptions in Definition 1.1, since they have zero-measur
boundary. [1]
It can be checked that all considered functions and maps
of C or Vy are independent of the chosen representativé?]
and depend only on the equivalence class, that is, all such
functions and maps are defined up to sets of measure zerg;
Thus, not only a sequence Wy is mapped into a sequence
in V%, but the dynamics iV induces a dynamics iwy;
it is the latter dynamics that we are able to study. Someg]
additional useful equivalence properties are stated &sAfsl

Corollary V.3 Letwu,v € Vi andda(u,v) = 0. Then [5]
(i) the adjacency graphs af and ofv are equal;
(i) w andv have the same regularization; and (6]
(i) if each set inu and v is regularly closed, them = v.
(71

VI. CONTINUITY PROPERTIES OF RELEVANT MAPS

The following lemma states some important properties of
the one-center cost function.

8
Lemma VI.1 Let@ be the environment, andand f be the
density and performance functions, respectively. jar Q,
and A a compact subset of) with positive measure, let g

Ha(p, A) = [, f(llp — all)¢(a)dq as in equation(4). Then
(i) the mapp — Hi(p, A) is strictly convex irp, for any (10]

(i) thé mapp — Ha(p, A) is globally Lipschitz inp, for

any A; and (11]
(iii) the mapA — Hi(p, A) is globally Lipschitz inA4, for
any p.
[12]
This lemma is a key step to prove the following results.
Theorem VI.2 (Continuity) (i) The centroid mapCd : [13]
C*\{0} — Q, as defined in equatiofb), is continuous.
(i) The Voronoi map/ : QN \ Sy — Vy, as defined in [14]
equation(2), is continuous.
(iii) The functionHcentroid : VN — Rx¢, as defined in [15]
equation(8), is continuous. 6
(iv) Forall§ >0, (i,j) € {1,...,N}2,i # j, the modified ™°
gossip coverage ma % : VN — Vn, as defined in
Section 1lI-B, is continuous. (17]

Statements (iii) and (iv) are exactly what is needed to appI[XS]
the LaSalle invariance principles stated in Section IV t® th
modified gossip coverage algorithm. Statements (i) and (ii)
are intermediate results of independent interest.
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