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Dynamic Vehicle Routing with Moving Demands — Part Il:
High speed demands or low arrival rates

Stephen L. Smith Shaunak D. Bopardikar Francesco Bullo aoJ® Hespanha

Abstract—In the companion paper we introduced a vehicle becomes one of providing optimal coverage. Related works
routing problem in which demands arrive via a temporal include geometric location problems such as [4], and [5],
Poisson process, and uniformly distributed along a line segment. where given a set of static demand points in the plane, the

Upon arrival, the demands move perpendicular to the line with lis to find | ints that minimi t functi f
a fixed speed. A service vehicle, with speed greater than that of 90&! IS 10 1INd SUpply points that minimiz€ a cost function o

the demands, seeks to provide service by reaching the location the distance from each demand to its nearest supply point.
of each mobile demand. In this paper we study a first-come- The authors in [6] study the problem of deploying robots into
first-served (FCFS) policy in which the service vehicle serves the g region so as to provide optimal coverage of the region.

demands in the order in which they arrive. When the demand h ibuti f thi b ized
arrival rate is very low, we show that the FCFS policy can The contributions of this paper can be summarized as

be used to minimize the expected time, or the worst-case time, follows. We study a first-come-first-served (FCFS) policy in
spent by a demand before being served. We determine necessarywhich demands are served in the order in which they arrive,
and sufficient conditions on the arrival rate of the demands (as and when the environment contains no outstanding demands,
a function of the problem parameters) for the stability of the o ahicle moves to a location which minimizes the expected

FCFS policy. When the demands are much slower than the | i d d. We sh hat f
service vehicle the necessary and sufficient conditions become (or worst-case) travel time to a demand. We show that for

equal. We also show that in the limiting case when the demands fixed v, as the demand arrival rate tends to zero, the
move nearly as fast as the service vehicle; (i) the demand arrival FCFS policy is the optimal policy in terms of minimizing the
rate must tend to zero; (ii) every stabilizing policy must service  expected (or worst-case) delay between a demands arrival
the demands in the order in which they arrive, and; (iii) the 54 jis service completion. Next, we determine necessary
FCFS policy is the optimal policy. and sufficient conditions on for the stability of the FCFS
I. INTRODUCTION policy. As v — 0T, the necessary and sufficient conditions
) ) ) ~ become equal. Whemapproaches one, we show that: (i) for
In companion paper [1] we introduced a vehicle routingyistence of a stabilizing policy, must converge to zero as
problem in which demands arrive via a temporal Pmssop/\/m, (ii) every stabilizing policy must service
arrival process with rate\ at a uniformly random location the demands in the order in which they arrive, and (iii) the
on a line segment of lengthl”. The demands move in a FCFs policy is the optimal policy. When compared to the
fixed direction _perpenfjicular to the line With fixed Sp_eedI'SP-based policy introduced in companion paper [1], the
v < 1. A service vehicle, modeled as a unit speed firstccpg policy has a larger stability region wheis large, but

order integrator, seeks to serve these mobile demands B¥maller stability region whenis small. This is summarized
reaching each demands location. The goal is to determifie Fig 1.

conditions on the arrival rate, which ensure stability of

the system (i.e., ensure a finite expected time spent by a

demand in the environment). We refer the reader to [1] ¢
for related work and motivation. In [1] we showed that to :
ensure the existence of a stabilizing policy, we must have !
A < 4/vW. We proposed a service policy which relied on the Lh
computation of the translational traveling salespersdh (ia
TSP) through unserviced demands, and showed that for small
v the policy ensures stability for al's up to a constant factor

of the necessary condition.

We now focus on the case when the arrival rate is low
(if v is close to, but strictly smaller than one, we will see
that this is a necessary condition for stability). For thise ¢
we propose a first-come-first-served (FCFS) policy; such TSP and FCFS
policies are common in classical queuing theory [2], [3]. In stable
the regime where is fixed and\ tends to zero, the problem 0,0) Demand speed — (1,0)

Stabilization impossible
for any policy

Arrival rate A —

TSP
stable

The authors are with the Center for Control, Dynamical Systams Fig. 1. A summary of stability regions for the TSP-based poéayl the

Computation, University of California at Santa Barbara, t8asarbara, CA FCFS policy. Stable service policies can exist only for tbgion under the
93106, USA,{st ephen, shaunak, bul | 0} @ngi neeri ng. ucsbh. dotted line. Curve b-c is due to Theorem IV.2, curves c-d amdate due

edu, hespanha@ce. ucsb. edu to Theorem V.1. For curves a-b and c-f, refer to [1].



This paper is organized as follows: the problem is formalwith unit speed is defined as tlgenstant bearing control
ized in Section Il. The FCFS policy is introduced in Sec-
tion 1I-B. We determine the optimal placement to minimizeConstant bearing control is illustrated in Fig. 2.
the expected time in Section IlI-A, and the worst-case time
in Section IlI-B. In Section IV we determine a necessary
condition for stability asv tends to one, and in Section V
we determine a sufficient condition for the stability of the
FCFS policy. In Section VI, we present simulation results
for the FCFS and its comparison with the TSP-based policy.
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Il. PROBLEM FORMULATION AND SERVICE PoLICY

We consider a single service vehicle that seeks to service
mobile demands that arrive via a spatio-temporal process on w
a line segment Wlt,h IengtW along thea:-.aXIS, term,ed the ig. 2. Constant bearing control. The vehicle moves towahes point
generator The vehicle is modeled as a first-order integratof: .= (z,  + v7"), wherez, y, v and T are as per Definition I1.1, to reach
with speed upper bounded by one. The demands arrite demand.
uniformly distributed on the generator via a temporal Rmiss
process with intensityA > 0’ and move with constant The fO”OWing I’esult on constant bearing Contl’0| iS eStab-
speedv < 1 along the positivey-axis. We assume that lished in [7].
once the vehicle reaches a demand, the demand is served
instantaneously. The vehicle is assumed to have unlimitdefoposition 1.2 (Minimum time control, [7]) The
fuel and demand servicing capacity. constant bearing control is the minimum time control for

We define the environment a&:= [0, W] x R>o C R?, the vehicle to reach the demand.
and letp(t) = [X(t),Y(t)]T € & denote the position of _ _ _
the service vehicle at time Let Q(t) C & denote the set B- The First:Come-First-Served (FCFS) Policy
of all demand locations at timg andn(t¢) the cardinality We are now ready introduce the FCFS policy, which will
of Q(¢). Servicing of a demand;; € Q and removing it be the focus of this paper. In this policy the service vehicle
from the setQ occurs when the service vehicle reaches thases constant bearing control and services the demands in th
location of the demand. A static feedback control policyorder in which they arrive. If the environment contains no
for the system is a maf : £ x 2° — R?, assigning a demands, the vehicle moves to the locatidfi*, Y*) which
commanded velocity to the service vehicle as a functiominimizes the expected, or worst-case, time to catch the nex
of the current state of the systermp(t) = P(p(t), Q(¢)). demand to arrive. We can state this policy as follows.
Let D; denote the time that thé&h demand spends within
the setQ, i.e., the delay between the generation of ittt e FCFES policy
demand and the time it is serviced. The poliyis stable
if under its actionlim; .., E[D;] < +o0, i.e., the steady
state expected delay is finite. Equivalently, the poliRyis
stable if under its action,

(0,0)

Assumes Given the optimal locatiof X*,Y™*) € £.
1 if no unserviced demands &then
2 ‘ Move toward(X™*,Y*) until the next demand

arrives.
3 else

4 L Move using the constant bearing control to service
that is, if the vehicle is able to service demands at a rate tha | the furthest demand from the generator.

is—on average—at least as fast as the rate at which neyRepeat.

demands arrive. In what follows, our goal isdesign stable
control policiesfor the system.

ti1+moo E [n(t)] < +oo,

) Fig. 3 illustrates an instance of the FCFS policy. The
A. Constant Bearing Control

In this paper we will use the following result on catching
a demand in minimum time.

.

T )
o

Definition 1.1 (Constant bearing control) Given the lo- I I
cationsp := (X,Y) € £ andq := (z,y) € £ attimet of the * JA, G
service vehicle and a demand, respectively, with the demand de

moving in the positivg-direction with constant speed the (0,0) Qs

motion of the vehicle towards the poifit, y + vT'), where

V=X —2)2+ (Y —y)? oY —y)
1 — p2 B 1—p2 7 Fig. 3. The FCFS policy. The vehicle services the demandsédrother
(1) of their arrival in the environment, using the constant begadontrol.

w

T(p,q) :=




first question is, how do we compute the optimal position
(X*,Y*)? This will be answered in the following section.

2.5F
IIl. OPTIMAL VEHICLE PLACEMENT

In this section we study the FCFS policy when< 1 is
fixed and)\ — 07. In this regime stability is not an issue, as
demands arrive very rarely, and the problem becomes one
of optimally placing the service vehicle (ie., determining
(X*,Y™*) in the statement of the FCFS policy). We determine
placements that minimize the expected time and the worst- o5
case time.

1.5r
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A. Minimizing the Expected Time Demand velocity

We seek to place the vehicle at location that minimizes t . . . o
. . . g. 4. TheY position of the service vehicle which minimizes the expected
expected time to service a deman_d once It appears on ance to a demand, as a functiorvofn this plot the generator has length
generator. Demands appear at uniformly random position® = 10.

on the generator and the vehicle uses the constant bearing
control to reach the demand. Thus, the expected time to reac
a demand generated at position= (z,0) from vehicle
positionp = (X,Y") is given by

t]_emma 1.1 tells us that there exists a unique point
p* := (X*,Y*) which minimizes the expected travel time.
In addition, we know thatX* = 1¥//2. Obtaining a closed
E[T(p,q)] = form expression forY* does not appear to be possible.
1 W Computing the integral in Eq. (2), with = 1W//2, one can
] / <\/(1 —v2)(X —x)24+Y? vK)dx. obtain
0

W(l —v?
(2 Y (1 1 aW?

The following lemma characterizes the way in which this 2 4Y

expectation varies with the positign Yy \/ a2 \/ a2
] 1+ — — —
Jaw og + v,

2 2
Lemma Ill.1 (Properties of the expected time) (i) 4 4

The expected timeE[T(p,q)] is convex inp, for all  wherea =1 — v2. For each value of and W, this convex
p € [0,W] x Ro. (ii) There exists a unique point expression can be easily numerically minimized oVerto
p* = (W/2,Y*) € R? that minimizesE [T(p, q)]. obtainY*. A plot of Y* as a function ofv for W = 10 is
shown in Fig. 4.

in Ecl:rczg;: ;(OI: Z"’;rtis(')égniglc?rztgosqﬁg tvr;it ég?n'gltﬁgr?ﬁg For the optimal positiorp*, the expected delay between
AR ) ) a demand’s arrival and its service completion is
Hessian ofl'((X,Y"), (0, z)) with respect taX andY". Thus, P

ET(p,q)] = —

for Y > 0, D :=E[T(p*,(0,z))].
. . y? Y(X —x) Thus, a lower bound on the steady-state expected delay
[ gg(TQ 8%8@] L YX -z (X —a)? of any policy is D*. We now characterize the steady-state
o'r 9T | T 3/2 = 7 expected delay of the FCFS poli as) tends to zero.
aYoX  0v? ((1 —0?)(X — )2 + yz) P y polid¥ecrs,

The Hessian is positive semi-definite, which implies tha?heorim I1l.2 (FCFS optimality) Fix anyv < 1. Then as
T(p,q) is convex inp for eachq = (0, z). A — 01, Decps— D*, and the FCFS policy minimizes the

For part (ii), observe that since demands are uniformi§XPected time to service a demand.
randomly generated on the interyal W], X* has a unique Proof: We have shown how to compute the position
minimum of 1W/2. If we can show thakl [T'(p, q)] is strictly  p« .— (X y*) which minimizes Eq. (2). Thus, if the

convex iny” when X — W/2, then we have proved part yenicle is located ap*, then the expected time to service the
(ii). From the 9°T/0Y* term of the Hessian we see thatyemand is minimized. But, as — 0F, the probability that

T(p, q) is strictly convex for allz 7 W/2. But, letingp = demandi + 1 arrives before the vehicle completes service of
(W/2,Y) andq = (0,z) we can write demandi and returns tgp* tends to zero. Thus, the FCFS
1 policy is optimal as\ — 0. [ |
E[T(p,q)] = -y / T(p, q)d. /s op |
W —=v?) Joco,wp\{wy2} B. Minimizing the Worst-Case Time
The integrand is strictly convex for all € [0, W]\ {W/2}, In the previous section we looked at the expected time

implying E [T'(p, q)] is strictly convex on the liné& = 1W/2, to service a demand. This was the metric studied in the
and the existence of a unique minimizé#/2,Y™). B companion paper, and will be the metric of interest in



Section V when we study the FCFS policy for > 0. demands using the FCFS policy, and show that for exery
However, another metric that can be used to determirte more than one demand arrives during this travel time. To

(X*,Y™*) is the worst-case time to service a demand. do this, assume there are many outstanding demands below
the service vehicle, and none above. Suppose the service
Lemma 111.3 (Optimal placement for worst-case) The vehicle completed the service of demanat time ¢; and

location (X*,Y*) that minimizes the worst-case time toposition (z;(¢;),v:(t;)). Let us compute the expected time
service the demand igW/2,0W/2). At this location, to reach demand + 1, with location (x;1(¢:), yit1(t:)).
in the worst-case, the vehicle moves a distanceliof2 ~ Since arrivals are Poisson it follows that(t;) > vi1(t:).
horizontally. To simplify notation we definé\x = |x;(¢;) — x;41(¢;)| and

Proof: Assume thatX* > W/2 (or X* < W/2). Then By = wi(h) yt+1(tt).2Then, :rom = (33
the worst-case time is achieved when a target appears at the T(qi, Qig1) = Az” + Ay _ 1 (Aw + Ay) ]
location (0,0) (resp.(W,0)). One can then move the vehicle 20y 2\ Ay
parallel to thez-axis such thatX' = 1W/2 and thus decrease Taking expectation and noting thAtr and Ay are indepen-
the time taken to service the same target as compared dent
its previous position. This is a contradiction. Henc&, = 1
W/2. E[T(qi, qiv1)] = B (E [A2?]E [fy} +E [Ay]) :

Applying the constant bearing control for the vehicle, we

— 2] iti i
obtain the worst case system time as Now, E [Ay] = 1/), E [Az?] is a positive constant indepen-
dent of A and

1
Tp(Y)= —— 1—02)W2/44+Y2 —0Y ). oo g
) 1—02 (\/( vHWE/4+ Y ) E [A%/} :/ —Xe Mdy = +o0.
SinceT, is solely a function oft”, to minimizeT,,, we must v=0 Y
have ThusE [T(q;, qi+1)] = +oo, and for every\ > 0,
dar,(Y) | _ 0= Y® P AE [T(di, qiv1)] = +oo,
ay |y. \/(1—v2)W2/4+(Y*)2

implying that an infinite number of demands arrive in the

Simplifying, we getY™ = vW/2. B time required to service one. |
Using an argument identical to that in the proof of Next we look at the FCFS policy and give a necessary

Theorem 1.2 we have the following: For fixad< 1, and as condition for its stability.

A — 0T, the FCFS policy, with X* Y*) = (W/2,0W/2),

minimizes the worst-case time to service a demand. Theorem IV.2 (Necessary stability condition for FCFS)

A necessary condition for the stability of the FCFS policy is
V. NECESSARYCONDITIONS FORSTABILITY

In the previous section, we studied the case of fixethd %7 for v < é,
low A — 0%. In this section we look at the problem when \ < 3v2v
A > 0, and determine necessary conditions on the magnitude » O.W,
of X that ensure the FCFS policy remains stable. We also W\/(l +v) (A —log (“;”2))

determine a necessary condition brfor the stability of any
policy asv — 1~, and establish the optimality of the FCFSWhere A ~ 0.62.

policy. We begin with the following. Proof: Suppose the service vehicle completed the

service of demand at timet; at position(z;(t;),y:(¢;)) and

Lemma IV.1 (Special case of equal speeddjor v = 1 d . . '

) o . emand; + 1 is located at(x;11(t;), yi+1(t;)). Also define
there does not exist a stabilizing policy. Az = |25(ts) — 2111 (t:)] and Ay = y;(ts) — yisa (£:). For
Proof: Whenv = 1, given a vehicle locatiorp := ¢ < 1, the travel time between demands is given by

(X,Y) and a demand location with initial locatiog := 1 A 5 5
(z,y), the minimum timeT" in which the vehicle can reach T=1"p <\/(1 — v AT+ Ay? - ”Ay) '
the demand is given by Observe that the functioff is convex inAz and Ay. So
X —2)24+ (Y —qy)2 . by applying Jensen’s inequality, we obtain
T(p,q) = ( 22Y _( ] W7 iy s y, (3
Y E([T] >
and is undefined ifY" < y. Thus, a demand can only be 1

reached if the vehicle is above the demand. From Eq. (3) we T3 (\/(1 —v?)(E[Az])? + (E[Ay])? —vE [Ay})-
see that a necessary stability condition is that a demand'’s Substituting th . for th ted val

coordinate never exceeds that of the service vehicle. The on ubstituting the expressions for the expected values,
policy that can ensure this is the FCFS policy. Thus, we prove 1 (\/(1 vQ)wQ 02 ,Uz)

the result by computing the expected time to travel between £ 71> 1_ 2 VDY




From the necessary condition for stability, (cf. [8]), weshu AW/3 < 1, and thus

have E|[T]
2 2 2 2
LU L o E TN T T PN SN 2
—v “ A1 +v) 18 873 % T3, ’
On simplifying, we obtain
3 s v AW g (VI
A< @ T A1+o)  18v S

This provides a good necessary condition for lowbut we ~ For stability we require thahE [T] < 1, from which we
will be able to obtain a much better necessary condition fd¥€€ that a necessary condition for stability is

large v. A2 - v
SinceT is convex inAx, we can apply Jensen’s inequality A —log <1-
. 18v v 14w
to write
1
1 _
E[TIAyY 2 1— (\/(1—v2)W2/9+Ay2—vAy), I

©) Solving for A when A > log(v/'1 — v?/v) we obtain that
where E[Az] = W/3. Now, the random variable\y is g g(V1—v?/v)

distributed exponentially with parametef\ and probability )\ < 3v2v @
density function - w e i ’

fly) = Sl (1-+2) (4 - log (+557))
Un-conditioning Eq. (5) om\y we obtain The conditionA > log(v/1 — v2/v), implies that the above

R bound holds for alv < 1/v/1+ e*4 ~ 1/2. We now have
* two bounds; Eq. (4) which holds for all < 1, and Eq. (7)
= >
E[T] /0 E[Tlylf (y)dy = which holds forv > 1/2. The final step is to determine the

400 (1 - o2)W2 values ofv for which each bound is active. To do this, we set
v v + 2 _ _Ay/’l)d
) Jo Y vy | e Y.

W 9 the right-hand side of Eq. (4) equal to the RHS of Eq. (7)
v and solve forv* to obtainv* ~ 0.8. Thus, the necessary
(6)  condition for stability is given by Eg. (4) when< 0.8, and

The right hand side can be evaluated using the softwaR¥ EQ. (7) whenv > 0.8. [ ]
Maple® and equals The previous theorem shows that althougmust go to
zero asv — 17, it can go very slowly to0. In fact, the
W AW — 02 necessary condition states thagoes to zero as
2.3y1 02 | 3v 1
AWV = o2 v V—log(1—v)
Y 3v A1 —0?) This goes to zero more slowly than any polynomialir-v).

Finally, we prove that the FCFS is the best policyvas
whereH;(+) is the 1st order Struve function an¥,(-) is 1.

1st order Bessel function of thignd kind. We can perform a
Taylor series expansion of the functi®y () — Y (z) about Theorem IV.3 (Optimality of FCFS) For the limiting case

z = 0 to obtain asv — 17;
1/2 (i) every stabilizing policy must serve the demands in the
Hi(2) - Yi(2) 2 - (Z +Az - Zlog(z)) ’ order in which they arrive;

(i) the stability condition in Theorem IV.2 is necessary for

where A = 1/2 + log(2) — v =~ 0.62. Using the above all policies; and

Frpressn B (0 con be wten e (i) no policy can provide a lower expected delay than the
B A (g (MY FCFS policy,
T A1+4v) 18 & 3v ’ Proof: We begin by proving Part (i). Parts (ii) and (iii)

h h dthe f h are direct consequences. Suppose there is a pétidhat
where we have used the fact that is not does not serve demands FCFS, but can stabilize the
2

v v v system with

M1—0)2  A1-02)  M1l+wv) A=B(1-v),

To obtain a stability condition oA we wish to remove\  for somep > 0, andB > 0. Lett; be the first instant at which
from thelog term. To do this, note that from Eq. (4) we havepolicy P deviates from FCFS. Then, the demand served



immediately aftei is demand+k for somek > 1. When the
vehicle reaches demarid- £ at timet;, 1, demand; + 1 has
moved above the vehicle. To ensure stability, demasmdl

must eventually be served. The time to travel to demiantl
from any demand + j, wherej > 1 is

Az 2 Ay \*  vAy
T(qi+jvqi+1)\/(m) +(1—v2> +1—1;2
Ay vAy Ay
T1-02 1-0v2 1-v’

where Az and Ay are now the minimum of the: and y
distances fromy;; to theq; ;. The random variabldy is
Erlang distributed with shapg—1 > 1 and rate), implying

P[Ay < ¢ <1—e */", for eachc > 0.

Now, sinceA = B(1 —v)? asv — 1—, almost surelyAy >
(1 —w)Y/?=P, Thus

—(p+1/2)

)

T(Qitj, dit1) > (1 —v)
almost surely a3y — 1. Thus, the expected number of
demands that arrive during(q;+;,q;+1) is

AT (i, Git1) > B(1 = )P (1 —v)~ /2
> B(1—v)71/% = to0,
asv — 17. This implies that almost surely the polidy
becomes unstable when it deviates from FCFS. Thus, a

deviation must occur with probability zero as— 1. Thus,
a necessary condition for a policy to stabilize wkth- B(1—

whereC ~ 2.06.

Proof: We begin with the expression for the time
taken for the vehicle from the positiop, coinciding with
a demand, to reach the next demandatsing the constant
bearing control (cf. Definition 11.1). Thus,

VA-?)X -2+ (Y —y)? oY —y)

T(p7q): 171}2 17,02
(X -zl Y-y
<
SVise T ©

where we used the inequalitya? + b < |a| + |b|. Taking
expectation,

- w n v
T3V A1-e?)
since the demands are distributed uniformly in the

direction and Poisson in thg-direction. A sufficient con-
dition for stability is (cf. [8])

E[T]

3 /1—w

<le A< — .
< WV1l+w

The upper bound off’ given by Eq. (8) is very conserva-
tive except for the case whanis very small. Alternatively,
taking expected value af conditioned onAy, and applying

Jensen’s inequality to the square-root part, we obtain

e (\/(1—v2)W2/6+Ay2—vAy>,

AE [T 9)

E[T|Ay] <

1 — 02

v)?, is that as» — 1, the policy must serve demands in thesinceE [Az?] = W?/6. Following steps which are similar

order in which they arrive. But this holds for evepy and
by letting p go to infinity, B(1 — v)? converges to zero for

all v € (0,1]. Thus, a non-FCFS policy cannot stabilize the

system no matter how quickly — 0% asv — 1. Hence,
asv — 17, every stabilizing policy must serve the demand
in the order in which they arrive.

To see parts (ii) and (iii), notice that the definition of the

FCFS policy is that it uses the minimum time control (i.e.
constant bearing control) to move between demands, th

the necessary stability condition in Theorem V.2 holds for

all policies asv — 1~. In addition, the FCFS spends the

to those between Eg. (5) and Eg. (6), we obtain

_ 2
E[T] < W H, AWV1—w
2-v6v1 — 02 V6v
S _ 2 2
Y, AWV1—wv - v . (o)
V6 A1 —v2)
whereH;(-) is the 1st order Struve function an¥(-) is

St order Bessel function of thend kind.
In [9], polynomial approximations have been provided for
the Struve and Bessel functions in the intervgils3] and

minimum amount of time to travel between demands an

thus minimizes the expected delay,. - ,+00). We seek an upper bound for the right-hand side of

(10) whenv is sufficiently large, i.e., when the argument of
H, () andY,(:) is small. Thus, from [9]

z

V. A SUFFICIENT CONDITION FORFCFSSTABILITY
In Section IV we determined a necessary condition for

stability of the FCFS policy. In this section, we will derive 2
the following sufficient condition on the arrival rate that 2(z, =z 1

Y >—(=log=— — for0<z<3
ensures stability for the FCFS policy. 1(2) 2 T <2 %y %) ==

Theorem V.1 (Sufficient stability condition for FCFS) wherez := AW+/T —v?/(v/6v). Substituting into Eq. (10),

The FCFS policy is stable if we obtain
3 M=o E[T] < W V1 =02 2 V6v
) 2
AR forv <3, T 2.v6V1—0? 21/6v T\ AWV1 =02
A< V12v , 0., AWV —w? o AWVI =02\ | v?
W\/(1+v) (C —log (1=2)) NG N M1 —02)



which yields
2 / 2 008
E[T}S)\W (ﬂ-_lgw_l \/g 1_v> 0.07]
120 \ 2 3 2v/2v
1 5~
ito o
Now, let \* be the least upper bound onfor which the oosl \\\\ ;
FCFS policy is unstable, i.e., for every < \*, the FCFS woal [
policy is stable. To obtain\*, we need to solve\*[E [T"] = ool T
1. Using Eq. (11), we can obtain a lower bound &h by ‘ ‘ ‘ ‘
simplifying 0 02 O Demand spesd v o8 !
Fig. 5. The necessary and sufficient conditions for the Etalof the
AF2T2 <7r W V3(1 - v?) ) 1 FCFS policy.
— —log — log — > 1.
120 \2 3 2V2v(1+wv) ) 1+w
From the condition given by Eq. (9), the second term irmhus, the necessary and sufficient conditions for the #habil
the parentheses satisfies of the FCFS policy (and by Theorem IV.3, for any policy)
N T differ by a factor/3.
3 >4/ 71 o Fig. 5 shows a comparison of the necessary and sufficient
) stability conditions for the FCFS policy. It should be noted
Thus, we obtain, that A\ can converge to zero extremely slowly astends
. 120 to one, and still satisfy the sufficient stability conditiam
ATz O _ log (1= Theorem V.1. For example, with = 0.999999, the FCFS
W\/(l +0) (€ ~log (552)) policy can stabilize the system for an arrival rate3g517).

where the constanf’ = 7/2 — log(0.5 - v/3/v/2) ~ 2.06. U
Smc_ey\ < A* implies stability, a sufficient condition for V1. SIMULATIONS
stability is
In this section we present results of numerical experiments
A\ < 12v ) (12) of the FCFS policy. We use these experiments to study how
W\/(l + ) (C —log (1%)) the steady-state expected delay varies with the generation
rate of the demands for different speeds. The policy was
simulated for a fixed number of demands, large enough to
ensure steady state was reached. We obtained the steady
120* 3 11—+ state delay by computing the mean of the delay in the last
—— w7 200 iterations. This was repeated 10 times to obtain an
W\/(1 +v7) (C —log (157)) W ta estimate of the steady statep expected delay for one value
which givesv* ~ 2/3. Forv > v*, one can verify that the of the generatiqn rate and fOIT a given speed. We then
numerical value of the argument of the Struve and BessEjP€at the experiment for four different values of the speed
functions is less thas, and so the approximation used inThe variation of the expected steady-state delay with the
this analysis is valid. Thus, a sufficient condition for digb  9e€neration rate is presented in Fig. 6 for different values o

is given by Eq. (9) fow < 2/3, and by Eq. (12) fop > 2/3. the demand speed. The system is observed to be stable for
- m Jeneration rates up to the sufficient condition for stapilit

which was theoretically established in Section V.
Remark V.2 (Limiting regimes) As v — 07, the sufficient ~ We also compared the steady-state expected delay of the
condition for FCFS stability becomes < 3/, which FCFS policy to the TSP-based policy proposed in companion
is exactly equal to the necessary condition given by paRaper [1], in the region where both policies are stable,(c.f.
(i) of Theorem IV.2. Thus, the condition for stability is Fig. 1). The comparison was performed for two values of

To determine the value of the speetdbeyond which this is
a less conservative condition than Eq. (9), we solve

asymptotically tight in this limiting regime. speed,v = 0.05 and v = 0.25, varying A from zero up
As v — 1, the sufficient condition for FCFS stability to values close to the stability limit of FCFS. The results
becomes are shown in Fig. 7. We observe that in this region, the
\ < V6 FCFS performs significantly better in terms of the steady-
W+/—1log(1 —v)’ state expected delay than the TSP-based policy.
In comparison the necessary condition scales as VII. CONCLUSIONS
3v2 This two part paper has introduced a dynamic vehicle

T Wy/—log(1—v) routing problem with moving demands. In this paper we



——v=0.2
—4—v=05
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studied the cases where the demands have high speed and

where the arrival rate of demands is low. We introduced a
first-come-first-served policy and gave necessary and suffi-
cient conditions on the arrival rate for its stability. Wesal
determined the optimal placement of the vehicle so as to
minimize the worst-case, and the expected delay in seryicin
a demand. We then showed that for fixedas the arrival
rate tends to zero, no policy can perform better than FCFS
in terms of minimizing the worst-case service delay, and the
expected service delay. Finally we showed that &snds to
one, FCFS is the optimal policy, as every stabilizing policy
must service demands in the order in which arrive.

For future work we will extend our results to the case when
demands are generated according to a nonuniform distribu-
tion on the generator, and the case of multiple vehicless Thi
extension has been completed for the placement problem.



