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Dynamic Vehicle Routing with Moving Demands — Part I:
Low speed demands and high arrival rates

Shaunak D. Bopardikar Stephen L. Smith Francesco Bullo aoJ® Hespanha

Abstract— We introduce a dynamic vehicle routing problem  best known policy for the case of high arrival rate. In [4],

in which demands arrive via a temporal Poisson process with decentralized policies are developed for the multiple iserv
a certain arrival rate, and uniformly distributed along a line vehicle versions of the DTRP.

segment. Upon arrival, the demands move in a fixed direction . .
perpendicular to the line with a fixed speed. A service vehicle, The Euclidean traveling salesperson problem (ETSP) con-

modeled as a first-order integrator with speed greater than Sists of determining the minimum length tour through a given
that of the demands, seeks to serve these mobile demands. Forset of points in a region [5]. Vehicle routing with targets
the existence of any stabilizing service policy, we determine moving on straight lines was introduced in [6], where a fixed
a necessary condition on the arrival rate of the demands in number of targets move in the same direction with fixed
terms of the problem parameters; (i) the speed ratio between . .

the demand and service vehicle, and (ii) the length of the speed, and the problem is to ,C"?‘tCh,the max',m‘{m numt_)er
line segment on which demands arrive. Next, we propose a Of targets before they cross a finish line. A variation of this
novel service policy for the vehicle that involves servicing the problem with target motion on piece-wise straight line gath
outstanding demands as per the traveling salesperson path and with varying target speeds has been addressed in [7].
(-TSP) through the moving demands. We derive a sufficient £ the case in which there is no finish line, termed as

condition on the arrival rate of the demands for stability of the t lati | t l | bl TSP
the TSP-based policy, in terms of the problem parameters. We e translational traveling salesperson problem (t- ),

show that in the limiting case in which the demands move much Polynomial-time approximation scheme has been proposed
slower than the service vehicle, the necessary and the sufficient in [8] to catch all targets in minimum time. Other variants

condition_s on the arrival rate are within a constant factor. We of the ETSP in which the points are allowed to move in

also prg‘"de ?]” dupper dbct))u?d or;)tr_\e steady(—jstate expected time jifferent directions have been addressed in [8] and in [9].

spent by each demand before being served. We introduce a dynamic vehicle routing problem in which
. INTRODUCTION demands arrive via a temporal Poisson process with xate

Dynamic vehicle routing problems such as the dynamiénd uniformly randomly on a line segment of finite length
trave”ng repairperson prob|em (DTRP), consider one ((%V Upon arrival, the demands move in a fixed direction
more) service vehicles that seek to serve demands thag¢ arrRerpendicular to the line and with a fixed speed< 1. A
via some spatio-temporal process in a region, and up&grvice vehicle, modeled as a first-order integrator witth un
arrival the demands remain at their location until they aréP€€d, seeks to serve these mobile demands.
served. In this work, we introduce a dynamic vehicle routing Our main contributions are as follows: First, we show that
problem in which the demands move with a specified velod® ensure the existence of a stabilizing policy, i.e., adiei-
ity upon arrival, and we design policies for a single vehicldected time spent by a demand in the environment, we must
that seeks to serve them. This problem has applications figveA < 4/vW. Second, we propose a novel service policy
areas such as perimeter defense, wherein the demands cotftich involves servicing all of the outstanding demands as
be visualized as moving targets trying to cross a regioPer the translational traveling salesperson path (TSBugir
under surveillance by a UAV. Another application is in thehem. We show that a sufficient condition for stability of
automation industry where the demands are objects th&is TSP-based policy is < (1—v%)%/2/20W (1+v)>. For
arrive continuously on a conveyor belt and a robotic arrfhis policy, we also obtain an upper bound on the steady-
seeks to perform a pick-and-place operation on them. state expected time a demand spends in the environment

The DTRP was first introduced in [1] in which the goalbefore being served. As the arrival rate — +oo, the
is to minimize the expected time spent by each demarfiecessary stability condition implies that the demandstmus
before being served. In [1] the authors propose a polidjavev — 07. This regime of low demand speed with high
that is optimal in the case of low arrival rate, and severaTival rate is the focus of this paper. In this regime, the
policies within a constant factor of the optimal in the cas&ecessary and the sufficient stability conditions on thigadrr
of high arrival rate. In [2], they also study multiple sewic rate mentioned above are within a constant factor.
vehicles, and vehicles with finite service capacity. In 8], !N companion paper [10], we analyze a first-come-first-
single policy is proposed which is optimal for the case oferved (FCFS) policy in which the demands are served in the

low arrival rate and performs within a constant factor of th@rder of their arrival. We show that in the regime)of- 07,
the FCFS policy minimizes the expected time spent by a
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for high demand speeds the FCFS can stabilize higher arriiat ETSP(Q) denote the minimum length of a path through
rates. This is summarized in Fig. 1. all the points inQ. The following is an established result.

.f" Theorem I1.2 (Asymptotic TSP length, [12]) If n points
: are distributed independently and identically uniform in a

compact region of areal, then there exists a constafitsp
£l such that ETSP(Q)
lim ——=—" = BrspVA. 1)
' Stabilization impossible n—+00 \/ﬁ
= for any policy The current best estimate of the constantdssp =~
2 0.7120, [13].
©
=
Z |tsp B. The Translational Traveling Salesperson Path
JStable Next, we describe the translational TSP which was pro-
€ . . .
N posed and solved in [8]. This problem is posed as follows.
TSP and FCFS FCFS . : )
stable stable ¢ Given a start poins(t), a set of pointsQ(t) :=
(0,0) Demand speed — (1,0) {qi(t),...,q,(t)} and a finish poinf(t) all mov-
ing with the same constant speednd in the same
Fig. 1. /?Summab:y of stability Iregions for the TST’-bfaseg poéoyl tcTe direction, determine a salesperson path that starts
FCFS policy. Stable service policies can exist only for thgion under i ; :
the dotted line. Curve a-b is due to Theorem IV.1, and curvescdue to from s, visits all points IﬂQ_ ar?d er_]d_s af, and
Theorem V.1. Curves b-c, c-d and d-e, are established in [10] the lengthLr(s, Q, f) of which is minimum.

A solution for this problem is theConvert-to-Static TSP
This paper is organized as follows: we begin with backmethod:
ground results on the traveling salesperson problems in Sec(j) Define the mapf, : R? — R2 by
tion Il. The problem formulation is presented in Section llI T y
The necessary condition for stability is derived in Sectn folz,y) = (ﬁ’ 1_71]2)
The TSP-based service policy and the main results are )
presented in Section V. Simulation results are presented ifi) Compute the static TSP that starts af,(s),

Section VI. passes through the set of points given by
{fv(ql)a ey f?)(qn)} and ends a.'fu(f)-
[I. BACKGROUND RESULTS ONTRAVELING For this method, the following result is established.
SALESPERSONPROBLEMS

In this section we review several results on determining€mma 1.3 (Translational TSP length, [8]) The length
shortest paths through sets of points. In what follows, mive©f the translational TSP is
a set of points in the plane, we are interested in the length v(ys — Ys)
of a path through the points thist not closed These results Lr(s, Q.f) = Lp(s, Q) + T2

will be applied in the analysis in Section V. whereLg (s, Q,f) denotes the length of the static TSP with

A. The Euclidean Traveling Salesperson Path (ETSP)  starting point f,(s) := fu,(zs,ys), passing through the set

We are interested in the following Euclidean TSP problemmc points {f(ax),---, fo(an)}, and ending atf,(f) :=

. i . o . fv(xf7yf)'
Given n static points placed ifR#, determine the
length of the shortest path through all the points. In other words, the length of the translational TSP is optima
An upper bound on the length of such a path for pointg and only if the length of the TSP in the corresponding stati

in a unit square was given by Few [11]. Here we exten§Stance is optimal.
Few’s bound to the case of points in a rectangular region. For I1l. PROBLEM EORMULATION

completeness, we have included the proof in the Appendix. We consider a single service vehicle that seeks to service

) ) . . mobile demands that arrive via a spatio-temporal process on
Lemma II.1 (Euclidean TSP length) Givenn points in @ 4 jine segment with length” along thez-axis, termed the
1 > h rectangle in the plane, wher € R..o, there exists & ganerator The vehicle is modeled as a first-order integrator
path that starts from one of the edges of the rectangle, BassRith speed upper bounded by one. The demands arrive
through each of the: points exactly once, and terminates onypiformly distributed on the generator via a temporal Raiss

the opposite edge with length upper bounded by process with intensity\ > 0, and move with constant speed
V2hn + h+5/2. v < 1 along the positivey-axis, as shown in Fig. 2. We

assume that once the vehicle reaches a demand, the demand
We will also require a result on the length of a path througiis served instantaneously. The vehicle is assumed to have
a large number of points. Given a s@tof n points inR?,  unlimited fuel and demand servicing capacity.



1 (X(), Y1) To prove Theorem IV.1 we begin by looking at the

ﬁ distribution of demands in the service region.
i ! Lemma V.3 (Poisson point process)Suppose the genera-
j tion of demands commences at tith@nd no demands are
0,0) serviced in the interval0,¢]. Let Q denote the set of all
demands ir0, W] x [0, vt] at timet. Then, given a compact
w region R of area A contained in[0, W] x [0, vt],
Fig. 2. The problem set-up. The thick line segment is the geoemf e_XA(;\A)"

mobile demands. The dark circle denotes a demand and the sqerotesl PIRN Q| =n|] = — where X := \/(vWV).
the service vehicle. ’
Proof: Let R = [¢, ¢+ Al] x [h, h+ Ah] be a rectangle
contained in[0, W] x [0,vt] with areaA = A¢Ah. Let us
We define the environment a@s:= [0, W] x R>o C R?,  calculate the probability that at time |R N Q| = n (that is,
and letp(t) = [X(t),Y (t)]" € € denote the position of the the probability thatR containsn points in Q). We have
service vehicle at time. Let Q(¢) C £ denote the set of all

demand locations at time andn(t) the cardinality ofQ(¢). PIRNQ|=n] =
Servicing of a demand; € Q and removing it from the set o0
: . ) , . [h h+Ah
Q occurs when the service vehicle reaches the location of ZP i demands arrived i PR
the demand. A static feedback control policy for the system i=n
is a mapP : £ x 2¢ — R2?, assigning a commanded velocity x P[n of i are generated ifY, ¢ + A/]].

to the service vehicle as a function of the current state
the systemp(t) = P(p(t), Q(t)). Let D; denote the time
that theith demand spends within the st i.e., the delay

cgince the generation process is temporally Poisson and
spatially uniform the above equation can be rewritten as

between the generation of thith demand and the time it is >~ o
serviced. The policyP is stableif under its action, P[[RN Q| =n] =) P[i demands arrived iff0, Ah/v]]
Jim E[Di] < oo, x P[n of i are generated ifo, A/]]. (2)

i.e., the steady state expected delay is finite. Equivaletiie  Now,
policy P is stable if under its actionjm;_, ; E [n(t)] < _ _ e MRV (A\ARfv)i
+00, that is, if the vehicle is able to service demands at & [i demands arrived if0, Ah/v]] = F ;
rate that is—on average—at least as fast as the rate at which '

. . . and,
new demands arrive. In what follows, our goal isdesign

stable control policiedor the system. Pl of i are in[0, Af]] = (z) (M) (1 B M) .
n

W W
IV. A NECESSARY CONDITION FOR STABILITY
go, letting L := A¢/W and H := Ah/v, and substituting
In the above expressions, Eq. (2) becomes

In this section we provide a necessary condition on th
arrival rate for the existence of a stabilizing policy. Wayine
by stating the main result of the section, with the remainder = (\H)! (7

_ _ —AH71n
of the section dedicated to its proof. P[RNQ|=n] =L} il

) (1-L)".

iy . ®)
Theorem IV.1 (Necessary condition for stability) A nec-  Rewriting(AH)? as(A\H)™(AH)"~%, and using the definition
essary condition for the existence of a stabilizing poligy i

that iy _ i
)\<i n nl(i —n)!’

oW we can write Eq. (3) as
Before proving this result we state one of its key conse- n 00 ,
quences. PRNQ|=n] = o NH (ALH) Z (AH(1-1L))
n! 7!

n

i=n

j=0
Coro!lgry V.2 (Const_ant fraction servi_ce) A ~ necessary  AHAAH(I-L) (ALH)"
condition for the existence of a policy which services a - ¢ nl
fraction ¢ € (0, 1] of the demands is that _ AL (ALH)"
P o
= oW Finally, sinceLH = A/(vW), we obtain
Thus, for a fixedv < 1 no policy can service a constant A (xA)m
fraction of the demands as — +oo. P[RNQI=n]=e " >——,

n!



where A := \/(vW). Thus, the result is established forwhere we have omitted’s dependence op andq. If the
rectangles. However, every compact region can be writteset S does not intersect a boundary &fit has arearT?,
as a countable union of rectangles, and thus the resuitit in general its area isS7| < 772. Now, by Lemma IV.3
holds for every compact, measurable region contained the demands in an unserviced region are uniformly randomly

[0, V] x [0, vt]. B distributed with density\ = \/(vW). Let us compute the
_ o distribution of 7,; := mingeo T'(p,q). For every vehicle
Remark V.4 (Uniformly distributed demands) position p chosen before the generation of demands, the

Lemma IV.3 shows us that the number of demands iprobability that7; > T is given by
an unserviced region is Poisson distributed with rate 5152l AT W)
A/(vW), and conditioned on this number, the demands ard(Ta > 1] =P[|Sp N Q[ = 0] > e 11771 > 77 /1T,

distributed uniformly. ] Hence we have

We now establish a result on the expected time to travel +o0 +o0 )
from a demand to its nearest neighbor. For this we require ak[Ta] = / P[Tq > T]dT = / e AT/ W ar
result on catching a demand in minimum time (cf. Fig. 3). 0 0
VT 1 oW
Proposition IV.5 (Minimum time control, [14]) Given 2/Ar/(oW) 2V A
the locationsp := (X,Y) € £ andq := (z,y) € £ at time
t of the vehicle and a demand, respectively, then the motion
of the vehicle towards the poirit, y + vT'), where

[ |
We can now prove Theorem IV.1.

Proof: [Proof of Theorem IV.1] A necessary condition
VI=—v)(X 222+ (Y —y)2 oY —y) for the stability of any policy (see, for example [1]) is that
T(pa q) = 2 - 2

1—w 1—-w
minimizes the time taken by the vehicle to reach the demand.
whereE [T is the steady-state expected travel time between

p—(X.Y) demandsi andi + 1. For every policyE [T > E[Ty] >

11/4Y. Thus a necessary condition for stability is that

AE[T] < 1,

C = (z,y+T)
v

l01=(9MJ) -

(0,0) Finally, Corollary 1V.2 follows since in order to service a
’ fraction ¢ we require that\E [Ty] < 1.

w

V. THE TSPBASED POLICY AND THE MAIN RESULT
Fig. 3. lllustration of Proposition IV.5.

In this section, we present a novel service policy for the
vehicle which is based on computation of the translational
Lemma IV.6 (Travel time bound) Consider the setQ of traveling salesperson path (TSP) path through successive
demands ir€ at timet¢. LetT,; be a random variable giving groups of outstanding demands.
the minimum amount of time required to travel to a demand ) ) )
in Q from a vehicle positiorfX,Y'), selecteda priori. Then A. The TSP-Based Service Policy and the Main Result

L fow The TSP-based service policy is as follows:

E[Ty] > = .

T = 54/
Proof: To obtain a lower bound on the minimum - - — —

travel time we can assume th& contains many demands Assumes Se(;wclule dvehlcled hz;s |n|t||al p05|t|og>_(, );)'

(i.e., t is very large), and no demands have been serviced..f N ?n d'a deman dS .a\f[ﬁ owgfcoorélrses.

Consider a demand irQ with position (z,y) at time¢. ' I nO outstanding cemands in the environmeren:

Using Proposition V.5, we can write the travel tiriefrom 2 Move towards the generating line for a time interval

— — i of Y/(1+v).
p:=(X,Y) to q:= (x,y) implicitly as s else

T(p,q)? = (X —2)* + (Y —y) —vT(p,q))*>. (4) 4 | LetV be a“virtual” demand located &tX,0)
Thus, we can define the s, such that any demand isi; moving with speed in the positivey-direction.

can be reached froriX, Y) in T time units. From Eq. (4) Service all the outstanding demands by following a

we see that the sefr is a circle of radiusl” centered at tranglatlgnal TS.P starting frorfiX, Y), and
; terminating at virtual demantf’.
X,Y —oT. That is, —

6 Repeat.

TSP-based service policy

[62]

Sri={(a,y) €€+ (X —2)> + (¥ — o) — y)* <T?},




. and so on, whereA = WY({;) is the area of
14 R(X(t:),Y(t;)). We now seek an upper bound for the
= 71 length L7(p(¢:), {q1,---,9n, }, V(¢;)) of the translational
4 q TSP for which we use the Convert-to-Static TSP method
(cf. Section II-A). Forn; = k > 1, invoking Lemma 11.3
L - 1& and writing Y; := Y (¢;), for convenience,
< v
Lr(pti). {ai,. .., ar}, V(t:))
w Y
= Lo(p(t) far, ..}, V(t) + S0 21
indde the Shaded recianbular reglEI . 1) a6 per the ranaitional TSP o;
{ﬂzt begins a{X,Y’) and ggerminagtaes at the virtlf)al demaid = Lp(p(t), {au, sard, V(t) - 1— 2

2WYik Y; Y14

< =75 T + )
An instance of this policy is illustrated in Fig. 4. The TSP- (1—02)32 140 21-02
based service policy gives the following result.

where the second equality is due $§,) = 0, and the
Theorem V.1 (TSP-based policy) (i) The TSP-based inequality is obtained using Lemma Il.1. Thus, we have
policy is stable if

Y, _
3/2 E[Y; Y] < ¢ —AA
0= Vi |¥i) < vp=te My
2UW(1 o) 2WY;k Y; 5W AA)F
(i) assuming that the TSP-based policy is stable, theg ( a 213/2 : ! 2)( k') e M,
steady state expected time spent by a demand in the=: —v?) TV 2Vl-w :

environment is no larger than - )
where A\ = \/vW from Lemma IV.3. Collecting the terms
sW 1 ) with vY;/(1 + v) together, we obtain

2v1—v? (1/(1 +0) — /2Wod/(1 — v2)3/2

o0 Y

Proof: Let R(X,Y) denote the regiof, W] x [0,Y] EY; = o
defined by the positio(X,Y") of the service vehicle, as Y k=0
shown in Fig. 4. Observe that at the end of every iteration of > 202WY;k 50W AR 5,
this policy, all outstanding demands have their y-coorigisa Z ( (1 —v2)3/2 QW) o
less than or equal to that of the vehicle, and hence would be k=1 )
contained inR(X,Y). Let the vehicle be located gi(t;) = vY; 202W 50W (1 — e 24)

(X (t;),Y(t;)) at time instant;. If there are no outstanding — 1 + ¢ + (1— v2)3/2]E [VaYilYi] + 2./1 — 2
demands ifR (X (¢;),Y (¢;)), then ’;S:;) is the distance that

the vehicle moves towards the generator. Thus, we have vY; 202W /Y,E Y ﬂ
Y(t:)  oY(t) S 14w (1—v2)3/2 ) 2V1 2
Y(tic1) =Y (t;) — L=

(bi41) = Y (t:) l+v 14w BN 2vW JEVEmT 4 50W
if there are no unserviced demands R(X (¢;),Y(¢;)) ~— 1+w 2)3/2 Efns 21 — v?
at time ¢;. Otherwise, if there exist unserviced demands 5
{1, a0} Wheren; > 1, in R(X(t,),Y(t;)), thenwe _ VYi | 20°W ﬁ‘/
have 1+ 2)3/2 V1—2 1;2

Y(ti-i-l) - ULT(p(t1)7 {q17 e aqni}v V(t1))7 o IUYVT', + QUQW
B (1 —0v2)3/2 V1—22 02’

where L1 (p(t;),{q1,...,dn, }, V(t;)) is the time taken for 14w
the vehicle as per the translational TSP that begins(&?),
serves alln; demands and ends at the virtual demaf(d;).
Since the distribution of the demands insi®éX (¢;), Y (¢;))

is spatially Poisson (cf. Lemma IV.3 from Section V), we
have

where the inequality in the fourth step follows by applying
Jensen’s inequality to the conditional expectation and the
equality in the fifth step is due to the arrival process being
spatially Poisson (cf. Lemma IV.3). Using the law of itechte
expectation, we have

vY (t;) Y
Y(tiz1) = —2,  wp. )
(tiv1) p-e L E[Yit1] = E[E[Yiq1|Yi]]
=vLr(p(t;), {ai},V(t)), w.p. (/\A)?* , v DN 74 5W

5 < a2z
=vLr(p(t:i), {a,qaz}, V(t:)), w.p. e I+w (1—w02)3/




which is a linear recurrence i [Y;]. Thus,lim; ., E[Y;] whereA :=Y;WW is the area of the region below the vehicle
is finite if at theith iteration. Thus, conditioned o¥j; being bounded

( 2)3/2 away from0, we have
v 2Wol 1—wv

1o (1 —v2)3/2 sleaAs 2Wo(l 4 v)? E [Yi1|Vi] = vBrspE [VIWn:Y]]

) L " < vBrspv WYE [n;],
Thus, if \ satisfies the condition above, then expected

number of demands in the environment is finite and the TShere we have applied Jensen's inequality. Using
based policy is stable. Lemma IV.3,E [n;] = WY;A/(vW) and thus

We now compute an upper bound on the steady state \
expected time a demand spends in the environment. If we E [Y;41]Y;] < ’U,BTSP\/Wg}/?W = BrspVIWWY;.

denoteq := & + ,/2Wwr_p.— W gndy =

1+v (1—v2)3/2? 2V/1—v2

. Thus, th fficient dition for stability of the TSP-ba
lim; 4~ E [Y;], then the recurrence Eq. (5) implies us, the sufficient conartion for Sablity ot the s€

policy as\ — +oo (and thusy — 07) is
vb 1 2
A< g N
BrspoW oW
Thus, in the steady state, the vehicle would be at a distanggere 3rgp ~ 0.712. Hence, in the limiting regime as

of at mostvb/(1 — a) from the generator in expected value.) — o, the sufficient stability condition for the TSP-based
Suppose thgth demand arrived between time iteratiansl  policy is within a constant factor of the policy independent
andi, i.e., in the time intervalt;_1,;]. Then, the distance necessary condition.
traveled by demand before being serviced is at most, 1,
assuming that it is the first demand to arrive in the interval VI. SIMULATIONS
(ti-1,t;] and the last among them to be serviced. Thus, the |n this section we present results of numerical experiments
time spent by thejth demand in the environment (i.e., theof the TSP-based policy. THe nker n! solver was used to
delay) satisfies generate approximations to the optimal TSP tour. We use
Dj <Yiq1/v. these experiments to study how the steady-state expected
delay varies with the generation rate of the demands for
Taking expectation, ag — +oc, we must also haveé —  different speeds. The policy was simulated for a fixed number
+oo; otherwise, ifi — i* < +oo, then it would mean of iterations, large enough to ensure that steady-state was
that there are infinite number of demands which arrive ireached. We obtained the steady-state delay by computing
(ti=—1,t;+], contradicting the fact that the system is stablethe mean of the delay in the a8 iterations. This was
Thus, the steady state expected time spent by a demandrépeatedl0 times to obtain an estimate of the steady-state

Y < }
“1—a

the environment satisfies expected delay for one value of the generation rate and for a
- b given speed. We then repeat the experiment for three differe
jliﬁloo]E [Dj] < lim E[Yin]/v=Y/v<—, values of the speed. The variation of the expected delay with

the generation rate is presented in Fig. 5 for differenteslu
which is bounded if\ < (1 —v?)3/2/2Wv(1 + v)2. m of speed.
We observe that for sufficiently large values ofsuch
B. Limiting Case of Low Speed Demands asv = 0.2, the necessary condition on the arrival rate is
almost4 times that of the arrival rate that causes instability.
However, this ratio decreases aseduces. Specifically, for

0+ Recall that for thi h Hicient stabilit it v = 0.05, the ratio is approximatel2.5. These observations
- Recall that for this case, the sufficient stability commti -, o - ngjstent with our theoretical analysis that predicis

for the TSP-based policy is théft< 1/(2UW)‘ This differs in the limit asv — 07, the ratio of the necessary to sufficient
by a factor of8 from the policy independent necessary.q . ition on)\ tends to2

stability condition of A < 4/(vWW). By utilizing the tight
asymptotic expression for the length of the TSP path, given  VII. CONCLUSIONS ANDFUTURE DIRECTIONS

in Theorem ”'.2’ in place of the_bound in Lemma 1.1, We  \ye introduced a vehicle routing problem in which a ser-
can reduge this fgctor to.appr-o>.<|mat@]y . vice vehicle seeks to serve demands that arrive via a Poisson
To begin, consider an iteratianof the TSP-based policy, prcess on a line segment and that move with a fixed speed
and letY; > 0 be the position of the service vehicle. Then, in, 5 girection perpendicular to the line. For the existence
the limit asA — oo, the number of outstanding demandsyt 5 stapilizing service policy, we first derived a necessary
in that iterationn; — +oo. Thus, applying Theorem 1.2 .,njition on the arrival rate of the demands as a function

and Lemma I1.1, the position of the vehicle at the end of thg¢ (he speed ratio between the demands and the vehicle, and
iteration is given by

In this section we focus on the case when- +oc and,
by the necessary stability condition in Theorem IV~

1l'i nkern is written in ANSI C and is freely available for academic
Yit1 = vf01spvV i A = vlBrspv/n YW, research use attt p: // ww. t sp. gat ech. edu/ / concorde. ht m .
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servicing all the outstanding demands as per the transédtio

TSP through the moving demands. We derived a sufficient APPENDIX

condition on the arrival rate of the demands for stability of _ .

the TSP-based policy. In the limiting case of the relative In this Appendix we present the.pro.of .Of Lemma II.1.
speed tending to zero, we showed that the necessary and fH@OT Suppose the rectangular region is given(by. o <

sufficient conditions on the arrival rate are within a consta 1,0 <y < h. Letm be a positive integer (to be chosen

factor. We also provided an upper bound on the expectéﬁter) and let the: points be denoted byql""’qu}' we .
w construct two paths through the points. The first cosisist

time spent by the demand in the environment before bei
pent by 1 (a) them + 1 linesy = 0,h/m, 2h/m, ..., h; (b) then

served. In companion paper [10], we analyze the first-com h di ; h of theooi h
first-served (FCFS) policy and show that in the regimes ginortest distances from each of thepoints to the nearest

high demand speeds, the policy is stable for higher arriv f“Ch, line, each traveled twice, and () suitable pomqns of
rates than the TSP-based policy. Further, we show that in tH&E linesz =0,0<y < h, andz =1,0 <y < h. This is
high demand speed regime, the FCFS is the optimal polic ustrated in Fig. 6. The length of this path is

In the future, we envision to address versions of the n
present problem involving multiple service vehicles. Aret lh=m+1+4+2 Z dy(q;) + h,
interesting direction is to consider non-uniform spatraival i=1

of the demands on the generating line. _ )
where the notationd;(q;) denotes the shortest distance
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Fig. 6. lllustration of the proof of Theorem Il.1. The dotdicate the
locations of the points inside a rectangle of sizex h. The first of the
two paths considered in the proof through the points begind a) and
follows the direction of the arrows, visiting a point wheeeit is within a
distance ofh/2m for a specific integern from the solid horizontal lines.



