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Dynamic Vehicle Routing with Moving Demands – Part I:
Low speed demands and high arrival rates

Shaunak D. Bopardikar Stephen L. Smith Francesco Bullo João P. Hespanha

Abstract— We introduce a dynamic vehicle routing problem
in which demands arrive via a temporal Poisson process with
a certain arrival rate, and uniformly distributed along a line
segment. Upon arrival, the demands move in a fixed direction
perpendicular to the line with a fixed speed. A service vehicle,
modeled as a first-order integrator with speed greater than
that of the demands, seeks to serve these mobile demands. For
the existence of any stabilizing service policy, we determine
a necessary condition on the arrival rate of the demands in
terms of the problem parameters; (i) the speed ratio between
the demand and service vehicle, and (ii) the length of the
line segment on which demands arrive. Next, we propose a
novel service policy for the vehicle that involves servicing the
outstanding demands as per the traveling salesperson path
(t-TSP) through the moving demands. We derive a sufficient
condition on the arrival rate of the demands for stability of
the TSP-based policy, in terms of the problem parameters. We
show that in the limiting case in which the demands move much
slower than the service vehicle, the necessary and the sufficient
conditions on the arrival rate are within a constant factor. We
also provide an upper bound on the steady-state expected time
spent by each demand before being served.

I. I NTRODUCTION

Dynamic vehicle routing problems such as the dynamic
traveling repairperson problem (DTRP), consider one (or
more) service vehicles that seek to serve demands that arrive
via some spatio-temporal process in a region, and upon
arrival the demands remain at their location until they are
served. In this work, we introduce a dynamic vehicle routing
problem in which the demands move with a specified veloc-
ity upon arrival, and we design policies for a single vehicle
that seeks to serve them. This problem has applications in
areas such as perimeter defense, wherein the demands could
be visualized as moving targets trying to cross a region
under surveillance by a UAV. Another application is in the
automation industry where the demands are objects that
arrive continuously on a conveyor belt and a robotic arm
seeks to perform a pick-and-place operation on them.

The DTRP was first introduced in [1] in which the goal
is to minimize the expected time spent by each demand
before being served. In [1] the authors propose a policy
that is optimal in the case of low arrival rate, and several
policies within a constant factor of the optimal in the case
of high arrival rate. In [2], they also study multiple service
vehicles, and vehicles with finite service capacity. In [3],a
single policy is proposed which is optimal for the case of
low arrival rate and performs within a constant factor of the
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best known policy for the case of high arrival rate. In [4],
decentralized policies are developed for the multiple service
vehicle versions of the DTRP.

The Euclidean traveling salesperson problem (ETSP) con-
sists of determining the minimum length tour through a given
set of points in a region [5]. Vehicle routing with targets
moving on straight lines was introduced in [6], where a fixed
number of targets move in the same direction with fixed
speed, and the problem is to catch the maximum number
of targets before they cross a finish line. A variation of this
problem with target motion on piece-wise straight line paths
and with varying target speeds has been addressed in [7].
For the case in which there is no finish line, termed as
the translational traveling salesperson problem (t-TSP),a
polynomial-time approximation scheme has been proposed
in [8] to catch all targets in minimum time. Other variants
of the ETSP in which the points are allowed to move in
different directions have been addressed in [8] and in [9].

We introduce a dynamic vehicle routing problem in which
demands arrive via a temporal Poisson process with rateλ,
and uniformly randomly on a line segment of finite length
W . Upon arrival, the demands move in a fixed direction
perpendicular to the line and with a fixed speedv < 1. A
service vehicle, modeled as a first-order integrator with unit
speed, seeks to serve these mobile demands.

Our main contributions are as follows: First, we show that
to ensure the existence of a stabilizing policy, i.e., a finite ex-
pected time spent by a demand in the environment, we must
haveλ ≤ 4/vW . Second, we propose a novel service policy
which involves servicing all of the outstanding demands as
per the translational traveling salesperson path (TSP) through
them. We show that a sufficient condition for stability of
this TSP-based policy isλ < (1− v2)3/2/2vW (1+ v)2. For
this policy, we also obtain an upper bound on the steady-
state expected time a demand spends in the environment
before being served. As the arrival rateλ → +∞, the
necessary stability condition implies that the demands must
havev → 0+. This regime of low demand speed with high
arrival rate is the focus of this paper. In this regime, the
necessary and the sufficient stability conditions on the arrival
rate mentioned above are within a constant factor.

In companion paper [10], we analyze a first-come-first-
served (FCFS) policy in which the demands are served in the
order of their arrival. We show that in the regime ofλ → 0+,
the FCFS policy minimizes the expected time spent by a
demand before being served; while in the regime ofv → 1−,
the FCFS is the optimal policy. Thus, for low demand speeds
the TSP-based policy can stabilize higher arrival rates, while



for high demand speeds the FCFS can stabilize higher arrival
rates. This is summarized in Fig. 1.
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Fig. 1. A summary of stability regions for the TSP-based policyand the
FCFS policy. Stable service policies can exist only for the region under
the dotted line. Curve a-b is due to Theorem IV.1, and curve c-f is due to
Theorem V.1. Curves b-c, c-d and d-e, are established in [10].

This paper is organized as follows: we begin with back-
ground results on the traveling salesperson problems in Sec-
tion II. The problem formulation is presented in Section III.
The necessary condition for stability is derived in SectionIV.
The TSP-based service policy and the main results are
presented in Section V. Simulation results are presented in
Section VI.

II. BACKGROUND RESULTS ONTRAVELING

SALESPERSONPROBLEMS

In this section we review several results on determining
shortest paths through sets of points. In what follows, given
a set of points in the plane, we are interested in the length
of a path through the points thatis not closed. These results
will be applied in the analysis in Section V.

A. The Euclidean Traveling Salesperson Path (ETSP)

We are interested in the following Euclidean TSP problem.

Given n static points placed inR2, determine the
length of the shortest path through all the points.

An upper bound on the length of such a path for points
in a unit square was given by Few [11]. Here we extend
Few’s bound to the case of points in a rectangular region. For
completeness, we have included the proof in the Appendix.

Lemma II.1 (Euclidean TSP length) Given n points in a
1 × h rectangle in the plane, whereh ∈ R>0, there exists a
path that starts from one of the edges of the rectangle, passes
through each of then points exactly once, and terminates on
the opposite edge with length upper bounded by

√
2hn + h + 5/2.

We will also require a result on the length of a path through
a large number of points. Given a setQ of n points inR

2,

let ETSP(Q) denote the minimum length of a path through
all the points inQ. The following is an established result.

Theorem II.2 (Asymptotic TSP length, [12]) If n points
are distributed independently and identically uniform in a
compact region of areaA, then there exists a constantβTSP

such that

lim
n→+∞

ETSP(Q)√
n

= βTSP

√
A. (1)

The current best estimate of the constant isβTSP ≃
0.7120, [13].

B. The Translational Traveling Salesperson Path

Next, we describe the translational TSP which was pro-
posed and solved in [8]. This problem is posed as follows.

Given a start points(t), a set of pointsQ(t) :=
{q1(t), . . . ,qn(t)} and a finish pointf(t) all mov-
ing with the same constant speedv and in the same
direction, determine a salesperson path that starts
from s, visits all points inQ and ends atf , and
the lengthLT (s,Q, f) of which is minimum.

A solution for this problem is theConvert-to-Static TSP
method:

(i) Define the mapfv : R
2 → R

2 by

fv(x, y) =
( x√

1 − v2
,

y

1 − v2

)

.

(ii) Compute the static TSP that starts atfv(s),
passes through the set of points given by
{fv(q1), . . . , fv(qn)} and ends atfv(f).

For this method, the following result is established.

Lemma II.3 (Translational TSP length, [8]) The length
of the translational TSP is

LT (s,Q, f) = LE(s,Q, f) +
v(yf − ys)

1 − v2
,

whereLE(s,Q, f) denotes the length of the static TSP with
starting pointfv(s) := fv(xs, ys), passing through the set
of points {fv(q1), . . . , fv(qn)}, and ending atfv(f) :=
fv(xf , yf ).

In other words, the length of the translational TSP is optimal
if and only if the length of the TSP in the corresponding static
instance is optimal.

III. PROBLEM FORMULATION

We consider a single service vehicle that seeks to service
mobile demands that arrive via a spatio-temporal process on
a line segment with lengthW along thex-axis, termed the
generator. The vehicle is modeled as a first-order integrator
with speed upper bounded by one. The demands arrive
uniformly distributed on the generator via a temporal Poisson
process with intensityλ > 0, and move with constant speed
v < 1 along the positivey-axis, as shown in Fig. 2. We
assume that once the vehicle reaches a demand, the demand
is served instantaneously. The vehicle is assumed to have
unlimited fuel and demand servicing capacity.
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Fig. 2. The problem set-up. The thick line segment is the generator of
mobile demands. The dark circle denotes a demand and the square denotes
the service vehicle.

We define the environment asE := [0,W ] × R≥0 ⊂ R
2,

and letp(t) = [X(t), Y (t)]T ∈ E denote the position of the
service vehicle at timet. Let Q(t) ⊂ E denote the set of all
demand locations at timet, andn(t) the cardinality ofQ(t).
Servicing of a demandqi ∈ Q and removing it from the set
Q occurs when the service vehicle reaches the location of
the demand. A static feedback control policy for the system
is a mapP : E ×2E → R

2, assigning a commanded velocity
to the service vehicle as a function of the current state of
the system:ṗ(t) = P(p(t),Q(t)). Let Di denote the time
that theith demand spends within the setQ, i.e., the delay
between the generation of theith demand and the time it is
serviced. The policyP is stable if under its action,

lim
i→+∞

E [Di] < +∞,

i.e., the steady state expected delay is finite. Equivalently, the
policy P is stable if under its action,limt→+∞ E [n(t)] <
+∞, that is, if the vehicle is able to service demands at a
rate that is—on average—at least as fast as the rate at which
new demands arrive. In what follows, our goal is todesign
stable control policiesfor the system.

IV. A N ECESSARY CONDITION FOR STABILITY

In this section we provide a necessary condition on the
arrival rate for the existence of a stabilizing policy. We begin
by stating the main result of the section, with the remainder
of the section dedicated to its proof.

Theorem IV.1 (Necessary condition for stability) A nec-
essary condition for the existence of a stabilizing policy is
that

λ ≤ 4

vW
.

Before proving this result we state one of its key conse-
quences.

Corollary IV.2 (Constant fraction service) A necessary
condition for the existence of a policy which services a
fraction c ∈ (0, 1] of the demands is that

λ ≤ 4

c2vW
.

Thus, for a fixedv < 1 no policy can service a constant
fraction of the demands asλ → +∞.

To prove Theorem IV.1 we begin by looking at the
distribution of demands in the service region.

Lemma IV.3 (Poisson point process)Suppose the genera-
tion of demands commences at time0 and no demands are
serviced in the interval[0, t]. Let Q denote the set of all
demands in[0,W ]× [0, vt] at timet. Then, given a compact
regionR of areaA contained in[0,W ] × [0, vt],

P[|R ∩ Q| = n] =
e−λ̄A(λ̄A)n

n!
, whereλ̄ := λ/(vW ).

Proof: Let R = [ℓ, ℓ+∆ℓ]× [h, h+∆h] be a rectangle
contained in[0,W ] × [0, vt] with areaA = ∆ℓ∆h. Let us
calculate the probability that at timet, |R∩Q| = n (that is,
the probability thatR containsn points inQ). We have

P[|R ∩ Q| = n] =
∞
∑

i=n

P

[

i demands arrived in

[

h

v
,
h + ∆h

v

]]

× P[n of i are generated in[ℓ, ℓ + ∆ℓ]].

Since the generation process is temporally Poisson and
spatially uniform the above equation can be rewritten as

P[|R ∩ Q| = n] =
∞
∑

i=n

P [i demands arrived in[0,∆h/v]]

× P[n of i are generated in[0,∆ℓ]]. (2)

Now,

P [i demands arrived in[0,∆h/v]] =
e−λ∆h/v(λ∆h/v)i

i!
,

and,

P[n of i are in [0,∆ℓ]] =

(

i

n

)(

∆ℓ

W

)n(

1 − ∆ℓ

W

)i−n

.

So, lettingL := ∆ℓ/W and H := ∆h/v, and substituting
in the above expressions, Eq. (2) becomes

P[|R ∩ Q| = n] = e−λHLn
∞
∑

i=n

(λH)i

i!

(

i

n

)

(1 − L)
i−n

.

(3)
Rewriting(λH)i as(λH)n(λH)n−i, and using the definition

(

i

n

)

=
i!

n!(i − n)!
,

we can write Eq. (3) as

P[|R ∩ Q| = n] = e−λH (λLH)n

n!

∞
∑

j=0

(λH(1 − L))j

j!

= e−λH+λH(1−L) (λLH)n

n!

= e−λLH (λLH)n

n!
.

Finally, sinceLH = A/(vW ), we obtain

P[|R ∩ Q| = n] = e−λ̄A (λ̄A)n

n!
,



where λ̄ := λ/(vW ). Thus, the result is established for
rectangles. However, every compact region can be written
as a countable union of rectangles, and thus the result
holds for every compact, measurable region contained in
[0,W ] × [0, vt].

Remark IV.4 (Uniformly distributed demands)
Lemma IV.3 shows us that the number of demands in
an unserviced region is Poisson distributed with rate
λ/(vW ), and conditioned on this number, the demands are
distributed uniformly. �

We now establish a result on the expected time to travel
from a demand to its nearest neighbor. For this we require a
result on catching a demand in minimum time (cf. Fig. 3).

Proposition IV.5 (Minimum time control, [14]) Given
the locationsp := (X,Y ) ∈ E and q := (x, y) ∈ E at time
t of the vehicle and a demand, respectively, then the motion
of the vehicle towards the point(x, y + vT ), where

T (p,q) :=

√

(1 − v2)(X − x)2 + (Y − y)2

1 − v2
− v(Y − y)

1 − v2
,

minimizes the time taken by the vehicle to reach the demand.

C = (x, y + vT )

p = (X,Y )

q = (x, y)

W

(0, 0)

Fig. 3. Illustration of Proposition IV.5.

Lemma IV.6 (Travel time bound) Consider the setQ of
demands inE at timet. Let Td be a random variable giving
the minimum amount of time required to travel to a demand
in Q from a vehicle position(X,Y ), selecteda priori. Then

E [Td] ≥
1

2

√

vW

λ
.

Proof: To obtain a lower bound on the minimum
travel time we can assume thatQ contains many demands
(i.e., t is very large), and no demands have been serviced.
Consider a demand inQ with position (x, y) at time t.
Using Proposition IV.5, we can write the travel timeT from
p := (X,Y ) to q := (x, y) implicitly as

T (p,q)2 = (X − x)2 + ((Y − y) − vT (p,q))2. (4)

Thus, we can define the setST , such that any demand inST

can be reached from(X,Y ) in T time units. From Eq. (4)
we see that the setST is a circle of radiusT centered at
X,Y − vT . That is,

ST := {(x, y) ∈ E : (X − x)2 + ((Y − vT ) − y)2 ≤ T 2},

where we have omittedT ’s dependence onp andq. If the
setST does not intersect a boundary ofE it has areaπT 2,
but in general its area is|ST | ≤ πT 2. Now, by Lemma IV.3
the demands in an unserviced region are uniformly randomly
distributed with densitȳλ = λ/(vW ). Let us compute the
distribution of Td := minq∈Q T (p,q). For every vehicle
position p chosen before the generation of demands, the
probability thatTd > T is given by

P[Td > T ] = P[|ST ∩Q| = 0] ≥ e−λ̄|ST | ≥ e−λπT 2/(vW ).

Hence we have

E [Td] ≥
∫ +∞

0

P[Td > T ]dT ≥
∫ +∞

0

e−λπT 2/(vW )dT

=

√
π

2
√

λπ/(vW )
=

1

2

√

vW

λ
.

We can now prove Theorem IV.1.
Proof: [Proof of Theorem IV.1] A necessary condition

for the stability of any policy (see, for example [1]) is that

λE [T ] ≤ 1,

whereE [T ] is the steady-state expected travel time between
demandsi and i + 1. For every policyE [T ] ≥ E [Td] ≥
1
2

√

vW
λ . Thus a necessary condition for stability is that

λ
1

2

√

vW

λ
≤ 1 ⇔ λ ≤ 4

vW
.

Finally, Corollary IV.2 follows since in order to service a
fraction c we require thatcλE [Td] < 1.

V. THE TSP-BASED POLICY AND THE MAIN RESULT

In this section, we present a novel service policy for the
vehicle which is based on computation of the translational
traveling salesperson path (TSP) path through successive
groups of outstanding demands.

A. The TSP-Based Service Policy and the Main Result

The TSP-based service policy is as follows:

TSP-based service policy
Assumes: Service vehicle has initial position(X,Y ),

and all demands have lowery-coordinates.
if no outstanding demands in the environmentthen1

Move towards the generating line for a time interval2

of Y/(1 + v).
else3

Let V be a “virtual” demand located at(X, 0)4

moving with speedv in the positivey-direction.
Service all the outstanding demands by following a5

translational TSP starting from(X,Y ), and
terminating at virtual demandV .

Repeat.6
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Fig. 4. The TSP-based policy. The vehicle serves all outstanding demands
inside the shaded rectangular regionR(X, Y ) as per the translational TSP
that begins at(X, Y ) and terminates at the virtual demandV .

An instance of this policy is illustrated in Fig. 4. The TSP-
based service policy gives the following result.

Theorem V.1 (TSP-based policy) (i) The TSP-based
policy is stable if

λ <
(1 − v2)3/2

2vW (1 + v)2
, and,

(ii) assuming that the TSP-based policy is stable, the
steady state expected time spent by a demand in the
environment is no larger than

5W

2
√

1 − v2

(

1

1/(1 + v) −
√

2Wvλ/(1 − v2)3/2

)

.

Proof: Let R(X,Y ) denote the region[0,W ] × [0, Y ]
defined by the position(X,Y ) of the service vehicle, as
shown in Fig. 4. Observe that at the end of every iteration of
this policy, all outstanding demands have their y-coordinates
less than or equal to that of the vehicle, and hence would be
contained inR(X,Y ). Let the vehicle be located atp(ti) =
(X(ti), Y (ti)) at time instantti. If there are no outstanding
demands inR(X(ti), Y (ti)), then Y (ti)

1+v is the distance that
the vehicle moves towards the generator. Thus, we have

Y (ti+1) = Y (ti) −
Y (ti)

1 + v
=

vY (ti)

1 + v
,

if there are no unserviced demands inR(X(ti), Y (ti))
at time ti. Otherwise, if there exist unserviced demands
{q1, . . . ,qni

} whereni ≥ 1, in R(X(ti), Y (ti)), then we
have

Y (ti+1) = vLT (p(ti), {q1, . . . ,qni
}, V (ti)),

whereLT (p(ti), {q1, . . . ,qni
}, V (ti)) is the time taken for

the vehicle as per the translational TSP that begins atp(ti),
serves allni demands and ends at the virtual demandV (ti).
Since the distribution of the demands insideR(X(ti), Y (ti))
is spatially Poisson (cf. Lemma IV.3 from Section IV), we
have

Y (ti+1) =
vY (ti)

1 + v
, w.p. e−λ̄A,

= vLT (p(ti), {q1}, V (ti)), w.p. (λ̄A)e−λ̄A,

= vLT (p(ti), {q1,q2}, V (ti)), w.p.
(λ̄A)2

2!
e−λ̄A,

and so on, whereA = WY (ti) is the area of
R(X(ti), Y (ti)). We now seek an upper bound for the
length LT (p(ti), {q1, . . . ,qni

}, V (ti)) of the translational
TSP for which we use the Convert-to-Static TSP method
(cf. Section II-A). Forni = k ≥ 1, invoking Lemma II.3
and writingYi := Y (ti), for convenience,

LT (p(ti), {q1, . . . ,qk}, V (ti))

= LE(p(ti), {q1, . . . ,qk}, V (ti)) +
v(yV (ti) − Yi)

1 − v2

= LE(p(ti), {q1, . . . ,qk}, V (ti)) −
vYi

1 − v2

≤
√

2WYik

(1 − v2)3/2
+

Yi

1 + v
+

5W

2
√

1 − v2
,

where the second equality is due toyV (ti) = 0, and the
inequality is obtained using Lemma II.1. Thus, we have

E [Yi+1|Yi] ≤ v
Yi

1 + v
e−λ̄A+

v
∞
∑

k=1

(

√

2WYik

(1 − v2)3/2
+

Yi

1 + v
+

5W

2
√

1 − v2

) (λ̄A)k

k!
e−λ̄A,

where λ̄ = λ/vW from Lemma IV.3. Collecting the terms
with vYi/(1 + v) together, we obtain

E [Yi+1|Yi] ≤
vYi

1 + v

∞
∑

k=0

(λ̄A)k

k!
e−λ̄A+

∞
∑

k=1

(

√

2v2WYik

(1 − v2)3/2
+

5vW

2
√

1 − v2

) (λ̄A)k

k!
e−λ̄A

=
vYi

1 + v
+

√

2v2W

(1 − v2)3/2
E
[√

niYi|Yi

]

+
5vW (1 − e−λ̄A)

2
√

1 − v2

≤ vYi

1 + v
+

√

2v2W

(1 − v2)3/2

√

YiE
[√

ni|Yi

]

+
5vW

2
√

1 − v2

≤ vYi

1 + v
+

√

2v2W

(1 − v2)3/2

√

Yi

√

E [ni|Yi] +
5vW

2
√

1 − v2

=
vYi

1 + v
+

√

2v2W

(1 − v2)3/2

√

Yi

√

λWYi

vW
+

5vW

2
√

1 − v2

=
vYi

1 + v
+

√

2v2W

(1 − v2)3/2

√

λ

v
Yi +

5vW

2
√

1 − v2
,

where the inequality in the fourth step follows by applying
Jensen’s inequality to the conditional expectation and the
equality in the fifth step is due to the arrival process being
spatially Poisson (cf. Lemma IV.3). Using the law of iterated
expectation, we have

E [Yi+1] = E [E [Yi+1|Yi]]

≤ v

1 + v
E [Yi] +

√

2vλW

(1 − v2)3/2
E [Yi] + v

5W

2
√

1 − v2
, (5)



which is a linear recurrence inE [Yi]. Thus,limi→+∞ E [Yi]
is finite if

v

1 + v
+

√

2Wvλ

(1 − v2)3/2
< 1 ⇔ λ <

(1 − v2)3/2

2Wv(1 + v)2
.

Thus, if λ satisfies the condition above, then expected
number of demands in the environment is finite and the TSP-
based policy is stable.

We now compute an upper bound on the steady state
expected time a demand spends in the environment. If we
denotea := v

1+v +
√

2Wvλ
(1−v2)3/2

, b := 5W
2
√

1−v2
and Ȳ :=

limi→+∞ E [Yi], then the recurrence Eq. (5) implies

Ȳ ≤ vb

1 − a
.

Thus, in the steady state, the vehicle would be at a distance
of at mostvb/(1− a) from the generator in expected value.
Suppose thejth demand arrived between time iterationsi−1
and i, i.e., in the time interval(ti−1, ti]. Then, the distance
traveled by demandi before being serviced is at mostYi+1,
assuming that it is the first demand to arrive in the interval
(ti−1, ti] and the last among them to be serviced. Thus, the
time spent by thejth demand in the environment (i.e., the
delay) satisfies

Dj ≤ Yi+1/v.

Taking expectation, asj → +∞, we must also havei →
+∞; otherwise, if i → i∗ < +∞, then it would mean
that there are infinite number of demands which arrive in
(ti∗−1, ti∗ ], contradicting the fact that the system is stable.
Thus, the steady state expected time spent by a demand in
the environment satisfies

lim
j→+∞

E [Dj ] ≤ lim
i→+∞

E [Yi+1]/v = Ȳ /v ≤ b

1 − a
,

which is bounded ifλ < (1 − v2)3/2/2Wv(1 + v)2.

B. Limiting Case of Low Speed Demands

In this section we focus on the case whenλ → +∞ and,
by the necessary stability condition in Theorem IV.1,v →
0+. Recall that for this case, the sufficient stability condition
for the TSP-based policy is thatλ < 1/(2vW ). This differs
by a factor of 8 from the policy independent necessary
stability condition ofλ < 4/(vW ). By utilizing the tight
asymptotic expression for the length of the TSP path, given
in Theorem II.2, in place of the bound in Lemma II.1, we
can reduce this factor to approximately2.

To begin, consider an iterationi of the TSP-based policy,
and letYi > 0 be the position of the service vehicle. Then, in
the limit asλ → +∞, the number of outstanding demands
in that iterationni → +∞. Thus, applying Theorem II.2
and Lemma II.1, the position of the vehicle at the end of the
iteration is given by

Yi+1 = vβTSP

√

niA = vβTSP

√

niYiW,

whereA := YiW is the area of the region below the vehicle
at theith iteration. Thus, conditioned onYi being bounded
away from0, we have

E [Yi+1|Yi] = vβTSPE
[√

WniYi

]

≤ vβTSP

√

WYiE [ni],

where we have applied Jensen’s inequality. Using
Lemma IV.3,E [ni] = WYiλ/(vW ) and thus

E [Yi+1|Yi] ≤ vβTSP

√

W 2Y 2
i

λ

vW
= βTSP

√
λvWYi.

Thus, the sufficient condition for stability of the TSP-based
policy asλ → +∞ (and thusv → 0+) is

λ <
1

β2
TSPvW

≈ 2

vW
,

where βTSP ≈ 0.712. Hence, in the limiting regime as
λ → +∞, the sufficient stability condition for the TSP-based
policy is within a constant factor of the policy independent
necessary condition.

VI. SIMULATIONS

In this section we present results of numerical experiments
of the TSP-based policy. Thelinkern1 solver was used to
generate approximations to the optimal TSP tour. We use
these experiments to study how the steady-state expected
delay varies with the generation rate of the demands for
different speeds. The policy was simulated for a fixed number
of iterations, large enough to ensure that steady-state was
reached. We obtained the steady-state delay by computing
the mean of the delay in the last20 iterations. This was
repeated10 times to obtain an estimate of the steady-state
expected delay for one value of the generation rate and for a
given speed. We then repeat the experiment for three different
values of the speed. The variation of the expected delay with
the generation rate is presented in Fig. 5 for different values
of speed.

We observe that for sufficiently large values ofv such
as v = 0.2, the necessary condition on the arrival rate is
almost4 times that of the arrival rate that causes instability.
However, this ratio decreases asv reduces. Specifically, for
v = 0.05, the ratio is approximately2.5. These observations
are consistent with our theoretical analysis that predictsthat
in the limit asv → 0+, the ratio of the necessary to sufficient
condition onλ tends to2.

VII. C ONCLUSIONS ANDFUTURE DIRECTIONS

We introduced a vehicle routing problem in which a ser-
vice vehicle seeks to serve demands that arrive via a Poisson
process on a line segment and that move with a fixed speed
in a direction perpendicular to the line. For the existence
of a stabilizing service policy, we first derived a necessary
condition on the arrival rate of the demands as a function
of the speed ratio between the demands and the vehicle, and

1linkern is written in ANSI C and is freely available for academic
research use athttp://www.tsp.gatech.edu//concorde.html.
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Fig. 5. Simulation results for TSP-based policy: variation of the steady-state
expected delay with the arrival rate for three different values of the demand
speeds. A dotted line is an asymptote to a curve, i.e., the extrapolated value
of λ that leads to instability for a givenv. The length of the generator is
W = 50.

the length of the line segment. Then, we proposed a novel
service policy for the vehicle which involves sequentially
servicing all the outstanding demands as per the translational
TSP through the moving demands. We derived a sufficient
condition on the arrival rate of the demands for stability of
the TSP-based policy. In the limiting case of the relative
speed tending to zero, we showed that the necessary and the
sufficient conditions on the arrival rate are within a constant
factor. We also provided an upper bound on the expected
time spent by the demand in the environment before being
served. In companion paper [10], we analyze the first-come-
first-served (FCFS) policy and show that in the regimes of
high demand speeds, the policy is stable for higher arrival
rates than the TSP-based policy. Further, we show that in the
high demand speed regime, the FCFS is the optimal policy.

In the future, we envision to address versions of the
present problem involving multiple service vehicles. Another
interesting direction is to consider non-uniform spatial arrival
of the demands on the generating line.
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APPENDIX

In this Appendix we present the proof of Lemma II.1.
Proof: Suppose the rectangular region is given by0 ≤ x ≤
1, 0 ≤ y ≤ h. Let m be a positive integer (to be chosen
later) and let then points be denoted by{q1, . . . ,qn}. We
now construct two paths through the points. The first consists
of (a) them + 1 lines y = 0, h/m, 2h/m, . . . , h; (b) the n
shortest distances from each of then points to the nearest
such line, each traveled twice, and (c) suitable portions of
the linesx = 0, 0 ≤ y ≤ h, andx = 1, 0 ≤ y ≤ h. This is
illustrated in Fig. 6. The length of this path is

l1 = m + 1 + 2

n
∑

i=1

d1(qi) + h,

where the notationd1(qi) denotes the shortest distance
of point qi from the nearest of them + 1 lines. The
second path is constructed similarly using them lines
y = h/2m, 3h/2m, . . . , (2m − 1)h/2m. This path also
commences ony = h, passes through the abovem lines
(visiting the points whenever they are at the shortest distance
from thesem lines) and ends ony = 0. The length of this
path is

l2 = (m + 2) + 2
n
∑

i=1

d2(qi) + h,

where the notationd2(qi) denotes the shortest distance of
point qi from the nearest of the newm lines.

Observe thatd1(qi) + d2(qi) = h/2m. Hence,

l1 + l2 = 2m + 3 + 2h + hn/m.

Now choosem to be the integer nearest to
√

hn/2, so that



n = 2(m + θ)2/h, where|θ| ≤ 1. Thus,

l1 + l2 = 2m + 3 + 2h + 2(m + θ)2/m

= 4(m + θ) + 2h + 3 + 2θ2/m

≤ 2
√

2hn + 2h + 5.

Thus, at least one of the two paths must have length upper
bounded by

√
2hn + h + 5/2.

(0, h/m)

q1

q2

q3

q4

(1, 0)

(0, h)

(0, 0)

(0, 2h/m)

Fig. 6. Illustration of the proof of Theorem II.1. The dots indicate the
locations of the points inside a rectangle of size1 × h. The first of the
two paths considered in the proof through the points begins at (1, h) and
follows the direction of the arrows, visiting a point whenever it is within a
distance ofh/2m for a specific integerm from the solid horizontal lines.


