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Consider a routing problem for a team of vehicles in the plane: target

points appear randomly over time in a bounded environment and must be

visited by one of the vehicles. It is desired to minimize the expected system

time for the targets, i.e., the expected time elapsed between the appearance

of a target point, and the instant it is visited. In this paper, such a routing

problem is considered for a team of Uninhabited Aerial Vehicles (UAVs),

modeled as vehicles moving with constant forward speed along paths of

bounded curvature. Three algorithms are presented, each designed for a

distinct set of operating conditions. Each is proven to provide a system

time within a constant factor of the optimal when operating under the ap-

propriate conditions. It is shown that the optimal routing policy depends

on problem parameters such as the workload per vehicle and the vehicle

density in the environment. Finally, there is discussion of a phase transi-

tion between two of the policies as the problem parameters are varied. In

particular, for the case in which targets appear sporadically, a dimension-

less parameter is identified which completely captures this phase transition

and an estimate of the critical value of the parameter is provided.
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Nomenclature

A area of the bounded domain, m2

a area per vehicle in the unbounded domain, m2

dρ nonholonomic vehicle density

Dρ(g1, g2) configuation-to-configuration Dubins distance function, m

D(t) set of targets outstanding at time t

g configuration (position and heading) of vehicle

Hm(p,Q) multi-median function, m

H∗m(Q) minimum value of the multi-median function, m

Im the set of integers between 1 and m, included

Lρ(g, q) configuration-to-position Dubins distance function, m

m number of UAVs

n steady-state number of outstanding targets

p position of the Voronoi generators, m

q point in the domain, m

Q a bounded planar domain

Rt(g) the set of positions reachable from configuration g within time t

SE(2) Special Euclidean group in two dimensions (i.e., the group of rigid planar motions)

t time, s

T the steady-state system time, s

v vehicle speed, ms−1

W,H width and height of a box bounding the domain Q, m

λ target generation rate, s−1

π routing policy

ρ minimum turning radius, m

ω angular velocity, rad s−1

Subscripts

i vehicle index

j target index

I. Introduction

Wide-area surveillance is one of the prototypical missions for Uninhabited Aerial Vehicles

(UAVs), e.g., in environmental monitoring, security, or military settings. Low-altitude UAVs

on such a mission must provide coverage of a region and investigate events of interest as they

manifest themselves. In particular, it is of interest to consider cases in which close-range
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information is required on targets detected by high-altitude aircraft, spacecraft, or ground

spotters, and the UAVs must proceed to their locations to gather on-site information.

In many studies of problems falling into this class, the locations of targets are known a

priori, and a strategy is computed that attempts to optimize the cost of servicing the known

targets. In this paper, a scenario is considered in which the target points are generated

dynamically, with only prior statistics on their location, and a policy is designed to minimize

the expected time a target waits to be visited. This formulation is a variation of the Dynamic

Traveling Repairman Problem (DTRP)—introduced by Psaraftis1 and thoroughly developed

by Bertsimas and van Ryzin2–4— with the addition of differential constraints on the vehicle’s

motion. In particular, this paper concentrates on vehicles that are constrained to move along

paths of bounded curvature, without reversing direction. Such vehicles, often referred to as

Dubins vehicles, have been extensively studied in the robotics and control literature.5–7

Moreover, the Dubins vehicle model is widely accepted as reasonably accurate to represent

aircraft kinematics, e.g., for air traffic control8,9 and UAV mission planning purposes.10–12

The DTRP analysis in the literature2–4 is broken into two limiting cases: i) targets

are generated sporadically (light load), and ii) targets are generated rapidly (heavy load).

In heavy load, the optimal policy for holonomic vehicles relies upon Euclidean Traveling

Salesman tours through large sets of target points. Policies based on Euclidean distance are

known to provide very poor performance for UAVs modeled as nonholonomic vehicles for high

target densities;13 in this case, we use recently-developed algorithms that aim at minimizing

the travel distance, taking into account the turning cost between consecutive targets.14 In

light load, rather than planning tours through targets, the challenge is to design loitering

patterns or policies with the property that, when a target does appear, the expected wait

for the “closest” UAV to arrive is minimized. This problem is inherently more complex

for nonholonomic than for holonomic vehicles: for holonomic vehicles the light load DTRP

reduces to a choice of waiting locations and solutions are known from the well-developed

locational optimization literature.15

The recent literature concerning DTRP and aerial surveillance problems is vast. This

paper is along the vehicle routing themes of some of our previous work.14,16,17 Many of

the new results for the light load were introduced in Enright et al.18 and are applicable to

coverage problems,19–22 in which the vehicles spread out uniformly, or comb the environment

efficiently. The light load case discussed in this paper has connections to the Persistent Area

Denial (PAD) and area coverage problems.12,19,23,24 Moreover, the mathematical structure of

the light load case has a strong resemblance with continuous facility location problems,15,25,26

with the main difference in our case being that the facilities are vehicles constantly in motion

with nontrivial dynamics. The heavy load case is strongly related to works concerned with

the generation of efficient cooperative strategies for several vehicles moving through given
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target points and possibly avoiding obstacles or threats.11,27–32 Trajectory efficiency in these

cases is understood in terms of cost for the vehicles: in other words, efficient trajectories

minimize the total path length, the time needed to complete the task, or the fuel/energy

expenditure. A related problem has been investigated as the Weapon-Target Assignment

(WTA) problem, in which vehicles are allowed to team up in order to enhance the probability

of a favorable outcome in a target engagement.33,34 Other related works address UAV task-

assignment:35–38 in this setup, targets locations are known and an assignment strategy is

sought that maximizes a global performance metric such as success rate. Some other works,

like this paper, address coverage and sensing tasks with only prior statistics on the operating

environment.39

The main contributions of the paper are the following.

1. A novel approach to establish a lower bound on the system time for Dubins DTRP is

formulated. The approach explores properties of the reachable set of the Dubins vehicle

and may be of independent interest as it can be applied to other vehicles performing

similar tasks.

2. Three algorithms have been proposed and it is proven that, for certain range of the

problem parameters, they perform within a constant factor of the optimum, i.e., the

upper bounds on their performances have the same form (in terms of team size m,

speed v and target-generation rate λ) as the lower bounds. Specifically, two strategies

for the light load are designed. One strategy assigns regions of dominance to the

vehicles and requires the vehicles to guard their own territory, thus requiring them to

spread out. This strategy is optimal when vehicle density is low. The other strategy

requires the vehicles to move as a group in a coordinated pattern, balancing the amount

of space directly in front of each vehicle. This strategy is within a constant factor of

the optimal for high vehicle densities. In the heavy load, a previously proposed single-

vehicle policy14 is extended to the multiple-vehicle setting.

3. In light load, the optimal system time is shown to be of order 1/(v 3
√
m), contrasting the

holonomic case which yields 1/(v
√
m). The added performance per vehicle is penalized

by the nonholonomic motion constraints. In heavy load, the system time is shown to

be of order λ2/(mv)3, i.e., the system time is more sensitive to the workload per vehicle

for nonholonomic vehicles than for holonomic vehicles (where the systeme time is of

order λ/(mv)2).

4. A consequence of the aforementioned analytical results is recognized: an optimal rout-

ing policy for the UAVs exhibits phase transitions between these three algorithms as

one varies the problem parameters. For the light load case, a dimensionless parameter
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that completely captures the phase transition is identified. An estimate of the critical

value of the parameter that separates the phases is also provided.

Other researchers, including Vicsek et al.40 and, more recently, Spears et al.,41 have

investigated phase transitions in the behavior of large groups of vehicles. In these works,

the individuals follow local interaction laws, sometimes inspired by physical laws, which are

shown to give rise to different modes of group behavior, depending on design parameters

and possible input noise. In some cases, these types of approach are useful for accomplish-

ing large-scale multi-vehicle coverage and similar tasks, in a distributed, robust fashion. In

contrast, a top-down approach is taken in this paper. Beginning with simple motion con-

straints (found in nature and technology) for the individual vehicles, and an explicit task

and performance measurement, the aim is to design control strategies achieving near opti-

mal performance. As a result of the analysis, the optimal policy is noticed to exhibit more

than one distinct mode of behavior. Rather than attempting to imitate nature, an attempt

is made in this paper to divulge a possible cause (efficiency) behind natural multi-agent

systems which exhibit phase transitions between territorial and gregarious behavior.42

The rest of the paper is organized as follows. In Section II, the problem is set up and

some preliminary concepts and notations are introduced. In Section III, the case in which

targets appear sporadically is addressed, and in Section IV, the case in which targets are

generated rapidly is investigated. A phase transition in the optimal routing policy is studied

in Section V. Finally, some concluding remarks are made and directions for future research

are discussed in Section VI. A detailed exposition of some relevant results about minimum-

length Dubins paths is given in Appendix A, and some technical lemmas along with their

proofs are given in Appendix B.

II. Problem Formulation and Preliminary Concepts

II.A. Problem Formulation

In this section, the Dubins DTRP is formulated and some preliminary concepts for minimum-

time paths and reachable sets for the Dubins vehicle are presented. Let Q ⊂ R2 be a convex,

compact domain on the plane, with non-empty interior; Q is assumed to be at the ground

level, and will be referred to as the environment. Let A be the area of Q. A spatio-temporal

Poisson process, with finite time intensity λ > 0 and uniform spatial density in Q, generates

targets inside the environment. This Poisson process can be thought of as a collection of

functions {P : R+ → 2Q} such that, for any t ≥ 0, P(t) is a random collection of points in

Q, representing the targets generated in the time interval [0, t), and such that

• the number of targets generated in two disjoint time-space regions are independent
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random variables;

• the expected number of targets generated in a region S ⊆ Q during a time interval of

length ∆t is

E[card ((P(t+ ∆t) \ P(t)) ∩ S)] = λ∆t · Area(S)

A
.

The information about the locations of these dynamically generated targets is provided

by surveillance assets (e.g., high-altitude aircraft or spacecraft, ground spotters, sensor net-

works, etc.), and is assumed to be broadcast to the UAVs instantaneously. Each target

corresponds to a service request. These service requests are identical and are to be fulfilled

by a team of m UAVs. A service request is fulfilled when one of m UAVs flies over the asso-

ciated target point (assumed to be on the ground). The UAVs operate on horizontal planes,

at different altitudes to avoid collisions. Also, we assume that all these horizontal planes are

high enough to clear all terrain and obstructions on the ground. We do not model no-fly

zones, and leave this to future work. Since the flying altitude does not play a significant role

in the course of the paper, the motions of all the UAVs are projected onto the plane con-

taining Q and restrict our attention to this plane. Henceforth, the location of the UAV shall

be identified with its projection onto the ground plane. Finally, we assume that the UAVs

maintain a constant speed; this assumption is consistent with standard operational practice,

as aircraft typically fly most of their mission at a constant cruising speed, calculated in such

a way to maximize range or endurance.43

The motion of the UAVs will be modeled by a kinematic model in R2. In particular, the

UAVs are modeled as nonholonomic vehicles constrained to move on the plane at constant

speed, v > 0, along paths with a minimum radius of curvature ρ > 0. In other words, if

the configuration gi ∈ SE(2) of the i-th vehicle (∀i ∈ Im where Im = {1, . . . ,m}) is given

in coordinates by gi = (xi, yi, θi)—where xi, yi are the projections of the vehicle’s position

along inertially fixed orthogonal axes, and θi is the orientation of the vehicle’s heading with

respect to the x-axis—then the model of the vehicle is given by:

ẋi = v cos(θi),

ẏi = v sin(θi),

θ̇i = ωi, |ωi| ≤ v/ρ.

This model is often referred to as the Dubins vehicle, in recognition of Dubins’ work in

computing minimum-length paths for such model.5 A feasible path for the Dubins vehicle

is defined as a path that is twice differentiable almost everywhere, and such that its radius

of curvature is bounded below by ρ. The UAVs are assumed to be identical, and have

unlimited range. The above kinematic model is very common in the literature on UAV
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motion planning.10–12 Results in terms of minimum-length paths for Dubins vehicle5 hold

for our model, where they assume an additional connotation of being minimum-time paths

for vehicles with constant speeds. In the course of this paper, the term Dubins frame shall

be used to refer to a coordinate frame with the origin attached to the Dubins vehicle and

x-axis along the vehicle’s velocity vector.

Let D : t → 2Q indicate a realization of the stochastic process obtained by combining

the target-generation process P and the removal process caused by the vehicles visiting the

outstanding requests. The random set D(t) ⊂ Q represents the demand, i.e., the service

requests outstanding at time t; n(t) is defined to be the cardinality, i.e., the number of

elements, of the set D(t).

A motion coordination policy is a function that determines the actions of each vehicle

over time. For the time being, denote these functions will be denoted as π = (π1, π2, . . . , πm),

without explicitly stating their domain; the output of these functions is a steering command

for each vehicle. The objective is the design of motion coordination strategies that allow the

vehicles to fulfill service requests efficiently.

A policy π = (π1, π2, . . . , πm) is said to be stabilizing if, under its effect, the expected

number of outstanding targets does not diverge over time, i.e., if

nπ = lim
t→+∞

E [n(t) : vehicle i executes policy πi, i ∈ Im] < +∞.

Intuitively, a policy is stabilizing if the vehicles are able to visit targets at a rate that is,

on average, at least as fast as the rate at which new service requests are generated. Let Tj

be the time elapsed between the generation of the j-th service request, and the time it is

fulfilled. If the system is stable, then the following balance equation (also known as Little’s

formula44) holds:

nπ = λT π, (1)

where T π := limj→+∞ E[Tj] is the system time under policy π, i.e., the expected time a

service request must wait before being fulfilled, given that the vehicles follow the strategy

defined by π. The system time T π can be thought of as a measure of the quality of service

collectively provided by the vehicles.

At this point the problem can be finally stated as: we wish to devise policies that are (i)

stabilizing, and (ii) yield a quality of service (i.e., system time) achieving, or approximating,

the theoretical optimal performance given by

T opt = inf
π stabilizing

T π

7 of 42

Routing Problems for Multiple UAVs, Enright et al.



It is of interest to design computationally efficient control policies that are within a constant

factor of the optimal, i.e., policies π such that T π ≤ κT opt for some constant κ. In the rest

of the paper, the terms policy and algorithm are used interchangeably.

Since it is difficult to characterize the optimal achievable performance for general values

of the problem parameters, the focus is on particular range of problem parameters. To that

purpose, λ
m

is defined as the vehicle workload. This parameter characterizes the average rate

at which each vehicle must service requests in order for the number of outstanding targets

to remain bounded. It is found that the asymptotic cases of λ/m → 0+ (light load) and

λ/m→ +∞ (heavy load) lend themselves to succinct and meaningful analysis.

This section is concluded by describing some notation providing a concise way of ex-

pressing the asymptotic dependence of the system time T on the problem parameters. For

f, g : N → R, f ∈ O(g) (respectively, f ∈ Ω(g)) if there exist N0 ∈ N and k ∈ R+ such

that |f(N)| ≤ k|g(N)| for all N ≥ N0 (respectively, |f(N)| ≥ k|g(N)| for all N ≥ N0). If

f ∈ O(g) and f ∈ Ω(g), then the notation f ∈ Θ(g) is used.

II.B. Minimum-length paths and the reachable set for the Dubins vehicle

Minimum-length Dubins paths between two configurations have been extensively studied,

due to their importance in mobile robotics. A full characterization of optimal paths is given

in Dubins;5 a further classification is given in Shkel and Lumelsky.45 Our purpose in this

section is to study the length of optimal paths given different boundary conditions. Namely,

the problem of steering a Dubins vehicle from a given initial configuration to a point in the

plane will be considered; the difference with the original problem posed by Dubins5 is that the

final heading at the target point is not constrained a priori. Let Lρ(g, q) : SE(2)×R2 → R+

be the length of shortest feasible path for a Dubins vehicle to steer from initial configuration

g in SE(2) to a point q in the plane, without any constraints on the final heading, i.e., to any

configuration in the set {q} × S1 ⊂ SE(2). The characteristics of paths of minimal length

with such boundary conditions were studied in Thomaschewski,46 where it is provem that all

such paths are a concatenation of an arc of a minimum-radius circle (either in the positive or

negative direction), with either an arc of a minimum-radius circle (in the opposite direction),

or with a straight segment. The length of the circular arcs is at most 2πρ, and all subpaths

are allowed to have zero length. In the Dubins formalism, such paths are called either of CC

(circle, circle) or of CL (circle, line) type, and include the subtypes C or L, arising when

the length of either one of the two subpaths is zero. Clearly, both subpaths have zero length

in the trivial case in which q is the initial position of the vehicle. Furthermore, the optimal

paths are of type CC when q lies within the interior of one of the two circles of radius ρ

that are tangent to the vehicle’s direction of motion at the initial configuration, and are of

type CL otherwise. Closed-form expressions for the lengths of such paths, and a detailed
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exposition on the function Lρ(gi, q), are given in Appendix A. For now, an upper bound on

Lρ(gi, q) which will be useful in analyzing one of the presented policies is presented.

Proposition 1 For any q ∈ R2 and g0 = (0, 0, 0), there exist constants c1 > 0, c2 > 0 such

that the function Lρ(g0, q) satisfies the following inequality.

Lρ(g0, q) ≤ c1ρ+ ‖q − (0,±c2ρ)‖. (2)

In particular, the assertion is true for c1 ≈ 9.39 and c2 = 1.

Proof: Let Dρ(g1, g2) be the length of shortest feasible path for a Dubins vehicle to

steer from initial configuration g in SE(2) to a final configuration g2 ∈ SE(2). Since, Lρ(g0, q)

is the length of the shortest path from g0 to q, one can verify that it satisfies the following

relation for any qc ∈ R2.

Lρ(g0, q) ≤ max
θ∈[0,2π)

Dρ(g0, (qc, θ)) + ‖q − qc‖. (3)

The following bound is proven in Savla et al.:14

Dρ(g0, (qc, θ)) ≤ ‖qc‖+ 8.39ρ ∀θ ∈ [0, 2π). (4)

The result follows by substituting Equation (4) into Equation (3) for qc = (0,±ρ).

Remark 2 An implication of Proposition 1 is that, if a vehicle is moving along a circle of

radius c2ρ about a point qcirc, then it can reach any point q ∈ R2 with a path of length no

greater than c1ρ+ ‖q − qcirc‖ at any time during its circular motion.

Remark 3 Using numerical optimization, it is found that, by selecting c2 ≈ 2.91, one could

reduce c1 to approximately 3.76.

Remark 4 An upper bound on Lρ(g0, q) under the simplifying assumption of ‖q‖ ≥ 2ρ is

also obtained in Rathinam et al.47

The reachable set for a Dubins vehicle and a property that will be useful later in the

paper are defined next. Given an initial condition gi, the reachable set R≤t(gi) ⊂ SE(2) for

a Dubins vehicle is the set of final configurations gf such that there exist admissible controls

to drive the vehicle from the initial configuration gi to the final configuration gf within time

t. It is well known that the Dubins vehicle is not small-time locally controllable, i.e., there

exist t > 0 for which the reachable set R≤t(gi) does not contain an ε-neighborhood of gi. It

is of interest in this paper to focus on the reachable region on the Euclidean plane. For any
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g = (p, θ) ∈ SE(2), define the projection operator P : SE(2)→ R2 as P (g) = p. Furthermore,

for any R ⊆ SE(2) let P (R) = ∪g∈RP (g). For simplicity of notation the reachable region on

the plane, P (R≤t(gi)), shall be henceforth indicated with Rt(gi).

The minimum-length path to any point within the interior of one of the minimum turning

radius circles has a length of at least πρ, and so the shortest path to any point reachable

within time t ≤ πρ/(2v) is of type CL. In Fig. 1, Rt(gi) for some time t ≤ πρ/(2v) is

depicted, along with a generic minimum-length path of length vt. Let the length of the C

segment be denoted by s and the angle it sweeps out with θ. Since s = ρθ, the length of

the L segment is vt− s = vt− ρθ. Also, the switching point between the C and L segments

is denoted with (x1, y1), the point at the end of the L segment with (x2, y2). Elementary

!3 !2 !1 0 1 2 3
!3

!2

!1

0

1

2

3

x

y (x1, y1)s

(x2, y2)θ
ρ

Figure 1. The derivation of Area(Rt(gi)) for t ≤ πρ/(2v).

planar geometry computations yield

x1 = ρ sin θ,

y1 = ρ(1− cos θ),

x2 = x1 + (vt− ρθ) cos θ,

y2 = y1 + (vt− ρθ) sin θ.

Moreover, for ρ and t such that t ≤ πρ/(2v),

Area(Rt(gi)) = 2

(∫ vt/ρ

0

y1
dx1

dθ
dθ +

∫ 0

vt/ρ

y2
dx2

dθ
dθ

)

= 2ρ2

∫ vt/ρ

0

(
sin2 θ(vt/ρ− θ)2 + sin θ(1− cos θ)(vt/ρ− θ) + cos θ(1− cos θ)

)
dθ.
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The above integral can be computed as

Area(Rt(gi)) =
v3t3

3ρ
for t ≤ πρ

2v
. (5)

Remark 5 Equation (5) shows that Area(Rt(gi)) approaches zero as (vt)3/ρ, i.e., the area

of this reachable set decreases faster than the area of a circle of radius vt as vt/ρ→ 0+.

Equation (5) also implies the following result.

Proposition 6 For a given a, ρ > 0 and gi ∈ SE(2), let τ be such that Area(Rτ (gi)) = a.

Then,

τ =
1

v
(3ρa)1/3 for a/ρ2 ≤ π3/24.

III. Light Load

In this section the case in which new targets appear very rarely is addressed, and lower

bounds and constructive upper bounds on the system time are provided.

III.A. Lower Bounds

A review of the known results for the Euclidean case is provided first, which are then used

to derive lower bounds.

Euclidean Lower Bound

A trivial lower bound on the system time T̄ can be obtained by adopting the corresponding

lower bound for a Euclidean vehicle, i.e., a vehicle moving with unit speed and having

no motion constraints. In order to do that, a brief overview of a related problem from

geometric optimization is necessary. Given a convex, compact set Q ⊂ R2 and a set of

points p = {p1, p2, . . . , pm} ∈ Qm, the expected distance between a random point q, sampled

from a uniform distribution over Q, and the closest point in p is given by

Hm(p,Q) :=
1

A

∫
Q

min
i∈Im
‖pi − q‖ dq =

1

A

m∑
i=1

∫
Vi(p)
‖pi − q‖ dq,

where V(p) = (V1(p),V2(p), . . . ,Vm(p)) is the Voronoi (Dirichlet) partition48 of Q generated

by the points in p, i.e.,

Vi(p) = {q ∈ Q : ‖q − pi‖ ≤ ‖q − pj‖,∀i, j ∈ Im}.
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The problem of choosing p to minimize Hm(p,Q) is known in the geometric optimization

literature as the continuous supply / continuous demand multi-median problem.49,50 Related

problems include computing m-medians and centers for discrete supply and/or demand sets

and references therein .15,25,26,51,52 The m-median of the set Q is the global minimizer

p∗(Q) = argminp∈QmHm(p,Q). Let H∗m(Q) = Hm(p∗(Q),Q) be the global minimum of

Hm(p,Q) for fixed Q and m. It is straightforward to show that the map p 7→ H1(p,Q)

is differentiable and strictly convex on Q. Therefore, it is a simple computational task to

compute p∗1(Q). However, the map p 7→ Hm(p,Q) with m > 1 is differentiable (whenever

(p1, . . . , pm) are distinct) but not convex, thus making the solution of the continuous m-

median problem hard in the general case. In fact, it is known26 that the discrete version

of the m-median problem is NP-hard for d ≥ 2. However, numerical techniques for finding

local minima of continuous m-median problems can be designed using i) the “honeycomb

heuristic”49 discussed below, and ii) the fact that pi is the median of Vi(p) for each pi in

p∗(Q). An adaptive sampling-based algorithm to compute p, converging to local minima

or saddle points of Hm(p,Q) is given in.53 The issue of computation of the m-median and

of the corresponding H∗m(Q) will not be pursued further, but it will be assumed that these

values are available.

In course of the paper, the dependence ofH∗m(Q) on m will play a crucial role in the design

and analysis of algorithms. However, finding the exact relationship for the general case is

difficult. Hence, now the problem of providing some tight bounds on H∗m(Q) is considered.

This problem is studied thoroughly in Papadimitriou50 for square regions and in Zemel49

for more general compact regions. It is known that, in the asymptotic case (m → +∞),

H∗m(Q) = chex

√
A/m almost surely,49 where chex ≈ 0.377 is the first moment of a hexagon

of unit area about its center. This optimal asymptotic value is achieved by placing the m

points at the centers of the hexagons in a regular hexagonal lattice within Q (the honeycomb

heuristic). Working towards the above result, it is also known49 that for any m ∈ N:

2

3

√
A

πm
≤ H∗m(Q) ≤ c(Q)

√
A

m
,

where c(Q) is a constant depending on the shape of Q. The above result is mirrored in the

following Proposition for several reasons. First, the proof technique that will be used for the

lower bound foreshadows much of the logical structure used in the Dubins lower bound of

Theorem 10, without the additional complexity due to the motion constraints of the Dubins

vehicle. Second, the proof of the upper bound is omitted from the published work.49 The

proof for a specific example of such a constant c(Q) is provided next.

Proposition 7 For any convex, compact Q ⊂ R2 of area A, the function H∗m(Q) belongs to
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Θ(1/
√
m). In particular,

2

3

√
A

πm
≤ H∗m(Q) ≤ csq

√
3L(Q)√
m

,

where csq ≈ 0.38 and L(Q) is the side-length of the smallest square containing Q.

Proof: The proof of the upper bound is given first. If the environment Q is a square

of side-length L, it is known54 that H∗1 (Q) = csqL, with csq ≈ 0.38. If the environment

is a square and m is a perfect square (i.e.,
√
m is integer), then the environment can be

divided into m equally sized squares, each with one of the m points at its center, and so

H∗m(Q) ≤ csqL/
√
m. For an environment of general shape and a perfect square m,

H∗m(Q) ≤ csqL(Q)√
m

,

where L(Q) is the side-length of the smallest square containing Q. This holds because the

optimal value for a square containing Q is strictly greater than the optimal value for Q itself.

For general Q and m only b√mc2 of the m points are utilized and the same technique as

earlier is used to get:

H∗m(Q) ≤ csqL(Q)

b√mc .

Finally, noting that b√mc ≥ √m/
√

3 for any m ∈ N, the stated upper bound is obtained.

Now the lower bound is proved. Let Ai = Area(Vi(p)) be the area of the Voronoi region

belonging to vehicle i and let CAi(pi) be a disk of area Ai centered at pi. Then

H∗m(Q) = min
p∈Qm

∫
Q

1

A
min
i∈Im
‖pi − q‖dq

= min
p∈Qm

m∑
i=1

∫
Vi(p)

1

A
‖pi − q‖dq

≥ min
p∈Qm

m∑
i=1

∫
CAi (pi)

1

A
‖pi − q‖dq

≥ min
{A1,A2,...,Am}∈Rm

m∑
i=1

∫
CAi (pi)

1

A
‖pi − q‖dq, subject to

m∑
i

Ai = A,

where the fact that for a given pi, the region of area Ai with the least first moment about

pi is a disk of that area is used. Note that the radius of such a disk is r(Ai) =
√
Ai/π. It

is known that the expected distance between a uniformly distributed point within a disk of
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radius r and its center is 2r/3. Thus,

H∗m(Q) ≥ min
{A1,A2,...,Am}∈Rm

m∑
i=1

Ai
A

2

3
r(Ai), subject to

m∑
i=1

Ai = A,

=
2

3A
√
π

min
{A1,A2,...,Am}∈Rm

m∑
i=1

A
3/2
i , subject to

m∑
i=1

Ai = A.

The above quantity is minimized when Ai = A/m, for all i, yielding the stated result. Note

that the above lower bound holds for any region and any number of vehicles.

The following result was first proved in Bertsimas and Van Ryzin2 for holonomic vehi-

cles, and as such is trivially valid for nonholonomic vehicles. A short proof is reported for

completeness.

Theorem 8 For any convex, compact Q ⊂ R2 of area A and λ, ρ, v ∈ R+ and m ∈ N, the

system time for the Dubins DTRP satisfies

T opt ≥
H∗m(Q)

v
. (6)

Proof: Consider vehicle i with configuration gi and position pi. Trivially, Lρ(gi, q) ≥
‖pi − q‖ for any q in R2. Thus,

T opt ≥ inf
g∈SE(2)m

∫
Q

1

A
min
i∈Im

1

v
Lρ(gi, q) dq ≥ inf

p∈(R2)m

∫
Q

1

A
min
i∈Im

1

v
‖pi − q‖ dq

= min
p∈Qm

∫
Q

1

A
min
i∈Im

1

v
‖pi − q‖ dq =

H∗m(Q)

v
.

Remark 9 Proposition 7 and Theorem 8 imply that, for a given λ and ρ, T opt belongs to

Ω
(

1
v

√
A
m

)
.

Dubins Lower Bound

In the previous section, a lower bound is derived by approximating the Dubins distance with

the Euclidean distance. It is natural to expect that such a lower bound is conservative. In

this section, a new lower bound is derived by explicitly considering the turning cost associated

with the motion of a Dubins vehicle. Consider the simple scenario of a single Dubins vehicle

responsible for the environment Q, in the case where targets are generated very infrequently.

Since the vehicle cannot stop, a control policy must include a loitering path while waiting

for targets to appear. This may be a predetermined pattern, or possibly a randomized or

adaptive path. Towards a lower bound, consider a Dubins vehicle which is capable of waiting
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in a static configuration (alternatively, consider that for any loitering path, there exists a

moment in the pattern for which the expected Dubins distance to a target in Q is minimal).

If the UAVs were capable of stopping, this problem could be reduced to finding the optimal

configuration of the m-vehicle system. Instead, it is required to design control policies that

keep the configuration near optimal in a time-averaged sense.

Considering a single-vehicle system, towards a lower bound, one gets that

T opt ≥ inf
gi∈SE(2)

∫
Q

1

Av
Lρ(gi, q)dq.

Let tρ(A) = {t| Area(Rt(gi)) = A}. The function tρ is a single-valued function. This is

because the area of a reachable set Rt(gi) is a strictly increasing function of t. For clarity, in

the following theorems, let us specify a reachable region by its area, i.e., RA(gi) = Rtρ(A)(gi).

Now, towards a lower bound, allow the environment to take on any shape, so long as its area

remains unchanged. For a given configuration, gi, the region S of area A with least expected

Dubins distance fromgi, i.e.,
∫
S

1
Av
Lρ(gi, q) dq, is the reachable region of area A, i.e., RA(gi).

Given a set Q ⊂ R2 and a set of Dubins configurations g = {g1, g2, . . . , gm} ∈ SE(2)m,

DV(g) = {DV1(g), . . . ,

DVm(g)} is defined as the Dubins Voronoi partition of the set Q generated by the configu-

rations g. In other words, q ∈ DV i(g) if Lρ(gi, q) ≤ Lρ(gj, q), for all i, j ∈ Im. Note that a

vehicle’s Dubins Voronoi region is exactly its instantaneous region of dominance, i.e., the set

of points which can be reached by the vehicle faster than any other. A new lower bound on

the Dubins DTRP can be obtained based on the idea of finding the optimal configuration

for the m-vehicle system, as if they were capable of stopping:

Theorem 10 For any convex, compact Q ⊂ R2 of area A and λ, ρ, v ∈ R+ and m ∈ N, the

system time for the Dubins DTRP satisfies

T opt ≥
m

Av

∫
R A
m

(gi)

Lρ(gi, q) dq. (7)

Proof: In the following, the notation Ai = Area(DV i(g)) is used. Beginning with the
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definition of T opt, one has that

T opt ≥ inf
g∈SE(2)m

∫
Q

1

A
min
i∈Im

1

v
Lρ(gi, q)dq

= inf
g∈SE(2)m

m∑
i

∫
DVi(g)

1

Av
Lρ(gi, q) dq

≥ inf
g∈SE(2)m

m∑
i

∫
RAi (gi)

1

Av
Lρ(gi, q) dq

≥ min
{A1,A2,...,Am}∈Rm

m∑
i

1

Av
f(Ai), subject to

m∑
i

Ai = A and Ai ≥ 0 ∀i ∈ {1, . . . ,m},

where f : R+ → R+ is defined by

f(A) =

∫
RA(gi)

Lρ(gi, q) dq. (8)

It is easy to verify that the function f is a continuous, strictly increasing function of A.

Lemma 31 in Appendix B shows that f is convex. Thus, by using the Karush-Kuhn-Tucker

conditions,55 one can show that the quantity

min
{A1,A2,...,Am}∈Rm

1

Av

m∑
i

f(Ai) subject to
m∑
i

Ai = A

is minimized with an equitable partition, i.e., Ai = A/m, ∀i. This yields the stated result.

Note that the above lower bound holds for any region and any number of vehicles. Even

though, in this integral form, the dependency of the lower bound on parameters such as m

and ρ is not transparent, it is shown that a lower bound can be obtained by dividing the

environment into equally sized domains of responsibility, i.e., by balancing the workload in

terms of coverage.

Let the nonholonomic vehicle density be a non-dimensional parameter defined as

dρ =
ρ2m

A
. (9)

The motivation of this parameter is shown in the proof of the following lower bound, which

holds for any policy, and is tightest for small vehicle workloads.

Theorem 11 For any convex, compact Q ⊂ R2 of area A, λ, ρ, v ∈ R+, and m ∈ N, the
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system time for the Dubins DTRP satisfies

lim inf
dρ→+∞

T opt

(
m

ρA

)1/3

≥ 3 3
√

3

4v
.

Proof: Proposition 6 implies that, for dρ ≥ 24/π3,

tρ(A/m) =
1

v

(
3ρA

m

)1/3

. (10)

The Dubins distance to any point q in the reachable set R A
m

(gi), expressed as (x, y) in the

Dubins frame, can be bounded by Lρ(gi, q) ≥ x. Let (x1(θ), y1(θ)) = (ρ sin θ, ρ(1 − cos θ))

represent parametrized points on the minimum turning circle, as depicted in Figure 1. Let

R̃ A
m

(gi) :=
{
q ∈ R A

m
(gi) | x ≤ x1(vtρ(A/m)/ρ)

}
, i.e., R̃ A

m
(gi) is the set of points in R A

m
(gi)

which lie to the left of the vertical line x = x1(vtρ(A/m)/ρ). Then,∫
R A
m

(gi)

Lρ(gi, q)dq ≥
∫
R A
m

(gi)

xdq ≥
∫
R̃ A
m

(gi)

xdq.

The last integral in the equation above can be evaluated to get the following bound:∫
R A
m

(gi)

Lρ(gi, q) dq ≥ 2

∫ vtρ(A/m)/ρ

0

x1(θ)y1(θ)
dx1(θ)

dθ
dθ

= 2ρ3

∫ vtρ(A/m)/ρ

0

sin θ cos θ(1− cos θ)dθ

= ρ3

∫ vtρ(A/m)/ρ

0

(θ3 + o(θ3))dθ =
v4t4ρ(A/m)

4ρ
+ ρ3o(v4t4ρ(A/m)/ρ4).

(11)

Note that, as dρ → +∞, vtρ(A/m)/ρ goes to zero from Equation (5). Therefore, applying

Equation (10) in Equation (11), one can deduce that, as dρ → +∞,

∫
R A
m

(gi)

Lρ(gi, q) dq ≥
3A

4m

(
3ρA

m

)1/3

.

Substituting into Equation (7) yields the result.

Remark 12 Theorem 11 shows that T opt belongs to Ω
(

1
v

(
ρA
m

)1/3)
. In particular, for fixed

ρ and A, T opt belongs to Ω
(

1
v 3√m

)
.

The above result is simply the integral in Theorem 10 carried out for a particular asymp-
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totic region of the problem parameter space. It is reasonable to assume that a policy ap-

proximating this lower bound would somehow allow the regions of dominance to remain

balanced throughout time. In a low density scenario, this requires the vehicles to simply

spread out. However, as the density increases, a balanced coverage requires that a vehicle’s

region of dominance be very small, i.e., the area immediately in front of it. Thus the optimal

policy in this phase involves dynamic regions of dominance. This behavior is exhibited by

the algorithms proposed in the next section.

III.B. Policies and Upper Bounds

In this section, control policies designed for the light load are proposed and then analyzed for

their performance. The first policy—called the Median Circling policy—essentially attempts

to imitate the optimal policy for Euclidean vehicles, assigning static regions of responsibility.

The algorithm is formally described as follows.

The Median Circling (MC) Policy

Each vehicle is associated with a generator pi, i ∈ Im. Let p∗ be the m-median of Q, and

define the loitering station for the i-th vehicle as a circular trajectory of radius c2ρ centered

at p∗i . Each vehicle visits all targets in the Voronoi region of its own generator Vi(p∗), in the

order in which they arrive. When no targets are available, the vehicle returns to its loitering

station; the direction in which the orbit is followed is not important, and can be chosen in

such a way that the station is reached in minimum time. An illustration of the MC policy

is shown in Fig. 2.

Note that there may be vehicles closer to a given target in terms of Euclidean distance

or Dubins minimum-length path. However, it is found that the target-assignment strategy

described above lends itself to tractable analysis.

Theorem 13 For any convex, compact Q ⊂ R2 of area A and ρ, v ∈ R+, the Median

Circling policy is a stabilizing policy in the light load, i.e., as λ/m → 0+. Moreover, the

system time of the Median Circling policy satisfies the following, as λ/m→ 0+.

TMC ≤
H∗m(Q) + c1ρ

v
. (12)

Proof: For λ/m → 0+, after an initial transient, all targets will be generated with the

vehicles in the assigned loitering station, and an empty target queue with probability one.

Therefore, the waiting time for a new target after that is finite. Hence, the Median Circling

18 of 42

Routing Problems for Multiple UAVs, Enright et al.



Q
Figure 2. Illustration of the Median Circling policy. The yellow squares represent p∗, the m-median of Q.
Each UAV loiters about its respective generator at a radius c2ρ. The regions of dominance are demarcated
according to the Voronoi partition generated by p∗. In this figure, a target has appeared in the subregion
roughly in the upper-right quarter of the domain. The UAV responsible for this subregion has left its loitering
station and is en route to service the target.

policy is stabilizing. Moreover, the expected waiting time for a new target is given by

TMC =

∫
Q

1

A
min
i∈Im

1

v
Lρ(gi, q) dq

≤
∫
Q

1

A
min
i∈Im

1

v
(‖p∗i − q‖+ c1ρ) dq

=
m∑
i=1

∫
Vi(p∗)

1

Av
‖p∗i − q‖ dq +

c1ρ

v

=
H∗m(Q) + c1ρ

v
.

Remark 14 In other words, it is shown that the system time achieved by the MC policy

is within a constant additive factor c1ρ/v ≈ 9.39ρ/v from the optimal. The additive fac-

tor, which can be considered a penalty due to the nonholonomic constraints imposed on the

vehicle’s dynamics, depends linearly on the minimum turn radius ρ.

Note that the upper bound stated above does not tend to zero as the size of the team

grows large. A comparison is now made between the performance of the Median Circling

Policy and the optimal limit shown in Theorem 8.

19 of 42

Routing Problems for Multiple UAVs, Enright et al.



Theorem 15 The system time of the Median Circling policy in light load satisfies

lim sup
λ
m
→0+

TMC

T opt

≤ 1 + 25
√
dρ.

In particular,

lim
dρ→0+

lim sup
λ
m
→0+

TMC

T opt

= 1.

Proof: Since 2
3

√
A
πm
≤ H∗m(Q) from Proposition 7,

c1ρ ≤
c1ρ

2
3

√
A
πm

H∗m(Q).

The first statement in the theorem then follows by substituting this into Equation (12) and

applying Theorem 8. The second result follows by taking the limit as dρ → 0+ in the first

statement.

Remark 16 Theorem 15 implies that the Median Circling Policy is an efficient policy for

scenarios where the nonholonomic vehicle density is low. In low density scenarios, Euclidean

distance dominates the cost, and thus, a policy imitating that of Euclidean vehicles is near

optimal.

Simulation Results for the MC policy

Simulations of the MC policy were run for various values of ρ and m. In the simulations, here

and throughout the paper, speed and turning radius were set to v = 50ms−1, and ρ = 600 m,

respectively; there values are typical of current operational UAVs.56

For each combination of conditions, the system time shown in Fig. 3 is the average of the

waiting times of 105 target points uniformly generated in the environment. These numerical

results confirm theoretical predictions that the system time decreases as 1/
√
m and grows

with ρ: the log-log plots of system time versus number of vehicles (left) have slopes ranging

from−0.48 to−0.52, implying a power law of approximately−1/2, and the linear-linear plots

of system time versus minimum turning radius (right) have slopes ranging from 0.96 to 1.04,

implying a linear dependence on ρ with a coefficient of approximately unity. As the minimum

turning radius becomes very small, the performance of the MC policy approximates the lower

bound valid for a vehicle without kinematics constraints, i.e., as ρ→ 0+, TMC → H∗(Q)/v.

The next strategy aims to (i) maintain balanced coverage despite the requirement of

dynamic regions of dominance due to high vehicle density, and (ii) yield a system time that

provably tends to zero as the size of the team grows large.

20 of 42

Routing Problems for Multiple UAVs, Enright et al.



100 200 300 400 500 600 700 800
50

100

150

200

250

300

NUMBER OF VEHICLES

SY
ST

EM
 T

IM
E 

(s
)

ρ = 0 m
ρ = 150 m
ρ = 300 m
ρ = 450 m
ρ = 600 m
ρ = 750 m

0 100 200 300 400 500 600 700
0

50

100

150

200

250

300

MINIMUM TURNING RADIUS (m)

SY
ST

EM
 T

IM
E 

(s
)

m = 100
m = 225
m = 400
m = 625
m = 900

Figure 3. Simulations of the MC policy were run with a square environment of area A = 9×1010 m2 and vehicle
speed v = 50 ms−1. The performance of the MC policy is plotted as a function of i) the number of vehicles
(left), and ii) the minimum turning radius of the vehicles (right). The nonholonomic vehicle densities for the
scenarios of all data points shown lie within the range 0 ≤ dρ ≤ 0.0056.

The Strip Loitering (SL) Policy

The Strip Loitering policy is based on the following idea. Bound the environment Q with

a rectangle of minimum height, where height denotes the smaller of the two side lengths of

a rectangle. Let W and H be the width and height of this bounding rectangle, respectively.

Divide Q into strips of width w, where

w = min

{(
4

3
√
ρ

WH + 10.38ρH

m

)2/3

, 2ρ

}
. (13)

Orient the strips along the side of lengthW . Construct a closed Dubins path which runs along

the longitudinal bisector of each strip, visiting all strips in top-to-bottom sequence, making

U-turns between strips at the edges of Q, and finally returning to the initial configuration.

Note that the path must cover Q, but it need not cover the entire bounding box of Q. The

bounding box is merely a construction used to place an upper bound on the total path length.

The m UAVs loiter on this path, equally spaced, in terms of path length. An illustration

of the Strip Loitering policy is shown in Figure 4. Two distances that are important in the

analysis of this policy are shown in Figure 5. At the instant a target arrives, a circle of

radius ρ is constructed, tangent to the loitering path and intersects the target. The length

of the arc departing from the loitering path and ending at the target is denoted by d2. The

UAV responsible for visiting the target is the one closest in terms of loitering path length d1

to the point of departure, at the time of target-arrival. Note that there may be UAVs closer

to the target in terms of Euclidean distance or Dubins minimum-length path. However, the

target-assignment strategy described above lends itself to tractable analysis.
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After a UAV has serviced a target, it must return to its place in the loitering pattern.

The following method to accomplish this task is described using the example shown in Fig.

5. After making a left turn of length d2 to service the target, the UAV makes a right turn

of length 2d2 followed by another left turn of length d2, returning it to the loitering path.

However, the UAV has fallen behind in the loitering pattern by a distance 4(d2−ρ sin d2
ρ

). To

rectify this, as it nears the end of the current strip, it takes its U-turn a distance 2(d2−ρ sin d2
ρ

)

early.

Q

Figure 4. Illustration of the Strip Loitering policy. The segment providing closure of the loitering path
(returning the UAVs from the end of the last strip to the beginning of the first strip) is not shown here for
clarity of the drawing.

d2d1 δ

target

point
of

departure

ρ

Figure 5. Close-up of the Strip Loitering policy with construction of the point of departure and the distances
δ, d1, and d2 for a given target, at the instant of appearance.

Theorem 17 For any convex, compact Q ⊂ R2 of area A and ρ, v ∈ R+, the Strip Loitering

policy is a stabilizing policy in the light load case, i.e., when λ/m→ 0+. Moreover, if Q has

a bounding rectangle of width W and height H, the system time of the Strip Loitering Policy
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satisfies the following, as λ/m→ 0+.

T SL ≤

 1.238
v

(
ρWH+10.38ρ2H

m

)1/3

+ W+H+6.19ρ
mv

for m ≥ 0.471
(
WH
ρ2

+ 10.38H
ρ

)
,

WH+10.38ρH
4ρmv

+ W+H+6.19ρ
mv

+ 1.06ρ
v

otherwise .
(14)

Furthermore, for any λ, ρ, v ∈ R+,

lim sup
m→+∞

T SLm
1/3 ≤ 1.238

v

(
ρWH + 10.38ρ2H

)1/3
. (15)

Proof: For λ/m → 0+, after an initial transient, all targets are generated with i) the

vehicles at their designated position on the loitering pattern, and ii) an empty target queue,

with probability one. Therefore, the waiting time for a new target after that is finite. Hence,

the Strip Loitering policy is stabilizing in light load. In the following, an expression for the

system time is derived. Denote the length of the closed path as L1. Due to the equal spacing

of the UAVs along the loitering path,

E [d1] =
L1

2m
. (16)

Let Nstrips be the number of strips, Lstrip be the length traveled along a single strip, Lu−turn

be the length of a u-turn and Lclosure be the length of the closure path segment. With these

notations, L1 can be bounded as

L1 ≤ NstripsLstrip + (Nstrips − 1)Lu−turn + Lclosure. (17)

It is easy to verify that Nstrips = dH
w
e ≤ H

w
+ 1 and Lstrip ≤ W + 2ρ, where the 2ρ term arises

from the fact that the vehicles must start on a strip outside Q in order to visit a target that

might appear on the boundary of Q in front of it. Bounds on the length of the optimal point-

to-point Dubins path from14 give us that Lu−turn ≤ w+κπρ and Lclosure ≤ W +H+2ρ+κπρ,

where κ ≈ 8/3. Substituting these bounds into Eq. (17) and taking into account Eq. (16),

E [d1] ≤
WH + 10.38ρH

2mw
+
W +H + 6.19ρ

m
. (18)

To calculate E [d2], define δ as the smallest distance from the target to any point on the

loitering path (see Fig. 5). Since d2(s) = 2ρ sin−1(
√

s
2ρ

) for s ≤ ρ and δ is uniformly

distributed between 0 and w/2,

E [d2] =
4ρ

w

∫ w/2

0

sin−1

(√
s

2ρ

)
ds =

4ρ2

w

[√
x− x2 + (−1 + 2x) sin−1(

√
x)
]
, (19)
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where x = w/(4ρ). It can be shown that, for all x ∈ [0, 1/2],

√
1− x ≤ 1− x

2
and sin−1(

√
x) ≥ √x+

√
x3

6
.

Substituting these bounds into Eq. (19) and through further algebraic simplification, for

w ≤ 2ρ,

E [d2] ≤
3

4

√
ρw. (20)

As noted earlier, for λ/m→ 0+, after an initial transient, all targets are generated with the

vehicles on the closed loitering path, and an empty target queue. The system time satisfies

T SL ≤
E [d1] + E [d2]

v
. (21)

Therefore, from Equations (21), (18) and (20), for w ≤ 2ρ, in the limit as λ/m→ 0+,

T SL ≤
WH + 10.38ρH

2mvw
+
W +H + 6.19ρ

mv
+

3

4v

√
ρw. (22)

In order to get the least upper bound, the right hand side of Eq. (22) is minimized with

respect to w subject to the constraint that w ≤ 2ρ. The value of w at which T SL attains

its minimum value is given by Eq. (13) and the minimum value is given by Eq. (14). For a

given λ ∈ R+, as m → +∞, λ/m → 0+. The result in Eq. (15) then follows by taking the

limit as m→ +∞ in Eq. (14).

Remark 18 Theorem 11 and Theorem 17 imply that, in the light load case and for a fixed

Q and ρ, T opt belongs to Θ(1/(v 3
√
m)).

Remark 19 In the light load case, when the turning radius ρ is large compared to the di-

mensions of the region Q, Eq. (14) implies that T opt belongs to O(1/(mv)).

Simulation Results for the SL policy

Simulations of the SL policy were run for various values of m. For each condition, the system

time shown in Fig. 6 is the average of the waiting times of one-hundred thousand target

points uniformly generated in the environment. These numerical results confirm that the

system time shrinks with 1/m1/3: the log-log plot has a slope of −0.34, implying a power

law of approximately −1/3.
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Figure 6. Simulations of the SL policy were run with a square environment of area A = 9 × 106 m2, vehicle
speed v = 50 ms−1, minimum-turning radius ρ = 600 m, and m varying from 50 to 450. The nonholonomic
vehicle densities for the scenarios of all data points shown lie within the range 2 ≤ dρ ≤ 18.

IV. Heavy Load

In this section, performance bounds are studied and algorithms are presented for the case

in which the target generation rate is high.

IV.A. Lower Bound

Leveraging the results on the small-time reachable set derived in previous sections, a lower

bound on the system time for any policy in the heavy load case can be stated. This lower

bound explicitly takes the nonholonomic constraint into account.

Theorem 20 For any convex, compact Q ⊂ R2 of area A and ρ, v ∈ R+, the system time

for the Dubins DTRP satisfies

lim inf
λ
m
→+∞

T opt
m3

λ2
≥ 81

64

ρA

v3
.

Proof: Under the actions of any stabilizing policy, the number of outstanding targets

approaches a finite steady-state value, n, related to the system time by Little’s Formula

(1). Consider the m-vehicle system in arbitrary configuration. In the following, a bound is

computed on the expected time required for a given vehicle i to visit the closest target, in the

Dubins distance sense. Call this target the nearest-neighbor, and call such a time tnn. If the

vehicle is given a time t to move, the probability that tnn > t is no less than the probability
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that there are no targets reachable within time t. In other words,

Pr(tnn > t) ≥ 1− nArea(Rt(gi))

A
= 1− n(vt)3

3ρA
.

Defining c = (nv3)/(3ρA),

E [tnn] =

∫ ∞
0

Pr(tnn > ξ) dξ

≥
∫ ∞

0

max

(
0, 1− n(vξ)3

3ρA

)
dξ

=

∫ c−1/3

0

(
1− cξ3

)
dξ

=
3

4v

(
3ρA

n

)1/3

.

If each vehicle visits its nearest-neighbor target, then in expectation, m targets are visited

within time tnn. Assuming, towards a lower bound, that targets are continually serviced at

a rate of m/tnn, resulting in a steady-state number of outstanding targets nnn,

m

tnn

=
4vm

3

(
nnn

3ρA

)1/3

= λ.

Substituting Little’s formula, i.e., nnn = λT nn, and rearranging, the claim follows from

T opt ≥ T nn.

Note that the system time depends quadratically on the parameter λ, whereas in the

Euclidean case it depends on it linearly. As a consequence, bounded-curvature constraints

make the system time more sensitive to increases in the target-generation rate. Perhaps

the most striking consequence of the above result is that the lower bound suggests that the

system time decreases with the cube of the number of vehicles, whereas in the Euclidean

case it decreases with the square of the number of vehicles.

IV.B. The Bead Tiling (BT) Policy

In Savla et al.,14 the single-vehicle Dubins DTRP heavy-load case is analyzed. A policy

called the Bead Tiling Algorithm (BT) Policy is shown to have a performance within a

constant factor of the optimal for rectangular environments. In the following, the BT policy

is adapted for general convex environments, and a method by which the algorithm can be

used by a multiple-vehicle system is presented. For the sake of completeness, a modified

form of the BT policy from14 is stated for general convex Q, and the corresponding upper

bound on the system time for the Dubins DTRP is obtained from its analysis.
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The BT policy makes use of the shape detailed in Fig. 7, referred to as a “bead”.14 The

algorithm works by tiling the plane with identical beads. In choosing the orientation of the

bead rows, we use the same minimum-height bounding box of Q with width W and height

H, as described in the SL policy. The Dubins vehicle visits all beads intersecting Q in a row-

by-row fashion in top-to-bottom sequence, servicing at least one target in every non-empty

bead. This process is repeated indefinitely. The size of the beads (and hence the total number

intersecting Q) is scaled with the target generation rate by choosing ` = min{CBTAv/λ, 4ρ},
where

CBTA =
7−
√

17

4

(
1 +

7πρH

3A

)−1

is a design parameter chosen to maximize the performance of the algorithm. Let TBT be the

10

ρ

   

p− p+
Bρ(!)

!

Fig. 2. Construction of the “bead” Bρ(!). The figure shows how the upper half of the boundary is constructed, the bottom half is symmetric.

Next, we study the probability of targets belonging to a given bead. Consider a bead B entirely contained in Q

and assume n points are uniformly randomly generated in Q. The probability that the ith point is sampled in B is

µ(!) =
Area(Bρ(!))

Area(Q)
.

Furthermore, the probability that exactly k out of the n points are sampled in B has a binomial distribution, i.e.,

indicating with nB the total number of points sampled in B,

Pr[nB = k| n samples] =
(

n

k

)
µk(1− µ)n−k.

If the bead length ! is chosen as a function of n in such a way that ν = n · µ(!(n)) is a constant, then the limit

for large n of the binomial distribution is [31] the Poisson distribution of mean ν, that is,

lim
n→+∞

Pr[nB = k| n samples] =
νk

k!
e−ν .

C. The Recursive Bead-Tiling Algorithm

In this section, we design a novel algorithm that computes a Dubins path through a point set in Q. The proposed

algorithm consists of a sequence of phases; during each of these phases, a Dubins tour (i.e., a closed path with

bounded curvature) will be constructed that “sweeps” the set Q. We begin by considering a tiling of the plane such

June 30, 2006 DRAFT

Figure 7. The bead.

system time for the single-vehicle BT policy. The following theorem is a generalization of

the corresponding result from Savla et al.14 for any convex Q.

Theorem 21 For any convex, compact Q ⊂ R2 of area A and λ, ρ, v ∈ R+, the single-

vehicle Bead Tiling policy is a stabilizing policy. Moreover, if Q has a bounding rectangle of

width W and height H, the system time for the single-vehicle Bead Tiling policy satisfies

lim
λ→+∞

TBT

λ2
≤ 71

ρA

v3

(
1 +

7πρH

3A

)3

.

The BT policy is extended to the m-vehicle Bead Tiling (mBT) policy in the following

way. Divide the environment into regions of dominance with lines parallel to the bead rows.

Let the area and height of the i-th vehicle’s region be denoted with Ai and Hi. Place the
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Q

Figure 8. An adaptation of the BT policy for the multiple-vehicle case.

subregion dividers in such a way that

Ai +
7

3
πρHi =

1

m

(
A+

7

3
πρH

)
for all i in Im. Allocate one subregion to every vehicle and let each vehicle execute the BT

policy in its own region. Let TmBT be the system time for the mBT policy.

Theorem 22 For any convex, compact Q ⊂ R2 of area A and λ, ρ, v ∈ R+ and m ∈ N, the

mBT policy is a stabilizing policy. Moreover, if Q has a bounding rectangle of width W and

height H, the system time for the mBT policy satisfies

lim
λ
m
→+∞

TmBT
m3

λ2
≤ 71

ρA

v3

(
1 +

7πρH

3A

)3

.

Proof: The fact that the mBT policy is stabilizing follows from the stabilizing property

of the single-vehicle BT policy. Denote the target-generation rate and system time for targets

generated in the i-th vehicle’s region as λi and T i, respectively. Also, let Ai be the area of

the i-th vehicle’s region, in which case, λi = λAi/A. Given the definition of the mBT policy,

λ/m→ +∞ implies that λi → +∞ for all i ∈ Im. By Theorem 21, for all i ∈ Im,

T i ≤
71ρAi
v3

(
1 +

7πρHi

3Ai

)3

λ2
i , as λ/m→ +∞.

Substituting λi = λAi/A, for all i ∈ Im,

T i ≤
71ρ

A2v3

(
Ai +

7πρHi

3

)3

λ2, as λ/m→ +∞. (23)

However, Ai and Hi are selected in the mBT policy so that Ai + 7πρHi
3

= 1
m

(
A+ 7πρH

3

)
.
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Substituting this into Eq. (23), for all i ∈ Im,

T i ≤
71ρA

m3v3

(
1 +

7πρH

3A

)3

λ2, as λ/m→ +∞.

Note that T i is independent of i, i.e., the system time in each of the vehicle’s regions is the

same. The theorem then follows trivially.

Remark 23 Theorem 20 and Theorem 22 imply that the system time for the Dubins DTRP,

in the heavy load, is of the order λ2/(mv)3, and that the mBT policy performs within a

constant factor of the optimal policy.

Remark 24 There exists no stabilizing policy for the Dubins DTRP when the targets are

generated in an adversarial worst-case fashion with λ/m ≥ v/(πρ). This fact is a consequence

of the linear lower bound on the length of the Dubins Traveling Salesperson Tour for worst-

case point sets as derived in Savla et al.14

Simulation results for the m-vehicle Bead Tiling Policy

Simulations of the mBT policy were run for various values of λ and m. For each combination

of conditions, an experiment was run for 5 ·105 simulation seconds. The number of outstand-

ing targets was plotted with respect to time to ensure that the data collected represents the

performance of the policy once the system has reached steady state. The system times

shown in Fig. 9 are the averages of the waiting times of all targets generated and serviced

during this period. Moreover, the results are verified for consistency by substituting the

known target-generation rate and the measured steady-state number of outstanding targets

into Eq. (1) to obtain the system time via an alternative method. Performance results from

simulations of the mBT policy, summarized in Fig. 9, validate theoretical predictions that

the system time grows quadratically with the target generation rate, and decreases cubically

with the number of vehicles. For example, for m = 1 and λ increasing from 1/12 s−1 to

1/4 s−1 (Fig. 9, left), note a slope of 1.95 on the log-log plot, implying a power law close to

2. For λ = 1/4 s−1 and m increasing from 1 to 4 (Fig. 9, right), note a slope of −2.91 on

the log-log plot, implying a power law close to −3.

V. Phase Transition

In Section III, two policies were proposed: the Median Circling policy and the Strip

Loitering policy. These policies exhibit different modes of behavior. It was shown that the

territorial MC policy is optimal as dρ → 0+ and the gregarious SL policy is constant-factor
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Figure 9. Simulations of the mBT policy were run with a square environment of area A = 3.6× 107 m2, vehicle
speed v = 50 ms−1, minimum-turning radius ρ = 600 m, number of vehicles m varying from 1 to 4, and target-
generation rate λ varying from 1/12 s−1 to 1/4 s−1 in increments of 1/24 s−1. Plots of the system time versus
target-generation rate (left), and system time versus the number of vehicles (right) are given.

optimal as m→ +∞, for constant ρ and Q. This suggests the existence of a phase transition

in the optimal policy for the light load scenario as one increases the number of vehicles for

a fixed ρ and Q.
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Figure 10. Simulation results aimed at demarcating the phase transition for the case when the environment
is a square of area A = 4× 108 m2. The color of the data point signifies which policy had a lower system time
for the corresponding values of the parameters.

Simulations of both the MC and SL policy were run with a square environment of area

A = 4 × 108 m2 for varying values of m and ρ. For each combination of conditions and for

each policy, the system time was taken as the average of the waiting times of one-hundred

thousand target points uniformly generated in the environment. For the MC policy, c2 = 2.91

is chosen since numerical results show that it gives better performance in terms of c1, as
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reported in Remark 2. The number of vehicles m is varied between 1 and 100 and the

turning radius ρ is varied such that the ratio A/ρ2 takes values between 1 and about 2000.

The results are summarized in Fig. 10 showing which policy performs better for a given

value of m and ρ. The color of the data point signifies which policy had a lower system

time for the given conditions. The plot illustrates that the transition curve between the

two policies could be captured by a straight line of the form m = kA/ρ2 for some constant

k > 0, thereby highlighting the significance of the nonholonomic density, dρ = ρ2m/A in

capturing the transition. Moreover, the slope of the approximating line gives an estimate of

this critical value of the nonholonomic density to be dsq−sim
ρ ≈ 0.0925.

L

w

Figure 11. The MC (left) and SL (right) policies with an infinite number of vehicles on an unbounded domain.

It is desirable to study the fundamental factors driving the transition, ignoring its depen-

dence on the shape of Q. Towards this end, envision an infinite number of vehicles operating

on the unbounded plane, where the system is characterized by the vehicle density. Denote

the inverse of the density with a, the area per vehicle. Illustrations of the MC and SL policies

operating on an unbounded domain are shown in Fig. 11. In this case, the configuration

p∗ yielding the minimum of the function H(p) is that in which the Voronoi partition in-

duced by p∗ is a network of regular hexagons,49 each of area a. Each generator pi is the

median of its own Voronoi region, and it is known that if Q is a regular hexagon of area a

then H∗1(Q) ≈ 0.377
√
a. The system time of the policy satisfies TMC ≤ 0.377

√
a + 3.76ρ.

This expression is obtained by using the value of c1 from Remark 2 in Theorem 13. In

this scenario, the SL policy reduces to vehicles moving straight on infinite strips, where the

design criteria are the width of the strips w ≤ 2ρ, and the distance between consecutive

vehicles in the same strip L. The system time of the policy satisfies T SL ≤ L/2 + 3
√
ρw/4.

The area per vehicle is related to the design parameters by Lw = a. Substituting gives

T SL ≤ a/2w + 3
√
ρw/4. Minimizing with respect to w, with the constraint that w ≤ 2ρ,
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gives w = min{(4a/3√ρ)2/3, 2ρ}, yielding

T SL ≤

 1.238(ρa)1/3 for dρ ≥ 0.471,

a/4ρ+ 1.06ρ otherwise ,
(24)

where we have substituted the nonholonomic vehicle density with dρ = ρ2/a. Equating the

upper bound on the MC policy with the upper bound on the SL policy for dρ < 0.471, we

get 0.377
√
a + 3.76ρ = a/4ρ + 1.06ρ. Dividing both sides by ρ and substituting x =

√
a/ρ,

the quadratic formula gives x ≈ 4.127 and hence the critical nonholonomic vehicle density

is given by dunbd−theory
ρ = 1/x2 ≈ 0.0587. This is a lower critical density than implied by the

simulation results on a square environment, favoring the SL policy. It would seem that the

relaxation of the environment boundary has a greater impact on the performance of the SL

policy, no longer requiring U-turns.
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Figure 12. Simulation results aimed at demarcating the phase transition for the case when the environment
is an unbounded domain. The color of the data point signifies which policy had a lower system time for the
corresponding values of the parameters.

To further verify the above result, extensive simulations of the two policies operating in

an unbounded domain were run for various values of a and ρ2, and Fig. 12 shows which

policy has the lower system time for the given set of conditions. For the MC policy, this

reduces to simulating a single vehicle operating on a regular hexagon. In the simulations

of the MC policy, trials were run varying the loitering radius (by varying c2) for a given

set of a and ρ2, and the MC policy’s system time was taken as the lowest value obtained.

Avoiding excessive detail, it should be noted that the optimal c2 is also a function of dρ

and that for all conditions under which the MC policy is dominant, the optimal c2 is one.
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The following is an intuitive explanation for this fact: the MC policy is dominant when the

Euclidean cost is dominant and a choice of one for c2 is the closest the Dubins vehicle can

come to replicating the optimal policy of the Euclidean vehicle (waiting at the median).

For the SL policy, the unbounded domain scenario reduces to simulating a single vehicle

responsible for targets appearing in the region of the strip in front of it, as dictated by

the chosen w and L discussed above. Trials were run varying w (and hence L = a/w) as a

fraction of 2ρ. Experiments suggest that the optimal w is 2ρ for all conditions near the phase

transition. This agrees with the theoretical analysis above regarding the unbounded domain

case. Also, once a target appears, the vehicle is allowed to take a minimum-time path rather

than the service method given in the formal description of the SL policy. This practice

lends itself to a fairer comparison between the two policies. For each set of conditions, for

each policy, and for each trial varying design parameters (c2 for the MC policy and w,L

for the SL policy), the system time was taken as the average of the waiting times of one-

hundred thousand target points uniformly generated in the vehicle’s region of responsibility.

Figure 12 provides a stronger justification for approximating the phase transition with a

line, and hence the nonholonomic density. The slope of the transition line in Fig. 12 implies

a critical nonholonomic density of dunbd−simρ ≈ 0.0759. This is within a factor of 1.3 from

dunbd−theoryρ , further favoring the MC policy. This discrepancy is ascribed to the conservative

use of a strict upper bound on Lρ(g, q) in Theorem 13 rather than taking its expected value

over a given domain, as is effectively done through simulation. To gain further intuition on

the nature of this critical condition, consider the area per vehicle acrit = ρ2/dcrit
ρ , which yields

aunbd−theory ≈ 5.42πρ2 and aunbd−sim ≈ 4.19πρ2. In other words, the transition occurs when

each vehicle is responsible for a region of area 5.42 or 4.19 times that of a minimum turning-

radius disk. Note that the value of dunbd−simρ is within a factor of 0.821 from dsq−sim
ρ . The

relative closeness between the values of dρ obtained via different methods gives a compelling

guideline in the form of dρ and its critical value that can be used by a system architect to

decide upon the optimal strategy in the light load scenario for given problem parameters.

VI. Conclusions

In this paper, several routing problems in stochastic time-varying environments were

introduced, for vehicles that move with constant forward speed along paths of bounded

curvature in the plane. For each of them we derived fundamental limits on the achievable

performance in terms of system time, as a function of problem parameters such as the size

of the fleet, the minimum turning-radius, the target-generation rate, the vehicle speed and

the size of the environment. In addition, for each problem, we presented routing algorithms

that provably approximate the optimal performance.
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Specifically, it has been shown that, in light load, the optimal system time is proportional

to the inverse cube root of the number of vehicles, contrasting with the holonomic case where

it is proportional to the inverse square root. This implies that the nonholonomic motion

constraints inhibit the added performance gained per vehicle. In low density scenarios,

the optimal policy is one of territorial behavior, but as the density increases, a gregarious

behavior is required to reap the benefits of a large team. In heavy load, it was shown that the

system time is of order proportional to the square of the target appearance rate, and inversely

proportional to the cube of the number of vehicles, whereas it is known to be proportional to

the target appearance rate and inversely proportional to the square of the number of vehicles

in the holonomic case. This implies that the system time in the nonholonomic case is more

sensitive to the target generation rate as well as the size of the vehicle fleet and vehicle speed

than the holonomic case. A phase transition was recognized in the optimal algorithm and

numerical experiments were performed towards demarcating the parameter values at which

this phase transitions occur. This led to a set of guidelines available to system architects and

control algorithm designers aiming to maximize the performance of their autonomous-vehicle

systems. The routing algorithm can be chosen according to the size of the vehicle team. On

other hand, depending on the conditions of the operating environment, a designer might use

the analysis provided to decide if the additional cost of another vehicle is worth the added

value in performance it will bring.

In the future, various extensions of the problem considered in this paper will be studied.

For example, nonholonomic dynamics will be combined with constraints on the information

available to the vehicles by limiting communication and sensing capabilities. Another im-

portant extension is the inclusion of obstacles or no-fly zones restricting the motion of the

UAVs. The focus of this paper was on the analysis of fundamental performance bounds, and

on the design of algorithms achieving provable approximations of the optimal performance.

Avenues for future work include further work on efficient implementations of the proposed

algorithms, including for example the design of decentralized strategies for the individual ve-

hicles which give rise to a group behavior that is near optimal for the system as a whole. A

game-theoretic approach might lend itself naturally to such a completely distributed control

paradigm. The understanding of phase transitions gained from this work can aid in studying

similar phenomena in biological systems. Finally, experimental validation of the proposed

algorithms on fixed-wing UAV platform is currently being pursued using commercial off-the-

shelf autopilots.
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A. The Dubins distance function

In this section, a brief exposition about the Dubins distance function Lρ(g, q) is given.

Since the Dubins distance is invariant under transformation of coordinates from the global

frame to the Dubins frame, without loss of generality, attention can be focusd on Lρ(g0, q),

where g0 = (0, 0, 0) and q is the coordinate of the destination point in the Dubins frame.

Define D+
ρ := {q ∈ R2 : ‖q−(0, ρ)‖ < ρ}, D−ρ := {q ∈ R2 : ‖q−(0,−ρ)‖ < ρ}. If q ∈ D+

ρ ∪D−ρ
the optimal path is of type CC, otherwise it is of type CL. The following proposition gives

a closed form expression for Lρ(g0, q).

Proposition 25 The minimum length Lρ(g0, q) of a Dubins path steering a vehicle from

g0 = (0, 0, 0) ∈ SE(2) to a point q = (x, y) ∈ R2 is given by:

Lρ(g0, q) =


√
d2

c(q)− ρ2 + ρ

(
θc(q)− arccos

ρ

dc

)
, for q /∈ D+

ρ ∪ D−ρ ;

ρ

(
2π − α(q) + arcsin

dc(q) sin θc(q)

df(q)
+ arcsin

ρ sinα(q)

df(q)

)
, otherwise,

where dc(q) =
√
x2 + (|y| − ρ)2 and θc(q) = atan2(x, ρ − |y|) are polar coordinates of the

point q with respect to the center of either D+
ρ or D−R, whichever is the closest, df(q) =√

x2 + (|y|+ ρ)2 is the distance of q from the other center, and

α(q) = arccos
5ρ2 − df(q)

2

4ρ2
.

Proof: The proof is based on the results in Thomaschewski46 mentioned in the paper,

and elementary planar geometry.

The facts stated in the following remarks are consequences of Proposition 25.

Remark 26 The level sets of the function Lρ(g0, q) are segments of well-studied curves.

More precisely, level sets of Lρ(g0, q) are:

• Arcs of circle involutes, for q /∈ D+
ρ ∪ D−ρ ;

• Arcs of epicycloids, for q ∈ D+
ρ ∪ D−ρ .

Recall that a circle involute is the curve traced by a point fixed to a line, as the line rolls

without slipping on a circle; an epicycloid is the curve traced by a point fixed to a circle,

as the circle rolls without slipping on another circle. For further details on these families of

curves see, e.g., Lawrence.57 A depiction of such level sets is provided in Fig. 13.

Remark 27 The function Lρ(g0, q) is:

35 of 42

Routing Problems for Multiple UAVs, Enright et al.



 6                        4                       2 0 - 2 - 4 - 6
−3

−2

−1

0

1

2

3

4

5

6

y

x

Figure 13. The level sets of the function Lρ(g0, q), for ρ = 1, shown at increments of π/4. The initial vehicle
configuration is represented by the black triangle, and is at coordinates (0, 0) heading up. Note that the positive
direction of the x axis is up and of the y axis is left.

• not continuous on the top half of the boundary of D+
ρ and D−ρ , i.e., for {(x, y) ∈

D+
ρ ∪ D−ρ : x ≥ 0};

• continuous, but not differentiable on the bottom half of the boundary of the same set,

i.e., for {(x, y) ∈ D+
ρ ∪ D−ρ : x < 0}, and on the negative part of the x-axis, i.e., for

{(x, y) : x < 0, y = 0};

• continuous and differentiable everywhere else.

Remark 28 The length of the optimal path to reach a point inside one of the circles Dρ is

at least πρ; furthermore, one can verify that

sup
q∈D+

ρ

Lρ(g0, q) = ρ

(
2π + 2 arctan

√
15

9
− arccos

7

8

)
≈ 6.5906ρ,

and that such a supremum is attained in the limit as q approaches, from within D+
ρ , the point

qsup =

(
ρ
√

15

8
,
ρ

8

)
∈ ∂D+

ρ .

Because of symmetry, a similar result holds within D−ρ .

As is apparent from the preceding discussion, the function Lρ is fairly complicated. The

next result establishes lower and upper bounds on Lρ(g0, q) based on the Euclidean norm of

q.

Proposition 29 For any q = (x, y) ∈ R2, the following holds:

‖q‖+ ρ(θ(q)− sin θ(q)) ≤ Lρ(g0, q) ≤ ‖q‖+ 2πρ, (25)
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where θ(q) = atan2(|y|, x).

Proof: The lower bound is proved first. If q ∈ D+
ρ ∪ D−ρ , then ‖q‖ ≤ 2ρ sin θ(q), and

hence

‖q‖+ ρ(θ(q)− sin θ(q)) ≤ ρ(θ(q) + sin θ(q) ≤ πρ.

However Lρ(g0, q) ≥ πρ within D+
ρ ∪ D−ρ , which proves that the bound holds in this case.

If q /∈ D+
ρ ∪D−ρ , proceed in the following way. Define the point q′ as depicted in Fig. 14,

i.e., by translating the segment from the origin to q normally to itself, until it is tangent to

the minimum-radius circle ∂Dρ. Since Lρ(g0, q
′) = ρθ(q) + ‖q‖ − ρ sin θ(q), the bound holds

in this case as well.

q

q
′

x

y

q

x

y

Figure 14. Constructions for the lower bound (left) and upper bound (right) on Lρ.

The proof for the upper bound is constructive: consider a path of type CLC in which the

first subpath has arc length ρθ(q), the linear subpath has length ‖q‖, and the final subpath

has arc length ρ(2π − θ(q)). Such a path terminates at the desired point q, and has the

required length.

B. Technical lemmas for Theorem 10

In this section, the technical lemmas used in the proof of Theorem 10 are presented.

Lemma 30 Consider A1, A2, A3 ∈ R+ such that A3 > A2 > A1 ≥ 0, then the average

Dubins distance satisfies the following monotonic relationship:∫
RA2

(gi)\RA1
(gi)

Lρ(gi, q) dq

A2 − A1

≤
∫
RA3

(gi)\RA1
(gi)

Lρ(gi, q) dq

A3 − A1

.
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Proof: Let L :=

R
RA2

(gi)\RA1
(gi)

Lρ(gi,q) dq

A2−A1
. One can then write∫

RA3
(gi)\RA1

(gi)
Lρ(gi, q) dq

A3 − A1

=

∫
RA3

(gi)\RA2
(gi)

Lρ(gi, q) dq +
∫
RA2

(gi)\RA1
(gi)

Lρ(gi, q) dq

A3 − A1

≥
∫
RA3

(gi)\RA2
(gi)

Lρ(gi, q) dq + L(A2 − A1)

A3 − A1

.

For any q ∈ RA3(gi) \RA2(gi), Lρ(gi, q) ≥ L. Therefore,∫
RA3

(gi)\RA1
(gi)

Lρ(gi, q) dq

A3 − A1

≥ L.

Lemma 31 The function defined in Eq. (8) is convex.

Proof: Consider A1, A3 ∈ R+ such that A3 > A1 and α ∈ (0, 1). Define A2 := αA1+(1−
α)A3. Convexity is shown by proving that for any α ∈ (0, 1), f(A2) ≤ αf(A1)+(1−α)f(A3)

(the proof for the case when α = 0 or α = 1 is trivial). One can write

f (A1) =

∫
RA1

(gi)

Lρ(gi, q) dq,

f (A2) =

∫
RA1

(gi)

Lρ(gi, q) dq +

∫
RA2

(gi)\RA1
(gi)

Lρ(gi, q) dq,

f (A3) =

∫
RA1

(gi)

Lρ(gi, q) dq +

∫
RA3

(gi)\RA1
(gi)

Lρ(gi, q) dq.

Now use Lemma 30 to derive the relation∫
RA2

(gi)\RA1
(gi)

Lρ(gi, q) dq ≤ (1− α)

∫
RA3

(gi)\RA1
(gi)

Lρ(gi, q) dq,
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and, in turn,

f(A2) =

∫
RA1

(gi)

Lρ(gi, q) dq +

∫
RA2

(gi)\RA1
(gi)

Lρ(gi, q) dq

≤
∫
RA1

(gi)

Lρ(gi, q) dq + (1− α)

∫
RA3

(gi)\RA1
(gi)

Lρ(gi, q) dq

= α

∫
RA1

(gi)

Lρ(gi, q) dq + (1− α)

(∫
RA1

(gi)

Lρ(gi, q) dq +

∫
RA3

(gi)\RA1
(gi)

Lρ(gi, q) dq

)
= αf(A1) + (1− α)f(A3).

Therefore, f is convex.
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