
Quantized average consensus via dynamic coding/decoding
schemes

Ruggero Carli1,∗, Francesco Bullo1, and Sandro Zampieri2

1 Center for Control, Dynamical Systems and Computation, University of California at Santa Barbara,
Santa Barbara, CA 93106, USA,

2 Department of Information Engineering, University of Padova, Via Gradenigo 6/a, 35131 Padova, Italy

SUMMARY

In the average consensus a set of linear systems has to be driven to the same final state which
corresponds to the average of their initial states. This mathematical problem can be seen as the
simplest example of coordination task. In fact it can be used to model both the control of multiple
autonomous vehicles which all have to be driven to the centroid of the initial positions, and to model
the decentralized estimation of a quantity from multiple measure coming from distributed sensors.
This contribution presents a consensus strategy in which the systems can exchange information
among themselves according to a fixed strongly connected digital communication network. Beside
the decentralized computational aspects induced by the choice of the communication network, we
here have also to face the quantization effects due to the digital links. We here present and discuss two
different encoding/decoding strategies with theoretical and simulation results on their performance.
Copyright c© 2008 John Wiley & Sons, Ltd.
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1. Introduction

A basic aspect in the analysis and in the design of cooperative agent systems is related to the
effect of the agents’ information exchange on the coordination performance. A coordination
task which is widely treated in the literature is the so called average consensus. This is
the problem of driving states of a set of dynamic systems to a final common state which
corresponds to the average of initial states of each system. This mathematical problem can
be shown to be relevant in the control of multiple autonomous vehicles which all have to be
driven to the centroid of the initial positions, and in the decentralized estimation of a quantity
from multiple measures coming from distributed sensors. The way in which the information
flow on the network influences the consensus performance has been already considered in the
literature [1, 2], where the communication cost is modeled simply by the number of active
links in the network which admit the transmission of real numbers. However, this model can
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be too rough when the network links represent actual digital communication channels. Indeed
the transmission over a finite alphabet requires the design of efficient ways to translate real
numbers into digital information, namely smart quantization techniques.

The investigation of consensus under quantized communication started with [3]. In this paper
the authors study systems having (and transmitting) integer-valued states and propose a class
of gossip algorithms which preserve the average of states and are guaranteed to converge up
to one quantization bin. Besides the fact there is not precise consensus, since the algorithm
requires the use of a single link per iteration, the convergence is very slow. The authors
in [4] analyzed the impact of the quantization noise through modification of the consensus
algorithm proposed in [5], where the case of noisy communication links is addressed. Precisely,
the authors in [5] consider the case in which the information transmitted by each system is
corrupted by additive zero-mean noise. In [4] it is noted that the noise component can be
considered as the quantization noise and by simulations, it is shown for small N that, if the
increasing correlation among the states of the systems is taken into account, the variance of the
quantization noise diminishes and systems converge to a consensus. In [6] the authors propose
a distributed algorithm that uses quantized values and preserves the average at each iteration.
They showed favorable convergence properties using simulations on some static topologies, and
provided performance bounds for the limit points of the generated iterates. The authors in [7]
adopt the probabilistic quantization scheme to quantize the information before transmitting
to the neighboring sensors. By proposing a iterative scheme to update the state at each sensor
node utilizing only quantized information communication, they show that, almost surely, the
node states reach consensus to a quantized level; only in expectation they converge to the
desired average. Moreover if the quantization step size is large this approach will lead to large
residual errors. Of note is that all the papers mentioned above considered quantized strategy
that either maintain the average of the state but do not converge to the consensus, or converge
to a consensus that, since average is not preserve, does not coincide with the average of the
initial conditions.

The main contribution of this paper is to propose a novel quantized strategy that permits
both to maintain the initial average and to reach it asymptotically. A similar approach has been
introduced in the context of the multi-agent coordination laws, rendezvous and deployment
[8]. Precisely, this novel strategy adapts coding/decoding strategies, that were proposed for
centralized control and communication problems, to the distributed consensus problem. In
particular, two coding/decoding strategies, one based on the exchange of logarithmically
quantized information, the other on a zoom in - zoom out strategy (this latter involves the
use of uniform quantizers) are considered. In this paper we provide analytical and simulations
results illustrating the convergence properties of these strategies. In particular we show that
the convergence factors depend smoothly on the accuracy parameter of the quantizers used
and, remarkably, that the critical quantizer accuracy sufficient to guarantee convergence is
independent from the network dimension.

The paper is organized as follows. Section 2 briefly reviews the standard average consensus
algorithm. In Section 3 we present two strategies of coding/decoding of the data throughout
reliable digital channels: one based on logarithmic quantizers, the other on uniform quantizers.
We analyze the former from a theoretical point in Section 4 and Section 5. We provide
simulations results for the latter in Section 6. Finally, we gather our conclusions in Section 7.
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Mathematical Preliminaries

Before proceeding, we collect some useful definitions and notations. In this paper, G = (V,E)
denotes an undirected graph where V = {1, . . . , N} is the set of vertices and E is the set of
(directed) edges, i.e., a subset of V ×V . Clearly, if (i, j) ∈ E also (j, i) ∈ E. A path in G consists
of a sequence of vertices (i1, i2, . . . , ir) such that (ij , ij+1) ∈ E for every j ∈ {1, . . . , r − 1}. A
graph G is connected if for any pair of vertices (i, j) there exists a path connecting i to j. A
matrix M is nonnegative if Mij ≥ 0 for all i and j. A square matrix M is stochastic if it is
nonnegative and the sum along each row of M is equal to 1. Moreover, a square matrix M is
doubly stochastic if it is stochastic and the sum along each column of M is equal to 1. Given
a nonnegative matrix M ∈ R

N×N , we define the induced graph GM by taking N nodes and
putting an edge (j, i) in E if Mij > 0. Given a graph G on V , the matrix M is adapted to, or
compatible with, G if GM ⊂ G.

Now we give some notational conventions. Given a vector v ∈ R
N and a matrix M ∈ R

N×N ,
we let vT and MT respectively denote the transpose of v and of M . We let σ(M) denote the
set of eigenvalues of M . In particular, if M is symmetric and stochastic we will assume that

σ(M) = {1, λ1(M), . . . , λN−1(M)} ,

where 1, λ1(M), . . . , λN−1(M) denote the eigenvalues of M and are such that λ1(M) ≥
λ2(M) ≥ . . . ≥ λN−1(M). We define

λmax(M) = λ1(M), λmin(M) = λN−1(M).

If there is no risk of confusion regarding the matrix we are considering, we will use the easy
notation λi, for i ∈ {1, . . . , N − 1}, and λmin and λmax. With the symbols 1 and 0 we denote
the N -dimensional vectors having respectively all the components equal to 1 and equal to 0.
Given v = [v1, . . . , vN ]T ∈ R

N , diag {v} or diag {v1, . . . , vN} mean a diagonal matrix having
the components of v as diagonal elements. Moreover, ‖v‖ and < v > denote the Euclidean
norm of v and the subspace generated by v, respectively. Finally, for f, g : N → R, we say that

f ∈ o(g) if limn→∞
f(n)
g(n) = 0.

2. Problem Formulation

We start this section by briefly describing the standard discrete-time consensus algorithm.
Assume that we have a set of agents V and a graph G on V describing the feasible
communications among the agents. For each agent i ∈ V we denote by xi(t) the estimate
of the average of agent i at time t. Standard consensus algorithm are constructed by choosing
a doubly stochastic matrix P ∈ R

N×N compatible with G and assuming that at every time t
agent i updates its estimate according to

xi(t + 1) =

N
∑

j=1

Pijxj(t). (1)

More compactly we can write

x(t + 1) = Px(t), (2)
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where x(t) is the column vector whose entries xi(t) represent the agents states. In our treatment
we will restrict to the case in which P is symmetric, i.e., PT = P . Note that a stochastic
symmetric matrix P is automatically doubly stochastic.

It is well known in the literature [1] that, if P is a symmetric stochastic matrix with positive
diagonal entries and such that GP is connected, then the algorithm (2) solves the average
consensus problem, namely

lim
t→+∞

x(t) =

(

1

N

N
∑

i=1

xi(0)

)

1.

From now on we will assume the following property.

Assumption 2.1. P is a symmetric stochastic matrix such that Pii > 0, for i ∈ {1, . . . , N},
and GP is connected.

Note that the algorithm (2) relies upon a crucial assumption: each agent transmits to
its neighboring agents the precise value of its state. This implies the exchange of perfect
information through the communication network. In what follows, we consider a more realistic
case, i.e., we assume that the communication network is constituted only of rate-constrained
digital links. Accordingly, the main objectives of this paper are to understand

(1) how the standard consensus algorithm may be modified to overcome the forced
quantization effects due to the digital channel, and

(2) how much does its performance degrade.

We note that the presence of a rate constraint prevents the agents from having a precise
knowledge about the state of the other agents. In fact, through a digital channel, the i-th
agent can only send to the j-th agent symbolic data in a finite or countable alphabet; using
only this data, the j-th agent can build at most an estimate of the i-th agent’s state. To tackle
this problem we take a two step approach. First, we introduce a coding/decoding scheme; each
agent uses this scheme to estimate the state of its neighbors. Second, we consider the standard
consensus algorithm where, in place of the exact knowledge of the states of the agents, we
substitute estimates calculated according to the proposed coding/decoding scheme.

3. Coder/decoder pairs for digital channels

In this section we discuss a general and two specific coder/decoder models for reliable digital
channels; we follow the treatment in the survey [9]. We will later adopt this coder/decoder
structure to define communication protocols between the agents.

Suppose a source wants to communicate to a receiver some time-varying data x : N → R

via repeated transmissions at time instants in N. Each transmission takes place through a
digital channel, i.e., messages can only be symbols in a finite or countable set (to be designed).
The channel is assumed to be reliable, that is, each transmitted symbol is received without
error. A coder/decoder pair for a digital channel is defined by the sets:

(i) a set Ξ, serving as state space for the coder/decoder; a fixed ξ0 ∈ Ξ is the initial
coder/decoder state;
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(ii) a finite or countable set A, serving as transmission alphabet ; elements α ∈ A are called
messages;

and by the maps:

(i) a map F : Ξ ×A → Ξ, called the coder/decoder dynamics;
(ii) a map Q : Ξ × R → A, being the quantizer function;
(iii) a map H : Ξ ×A → R, called the decoder function.

The coder computes the symbols to be transmitted according to, for t ∈ N,

ξ(t + 1) = F (ξ(t), α(t)), α(t) = Q(ξ(t), x(t)).

Correspondingly, the decoder implements, for t ∈ N,

ξ(t + 1) = F (ξ(t), α(t)), x̂(t) = H(ξ(t), α(t)).

Coder and decoder are jointly initialized at ξ(0) = ξ0. Note that an equivalent representation
for the coder is ξ(t + 1) = F (ξ(t), Q(ξ(t), x(t))), and α(t) = Q(ξ(t), x(t)). In summary, the
coder/decoder dynamics is given by

ξ(t + 1) = F (ξ(t), α(t)),

α(t) = Q(ξ(t), x(t)),

x̂(t) = H(ξ(t), α(t)).

(3)

In what follows we present two interesting coder/decoder pairs: the logarithmic quantizer
strategy and the “zoom in - zoom out” uniform quantizer strategy.

3.1. Zoom in - zoom out uniform coder

In this strategy the information transmitted from source to receiver is quantized by a scalar
uniform quantizer which can be described as follows. For L ∈ N, define the uniform set of
quantization levels

SL =
{

− 1 +
2ℓ − 1

L

∣

∣ ℓ ∈ {1, . . . , L}
}

∪ {−1} ∪ {1}

and the corresponding uniform quantizer (see Figure 1) unqL : R → SL by

unqL(x) = −1 +
2ℓ − 1

L

if ℓ ∈ {1, . . . , L} satisfies −1 + 2(ℓ−1)
L ≤ x ≤ −1 + 2ℓ

L , otherwise unqL(x) = 1 if x > 1 or
unqL(x) = −1 if x < −1. Note that larger values of the parameter L correspond to more
accurate uniform quantizers unqL. Moreover note that, if we define m to be the number of
quantization levels we have that m = L + 2.

For L ∈ N, kin ∈ ]0, 1[, and kout ∈ ]1,+∞[, the zoom in - zoom out uniform coder/decoder
has the state space Ξ = R × R>0, the initial state ξ0 = (0, 1), and the alphabet A = SL. The
coder/decoder state is written as ξ = (x̂−1, f) and the coder/decoder dynamics are

x̂−1(t + 1) = x̂−1(t) + f(t)α(t),

f(t + 1) =

{

kin f(t), if |α(t)| < 1,

kout f(t), if |α(t)| = 1.
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The quantizer and decoder functions are, respectively,

α(t) = unqL

(x(t) − x̂−1(t)

f(t)

)

,

x̂(t) = x̂−1(t) + f(t)α(t).

The coder/decoder pair is analyzed as follows. One can observe that x̂−1(t + 1) = x̂(t) for
t ∈ Z≥0, that is, the first component of the coder/decoder state contains the estimate of the
data x. The transmitted messages contain a quantized version of the estimate error x − x̂−1

scaled by factor f . Accordingly, the second component of the coder/decoder state f is referred
to as the scaling factor : it grows when |x− x̂−1| ≥ f (“zoom out step”) and it decreases when
|x − x̂−1| < f (“zoom in step”).

Figure 1. The uniform quantizer (m = 6) (left); the logarithmic quantizer (right).

3.2. Logarithmic coder

This strategy is presented for example in [10]. Given an accuracy parameter δ ∈ ]0, 1[ , define
the logarithmic set of quantization levels

Sδ =
{(1 + δ

1 − δ

)ℓ}

ℓ∈Z

∪ {0} ∪
{

−
(1 + δ

1 − δ

)ℓ}

ℓ∈Z

, (4)

and the corresponding logarithmic quantizer (see Figure 1) lgqδ : R → Sδ by

lgqδ(x) =
(1 + δ

1 − δ

)ℓ

,

if ℓ ∈ Z satisfies (1+δ)ℓ−1

(1−δ)ℓ ≤ x ≤ (1+δ)ℓ

(1−δ)ℓ+1 , otherwise lgqδ(x) = 0 if x = 0 or lgqδ(x) =

− lgqδ(−x) if x < 0. Note that smaller values of the parameter δ correspond to more accurate
logarithmic quantizers lgqδ. For δ ∈ ]0, 1[, the logarithmic coder/decoder is defined by the state
space Ξ = R, initial state ξ0 = 0, the alphabet A = Sδ, and by the maps

ξ(t + 1) = ξ(t) + α(t),

α(t) = lgqδ(x(t) − ξ(t)),

x̂(t) = ξ(t) + α(t).

(5)

Copyright c© 2008 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2008; 0:0–0
Prepared using rncauth.cls



6 R. CARLI, F. BULLO AND S. ZAMPIERI

The coder/decoder pair is analyzed as follows. One can observe that ξ(t + 1) = x̂(t) for
t ∈ N, that is, the coder/decoder state contains the estimate of the data x. The transmitted
messages contain a quantized version of the estimate error x − ξ. The estimate x̂ : N → R

satisfies the recursive relation

x̂(t + 1) = x̂(t) + lgqδ (x(t + 1) − x̂(t)) ,

with initial condition x̂(0) = lgqδ (x(0)) determined by ξ(0) = 0. Finally, define the function

r : R → R by r(y) = lgq
δ
(y)−y
y for y 6= 0 and r(0) = 0. Some elementary calculations show

that |r(y)| ≤ δ for all y ∈ R. Accordingly, if we define the trajectory ω : N → [−δ,+δ] by
ω(t) = r(x(t + 1) − x̂(t)), then

x̂(t + 1) = x̂(t) + (1 + ω(t))
(

x(t + 1) − x̂(t)
)

. (6)

This is called the multiplicative noise model for the logarithmic quantizer.

Remark 3.1. When communicating through digital channels, the use of the logarithmic
quantizer described in the above Section, presents an evident drawback with respect to the
zoom in- zoom out strategy, due to the fact that the logarithmic set of quantization levels Sδ

is countable and not finite as the uniform set of quantization levels. This implementation issue
could be overcome by truncating the map lgqδ as follows. Let a, b ∈ R satisfy 0 < a < b; if
a ≤ |x| ≤ b, then

lgqδ(x) = sgn(x)
(1 + δ

1 − δ

)ℓ

,

where ℓ ∈ Z is such that (1+δ)ℓ−1

(1−δ)ℓ ≤ |x| ≤ (1+δ)ℓ

(1−δ)ℓ+1 , otherwise

lgqδ(x) =

{

0, if |x| < a,

sgn(x) lgqδ(b), if |x| > b.

Again, if m denotes the number of quantization levels, it is possible to see (see [11]) that, for
the truncated logarithmic quantizer,

m =
2 log C

log 1+δ
1−δ

.

We will come back on this remark later on.

4. Consensus algorithm with exchange of quantized information

We consider now the same algorithm previously illustrated with the assumption that the agents
can communicate only through digital channels. Here, we adopt the logarithmic coder/decoder
scheme (3) described in Subsection 3.2; we analyze the zoom in - zoom out strategy via
simulations in Section 6.

4.1. Algorithm description

Here is an informal description of our proposed scheme. We envision that along each
communication edge we implement a logarithmic coder/decoder; in other words, each agent

Copyright c© 2008 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2008; 0:0–0
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transmits through a dynamic encoding scheme to all its neighbors the quantized information
regarding its state. Once state estimates of all agent’s neighbors are available, each agent will
then implement the average consensus algorithm.

Next, we provide a formal description of the proposed algorithm. Let P ∈ R
N×N be a

stochastic symmetric matrix with positive diagonal elements and with connected induced
graph GP . Assume there are digital communication channels along all edges of GP capable of
carrying a countable number of symbols. Pick an accuracy parameter δ ∈ ]0, 1[ . The consensus
algorithm with dynamic coder/decoder is defined as follows:

Processor states: For each i ∈ {1, . . . , N}, agent i has a state variable xi ∈ R and state
estimates x̂j ∈ R of the states of all neighbors j of i in GP . Furthermore, agent i maintains
a copy of x̂i.

Initialization: The state x(0) = (x1(0), . . . , xN (0))T ∈ R
N is given as part of the problem.

All estimates x̂j(0), for j ∈ {1, . . . , N}, are initialized to 0.

State iteration: At time t ∈ N, for each i, agent i performs three actions in the following
order:
(1) Agent i updates its own state by

xi(t) = xi(t − 1) +

N
∑

j=1

Pij (x̂j(t − 1) − x̂i(t − 1)) . (7)

(2) Agent i transmits to all its neighbors the symbol

αi(t) = lgqδ(xi(t) − x̂i(t − 1)).

(3) Node i updates its estimates

x̂j(t) = x̂j(t − 1) + αj(t), (8)

for j being equal to all neighbors of i and to i itself.

Before the algorithm analysis, we clarify a few points.

Remark 4.1 (Clarifications and variations)

(i) Agent i and all its neighbors j maintain in memory an estimate x̂i of the state xi. We denote
all these estimates by the same symbol because they are all identical: they are initialized in the
same manner and they are updated through the same equation with the same information.
On the other hand, it would be possible to adopt distinct quantizer accuracies δij for each
communication channel (i, j). In such a case then we would have to introduce variables x̂ij

that node i and j would maintain for the estimate of xi.
(ii) We could define a different state update equation where each agent i uses the exact knowledge

of its own state xi instead of the estimate x̂i, that is, we could adopt

xi(t) = xi(t − 1) +
N
∑

j=1

Pij (x̂j(t − 1) − xi(t − 1)) = Piixi(t − 1) +
∑

j 6=i

Pij x̂j(t − 1), (9)

instead of equation (7). We will discuss the drawback of this choice below.

Copyright c© 2008 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2008; 0:0–0
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4.2. Main convergence result

We now analyze the algorithm. First, we write the closed-loop system in matrix form.
Equation (7) is written as

x(t + 1) = x(t) + (P − I)x̂(t). (10)

The N -dimensional vector of state estimates x̂ = (x̂1, . . . , x̂N )
T

is updated according to the
multiplicative-noise model in equation (6). In other words, there exist ωj : N → [−δ,+δ], for
j ∈ {1, . . . , N}, such that

x̂j(t + 1) = x̂j(t) + (1 + ωj(t))
(

xj(t + 1) − x̂j(t)
)

,

and, for Ω(t) := diag {ω1(t), . . . , ωN (t)},

x̂(t + 1) = x̂(t) + (I + Ω(t))
(

x(t + 1) − x̂(t)
)

. (11)

Equations (10) and (11) with multiplicative noise Ω determine the closed-loop system.
Next, we define the estimate error e = x̂ − x ∈ R

N and rewrite the close-loop system in
terms of the quantities x and e. Straightforward calculations show that, for t ∈ Z≥0,

[

x(t + 1)
e(t + 1)

]

=

[

I 0
0 Ω(t)

] [

P P − I
P − I P − 2I

] [

x(t)
e(t)

]

. (12)

Initial conditions are x(0) and e(0) = −x(0).
Finally, we are ready to state the main properties of our quantized consensus algorithm.

Theorem 4.2. Assume P ∈ R
N×N satisfies Assumption 2.1 and define δ̄ ∈ R by

δ̄ :=
1 + λmin(P )

3 − λmin(P )
. (13)

The solution t 7→ (x(t), e(t)) of the consensus algorithm with dynamic coder/decoder has the
following two properties:

(i) the state average is maintained constant by the algorithm, that is, 1
N

∑N
i=1 xi(t) =

1
N

∑N
i=1 xi(0) for all t ∈ N;

(ii) if 0 < δ < δ̄, then the state variables converge to their average value and the estimate error
vanishes, that is,

lim
t→∞

x(t) =
( 1

N

N
∑

i=1

xi(0)
)

1

and
lim

t→∞
e(t) = 0.

Proof: Observe that 1T x(t + 1) = 1T Px(t) + 1T (P − I)e(t) = 1T x(t), where the second
equality holds since 1T (P −I) = 0. This proves the first statement of the theorem. The second
statement is a consequence of Theorem 4.8 stated in Section 4.3. 2

We here consider some remarks and examples.

Remark 4.3. Note that δ̄ is an increasing function on λmin(P ) and that δ̄ = 0, if λmin(P ) =
−1, and δ̄ = 1, if λmin(P ) = 1 (see Figure 2).
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Figure 2. Behavior of δ̄.

Remark 4.4. The state update in equation (9) does not maintain the average. This fact
motivates the choice of state update equation (7).

Example 4.5. Consider the sequence of circulant matrices {PN} ∈ R
N×N defined by

PN =















1
3

1
3 0 0 · · · 0 0 1

3
1
3

1
3

1
3 0 · · · 0 0 0

0 1
3

1
3

1
3 · · · 0 0 0

...
...

...
... · · ·

...
...

...
1
3 0 0 0 · · · 0 1

3
1
3















. (14)

For this sequence of symmetric stochastic matrices we have that λmin(PN ) = 1
3 −

2
3 cos

(

2π
N

⌊

N
2

⌋)

. Hence λmin(PN ) ≥ − 1
3 , implying therefore that δ̄ ≥ 1

5 for all N . This shows
that δ̄ is uniformly bounded away from 0. This is a remarkable property of scalability on the
dimension of the network.

Remark 4.6. The fact that the critical accuracy sufficient to guarantee convergence is
independent on the network dimension is more general than what seen in the previous example.
Indeed, assume that {PN} ∈ R

N×N is a sequence of matrices of increasing size, where each
PN satisfies Assumption 2.1 and where each PN has all the diagonal elements greater than a
positive real number p̄. Then, by Gershgorin’s Theorem we have that λmin(PN ) ≥ −1+2p̄ and
hence δ̄ ≥ p̄

2−p̄ for all N . It follows that the critical accuracy sufficient to guarantee convergence
is bounded away from zero uniformly on the dimension of the network.

4.3. Convergence analysis

In this section we provide the analysis of the asymptotic properties of system (12). For the
sake of the notational convenience, let us define

F(t) =

[

I 0
0 Ω(t)

] [

P P − I
P − I P − 2I

]

∈ R
2N×2N . (15)
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Consider now the system
z(t + 1) = F(t)z(t), (16)

where z(t) ∈ R
2N for all t ≥ 0 and where z(0) is any vector in R

2N . We start our analysis
by rewriting (15) in a more suitable way. Let

E =
{

diag {e1, . . . , eN} ∈ R
N×N : ei ∈ {−1,+1}, i ∈ {1, . . . , N}

}

.

Notice that E contains 2N elements. Hence, we can write E = {E1, . . . , E2N }, where we are
assuming that some suitable way to enumerate the matrices inside E has been used. We assume
that E1 = I. We define now Eδ = {δE1, . . . , δE2N } . Observe that Ω(t) ∈ Co {Eδ} for all t ≥ 0,
where Co {Eδ} denotes that convex hull of the set Eδ. By means of the above definitions we
can introduce another set of matrices

R =

{

Ri =

[

I 0
0 δEi

] [

P P − I
P − I P − 2I

]

: Ei ∈ E
}

. (17)

Accordingly to the definition of E1 we have that

R1 =

[

I 0
0 δI

] [

P P − I
P − I P − 2I

]

. (18)

The set R is useful because it is easy to see that the matrix F(t), belongs to Co {R} for all
t ≥ 0, where Co {R} denote the convex hull of the set R. In other words, for all t ≥ 0, there

exist ν1(t), . . . , ν2N (t) nonnegative real numbers such that
∑2N

i=1 νi(t) = 1 and

F(t) =

2N

∑

i=1

νi(t)Ri.

We state the following result that will permit us to analyze the system (16) by means of
Theorem II.1 (see Appendix).

Lemma 4.7. For v =
[

1T 0T
]T

, we have

Riv = v, and vT Ri = vT , for all i ∈ {1, . . . , 2N}.

Moreover, for δ̄ as in equation (13), the following facts are equivalent:

(i) 1 is the only eigenvalue of unit magnitude of the matrix R1, and all its other eigenvalues are
strictly inside the unit disc;

(ii) 0 ≤ δ < δ̄.

Proof: The first part of the lemma is easily proved by observing that
[

I 0
0 δEi

] [

P P − I
P − I P − 2I

] [

1
0

]

=

[

I 0
0 δEi

] [

1
0

]

=

[

1
0

]

,

and

[

1T 0T
]

[

I 0
0 δEi

] [

P P − I
P − I P − 2I

]

=
[

1T 0T
]

[

P P − I
P − I P − 2I

]

=
[

1T 0T
]

.

Copyright c© 2008 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2008; 0:0–0
Prepared using rncauth.cls



AVERAGE CONSENSUS ON NETWORKS WITH QUANTIZED COMMUNICATION 11

Consider now R1; to compute its eigenvalues we calculate

det (sI − R1) = det

[

sI − P −(P − I)
−δ(P − I) sI − δ(P − 2I)

]

.

Since each block of the above matrix commute with each other block, we have from [12] that

det (sI − R1) = det
[

(sI − P )(sI − δ(P − 2I)) − δ(P − I)2
]

= det
[

s2I − s (δ(P − 2I) + P ) + δ
(

P 2 − 2P − P 2 − I + 2P
)]

=

N−1
∏

i=0

[

s2 − (δ(λi − 2) + λi) s − δ
]

=
(

s2 − (1 − δ)s − δ
)

N−1
∏

i=1

(

s2 − (δ(λi − 2) + λi)s − δ
)

.

Hence the eigenvalues of R1 are given by the solution of the following N second order equations

s2 − (1 − δ)s − δ = 0, (19)

and

s2 − (δ(λi − 2) + λi)s − δ = 0, i ∈ {1, . . . , N − 1}. (20)

The solutions of (19) are 1 and −δ. Consider now (20). Given i, let s
(i)
1 and s

(i)
2 denote the

two solutions of (20). We have that

s
(i)
1 =

δ(λi − 2) + λi −
√

(δ(λi − 2) + λi)2 + 4δ

2

and

s
(i)
2 =

δ(λi − 2) + λi +
√

(δ(λi − 2) + λi)2 + 4δ

2
.

Now we have to analyze the conditions |s(i)
1 | < 1 and |s(i)

2 | < 1, for all i ∈ {1, . . . , N − 1}. To
this purpose, we consider the bilinear transformation of the equation (20), i.e., we substitute
to s the term 1+s̃

1−s̃ . We obtain the new equation

(1 + δ)(1 − λi)s̃
2 + 2(1 + δ)s̃ + 1 + λi + δ(λi − 3) = 0. (21)

Let s̃
(i)
1 and s̃

(i)
2 denote the two solutions of (21). From the property of the bilinear

transformation, we have that |s(i)
1 | < 1 and |s(i)

2 | < 1 if and only if s̃
(i)
1 < 0 and s̃

(i)
2 < 0.

Since 1 + δ > 0 and (1 + δ)(1− λi) > 0 for i ∈ {1, . . . , N − 1}, we obtain, from the Cartesian

rule, that s̃
(i)
1 < 0 and s̃

(i)
2 < 0 for all i ∈ {1, . . . , N − 1}, if and only if 1 + λi + δ(λi − 3) > 0

for all i ∈ {1, . . . , N − 1}. This last condition is verified if and only if δ < δ̄. 2

We are able now to state the following theorem characterizing the asymptotic stability of
the system (16).

Theorem 4.8. Consider the system (16). The following facts are equivalent:

(a) δ < δ̄;
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12 R. CARLI, F. BULLO AND S. ZAMPIERI

(b) for each initial condition z(0) ∈ R
2N and for any sequence {Ω(t)}+∞

t=0 with Ω(t) ∈ Co {Eδ}
for all t ≥ 0, we have

lim
t→+∞

z(t) =

[

α1
0

]

, (22)

for α = 1
N

[

1T 0T
]

z(0).

Proof: We start by proving that (b) implies (a). To this aim, we consider the sequence
F(0) = F(1) = F(2) = . . . = R1. In this case z(t) is the evolution of an autonomous linear
time invariant discrete-time systems with updating matrix R1. Therefore, by Lemma 4.7, (22)
holds true if and only if and only if δ < δ̄.

We prove now that (a) implies (b). We will show that, for δ < δ̄, there exists a suitable
symmetric matrix L ∈ R

2N×2N satisfying the following three properties

L
[

1T 0T
]T

= 0, (23)

zT Lz > 0, (24)

zT

(

1

2

(

RT
i LRj + RT

j LRi

)

− L

)

z < 0, for all Ri, Rj ∈ R, (25)

∀ z ∈<
[

1T 0T
]T

>⊥. This fact, together with Lemma 4.7 and Theorem II.1 (see Appendix),
ensures that fact (a) implies (b). As candidate matrix L we select

L =

[

I − P 0
0 γI

]

, (26)

where γ is a suitable positive scalar to be determined. Observe that the eigenvalues of I − P
are 0 and 1 − λi for i ∈ {1, . . . , N − 1}, where it is immediate to see that 1 − λi > 0 for
i ∈ {1, . . . , N−1}. Since σ(L) = σ(I−P )∪σ(γI) it follows that also L has an eigenvalue equal

to 0 and all other eigenvalues positive. Moreover, since L
[

1T 0T
]T

=
[

((I − P )1)T 0T
]T

= 0,
we have that the eigenspace associated to the eigenvalue 0 is generated by the vector [1T 0T ]T .
Hence L satisfies (23) and (24). Moreover, by the structure of L, it is easy to check that
RT

i LRj = RT
j LRi for all Ri, Rj ∈ R. Thus, verifying (25) is equivalent to verify

zT
(

RT
i LRj − L

)

z < 0, for all Ri, Rj ∈ R, (27)

for any nonzero z ∈<
[

1T 0T
]T

>⊥. By straightforward calculations, we have that

RT
i LRj − L = R1LR1 − L − Q,

where

RT
1 LR1 − L =

[

(I − P )2(γδ2I − I − P ) (I − P )(P (P − I) − γδ2(P − 2I))
(I − P )(P (P − I) − γδ2(P − 2I)) (I − P )3 + γδ2(P − 2I)2 − γI

]

,

and

Q = γδ2

[

(P − I)K
(P − 2I)K

]

[K(P − I) K(P − 2I)] ,
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with K such that K2 = I − EiEj
†. Clearly, Q = QT ≥ 0 and Q

[

1T 0T
]T

= 0. If (27) is
satisfied for i = j = 1, then (27) holds also for any pair Ri, Rj belonging to R. Finally, observe
that, by Lemma III.2 (see Appendix), we immediately have that

zT (RT
1 LR1 − L)z < 0, ∀ z ∈<

[

1T 0T
]T

>⊥

if we choose

γ =
1 + λmin + δ2 (λmin − 3)

2δ2
.

2

5. Exponential convergence

The objective of this section is to understand how much the quantization affects the
performance of the consensus algorithm. To this aim, by means of a Lyapunov analysis, we will
provide a characterization of the asymptotic speed of the convergence toward the consensus of
both the ideal algorithm (2) and the algorithm (12). We start by introducing some definitions.
A function f : N → R converges to 0 exponentially fast if there exist a constant C > 0 and
another constant ξ ∈ [0, 1) such that |f(t)| ≤ Cξt, for all t; the infimum among all numbers
ξ ∈ [0, 1) satisfying the exponential convergence property is called the exponential convergence
factor of f . In other words, the exponential convergence factor of f is given by

lim sup
t→∞

|f(t)| 1t .

Consider first the system (2). To quantify the speed of convergence of (2) toward consensus,
we introduce the following variable

x̄(t) := x(t) − xa(0)1,

where xa(0) = 1
N 1∗x(0). Note that the i-th component of x̄(t) represents the distance of the

state of the i-th system from the initial average. Clearly, limt→∞ x(t) = xa(0)1 if and only if
limt→∞ x̄(t) = 0. It is easy to see that the variable x̄ satisfies the same recursive equation of
the variable x, that is,

x̄(t + 1) = P x̄(t). (28)

Moreover note that 1T x̄(t) = 0, for all t ≥ 0. We define the exponential convergence factor of
x̄(t), for a given initial condition x̄0 ∈< 1 >⊥, to be

ρ(P, x̄0) := lim sup
t→∞

||x̄(t)|| 1t

We can get rid of the initial condition and define the exponential convergence factor of the
system (2) as follows

ρ(P ) := sup
x̄0∈<1>⊥

ρ(P, x̄0) (29)

†Of note is that I − EiEj is a positive semidefinite matrix and hence the matrix K is well-defined.
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14 R. CARLI, F. BULLO AND S. ZAMPIERI

Consider now the positive semidefinite matrix I − P . Notice that

ρ(P, x̄0) = lim sup
t→∞

(x̄(t)T (I − P )x̄(t))
1
2t

and so we can characterize the speed of convergence to 0 of the variable x̄ by studying the
exponential convergence factor of the Lyapunov function x̄(t)T (I − P )x̄(t).

Theorem 5.1. Consider (28) with P ∈ R
N×N satisfing Assumption 2.1. Then the function

t 7→ (x̄(t)T (I − P )x̄(t))1/2, defined along any trajectory t 7→ x̄(t), converges exponentially fast
to 0. Moreover, the factor ρ(P ), defined in equation (29), satisfies

ρ(P ) = max {λmax(P ),−λmin(P )} .

Proof: Let α := max
{

λ2
max(P ), λ2

min(P )
}

so that zT P 2z ≤ αzT z for all z ∈< 1 >⊥ and, in
turn,

zT (P (I − P )P )z ≤ αzT (I − P )z, (30)

for all z ∈< 1 >⊥. This shows that the map t 7→ x̄(t)T (I − P )x̄(t) converges exponentially
fast to 0 along any trajectory t 7→ x̄(t) and that ρ(P ) ≤ √

α. Moreover, observe that, if z is
equal to the eigenvector corresponding to the eigenvalue defining β, then (30) holds true as
equality. Then, if x̄0 is equal to this eigenvector, we obtain a trajectory t 7→ x̄(t) along which
the function t 7→ x̄(t)T (I − P )x̄(t) has exponential convergence factor equal to

√
α. 2

This concludes the analysis of the algorithm (2). In the sequel of this section, we provide a
similar analysis of the system (12). To this aim we consider again the system (16), that is

z(t + 1) = F(t)z(t), (31)

where z(0) = z0 is any vector in R
2N . To perform a Lyapunov analysis of (31), it is convenient

to introduce the variable

z̄(t) =

[

I − 1
N 11T 0
0 I

]

z(t).

Clearly, condition (b) of Theorem 4.8 holds true if and only if limt→∞ z̄(t) = 0. It is
straightforward to see that z̄ satisfies the same recursive equation of z(t), i.e.,

z̄(t + 1) = F(t)z̄(t) (32)

and that
[

1T 0T
]T

z̄(t) = 0 for all t ≥ 0. Consider now the matrix L ∈ R
2N×2N , introduced

along the proof of Theorem 4.8 and defined as

L =

[

I − P 0
0 γI

]

.

For each γ > 0 define

ρ̃ (P, δ, γ; z̄0, {F(t)}∞t=0) := lim sup
t→∞

(z̄(t)T Lz̄(t))
1
2t (33)

We can get rid of the initial conditions z̄0 and the sequences {F(t)}∞t=0 by considering

ρ̃(P, δ, γ) := sup
z̄0,{F(t)}∞

t=0

ρ̃ (P, δ, γ; z̄0, {F(t)}∞t=0) (34)
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where the initial conditions z̄0 belong to the set of vectors orthogonal to
[

1T 0T
]T

and the
sequences {F(t)}∞t=0 are such that F(t) ∈ Co{R} for all t ≥ 0. It can be shown that ρ̃(P, δ, γ)
is independent of γ and for this reason we denote it as ρ̃(P, δ).

We characterize now ρ̃(P, δ). To this aim, consider the following semidefinite programming
problem

β̄(P, δ, γ) :=
max β

such that RT
1 LR1 − L ≤ −βL

(35)

We have the following result.

Theorem 5.2. Consider (32) with the matrix P satisfing Assumption 2.1. Let δ̄ be defined
as in (13) and let δ ∈ R be such that 0 ≤ δ < δ̄. Moreover let γ ∈ R be such that γ > 0,
and let β̄(P, δ, γ) be defined as in (35). Then, the function t → (z̄(t)T Lz̄(t))1/2, defined along
any trajectory t → z̄(t) converges exponentially fast to 0 and the factor ρ̃(P, δ), defined in
equation (34), satisfies

ρ̃(P, δ) ≤
√

1 − β̄(P, δ, γ).

Proof: We start by recalling, that since F(t) belongs to Co (R), we can write that F(t) =
∑2N

i=1 νi(t)Ri, where ν1(t), . . . , ν2N (t) are nonnegative real numbers such that
∑2N

i=1 νi = 1.
Along the proof of Theorem 4.8, we have seen that

zT (RT
i LRj − L)z ≤ zT (RT

1 LR1 − L)z < 0,

for all z ∈ R
2N such that z ∈< [1T 0T ]T >⊥ and for any pair of matrices Ri, Rj belonging

to R. Hence we have that

zT (FT (t)LF(t) − L)z = zT











2N

∑

i=1

νi(t)Ri





T

L





2N

∑

j=1

νj(t)Rj



− L






z

= zT





N
∑

i=1

N
∑

j=1

(

νi(t)νj(t)R
T
i LRj − νi(t)νj(t)L

)



 z

≤ zT





N
∑

i=1

N
∑

j=1

νi(t)νj(t)(R
T
1 LR1 − L)



 z = zT (RT
1 LR1 − L)z,

for all z ∈ R
2N such that z ∈< [1T 0T ]T >⊥. Observe finally that zT (RT

1 LR1 − L)z ≤
β̄zT Lz < 0, from which we can argue that z̄(t + 1)T Lz̄(t + 1) ≤ (1 − β̄)z̄(t)T Lz̄(t) and so the
theses follow. 2

It is worth noting that the above Theorem relates ρ̃(P, δ) to the resolution of a LMI [13]. It is
well known that the computational effort required by the resolution of a LMI strictly depends
on its dimensionality. However, we can observe that Lemma III.1 (see Appendix) provides an
efficient way of solving (35), that drastically reduces its computational complexity. Indeed,
we have that β̄(P, δ, γ) = min{β−

min(δ, γ), β−
max(δ, γ)}, where β−

min(δ, γ), β−
max(δ, γ) are defined

in Lemma III.1. This means that one has to calculate only the value of the two variables
β−

min(δ, γ), β−
max(δ, γ) and evaluate the minimum between them. Differently from the method

based on the LMI, the complexity of this method is independent of N .
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Example 5.3. In this example we consider a connected random geometric graph generated
by choosing N = 30 points at random in the unit square, and then placing an edge between
each pair of points at distance less than 0.4. The matrix P is built using the Metropolis weights
[14]. In this case we have that λmin = −0.013 and δ̄ = 0.327. In figure 3, we plot the behavior
of β−

min and β−
max as functions of γ. The value of δ is assumed constant and precisely equal to

0.25.

2 3 4 5 6 7 8 9 10 11
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

γ
 

 

β
min
−

β
max
−

Figure 3. Behavior of ρ̃ as function of γ for P and δ fixed.

In general, assigned the matrix P and the value of the accuracy parameter δ, one could be
interested in determining the maximum value of β̄, as function of γ. Clearly, the best bound
on ρ̃(P, δ) corresponds to the maximum value of β̄, that is,

ρ̃(P, δ) ≤
√

1 − β̄opt(P, δ)

where
β̄opt(P, δ) := max

γ>0
β̄(P, δ, γ).

We illustrate this discussion in the following example.

Example 5.4. We consider the same matrix P generated in the previous example. In Figure

4, we depict the behavior of
√

1 − β̄opt(P, δ) as a function of δ. The dotted line represents

the value of ρ(P ), that is, the convergence factor of the ideal algorithm (28). Notice that the

convergence factor
√

1 − β̄opt(P, δ) depends smoothly on the accuracy parameter δ and that

lim
δ→0

√

1 − β̄opt(P, δ) = ρ(P ).

An interesting characterization of ρ̃ can be provided when considering a family of matrices
{PN} of increasing size whose maximum eigenvalue converges to 1. It is worth noting that this
situation is encountered in many practical situations [15, 16, 2]. We formalize this situation as
follows.
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δ

ρ(P)=0.9386

Figure 4. Behavior of
p

1 − β̄opt(P, δ).

Assumption 5.5 (Vanishing spectral gap) Assume we have a sequence of symmetric
stochastic matrices {PN} ⊂ R

N×N satisfying Assumption 2.1 and the following conditions

(i) λmin(PN ) > c for some c ∈ ]−1, 1[ and for all N ∈ N;
(ii) λmax(PN ) = 1 − ǫ(N) + o(ǫ(N)) as N → ∞, where ǫ : N → R is a positive function such that

limN→∞ ǫ(N) = 0.

According to Theorem 5.1, as N → ∞, we have that ρ (PN ) = 1 − ǫ(N) + o (ǫ(N)). In
considering the quantized version of the consensus algorithm, together with the sequence {PN},
we have also to fix the sequence {δN}. For simplicity, in the following we will assume that,
{δN} is a constant sequence, i.e., δN = δ with suitable δ such that δ < 1+c

3−c which ensures the
stability for all N .

Theorem 5.6. Let {PN} ⊂ R
N×N be a family of matrices of increasing size satisfying

Assumptions 2.1 and 5.5. Let δ ∈ R be such that δ < 1+c
3−c . Then, as N → ∞, we have

that

ρ̃(PN , δ) ≤ 1 −
(

1 − 1 + c + δ2(c − 3)

4(1 − δ2)

)

ǫ(N) + o (ǫ(N)) .

Proof: We choose

γ =
1 + c + δ2 (c − 3)

2δ2
.

Consider the polynomial f defined in (42) and let β−
min(δ, γ,N) and β−

max(δ, γ,N) be as
defined in Lemma III.1 (see Appendix) relatively to the matrix PN . Notice that f(1, δ, γ, β) =
γβ2 +

(

γδ2 − γ
)

β. Then the equation f(1, δ, γ, β) = 0 has solutions β = 0 and β = 1 − δ2.
This implies that, since λmax(PN ) → 1, then β−

max(δ, γ,N) → 0 as N → ∞. This implies that
for N big enough we have that

min{β−
min(δ, γ,N), β−

max(δ, γ,N)} = β−
max(δ, γ,N)
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and hence, from Theorem 5.2 and Lemma III.1 (see Appendix), it follows that for N big enough
we have that

ρ̃(PN , δ) ≤
√

1 − β−
max(δ, γ,N)

Let λN := λmax(PN ) and βN := β−
max(δ, γ,N) so then we have that λN → 1 and βN → 0. We

know that f(λN , δ, γ, βN ) = 0. As N → ∞, from the implicit function theorem, we have that

βN =

[

∂
∂λf
∂

∂β f

]

|λ=1,β=0

ǫ(N) + o(ǫ(N)).

Now notice that

∂f

∂λ
=
(

−3(1 − λ)2 + 2γδ2(λ − 2)2 − γ2δ2 + 2γδ)
)

β −
(

−γ2δ2 + γ(1 + λ + δ2(λ − 3)) − (1 − λ)2
)

+

+ (1 − λ)(γ − 2γδ2 + 2(1 − λ))

and that

∂f

∂β
= 2γβ + (1 − λ)3 + γδ2(λ − 2)2 − γ + γ(1 − λ)(γδ2 − 1 − λ).

which lead to
∂f

∂λ |λ=1,β=0
= −(2γ − 2γδ2 − γ2δ2)

and
∂f

∂β |λ=1,β=0

= γδ2 − γ.

Then

βN =

(

2 − γδ2

1 − δ2

)

ǫ(N) + o(ǫ(N)).

The thesis follows by expanding in Taylor’s series the function
√

1 − βN . 2

Notice that the coefficient in front of ǫ(N) is negative. Indeed, it can be seen that coefficient
is negative if and only if

δ2 <
3 − c

1 + c

and this is true since we have chosen δ < 1+c
3−c and since δ < 1.

6. Numerical simulations

In this section we consider two examples providing some numerical results illustrating the
performance respectively of the Zoom in -Zoom out strategy and of the truncated version of
the logarithmic quantizer discussed in Remark 3.1.

Example 6.1. In this example we consider a connected random geometric graph generated
by choosing N points at random in the unit square, and then placing an edge between each
pair of points at distance less than 0.25. We assume that N = 30 and that the initial conditions
has been generated randomly inside the interval [−100, 100]. Again, the matrix P is built using
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the Metropolis weights. For all the experiments, we set the parameters kin and kout to the
values 1/2 and 2 respectively, and initialized the scaling factor f of each agent to the value
50. Moreover we run simulations for two different values of m, m = 5 and m = 10. The results
obtained are reported in Figure 5. The variable plotted is the normalized Euclidean norm of
the vector x̄(t) := x(t) − xa(0)1, that is,

s(t) =

√

√

√

√

1

N

N
∑

i=1

x̄2
i (t).

Note that, as depicted in Figure 5, also the zoom in- zoom out uniform coder- decoder strategy
seems to be very efficient in achieving the consensus. In particular it is remarkable that this
strategy works well even if the uniform quantizer has a low number of quantization levels
(m = 5). Finally it is worth observing, that as theoretically proved in the logarithmic coder-
decoder strategy, also in this case the performance degrades smoothly as the quantization
becomes coarser.

2 4 6 8 10 12
0

10

20

30

40

50

60

70

80

time

s(
t)

m=5
m=10
m=∞

Figure 5. Zoom in- zoom out strategy

Example 6.2. In this example we consider the same matrix P of the previous example.
Moreover we assume again that the initial conditions have been generated randomly inside
the interval [−100, 100]. The information exchanged between the systems is quantized by the
truncated logarithmic quantizer discussed in Remark 3.1. More precisely, we assume that the
real numbers a, b introduced in Remark 3.1 are equal respectively to 0.5 and 100. The result
obtained is reported in Figure 6. The variable plotted is

d(t) := ‖x̄(t)‖∞.

One can see that d(t) does not converge asymptotically to 0. However, at the steady state,
d(t) oscillates inside an interval whose amplitude is comparable to 0.5, that is, the lower value
at which we have truncated the logarithmic quantizer.
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Figure 6. Zoom in- zoom out strategy

This numerical observations leads to the following consideration. Assume that our goal
is to have convergence of the initial states xi(0) ∈ [−M,M ] to a target configuration
xi(∞) ∈ [α− ǫ, α + ǫ], where α is a constant depending only on the initial condition x(0) and
ǫ describes the desired agreement precision. This is a “practical stability” requirement. In this
case the contraction rate is C := M/ǫ. Assume that, as in [3], the exact data transmission are
substituted by transmissions of precision ǫ uniformly quantized data. In this framework it is
well known [17] that each uniform quantizer needs C different levels and so the transmission of
its data needs an alphabet of C different symbols. Assume now that the information is encoded
by truncated logarithmic quantizers where a = ǫ and b = M . We have seen in Remark 3.1 that
in such case each logarithmic quantizer needs

2 log C

log 1+δ
1−δ

different symbols. Note that for C sufficiently large, with the logarithmic communications we
obtain a significantly improvement in terms of the communication effort required. It will be
the subject of future research to analyze the tradeoff between the steady state of d(t) and the
values of the parameters a, b at which we truncate the logarithmic quantizers.

7. Conclusions

In this paper we presented a new approach solving the average consensus problem in presence of
only quantized exchanges of information. In particular we considered two strategies, one based
on logarithmic quantizers, and the other one based on a zooming in-zooming out strategy.
We studied them with theoretical and experimental results proving that using these schemes
the average consensus problem can be efficiently solved even if the agents can share only
quantized information. Additionally, we show that the convergence factors depend smoothly on
the accuracy parameter of the quantized and, remarkably, that the critical quantizer accuracy
sufficient to guarantee convergence is independent from the network dimension. A field of
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future research will be to look for encoding and decoding methods which are able to solve the
average problem also with noisy digital channels.
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APPENDIX

II. Stability of discrete time linear parameter varying (LPV) systems

Given A1, . . . , Ak ∈ R
n×n, we let {A(t)}+∞

t=0 ⊂ Co{A1, . . . , Ak} denote a sequence of matrices
taking values in the convex hull of {A1, . . . , Ak}. We consider the dynamical system

x(t + 1) = A(t)x(t). (36)

The following result is an extension to the discrete-time system (36) of the classical results
stated in [13], in the context of continuous-time LPV systems. The proof can be found in [8].

Theorem II.1 (Common Lyapunov function for convergence to eigenspace) Assume
that 1 is a simple eigenvalue with left and right eigenvector v ∈ R

n for each matrix
A1, . . . , Ak ∈ R

n×n. If there exists a symmetric matrix P ∈ R
n×n satisfying, for all nonzero

z /∈ span{v},
Pv = 0, (37)

zT Pz > 0, (38)

and

zT

(

AT
i PAj + AT

j PAi

2
− P

)

z < 0, for all i, j ∈ {1, . . . , k}, (39)

then, for all initial conditions x(0) ∈ R
n and sequences {A(t)}+∞

t=0 ⊂ Co{A1, . . . , Ak}, the
solution to (36) satisfies

lim
t→+∞

x(t) = αv, α =
1

‖v‖2
vT x(0).

III. Solvability of a Lyapunov equation

The proof of some results contained in the paper are based on the solvability of the following
Lyapunov equation

zT (RT
1 LR1 − (1 − β)L)z < 0, ∀ z ∈<

[

1T 0T
]T

>⊥ (40)

where

L =

[

I − P 0
0 γI

]

, R1 =

[

I 0
0 δI

] [

P P − I
P − I P − 2I

]

, (41)

P ∈ R
N×N satisfies Assumption 2.1, 0 < δ < 1 and γ > 0.

The following lemma helps to determine for what parameters γ, β, δ the Lyapunov inequality
(40) holds.

Lemma III.1. Let λmin and λmax be the minimum and the maximum eigenvalue in σ(P )\{1},
respectively. Define the polynomial

f(λ, δ, γ, β) := γβ2 +
(

(1 − λ)3 + γδ2(λ − 2)2 − γ + γ(1 − λ)(γδ2 − 1 − λ)
)

β +

+ (1 − λ)
(

−γ2δ2 + γ(1 + λ + δ2(λ − 3)) − (1 − λ)2
)

.

(42)
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Then (40) holds true if and only if

β < min
{

β−
min(δ, γ), β−

max(δ, γ)
}

, (43)

where β−
min(δ, γ) and β−

max(δ, γ) are the minimum real roots of f(λmin, δ, γ, β) and of
f(λmax, δ, γ, β) as polynomials in β.

Proof: We start by observing that

RT
1 LR1 − (1 − β)L =

=

[

(I − P )2(γδ2I − I − P ) + β(I − P ) (I − P )(P (P − I) − γδ2(P − 2I))
(I − P )(P (P − I) − γδ2(P − 2I)) (I − P )3 + γδ2(P − 2I)2 − γI + γβI

]

.

Note that

(RT
1 LR1 − (1 − β)L)

[

1
0

]

= 0

and hence showing (40) is equivalent to show that the symmetric matrix −RT
1 LR1 + (1− β)L

has all positive eigenvalues except one, which is zero and has multiplicity one. If we define the
polynomials q11(λ), q22(λ), q12(λ) as follows

q11(λ) := (1 − λ)2(γδ2 − 1 − λ) + β(1 − λ)

q22(λ) := (1 − λ)3 + γδ2(λ − 2)2 − γ + γβ

q12(λ) := (1 − λ)(λ(λ − 1) − γδ2(λ − 2))

we can write

RT
1 LR1 − (1 − β)L =

[

q11(P ) q12(P )
q12(P ) q22(P )

]

.

To compute the eigenvalues of −RT
1 LR1 + (1− β)L we consider its characteristic polynomial.

Using the same arguments used in the proof of Lemma 4.7 we can argue that

det(sI + RT
1 LR1 − (1 − β)L) =

N−1
∏

i=0

[

s2 + (q11(λi) + q22(λi))s + (q11(λi)q22(λi) − q12(λi)
2)
]

where λ0 = 1, λ1, . . . , λN−1 denote the eigenvalues of P . Observe now that, for i = 0 the
polynomial in the previous product is

s(s − γδ2 + γ − γβ)

which gives one zero eigenvalue and another eigenvalue equal to γ(1 − δ2 − β). We can argue
that, since this must positive, then we have this first constraint

β < 1 − δ2 (44)

Moreover all the roots of the other polynomials for i = 1, . . . , N−1 must be all positive. Observe
that s2 + (q11(λi) + q22(λi))s + (q11(λi)q22(λi) − q12(λi)

2) can be seen as the characteristic
polynomial of the 2 × 2 matrix

[

−q11(λi) −q12(λi)
−q12(λi) −q22(λi)

]
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and, to impose that the roots of this polynomial are positive is equivalent to impose that such
a matrix is positive definite and so that

−q11(λi) > 0 q11(λi)q22(λi) − q2
12(λi) > 0.

Therefore, together with condition (44), we have other 2N − 2 conditions. Some of these
conditions are superfluous. We start from condition −q11(λi) > 0. Observe that, since 1−λi > 0
for all i ∈ {1, . . . , N − 1}, then q11(λi) < 0 for all i ∈ {1, . . . , N − 1} if and only if
β + γδ2(1 − λi) − 1 + λ2

i < 0 for all i ∈ {1, . . . , N − 1} and this happens if and only if

β < 1 − λ2
min − γδ2(1 − λmin) (45)

β < 1 − λ2
max − γδ2(1 − λmax) (46)

Notice now that
q11(λ)q22(λ) − q2

12(λ) = (1 − λ)f(λ)

where f(λ) = f(λ, δ, γ, β) is defined in (42). Notice that

∂2f

∂λ2
= (1 − β)(6λ − 6 − 2γ(1 + δ2))

which is negative for λ < 1. This implies that f(λ), is a concave function in λ, for λ ∈ [−1, 1]
and so q11(λi)q22(λi) − q2

12(λi) > 0 for all i = 1, . . . , N − 1 if and only if

f(λmin, δ, γ, β) > 0 (47)

f(λmax, δ, γ, β) > 0. (48)

At this point we have that (40) holds true if and only if conditions (44), (45), (46),
(47) and (48) hold true. Consider the condition f(λmin, δ, γ, β) > 0. Observe that, if β =
1 − λ2

min − γδ2(1 − λmin), then q11 = 0 and so

f(λmin, δ, γ, β)|β=1−λ2
min

−γδ2(1−λmin) =
−q2

12

1 − λ
< 0.

We can argue that f(λmin, δ, γ, β) is a convex parabola in β which has always two real roots
β−

min(δ, γ) and β+
min(δ, γ) which satisfy

β−
min(δ, γ) < 1 − λ2

min − γδ2(1 − λmin) < β+
min(δ, γ) (49)

and moreover f(λmin, δ, γ, β) > 0 if and only if

β < β−
min(δ, γ) or β > β+

min(δ, γ). (50)

This implies that conditions (45) and (47) hold if and only if β < β−
min(δ, γ). Reasoning

similarly for the condition f(λmax, δ, γ, β) > 0 we obtain that conditions (46) and (48) hold if
and only if β < β−

max(δ, γ).
We prove finally that condition (44) is superfluous which would give the thesis. To prove

this observe that

f(λmin, δ, γ, β)|β=0 = (1 − λmin)[−λ2
min + (2 + γδ2 + γ)λmin − (1 + 3γδ2 + γ2δ2 − γ)]

f(λmin, δ, γ, β)|β=1−δ2 = δ2(1 − λmin)[−λ2
min + (2 + γδ2 + γ)λmin − (1 + 3γδ2 + γ2δ2 − γ)]

This implies that we can have three cases
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1. We have f(λmin, δ, γ, β)|β=0 = 0. In this case we have that β−
min(δ, γ) = 0 and

β+
min(δ, γ) = 1 − δ2.

2. We have f(λmin, δ, γ, β)|β=0 < 0. In this case we have that β−
min(δ, γ) < 0 < 1 − δ2 <

β+
min(δ, γ);

3. We have f(λmin, δ, γ, β)|β=0 > 0. In this case we may have three situations:

1a. 0 < β−
min(δ, γ) ≤ β+

min(δ, γ) < 1 − δ2;
2b. 0 < 1 − δ2 < β−

min(γ) ≤ β+
min(δ, γ);

3c. β−
min(δ, γ) ≤ β+

min(δ, γ) < 0 < 1 − δ2.

However the cases 2b and 2c cannot occur since the β−
min(δ, γ) is a continuous function of γ,

while in these two cases the value of this function would pass from 0 to 1 − δ2 in a neighbor
of the γ’s such that f(λmin, δ, γ, β)|β=0 = 0 Notice finally that in all the cases which can occur

we have that β−
min(δ, γ) ≤ 1 − δ2. 2

We provide now a consequence of the previous result.

Lemma III.2. Assume the same assumptions of the previous lemma hold. Let δ̄ be defined as
in (13) and δ ∈ R be such that 0 ≤ δ < δ̄. Moreover let

γ̄ :=
1 + λmin + δ2(λmin − 3)

2δ2
.

Then γ̄ > 0 and the following inequality

zT (RT
1 LR1 − L)z < 0, ∀ z ∈<

[

1T 0T
]T

>⊥, (51)

holds true.

Proof: Notice first that 0 ≤ δ < δ̄ implies that γ̄ > 0. By the previous lemma, (51) holds
true if and only if β = 0 is an admissible solution of (43) and this happens if and only if both
β−

min(δ, γ̄) > 0 and β−
max(δ, γ̄) > 0. Notice now that f(λ, δ, γ, β) can be written as follows

f(λ, δ, γ, β) = γβ2 + [(1 − λ)p(λ, δ, γ) − γ(1 − δ2)]β − (1 − λ)p(λ, δ, γ)

where

p(λ, δ, γ) = δ2γ2 − [1 + λ + δ2(λ − 3)]γ + (1 − λ)2.

Notice moreover that, β−
min(δ, γ̄) > 0 if and only if (1− λmin)p(λmin, δ, γ̄)− γ̄(1 − δ2) < 0 and

(1 − λmin)p(λmin, δ, γ̄) < 0 and these two conditions occurs if and only if p(λmin, δ, γ̄) < 0.
Similarly we can see that β−

max(δ, γ̄) > 0 if and only if p(λmax, δ, γ̄) < 0. Notice now that, since

∂p

∂λ
= −γ − γδ2 − 2(1 − λ),

is negative for λ < 1, then p(λmax, δ, γ̄) < 0 is implied by p(λmin, δ, γ̄) < 0 which is the only
condition we need to prove. Notice now that γ̄ is the minimizer of p(λmin, δ, γ) as a function
of γ. Therefore p(λmax, δ, γ̄) < 0 if and only if the discriminant is positive, namely if and only
if (1 + λmin + δ2(λmin − 3))2 − 4δ2(1− λmin)2 > 0. Observe that this last inequality holds true
if and only if

(3 − λmin)2δ4 − 2(5 − 2λmin + λ2
min)δ2 + (1 + λmin)2 > 0. (52)
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Consider the equation (3 − λmin)2x2 − 2(5 − λmin + λ2
min)x + (1 + λmin)2 = 0. The solutions

of this equation are x1 = 1 and x2 =
(

1+λmin

3−λmin

)2

. Since λmin < 1 we have that x2 < 1. Hence,

since (3−λmin)2x2 − 2(5−λmin +λ2
min)x+(1+λmin)2 > 0 is a convex parabola, we have that

(3 − λmin)2x2 − 2(5 − λmin + λ2
min)x + (1 + λmin)2 > 0 if and only if x < x2 and x > x1. It

follows that, if δ2 <
(

1+λmin

3−λmin

)2

, i.e., if δ < δ̄, then (52) is satisfied. 2
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