
CDC 2008, To appear
Cancun, Mexico

Increasingly Correct Message Passing Averaging Algorithms

Kurt Plarre and Francesco Bullo

Abstract— We study averaging algorithms, when imple-
mented in large networks of wirelessly connected elements. We
extend the notion of “Increasing Correctness” (IC) which was
defined for cycle-free graphs, to general graphs. An averaging
algorithm that is IC has meaningful outputs at each iteration.
This makes it possible to stop the algorithm at any time, and
use the output values computed up to that time.

We prove that the class of IC averaging algorithms is non-
trivial. We then present a simple IC averaging algorithm that is
based on ideas from Graphical Models, and study its properties.
Finally, we give example applications and simulations of IC
averaging algorithms.

I. INTRODUCTION

Large networks of wirelessly connected elements, such as
sensor networks and robot teams promise new ways of per-
ceiving the world and acting upon it. For example, a sensor
network can be used to monitor environmental variables in
a large area to study their behavior or detect events such as
a forest fire. Robotic networks could be used, for example,
for surveillance, reconnaissance, oil spill contention, search-
and-rescue missions, and space exploration.

Algorithms for large sensor networks or robot teams
must be power aware, computationally and memory efficient,
scalable, operate in real-time, and take into account inherent
communication constraints. See, for example, [1] and [2].

Systems such as sensor networks can generate large
amounts of data. It is sometimes more efficient to compute
aggregates or summaries of the data, before processing, than
to process the raw data. Algorithms to compute aggregates
in sensor and robot networks have been extensively studied.
See, for example, [3], [4], [5]. See also [6] and the references
therein.

We are interested in averaging algorithms to compute
weighted averages in a decentralized environment. Such
averaging algorithms can be compared according to different
criteria. For example, convergence time, scalability, robust-
ness to, for example, link failures and delays, and suitability
to asynchronous operation. Here we study a property of
some averaging algorithms, which we call “Increasing Cor-
rectness” Such property was introduced in [7] for message
passing-like algorithms in loop-free graphs. In that case IC
describes the fact that at each time instant, the output of the
algorithm at each node in the network is the exact solution

This material is based upon work supported in part by AFOSR MURI
Award FA9550-07-1-0528 and ONR Award N00014-07-1-0721.

Kurt Plarre is with the Department of Mechanical Engineering, and Center
for Control, Dynamical Systems and Computation, University ofCalifornia
at Santa Barbara, Santa Barbara, CA 93106, plarre@engineering.ucsb.edu

Francesco Bullo is with the Department of Mechanical Engi-
neering, University of California at Santa Barbara, CA 93106,
bullo@engineering.ucsb.edu

of a subproblem defined on a neighborhood of that node, and
that neighborhood grows with time.

The main contributions of this paper are two. First, we
give a definition of increasing correctness for averaging
algorithms in general graphs, and prove that the class of IC
averaging algorithms is non-trivial. Second, we introducea
simple message passing-like averaging algorithm that is IC
by definition. The algorithm appears to be a novel simple ver-
sion of a more sophisticated “Belief Consensus” algorithm
presented in [6]. We analyze the convergence properties of
our algorithm in deterministic and stochastic environments
using ideas from graphical models. Finally, we apply our
ideas to a spatial filtering problem and a target localization
application in a simulation study.

II. SETUP

Let G = (V,E), |V | = n be an undirected graph, with
vertex setV and edge setE. Let a ∈ R

n be a vector that
represents the input to the averaging algorithm. Nodevi in V
“knows” only ai. We are interested in computing weighted
averages of theai, i.e., expressions of the form

āβ :=
n
∑

i=1

βiai,

where, fori ∈ {1, . . . , n}, βi ∈ R≥0, and
∑n

i=1 βi = 1. In
the algorithms we present, we will not have control over the
weightsβi. Instead, we define an algorithm by local rules,
and study the behavior of the computed averages.

We consider recursions of the form

x(t + 1; a, x0) = f(x(t; a, x0), a),
y(t; a, x0) = g(x(t; a, x0), a),

(1)

where x ∈ R
nx is the state of the algorithm, with

x(0; a, x0) = x0, andy ∈ R
n is the output, withyi the output

at nodei. f : R
nx ×R

n → R
nx andg : R

nx ×R
n → R

n are
given maps. To simplify the presentation, of what we call an
“averaging algorithm,” we introduce the following notation:

(i) Given m ∈ Z>0, x ∈ R
m, S ⊆ {1, . . . ,m}, let

xS denote the subvector ofx containing the entries
indexed byS, in order.

(ii) Given m,n ∈ Z>0, R1, . . . , Rm ⊆ {1, . . . , n}, and
S ⊆ {1, . . . ,m}, let RS :=

⋃

i∈S Ri.
(iii) For each i ∈ {1, . . . , n}, let Ni denote the set of

neighbors of nodevi, in G, andN̄i := Ni ∪ {i}.

For eachi ∈ {1, . . . , n}, let Si ⊆ {1, . . . , nx} be the indices
of the state variables, known to nodevi. With this notation
we can introduce what we call an “averaging algorithm.”

Definition 1 (Averaging algorithm):We say that (1) is an
averaging algorithmfor G, if the following holds:

(i) fSi
(x, a) = fSi

(xSN̄i
, aN̄i

) andgi(x, a) = gi(xSi
, ai).

(ii) There exist βi,j ∈ R≥0, i, j = 1, . . . , n, such that
∑n

j=1 βi,j = 1, and yi(t; a, x0) →
∑n

j=1 βi,jaj , as
t → +∞, from any initial conditionx0.

Notice that the computation off requires communication,
while the computation ofg is performed locally at each node.
We denote an averaging algorithm by a tuple:A := (G, f, g).
We give an example of a simple averaging algorithm in
Section III.

We define increasing correctness in the following way.
Definition 2 (Increasing correctness):Let A = (G, f, g)

be an averaging algorithm. We say thatA is “increasingly
correct,” if for all a ∈ R

n, there existsx0 ∈ R
n, βi,j(t) ∈

R≥0, i, j = 1, . . . , n, and Ni(t) ⊂ V , i = 1, . . . , n, such
that Ni(0) = {vi}, Ni(+∞) = V , and for all t ≥ 0,
vi ∈ Ni(t), Ni(t + 1) ⊇ Ni(t), βi,j(t) = 0, for j /∈ Ni(t),
∑

j∈Ni(t)
βi,j(t) = 1, andyi(t; a, x0) =

∑

j∈Ni(t)
βi,j(t)aj .

We now specialize our definition of averaging algorithm.
Definition 3 (Linear averaging algorithm):We say that

an averaging algorithmA = (G, f, g) is linear if there
exist matricesA ∈ R

nx×nx , B ∈ R
nx×n, C ∈ R

n×nx ,
and D ∈ R

n×n, with nonnegative coefficients, such that
f(x, a) = Ax + Ba, and g(x, a) = Cx + Da. In other
words, the algorithm is given by the recursion

x(t + 1; a, x0) = Ax(t; a, x0) + Ba,

y(t; a, x0) = Cx(t; a, x0) + Da.

We denote a linear averaging algorithm by a tupleAL =
(G,A,B,C,D).

The following two lemmas show that the class of IC aver-
aging algorithm is non-trivial.

Lemma 4 (Linear consensus is IC):The linear averaging
algorithmAL = (G,A, 0, I, 0), with A ∈ R

n×n a stochastic
matrix, andx0 = a, is IC.

Proof: The proof is an immediate consequence of the
properties of stochastic matrices.

The following lemma shows how to obtain an IC correct
averaging algorithm from any linear averaging algorithm.

Lemma 5 (Constructing IC algorithms):For any linear
averaging algorithmAL = (G,A,B,C,D) there exists a,
possibly non-linear, IC averaging algorithm.

Proof: Let x̄, e ∈ R
nx , with e a vector of ones.

The output of a linear averaging algorithm, with zero initial
condition, satisfies

y(t; x̄, 0) =

(

C

t−1
∑

k=0

AkB + D

)

x̄, (2)

Considering only thei−th entry ofy, we can write (2) as

yi(t; x̄, 0) =

n
∑

j=1

αi,j(t)x̄j ,

for i ∈ {1, . . . , n}. The coefficientsαi,j(t) are obtained
directly from (2). Lettingβi,j(t) := αi,j(t)/

∑n

l=1 αi,l(t),
we have that

∑n

j=1 βi,j(t) = 1, and

yi(t; a, 0)

yi(t; e, 0)
=

n
∑

j=1

βi,j(t)aj .

Therefore the following defines an IC averaging algorithm.

x(t + 1; a, 0) = Ax(t; a, 0) + Ba,

x(t + 1; e, 0) = Ax(t; e, 0) + Be,

z(t; a, 0) = Cx(t; a, 0) + Da,

z(t; e, 0) = Cx(t; e, 0) + De,

yi(t; (a, e), 0) =
zi(t; a, 0)

zi(t; e, 0)
, i = 1, . . . , n.

Lemmas 4 and 5 show that there exist a large number of
IC averaging algorithms. Notice that in this paper we have
considered only time invariant algorithms. More generally
one could considerf andg as functions of time also.

In the next section we present an IC averaging algorithm,
which is based on ideas from Graphical Models, and study
some of its properties.

III. ANALYSIS OF A MESSAGE PASSING-LIKE
AVERAGING ALGORITHM

Let G = (V,E), |V | = n be an undirected graph. Let
a1, . . . , an ∈ R be given numbers. As before, the averaging
algorithm is defined by its state, output, and initial condition.
As in message passing, we call the states “messages”mi→j

and the outputs “beliefs,”bi. For each edge(vi, vj) ∈ E,
there are two messagesmi→j , and mj→i. For each node
vi ∈ V , there is a beliefbi. The update rules for the messages
are given by

mi→j(t + 1; a, 0) = ai +
∑

k∈Ni,j

mk→i(t; a, 0), (3)

and similarly for mi→j(t; e, 0). The expressions for the
beliefs are

bi(t; a, 0) = ai +
∑

k∈Ni

mk→i(t; a, 0),

bi(t; e, 0) = 1 +
∑

k∈Ni

mk→i(t; a, 0),

bavg
i (t; (a, e), 0) =

bi(t; a, 0)

bi(t; e, 0)
,

(4)

whereNi,j := Ni \ {j}, and we have assumed zero initial
conditions. The algorithm is defined by local rules. We study
properties of the algorithm and the computed averages that
these rules produce.

It is not difficult to see that if the graphG is cycle-free,
thenbavg

i (t; a, 0) converges after a finite number of iterations,
to the correct average. It can also be proved that at each
time t, bavg

i (t; a, 0) is the exact average in the subgraph of
G containing all nodes at distance up tot from vi.

If we implement equation (3) in a general loopy graph,
then the messages diverge. To avoid this problem, we use
a scaling factorα ∈]0, 1[. The resulting algorithm is then
given by the following update rule for the messages:

mi→j(t; a, 0) = α



ai +
∑

k∈Ni,j

mk→i(t; a, 0)



 , (5)

(a) (b)

1

1

4

1

2 3

2 4

2 3

3

4 4

1 3 1 1 2

Fig. 1. Loopy graph (a), and corresponding unwrapped tree (b), rooted at
v1.

and similarly formi→j(t; e, 0).
This algorithm is related to other filtering and averaging

algorithms found in the literature. The weighted sum-count
algorithm can be seen as a simplified version of the algorithm
presented in [6], but its purpose is to compute local weighted
averages, rather than the average of all theai as in [6]. It
is also related to consensus algorithms, with the following
differences: (1) it is affine, rather than linear, (2) the state is
defined on the edges of the graph not the vertices, and (3) the
output is a function of the state, not the state itself. The idea
of running two parallel averaging algorithms and combining
their outputs has been proposed before, for example, in [8]
to compute maximum likelihood estimates in a distributed
environment and [9]. Finally, we can also find a connection to
some filtering algorithms for image restoration; e.g., see [10].

A. Unwrapped trees

The message thatvi sends tovj at time t is a function
of all messages received byvi at time t − 1, except from
vj . For everyvi and t, it is possible to construct a rooted
tree, such that the messages received by the root node are
equal to the messages received byvi at time t. Such a tree
is called an “unwrapped tree.” We define such a tree in the
following way.

Definition 6 (Unwrapped tree):Given a graph G =
(V,E), an unwrapped tree,T , rooted atvi, for a message
passing algorithm (3) is a tree, rooted atvi, such that the
nodes at distancet from the root inT , are replicas of nodes
reachable fromvi in G, following treks of lengtht.
A “trek” is a walk without backtracking, which can have
cycles, and the length of a trekW , which we denote by|W |,
is the number of edges ofW . Figure 1 shows an example
of an unwrapped tree. Notice that in the unwrapped tree, the
label “i” denotes “replicas” of nodevi. The size of the tree
depends on the time instant,t. Unwrapped trees are used to
study the behavior of message passing algorithms [11], [12].

If A = (G,A,B,C,D) is a linear averaging algorithm
with zero initial condition, we can use the superposition
principle to analyze the contribution of each node in the
unwrapped tree, to the messages received by the root node,
separately. This simplifies the analysis.

(b)

. . .

. . .

(a)

1

1

3 2 1

2 3

1

2 3

Fig. 2. Loopy graph (a), and corresponding unwrapped tree (b), rooted at
v1.

B. Steady state analysis

For example, consider the averaging algorithm in (5), with
G a cycle on three nodes. The unwrapped tree, rooted atv1

is a path. See Figure 2. We can easily see that

m2→1(+∞; a, 0) = a2

(

α + α4 + α7 + . . .
)

+

a3

(

α2 + α5 + α8 . . .
)

+ a1

(

α3 + α6 + α9 . . .
)

,

and similarly form3→1(+∞; a, 0). Therefore

b1(+∞; a, 0) = a1 + m2→1(+∞; a, 0) + m3→1(+∞; a, 0)

=
(1 + α3)a1 + (α + α2)a2 + (α + α2)a3

1 − α3
,

and similarly for b1(+∞; e, 0). For a general cycle onn
nodes, we will have

b1(+∞; a, 0) =

(1 + αn)a1 +
n
∑

i=2

(αi−1 + αn−i+1)ai

1 − αn
,

and similarly forb1(t; e, 0).
For general graphs, we can prove the following result
Lemma 7 (Stability conditions):Consider the averaging

algorithm given by (5). Ifα(dmax − 1) < 1, where dmax

is the maximum degree of a node inG, then the algorithm
converges, and

bi(+∞; a, 0) = ai +

n
∑

j=1





∑

all W
i,j

k

α|W i,j

k
|



 aj ,

where W i,j
k is any trek from vi to vj . The expres-

sion for bi(+∞; e, 0) is similar. Thus, the expression for
bavg
i (+∞; (a, e), 0) is

bavg
i (+∞; (a, e), 0) =

ai +
n
∑

j=1





∑

all W
i,j

k

α|W i,j

k
|



 aj

1 +
∑

all W i
k

α|W i
k
|

,

whereW i
k denotes any trek starting at nodevi.

Proof: Consider the unwrapped tree, rooted at a node,
say, vi. The maximum number of nodes at depthl, in the
unwrapped tree at timet is (dmax− 1)l. The contribution of
any copy ofvj at depthl to the belief at the root node is
αlaj . Therefore

|bi(t; a, 0)| ≤ |ai| +

t
∑

l=1

αl(dmax− 1)lmax {|ai|}
n

i=1 ,

which is finite, for allt, if α(dmax− 1) < 1.
This proves that the algorithm converges. To find the limit,

we observe that any path from the root node to a copy ofvj

in the unwrapped tree, corresponds to a trek inG, from vi to
vj . Thus, in the unwrapped tree, any copy ofvj contributes
to only one message at the root node, and the contribution is
given byα|W |aj , whereW is the path from the root node to
the copy ofvj in the tree. The result then follows by adding
all contributions.

C. Transient analysis

We are not only interested in the asymptotic output values
computed by an averaging algorithm, but also in their be-
havior before convergence. We would like to know (1) how
close those outputs are to the asymptotic ones, and (2) how
meaningful they are, i.e., can those outputs be used even if
they are far from their final values?

In this section we answer the first question for the algo-
rithm given by (5). We prove the following lemma.

Lemma 8 (Convergence rate):If α(dmax− 1) < 1, then

|bi(t; a, 0) − bi(+∞; a, 0)| ∈ O
(

αt+1(dmax− 1)t+1
)

,

where we used Landau’s “big O” notation.
Proof: We assume that the algorithm is executed in

a synchronous fashion, i.e., at each time instantt, each
sensor receives (possibly empty) incoming messages from
its neighbors, and sends outgoing messages to its neighbors.
Following the analysis in the last section, it is not difficult
to see that

bi(t; a, 0) = ai +
n
∑

j=1





∑

|W i,j

k
|≤t

α|W i,j

k
|



 aj ,

Therefore

|bi(t; a, 0) − bi(+∞; a, 0)| =

=

∣

∣

∣

∣

∣

∣

n
∑

j=1





∑

|W i,j

k
|>t

α|W i,j

k
|



 aj

∣

∣

∣

∣

∣

∣

≤
∑

l>t

αl(dmax− 1)lmax {|aj |}
n

j=1

=
αt+1(dmax− 1)t+1max {|aj |}

n

j=1

1 − α(dmax− 1)
,

which proves the lemma.
Noticing that bi(t; e, 0) ≥ 1, for all t ≥ 0, and the fact

that for anyx, δx, y, δy ∈ R, with y ≥ 1, andy + δy ≥ 1,
we have

∣

∣

∣

∣

x + δx

y + δy
−

x

y

∣

∣

∣

∣

≤

(

1 +

∣

∣

∣

∣

x

y

∣

∣

∣

∣

)

max {|δx|, |δy|} ,

by letting x := bi(+∞; a, 0), x + δx := bi(t; a, 0), y :=
bi(+∞; e, 0), and y + δy := bi(t; e, 0), we can prove that
also

∣

∣bavg
i (t; (a, e), 0) − bavg

i (+∞; (a, e), 0)
∣

∣ ∈

O
(

αt+1(dmax− 1)t+1
)

.

When the inputs to the algorithm,ai, are estimates of a
random variablea0, we can formalize our notion of “mean-
ingful.” We do so in the following lemma.

Lemma 9 (Unbiased estimators):Let AL =
(G,A,B,C,D), be an IC averaging algorithm. Letai,
i ∈ {1, . . . , n}, be unbiased estimates of a random variable
a0, anda = [a1, . . . , an]. Then bi(t; a, x0) computed using
AL is an unbiased estimate ofa0, for all t.

Proof: The assumption thatAL is IC implies that at

each timet, it holds thatbi(t; a, x0) =
n
∑

j=1

βi,j(t)aj , with

βi,j(t) ∈ R≥0 and
∑n

j=1 βi,j(t) = 1. Taking expectations
we have

E [bi(t; a, x0)] =
n
∑

j=1

βi,j(t)E [aj] = E
[

a0
]

.

This proves the lemma.

D. Random weights

In this section we study a randomized version of the
previous algorithm. The state and output of the algorithm
are the same as before, but in this case, any given message
is transmitted with a certain probability, rater than with cer-
tainty. The resulting algorithm can be described as follows:

mi→j(t; a, 0) = αi,j(t)



ai +
∑

k∈Ni,j

mk→i(t; a, 0)



 , (6)

and similarly for mi,j(t; e, 0). Here αi,j(t) = α with
probability p, and αi,j(t) = 0 with probability 1 − p,
with αi1,j1(t1) independent ofαi2,j2(t2) for (i1, j1, t1) 6=
(i2, j2, t2). A zero message is not sent, and a message that is
not received is assumed zero. The update rules of the beliefs
are as before.

We notice that even in the random case, at each timet,
bavg
i (t; a, 0) is a weighted average of theai, although, in this

case, the coefficients are random. We prove the following
lemma.

Lemma 10 (Convergence in expectation):If αp(dmax −
1) < 1, then (6) converges exponentially in expectation, and
bavg
i (t; a, 0) is L1 bounded.

Proof: Let m̄i,j(t; a, 0) := E [mi,j(t; a, 0)],
m̄i,j(t; e, 0) := E [mi,j(t; e, 0)], and ᾱi,j(t) := E [αi,j(t)].
Then,

m̄i→j(t; a, 0) = ᾱi,j(t)



ai +
∑

k∈Ni,j

m̄k→i(t; a, 0)



 ,

and similarly for m̄i→j(t; e, 0). But ᾱi,j(t) = αp, which
means that̄mi,j(t; a, 0) converges ast → ∞, if αp(dmax −
1) < 1.

If we now definem̃i,j(t; a, 0) := E [|mi,j(t; a, 0)|], and
α̃i,j(t) := E [|αi,j(t)|], we can write

0 ≤ m̃i→j(t; a, 0) ≤ α̃i,j(t)



|ai| +
∑

k∈Ni,j

m̃k→i(t; a, 0)



 .

Fig. 3. Estimated temperatures before (left) and after (right) spatial filtering.

This inequality shows that, if̃αi,j(t)(dmax − 1) ≤ 1, then
eachm̃i→j(t; a, 0) is bounded. Sinceb(t; e, 0) ≥ 1, for all t,
we can write

0 ≤ E
[∣

∣bavg
i (t; a, 0)

∣

∣

]

≤ |ai| +
∑

k∈Ni

m̃k→i(t; a, 0),

which proves thatE
[∣

∣bavg
i (t; a, 0)

∣

∣

]

is also bounded, under
the same conditions.

IV. APPLICATIONS AND SIMULATIONS

In this section we discuss two applications: Spatial filtering
in a sensor network and target localization with mobile
sensors.

A. Spatial filtering

A sensor network is used to estimate the temperature
produced by a heat source located at the origin of the
plane. Sensors are arranged on a randomly perturbed grid,
where the horizontal and vertical perturbations are uniform
in [−0.25, 0.25]. In other words each sensor location was
chosen, uniformly in a square with sides of length0.5. The
temperature at location(x, y) at time t is given by

θ(x, y, t) =

∫ t

0

1

τ
e−

x2+y2

τ dτ,

where we have omitted constants, for simplicity.
Each sensor takes one noisy measurement of the field at its

location. The noise at each node is Gaussian with variance
(0.2)2. The noises at different locations are independent.
After taking measurements the sensors execute the averaging
algorithm given by 5 and 4. The communication graph is
a grid, i.e., each sensor communicates only with its four
neighbors on the grid.

The resulting estimated field is shown in Figure 3. The
left panel in Figure 3 shows the measured temperatures at
each sensor. The right panel shows the estimated temper-
atures, after running the averaging algorithm. We can see
from Figure (3) that filtering greatly improved the estimated
temperature profile.

B. Target localization

A network of mobile robots must localize and move to-
wards a number of fixed targets on the plane. Each robot can
make noisy measurements of the location of the target that

is closest to it. The operation of the robots is synchronous.
Robots execute the following operations, in order: (1) sense,
(2) initialize their estimates of the target’s location, (3)
execute an averaging algorithm forK steps, and (4) move
according to the updated estimate. We now describe the
sensing, communication, computation, and control models.

Sensing model:Each robot can take noisy measurements
of the location of the target closest to it. We neglect the
effect of other targets that might affect such measurements.
As in [13], we use the following sensor model:ax

i (t) =
xo

j + ri(t) cos(θi(t)), ay
i (t) = yo

j + ri(t) sin(θi(t)), where

(i) ax
i (t) anday

i (t) are the measured horizontal and verti-
cal positions, at nodei, of the target that is closest to
it, and at timet,

(ii) (xo
j , y

o
j) represents the actual location of the target

closest to roboti,
(iii) ri(t) is uniformly distributed in[0, rmax], andθi(t) is

uniformly distributed in[0, 2π].

The location of roboti at time t is (xi(t), yi(t)).
Communication model: Two robots can communicate

if they are at distance less thandcomm. Communication is
bidirectional. Robots communicate their current estimates of
the location of the targets (each robot estimates the location
of only one target). At each time each robot communicates
with a subset of its neighbors in the communication graph.

Computation model: Each robot stores an estimate of the
location of the source(x̂i(t, k), ŷi(t, k)). At each time, this
estimate is initialized aŝxi(t, 0) = ax

i (t) andŷ(t, 0) = ay
i (t).

These estimates are updated according to the following rule:

x̂′
i(t, k + 1) = ax

i (t) + α



x̂′
i(t, k) +

∑

j∈Ni(t)

x̂′
j(t, k)



 ,

and similarly for ŷ′
i(t + 1, k). HereNi(t) is a subsetof the

neighbors of roboti in the communication graph. The size
of Ni(t) and α are chosen to make the algorithm stable.
As initial conditions we set̂xi(t, 0) = ax

i (t) and ŷi(t, 0) =
ay

i (t). The following recursion is executed in parallel to the
previous two:

ci(t, k + 1) = 1 + α



ci(t, k) +
∑

j∈Ni(t)

cj(t, k)



 ,

Fig. 4. Snapshots of the operation of the target localization algorithm att = 0, 10, 20, 40 (left) and behavior of average (over all robots) quadratic error
in estimated target location.

with initial condition ci(t, 0) = 1. These update rules are
executedK times. The estimates of the locations of the
targets are obtained asx̂i(t) = x̂′

i(t,K)/ci(t,K) andŷi(t) =
ŷ′

i(t,K)/ci(t,K).
By Lemma 4, we know that this averaging algorithm is IC.

Hence, at each time, the estimates at each node are convex
combinations of the measurements in a neighborhood of that
node.

Control model: After the averaging algorithm has been
executed, each robot moves towards(x̂i(t,K), ŷi(t,K)),
by a fixed distancedcontrol. If the robot is closer to
(x̂i(t,K), ŷi(t,K)) than dcontrol, it moves directly to that
point.

Initially, the robots and targets are uniformly distributed
in the square[−1, 1] × [−1, 1]. In the simulations we used
dcomm = 0.1, dcontrol = 0.05, rmax = 2, andn = 300 robots.
The location of the sources was chosen uniformly in[−1, 1]×
[−1, 1]. Figure 4 (left) shows snapshots of the operation of
the algorithm fort = 0, 10, 20, 40. We can see that the robots
cluster around the targets.

In Figure 4 (left), we compare the behavior of the average
(over all robots) quadratic error in the location of the robots,
with respect to time. The error in the location of a robot is
the squared distance to the target that is closest to that robot.
Each curve in Figure 4 (right) corresponds to a different value
of K. We simulated the algorithm forK = 0, 1, 3, 10. The
number of robots wasn = 1000. The noise model was the
same as before, but withrmax = 2. We observe that averaging
improves the rate of convergence of the robots to the targets.

V. CONCLUSIONS

We extended the notion of increasing correctness from
loop-free graphs to loopy graphs, showed that the class of
IC algorithms is non-trivial, and studied a simple Message
Passing-like IC algorithm. We also showed the performance
of the proposed IC algorithms in two interesting applications.
Future work includes studying other applications of the
proposed algorithms and more general linear recursions on
graphs.

REFERENCES

[1] P. Gupta and P. R. Kumar. The capacity of wireless networks. IEEE
Transactions on Information Theory, 46(2):388–404, 2000.

[2] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. A sur-
vey on sensor networks.IEEE Communications Magazine, 40(8):102–
114, 2002.

[3] C. Intanagonwiwat, R. Govindan, and D. Estrin. A scalable and robust
communication paradigm for sensor networks. InACM/IEEE Inter-
national Conference on Mobile Computing and Networking, Boston,
MA, August 2000.

[4] S. R. Madden, M. J. Franklin, J. Hellerstein, and W. Hong.Tag: A tiny
aggregation service for ad hoc wireless sensor networks. InUSENIX
Symposium on Operating Systems Design and Implementation, Boston,
MA, December 2002.

[5] S. R. Madden, R. Szewczyk, M. J. Franklin, and D. Culler. Supporting
aggregate queries over ad-hoc wireless sensor networks. InWorkshop
on Mobile Computing Systems and Applications, pages 49–58, Calli-
coon, NY, June 2002.

[6] C. C. Moallemi and B. Van Roy. Consensus propagation.IEEE
Transactions on Information Theory, 52(11):4753–4766, 2006.

[7] K. Plarre, P. R. Kumar, and T. I. Seidman. Increasingly correct mes-
sage passing algorithms for heat source detection in sensor networks.
In IEEE Conference on Sensor and Ad Hoc Communications and
Networks (SECON), pages 470–479, October 2004.

[8] L. Xiao, S. Boyd, and S. Lall. A scheme for robust distributed sensor
fusion based on average consensus. InSymposium on Information
Processing of Sensor Networks (IPSN), pages 63–70, Los Angeles,
CA, April 2005.

[9] A. Olshevsky and J. N. Tsitsiklis. Convergence rates in distributed
consensus and averaging. InIEEE Conf. on Decision and Control,
pages 3387–3392, San Diego, CA, December 2006.

[10] A. K. Jain. Fundamentals of Digital Image Processing. Prentice Hall,
Englewood Cliffs, NJ, 1989.

[11] Y. Weiss and W. T. Freeman. On the optimality of solutions of the
max-product belief-propagation algorithm in arbitrary graphs. IEEE
Transactions on Information Theory, 47(2):736–744, 2001.

[12] Y. Weiss. Correctness of belief propagation in Gaussian graphical
models of arbitrary topology.Neural Computation, 13:2173–2200,
2001.

[13] R. Olfati-Saber, E. Franco, E. Frazzoli, and J. S. Shamma.Belief
consensus and distributed hypothesis testing in sensor networks. In
P.J. Antsaklis and P. Tabuada, editors,Network Embedded Sensing and
Control. (Proceedings of NESC’05 Worskhop), volume 331 ofLecture
Notes in Control and Information Sciences, pages 169–182. Springer
Verlag, New York, 2006.

