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Increasingly Correct Message Passing Averaging Algorithms

Kurt Plarre and Francesco Bullo

Abstract—We study averaging algorithms, when imple- of a subproblem defined on a neighborhood of that node, and
mented in large networks of wirelessly connected elements. We that neighborhood grows with time.
extend the notion of “Increasing Correctness” (IC) which was The main contributions of this paper are two. First, we

defined for cycle-free graphs, to general graphs. An averaging . definiti fi . ¢ f .
algorithm that is IC has meaningful outputs at each iteration. 9/V€ @ deliniion of Iincreasing correctness 1or averaging

This makes it possible to stop the algorithm at any time, and a@lgorithms in general graphs, and prove that the class of IC
use the output values computed up to that time. averaging algorithms is non-trivial. Second, we introdace
~We prove that the class of IC averaging algorithms is non- simple message passing-like averaging algorithm that is IC
gglslzld \é\fig‘eﬂ‘s ?:g;egtr : Shlirggll?\/llc(;:dglvser:r?éngt L?cljgc}:ghr?otr:aar:i:ass by definition. The algorithm appears to be a novel simple ver-
Finally, we give examplg applications, and sim):JIatignsp of Ic SlOn of a more sophisticated “Belief Consensus” algor,'thm
averaging algorithms. presented in [6]. We analyze the convergence properties of
our algorithm in deterministic and stochastic environreent
. INTRODUCTION using ideas from graphical models. Finally, we apply our

i ideas to a spatial filtering problem and a target localizatio
Large networks of wirelessly connected elements, such @pplication in a simulation study.

sensor networks and robot teams promise new ways of per-
ceiving the world and acting upon it. For example, a sensor Il. SETUP
network can be used to monitor environmental variables in | ot ~ _ (V,E), V| = n be an undirected graph, with

a large area to study their behavior or detect events such @gay setv and edge seF. Leta € R” be a vector that

a forest fire. Robotic networks could be used, for examp'?epresents the input to the averaging algorithm. Nede V/

fordsurvelllancg, reconnahssance, oil slplll gontentltlmrsh- “knows” only a;. We are interested in computing weighted
and-rescue missions, and space exploration. averages of the;, i.e., expressions of the form
Algorithms for large sensor networks or robot teams

must be power aware, computationally and memory efficient, _ -
scalable, operate in real-time, and take into account arfter ap = Zﬂiai’
communication constraints. See, for example, [1] and [2]. =t

Systems such as sensor networks can generate lamjere, fori € {1,...,n}, B € Rxo, and)> | 5; = 1. In
amounts of data. It is sometimes more efficient to comput@e algorithms we present, we will not have control over the
aggregates or summaries of the data, before processiny, tieeights 3;. Instead, we define an algorithm by local rules,
to process the raw data. Algorithms to compute aggregat@gd study the behavior of the computed averages.
in sensor and robot networks have been extensively studied.We consider recursions of the form
See, for example, [3], [4], [5]. See also [6] and the refeesnc z(t+ 1;a,20) f(z(t;a,x0), a), .
therein. . ' - . y(t:a,z0) = g(x(t;a,20),0a), @)

We are interested in averaging algorithms to compute . ) .
weighted averages in a decentralized environment. Sucyhere = € R"- is the state of the algorithm, with
averaging algorithms can be compared according to differefi(0; @ Z0) = o, andy € R" is the output, withy; the output
criteria. For example, convergence time, scalabilityusth at nodei. f: R xR"™ — R"+ andg : R" xR" — R" are
ness to, for example, link failures and delays, and suitgbil 91ve€n maps. To simplify the presentation, of what we call an
to asynchronous operation. Here we study a property ofveraging algorithm,” we introduce the following notatio

some averaging algorithms, which we call “Increasing Cor- (i) Given m € Z.o, » € R™, S C {1,...,m}, let
rectness” Such property was introduced in [7] for message s denote the subvector of containing the entries
passing-like algorithms in loop-free graphs. In that caGe | indexed bysS, in order.
describes the fact that at each time instant, the outputeof th (i) Given m,n € Z-o, Ry,..., R, C {1,...,n}, and
algorithm at each node in the network is the exact solution S C {1,...,m}, let Rs := (J;c5 R
(i) For eachi € {1,...,n}, let N; denote the set of
This material is based upon work supported in part by AFOSR MUR neighbors of node;, in G, and N, := N; U {i}.
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) fs,(x,a) = fs, (xSN ,ay,) andgi(:c a) = gi(xzs,,a;). Therefore the following defines an IC averaging algorithm.
(i) There existg;; € }R>o, i,j = 1,...,n, such that

Z]:l By = 1, and yi(t;a, ) — ZJ:1 B, a5, as z(t + 1;a,0) = Az(t;a,0) + Ba,
t = 400, from any initial conditionz. z(t+1;e,0) = Az(t;e,0) + Be,
Notice that the computation of requires communication, 2(t;a,0) = Cx(t;a,0) + Da,
while the computation of is performed locally at each node. 2(t;e,0) = Ca(t;e,0) + De
We denote an averaging algorithm by a tuple:= (G, £, g). o ’
We give an example of a simple averaging algorithm in yi(t; (a,€),0) = M’ i=1,...,n.
Section Il zi(t; €, 0)
We define increasing correctness in the following way. [ ]

Definition 2 (Increasing correctnessjet A = (G, f,g) Lemmas 4 and 5 show that there exist a large number of
be an averaging algorithm. We say thdtis “increasingly IC averaging algorithms. Notice that in this paper we have
correct,” if for all « € R™, there existsy € R", §8; ;(t) € considered only time invariant algorithms. More generally

R>o, 4,7 = 1,...,n, and N;(t) C V, i = 1,...,n, such one could considef andg as functions of time also.
that N;(0) = {v;}, N;(+00) = V, and for allt > 0, In the next section we present an IC averaging algorithm,
vl € Ni(t), Ni(t+1) 2 Ny(t), Bi;(t) =0, for j ¢ N;(t), which is based on ideas from Graphical Models, and study
eni(y Bii(t) = 1, andy;(tsa, 20) = 3 v,y B (t)a;.  some of its properties.

<N ‘e now speC|aI|ze our deflmtlon of averaglng algorlthm

Definition 3 (Linear averaging algorithm)We say that I1l. ANALYSIS OF A MESSAGE PASSING-LIKE
an averaging algorithmd = (G, f,g) is linear if there AVERAGING ALGORITHM
exist matricesA € R"=*"= B ¢ R"*" (C ¢ R"*"=, Let G = (V,E), |V| = n be an undirected graph. Let
and D € R™ ™, with nonnegative coefficients, such thata,...,a, € R be given numbers. As before, the averaging
f(xz,a) = Ax + Ba, and g(z,a) = Cx + Da. In other algorithm is defined by its state, output, and initial coroait
words, the algorithm is given by the recursion As in message passing, we call the states “messages’;

and the outputs “beliefs,b;. For each edgév,,v;) € E,
there are two messages,_.;, and m;_,;. For each node
y(t;a,x0) = Ca(t; a, x0) + Da. v; € V, there is a belieb;. The update rules for the messages

We denote a linear averaging algorithm by a tuple = are given by
(G,A,B,C, D).
The following two lemmas show that the class of IC aver-
aging algorithm is non-trivial.

Lemma 4 (Linear consensus is ICJhe linear averaging and similarly for m,_.;(t;e,0). The expressions for the
algorithm Ay, = (G, A,0,1,0), with A € R"*" a stochastic beliefs are
matrix, andzq = a, is IC.

z(t + 1;a,2z0) = Ax(t;a,z0) + Ba,

miﬁj (t + 1; a, O) =a; + Z MEk—q (ta a, 0)7 (3)
kEN; ;

Proof: The proof is an immediate consequence of the bi(t;a,0) = ai + Z mi—i(t; a,0),
properties of stochastic matrices. ] keN;
The _foIIowing_ lemma shows _how to obtai_n an IC correct bi(t;e,0) =1+ Z my—i(t: a,0) (4)
averaging algorithm from any linear averaging algorithm. KN,
Lemma 5 (Constructing IC algorithmsfor any linear bi(t; a,0)
averaging algorithmA; = (G, A, B,C, D) there exists a, b29(t; (a,e),0) = BEe0)
3 b )

possibly non-linear, IC averaging algorithm.
Proof: Let Z,e € R", with e a vector of ones. whereN,; := N; \ {j}, and we have assumed zero initial
The output of a linear averaging algorithm, with zero iritiaconditions. The algorithm is defined by local rules. We study

condition, satisfies properties of the algorithm and the computed averages that
t—1 these rules produce
y(t;7,0) (CZAkB + D) 2 It is not difficult to see that if the grapt¥ is cycle-free,
k=0 thenb3"(t; a, 0) converges after a finite number of iterations,

Considering only the —th entry ofy, we can write (2) as t0 the correct average. It can also be proved that at each
time ¢, b2%(t; a,0) is the exact average in the subgraph of
= Zai7j(t)jj7 G containing all nodes at distance upttérom v,.
If we implement equation (3) in a general loopy graph,
then the messages diverge. To avoid this problem, we use

for i € {1,...,n}. The coefficientsa; ;(t) are obtained _ . : :
directly from (2). Letting3; () == ., (£)/ S0, cvii(t) a scaling factora € ]0,1[. The resulting algorithm is then
we have that ™", 3. (¢) _l’i and J =175 given by the following update rule for the messages:
j=1 Mg -
t O n
(& : 0) Zﬁw mi—j(ta,0)=a | ai+ > myi(t;a,0) ], (5)

kEN; ;
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Fig. 2. Loopy graph (a), and corresponding unwrapped trgergbted at
V1.

B. Steady state analysis

For example, consider the averaging algorithm in (5), with

Fig. 1. Loopy graph (a), and corresponding unwrapped trgergbted at G a CyCIe on thrge nodes. The unwr:_;\pped tree, rooted at
1. is a path. See Figure 2. We can easily see that

(@ (b)

ma—1(+00;a,0) = ay (a—l—a4—|—a7+...) +

and similarly form;_.;(t; e,0). az (@®+a°+a®.. ) +a (@®+a’+a”...),

This algorithm is related to other filtering and averaging e
algorithms found in the literature. The weighted sum-courind Similarly forms_., (+o0; a,0). Therefore
algorithm can be seenas a simp!ified version of the algprithrgl(+oo; a,0)
presented in [6], but its purpose is to compute local weighte 3 5 5
averages, rather than the average of all ¢heas in [6]. It _(+of)mt(ataiat(ata )ai‘,
is also related to consensus algorithms, with the following 1—a?
differences: (1) it is affine, rather than linear, (2) thetesia and similarly for b;(-+oc;€,0). For a general cycle om
defined on the edges of the graph not the vertices, and (3) thedes, we will have
output is a function of the state, not the state itself. Treaid n
of running two parallel averaging algorithms and combining (14 a™)a; + Y (@71 4+ an=H)q,
their outputs has been proposed before, for example, in [8] b, (+o00;a,0) = =2 —
to compute maximum likelihood estimates in a distributed l-a
environment and [9]. Finally, we can also find a connection tand similarly forb, (¢; e, 0).
some filtering algorithms for image restoration; e.g., 968.[ For general graphs, we can prove the following result

Lemma 7 (Stability conditions)Consider the averaging

A. Unwrapped trees algorithm given by (5). lfa(dmax — 1) < 1, where dpax

The message that; sends tov; at timet¢ is a function is the maximum degree of a node @ then the algorithm
of all messages received hy at timet — 1, except from converges, and
v;. For everyv; andt, it is possible to construct a rooted
tree, such that the messages received by the root node are = i
equal to the messages receiveddyat timet. Such a tree bi(+003a,0) = a; + Z Z ,alwk s
is called an “unwrapped tree.” We define such a tree in the I=1 Nallwy

following way. ijo
e : where W7 is any trek fromv; to v;. The expres-
Definition 6 (Unwrapped tree)Given a_ graph G sion for b;(+o0;€,0) is similar. Thus, the expression for
(V, E), an unwrapped tre€l’, rooted atv;, for a message ;avg . ;
: X . b; (4005 (a,€),0) is
passing algorithm (3) is a tree, rooted«af such that the
nodes at distancefrom the root inT’, are replicas of nodes

= aj + ma—1(+00;a,0) + ms_1(+00; a,0)

)

reachable fromy; in G, following treks of length. ai+ Y S oWl a
A “trek” is a walk without backtracking, which can have avg J=1 \all wy?
cycles, and the length of a trék’, which we denote byiV/|, b;"(+00; (a,¢),0) = 1+ 3 aWil ’
is the number of edges d¥. Figure 1 shows an example al Wi

of an unwrapped tree. Notice that in the unwrapped tree, the .

label " denotes “replicas” of node;. The size of the tree WhereWW; denotes any trek starting at nodg

depends on the time instant, Unwrapped trees are used to ~ Proof: Consider the unwrapped tree, rooted at a node,

study the behavior of message passing algorithms [11], [LZay, v;.- The maximum number of nodes at degthin the
unwrapped tree at timeis (dmax — 1)'. The contribution of

If A= (G, A, B,C,D) is a linear averaging algorithm any copy ofv; at depth! to the belief at the root node is

with zero initial condition, we can use the superpositiom'a;. Therefore

principle to analyze the contribution of each node in the .

unwrapped tree, to the messages received by the root node, |, (¢; 4, 0)| < |a;| + Zal(dmax* 1)'max {|a;]}", |

separately. This simplifies the analysis. =1 B



which is finite, for all¢, if a(dmax— 1) < 1. When the inputs to the algorithny,;, are estimates of a
This proves that the algorithm converges. To find the limittandom variable:°, we can formalize our notion of “mean-

we observe that any path from the root node to a copy;of ingful.” We do so in the following lemma.

in the unwrapped tree, corresponds to a trekjrfrom v; to Lemma 9 (Unbiased estimators)et Ap =

v;. Thus, in the unwrapped tree, any copywgfcontributes (G, A, B,C, D), be an IC averaging algorithm. Let;,

to only one message at the root node, and the contributiom‘if {1,...,n}, be unbiased estimates of a random variable

given bya'W‘a whereW is the path from the root node to a° anda = [a1,...,a,]. Thenb,(t;a,zy) computed using

the copy ofv; in the tree. The result then follows by addmgAL is an unbiased estimate af, for all ¢.

all contributions. [ ] Proof: The assumption thatl;, is IC implies that at

C. Transient analysis each timet, it holds thatb;(t; a,x¢) = Eﬁ”( )a;, with

We are not only interested in the asymptotic output values, ;(t) € Rxo and 327, §; (1) = 1. Takmg expectations
computed by an averaging algorithm, but also in their beye have

havior before convergence. We would like to know (1) how

close those outputs are to the asymptotic ones, and (2) how E [b;(t; a,x0)] Zﬁm [ 0] .
meaningful they are, i.e., can those outputs be used even if

they are far from their final values?

This proves the Iemma |
In this section we answer the first question for the algo-
rithm given by (5). We prove the following lemma. D. Random weights
Lemma 8 (Convergence ratef a(dmax— 1) < 1, then In this section we study a randomized version of the
41 t+1 previous algorithm. The state and output of the algorithm
16:(t; 2,0) = bi(+o00;0,0)] € O( (dmax— 1) ) ’ are the same as before, but in this case, any given message
where we used Landau’s “big O” notation. is transmitted with a certain probability, rater than wittrc

Proof: We assume that the algorithm is executed iiainty. The resulting algorithm can be described as follows
a synchronous fashion, i.e., at each time instgneach
sensor receives (possibly empty) incoming messages from

its neighbors, and sends outgoing messages to its neighborgn“j (b0,0) = aii() | @i + Z mi—iltia,0) |, (6)

Following the analysis in the last section, it is not difficul FENs
to see that and similarly for m; ;(t;e,0). Here «o;;(t) = o« with
. probability p, and «; ;(t) = 0 with probability 1 — p,
bi(t:a,0) = a; +Z Z QWi o, with «, ;, (t1) independent ok, j,(t2) for (i1, j1,t1) #

(i2, j2, t2). A zero message is not sent, and a message that is
not received is assumed zero. The update rules of the beliefs
Therefore are as before.

We notice that even in the random case, at each time

j=1 \W,:’j|§t

[bi(t; @, 0) — bi(+o0;.0, 0)] = b2"9(t; a,0) is a weighted average of the, although, in this
n Wi case, the coefficients are random. We prove the following
= Z Z @ aj lemma.
J=L\Iwid >t Lemma 10 (Convergence in expectatioif): ap(dmax —
1) < 1, then (6) converges exponentially in expectation, and
l l n
< lz:a (dmax — 1)'max {|a;|};_, b2(t;a,0) is L; bounded.
>t . —
Proof: Let m;;(t;a,0) = E[m,;;(ta,0)],
t+1 t+1 N AN ERt] 1,7
_ 0 (dmax— D)™ max {fa;[};_, My (t:0,0) = E[ma, (5 e,0)], and (1) = E [ai, (1))
1— a(dmax— 1) ’ Then,
which proves the lemma. ]
Noticing thatb;(¢;e,0) > 1, for all ¢ > 0, and the fact mi—j(t;a,0) = a, ;(t) [ a; + Z mi_i(t;a,0) |,
that for anyz, d,,v,6, € R, with y > 1, andy + ¢, > 1, kEN,
we have and similarly form,_;(t;e,0). But &; ;(t) = ap, which
T+or @ < (1 + ‘JJD max {|dz|, [0y}, means thatn; ;(t;a,0) converges ag — oo, if ap(dmax —
y+oy oy Y ‘ 1)< 1.
by letting z := b;(+00;0a,0), x + 8, = b;i(t;a,0), y := If we now definem; ;(t;a,0) := E[|lm;;(t;q,0)[], and

bi(+00;€,0), andy + d, := b;(t;e,0), we can prove that @, (t) :== E oy ;(¢)]], we can write
also
0 < 1imj(t;a,0) < & j(t) [ lail + Y mw—ilt;a,0)
|679(t; (a, ), 0) = b5"(+00; (a,€), 0)| € kN

,0)]
O (at+1(dmax_ 1)t+1) )
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Fig. 3. Estimated temperatures before (left) and after (righatial filtering.

This inequality shows that, ify; ;(¢)(dmax — 1) < 1, then is closest to it. The operation of the robots is synchronous.
eachm,_;(t;a,0) is bounded. Sincé(t;e,0) > 1, for all ¢, Robots execute the following operations, in order: (1) sens

we can write (2) initialize their estimates of the target's location,) (3

avg ~ execute an averaging algorithm féf steps, and (4) move
0<E Hbz UW%O)H < las + ka_,i(t;a,o), according to the updated estimate. We now describe the
kEN; sensing, communication, computation, and control models.
which proves thatt [|62'(t;a,0)|] is also bounded, under Sensing modeI:Each robot can take no_isy measurements
the same conditions. m of the location of the target closest to it. We neglect the
effect of other targets that might affect such measurements

IV. APPLICATIONS AND SIMULATIONS As in [13], we use the following sensor model? (t) =

In this section we discuss two applications: Spatial fittgri =7 + 7i(t) cos(0i(t)), af (t) = y§ + ri(t) sin(6;(t)), where
in a sensor network and target localization with mobile (i) () anda!(t) are the measured horizontal and verti-
sensors. cal positions, at nodé of the target that is closest to
A. Spatial filtering .. it, and at timet, .
' _ _ (i) (z%,y7) represents the actual location of the target
A sensor network is used to estimate the temperature  clgsest to robot,
produced by a heat source located at the origin of theiiiy r,(¢) is uniformly distributed in0, rma, andd;(t) is
plane. Sensors are arranged on a randomly perturbed grid,  yniformly distributed in[0, 2x].
where the horizontal and vertical perturbations are unifor The location of robot at timet is (z:(t), yi(t)).

in [—0.25,0.25]. In other words each sensor location was o ) .
chosen, uniformly in a square with sides of length. The i tcrzlzygfem;?té?:tarr?ged?gs;—v‘:ﬁ a;;bms C%?chuonrggtlijgr']c?ste
i i i R omm:
temperature at locatiofw, y) at time is given by bidirectional. Robots communicate their current estimate
0(z,y.1) = /t le‘MdT the location of the targets (each robot estimates the lotati
v 0o T ’ of only one target). At each time each robot communicates
with a subset of its neighbors in the communication graph.

where we have omitted constants, for simplicity. c tat del: Each robot st timate of th
Each sensor takes one noisy measurement of the field at its omputation modet. £ach robot stores an estimate of the

location. The noise at each node is Gaussian with varianti-aton of the Spurcézfi(t’k)’yi(t; k). AL ?aCh tlmey, this
(0.2)2. The noises at different locations are independen%s.lt'mate Is initialized a8, (t, 0) = a; (1) andj(t, 0) = a;(t).
After taking measurements the sensors execute the avgragi ese estimates are updated according to the following rule
algorithm given by 5 and 4. The communication graph is

a grid, i.e., each sensor communicates only with its four .. _ N Y

neighbors on the grid. Bt k+1) =af(t) + o | Tt k) + Y @tk |,

The resulting estimated field is shown in Figure 3. The
left panel in Figure 3 shows the measured temperatures gd similarly forg/( + 1, k). Here N;(t) is a subsetof the
each sensor. The right panel shows the estimated tempggighbors of robot in the communication graph. The size
atures, after running the averaging algorithm. We can seg N,(t) and a are chosen to make the algorithm stable.
from Figure (3) that filtering greatly improved the estinthte As initial conditions we set;(t,0) = a¥(t) and §(t,0) =
temperature profile. a? (). The following recursion is executed in parallel to the
previous two:

JEN(t)

B. Target localization

A network of mobile robots must localize and move to-
wards a number of fixed targets on the plane. Each robotcan ¢;(t,k+1)=1+a | ¢;(t, k) + Z ci(t k)|,
make noisy measurements of the location of the target that JEN(t)
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We extended the notion of increasing correctness from
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