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Abstract— The most widely applied resource allocation strat-
egy is to balance, or equalize, the total workload assigned to
each resource. In mobile multi-agent systems, this principle
directly leads to equitable partitioning policies in which (i) the
workspace is divided into subregions of equal measure, (ii) each
agent is assigned to a unique subregion, and (iii) each agent
is responsible for service requests originating within its own
subregion. In this paper, we design distributed and adaptive
policies that allow a team of agents to achieve a convex and
equitable partition of a convex workspace. Our approach is
related to the classic Lloyd algorithm, and exploits the unique
features of Power Diagrams. We discuss possible applications
to routing of vehicles in stochastic and dynamic environments,
and to wireless networks. Simulation results are presented and
discussed.

I. INTRODUCTION

In the near future, large groups of autonomous agents will
be used to perform complex tasks including transportation
and distribution, logistics, surveillance, search and rescue
operations, humanitarian demining, environmental monitor-
ing, and planetary exploration. The potential advantages of
multi-agent systems are, in fact, numerous. For instance,
the intrinsic parallelism of a multi-agent system provides
robustness to failures of single agents, and in many cases can
guarantee better time efficiency. Moreover, it is possible to
reduce the total implementation and operation cost, increase
reactivity and system reliability, and add flexibility and
modularity to monolithic approaches.

In essence, agents can be interpreted as resources to
be allocated to customers. In surveillance and exploration
missions, customers are points of interest to be visited; in
transportation and distribution applications, customers are
people demanding some service (e.g., utility repair) or goods;
in logistics tasks, customers could be troops in the battlefield.

The most widely applied resource allocation strategy is
to balance, or equalize, the total workload assigned to each
resource. While, in principle, several strategies are able
to guarantee workload-balancing in multi-agent systems,
equitable partitioning policies are predominant [1]–[4]. A
partitioning policy is an algorithm that, as a function of the
number m of agents and, possibly, of their position and other
information, partitions a bounded workspace A into regions
Ai, for i ∈ {1, . . . ,m}. (Voronoi partitions are an example
of a partioning policy.) Then, each agent i is assigned to
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subregion Ai, and each customer in Ai receives service
by the agent assigned to Ai. Accordingly, if we model the
workload for subregion S ⊆ A as λS

.=
∫

S
λ(x) dx, where

λ(x) is a measure over A, then the workload for agent i is
λAi

. Then, load-balancing calls for equalizing the workload
λAi in the m subregions or, in equivalent words, requires to
compute an equitable partition of the workspace A (i.e., a
partition in subregions with the same measure).

Equitable partitioning policies are predominant for three
main reasons: (i) efficiency, (ii) ease of design and (iii) ease
of analysis; they are, therefore, ubiquitous in multi-agent
system applications. To date, nevertheless, to the best of
our knowledge, all equitable partitioning policies inherently
assume a centralized computation of the workspace’s tes-
sellation. This fact is in sharp contrast with the desire of a
fully distributed architecture for a multi-agent system. The
lack of a fully distributed architecture limits the applicability
of equitable partitioning policies to limited-size multi-agent
systems operating in a known static environment.

The contribution of this paper is three-fold. First, utilizing
appropriate partitioning policies, we design distributed and
adaptive policies that allow a team of agents to achieve
an equitable partition. Under a mild technical assumption,
convergence to an equitable partition is global. Our approach
is related to the classic Lloyd algorithm from quantization
theory [5], and exploits the unique features of Power Di-
agrams, a generalization of Voronoi Diagrams (see [6] for
another interesting application of Power Diagrams in mobile
sensor networks). A remarkable feature of our algorithms
is that they guarantee convex Ai subregions (provided that
the workspace is convex). Second, we design heuristic dis-
tributed algorithms that not only yield equipartition con-
figurations, but also provide “fat” (i.e., with small diame-
ter) subregions. Fat subregions, in general, improve overall
performance. Third, we discuss some applications of our
algorithms; we focus, in particular, on the Dynamic Traveling
Repairman Problem (DTRP) [1], and on hybrid networks.

We, finally, mention that our algorithms, although mo-
tivated in the context of multi-agent systems, are a novel
contribution to the field of computational geometry. In par-
ticular we address, using a dynamical system framework,
the well-studied equitable convex partition problem (see [7]
and references therein); moreover, our results provide new
insights in the geometry of Voronoi Diagrams and Power
Diagrams.

II. BACKGROUND

In this section, we introduce some notation and briefly
review some concepts from calculus and locational optimiza-



tion, on which we will rely extensively later in the paper.

A. Notation

Let ‖ · ‖ denote the Euclidean norm. Let A be a compact,
convex subset of Rd. We denote the boundary of A as ∂A and
the Lebesgue measure of A as |A|. The distance from a point
x to a set M is defined as dist(x,M) .= infp∈M ‖x−p‖. We
define Im

.= {1, 2, · · · ,m}. Let G = (g1, · · · , gm) ∈ Am ⊂
(Rd)m denote the location of m points in A. A partition
(or tessellation) of A is a collection of m closed subsets
A = {A1, · · · , Am} with disjoint interiors whose union is
A. The partition of A is convex, if each Ai, i ∈ Im, is convex.

B. Variation of an Integral Function due to a Domain
Change.

The following result is related to classic divergence theo-
rems [8].

Let Ω = Ω(y) ⊂ A be a region that depends smoothly on
a real parameter y ∈ R and that has a well-defined boundary
∂Ω(y) for all y. Let h be a density function over A. Then

d

dy

∫
Ω(y)

h(x) dx =
∫

∂Ω(y)

(dx

dy
· n(x)

)
h(x) dx, (1)

where v · w denotes the scalar product between vectors v
and w, where n(x) is the unit outward normal to ∂Ω(y), and
where dx/dy denotes the derivative of the boundary points
with respect to y.

C. Voronoi Diagrams and Power Diagrams

We refer the reader to [9] and [10] for comprehensive
treatments, respectively, of Voronoi diagrams and Power Dia-
grams. The Voronoi Diagram V(G) = (V1(G), · · · , Vm(G))
of A generated by points (g1, · · · , gm) is defined by

Vi(G) = {x ∈ A|‖x−gi‖ ≤ ‖x−gj‖, ∀j 6= i, j ∈ Im} (2)

We refer to G as the set of generators of V(G), and to
Vi(G) as the Voronoi cell or region of dominance of the i-th
generator. For gi, gj ∈ G, i 6= j, let

b(gi, gj) = {x ∈ A|‖x− gi‖ = ‖x− gj‖} (3)

be the bisector of gi and gj ; face b(gi, gj) bisects the line
segment joining gi and gj , and this line segment is orthogonal
to the face (Perpendicular Bisector Property). It is easy to
verify that a Voronoi Diagram is a convex partition of A.

Assume, now, that each generator gi ∈ G has assigned
an individual weight wi ∈ R, i ∈ Im. We define W =
(w1, · · · , wm). In some sense, wi measures the capability of
gi to influence its neighborhood. This is expressed by the
power distance

dP (x, gi;wi)
.= ‖x− gi‖2 − wi. (4)

We refer to the pair (gi, wi) as a power point. We define
GW =

(
(g1, w1), · · · , (gm, wm)

)
∈ (Rd×R)m. Two power

points (gi, wi) and (gj , wj) are coincident if gi = gj and
wi = wj . Assume that GW is an ordered set of distinct power
points. Similarly as before, the Power Diagram V(GW ) =

(V1(GW ), · · · , Vm(GW )) of A generated by power points(
(g1, w1), · · · , (gm, wm)

)
is defined by

Vi(GW ) = {x ∈ A|‖x− gi‖2 − wi ≤ ‖x− gj‖2 − wj ,

∀j 6= i, j ∈ Im}
(5)

We refer to GW as the set of power generators of V(GW ),
and to Vi(GW ) as the power cell or region of dominance
of the i-th power generator; moreover we call gi and wi,
respectively, the position and the weight of power generator
(gi, wi). Notice that, when all weights are the same, the
Power Diagram of A coincides with the Voronoi Diagram
of A. A Power Diagram is, as well, a convex partition of A
(as it can be easily verified). Indeed, Power Diagrams are the
generalized Voronoi Diagrams that have the strongest simi-
larities to the original diagrams. There are some differences,
though. First, a power cell might be empty. Second, gi might
not be in its power cell. Finally, the bisector of (gi, wi) and
(gj , wj), i 6= j, is

b
(
(gi, wi), (gj , wj)

)
= {x ∈ A|(gj − gi)Tx =

1
2
(‖gj‖2 − ‖gi‖2 + wi − wj)}.

(6)

Hence, b
(
(gi, wi), (gj , wj)

)
is a face still orthogonal to the

line segment gi gj and passing through the point g∗ij given
by

g∗ij =
‖gj‖2 − ‖gi‖2 + wi − wj

2‖gj − gi‖2
(gj − gi);

this last property will be crucial in the remaining of the
paper: it means that, by changing weights, it is possible to
arbitrarily move the bisector between the positions of two
power generators, while still preserving the orthogonality
constraint. Notice that the Power diagram of an ordered set
of possibly coincident power points is not well-defined. We
define

Γcoinc =
{

GW | gi = gj and wi = wj for some i 6= j ∈ Im

}
.

(7)

For simplicity, we will refer to Vi(G) (Vi(G, W )) as Vi.
When the two Voronoi (Power) cells Vi and Vj are adjacent
(i.e., they share an edge), gi is called a Voronoi (Power)
neighbor of gj (and vice-versa). The set of indices of the
Voronoi (Power) neighbors of gi is denoted by Ni. We also
define the (i, j)-face as ∆ij = Vi ∩ Vj .

III. PROBLEM FORMULATION

A total of m identical mobile agents operate in a compact,
convex service region A ⊆ R2. Let λ : A 7→ R+ be a
measure on A (in equivalent words, we can consider A to
be the bounded support of measure λ); for any subset S ⊆ A,
we define the workload for subregion S as λS

.=
∫

S
λ(x) dx.

The measure λ models service requests, and can represent,
for example, the density of customers over A, or, in a
stochastic setting, their arrival rate. Given the measure λ, a



partition {Ai}i of the workspace A is equitable if λAi = λAj

for all i, j ∈ Im.
Given the measure λ, an equitable partitioning policy is an

algorithm that, as a function of the number m of agents and,
possibly, of their position and other information, partitions
a bounded workspace A into regions Ai, i ∈ Im, such that
λAi = λAj for all i, j ∈ Im. Then, each agent i is assigned
to subregion Ai, and each service request in Ai receives
service by the agent assigned to Ai. We refer to the subregion
Ai as the region of dominance of agent i. Given a measure
λ and an equitable partitioning policy, m agents are in a
convex equipartition configuration with respect to λ if the
associated equitable partition is convex.

In this paper we study the following problem: find an
equitable partioning policy and a distributed control policy
that allow m mobile agents to reach a convex equipartition
configuration (with respect to λ).

IV. FROM CONVEX EQUIPARTITIONS
TO POWER DIAGRAMS

In [11], the authors present a distributed algorithm for the
local computation of Voronoi cells. Therefore, it is tempting
to consider the set of agents as a set of Voronoi generators;
then, each agent i computes, using the algorithm in [11], its
Voronoi cell Vi, and such Voronoi cell becomes its region
of dominance Ai. By the properties of Voronoi Diagrams,
the resulting regions of dominance are convex, tessellate A,
but, in general, the resulting partition is not equitable. To
overcome this problem, in [12] we introduced the idea of
enabling the generators (in this setting the agents) to move,
according to a distributed control law, along the gradient of a
locational optimization function toward an equitable Voronoi
Diagram, where each Voronoi cell has the same measure
with respect to λ. However, this approach assumes that an
equitable Voronoi Diagram exists.

Indeed, while an equitable Voronoi Diagram always exists
when λ is constant over A [13], in general, for non-
constant λ, an equitable Voronoi Diagram fails to exist, as
the following counterexample shows.

Example 4.1 (Existence problem on a line): Consider a
one-dimensional Voronoi Diagram. In this case a Voronoi
cell is a half line or a line segment (called a Voronoi
line), and Voronoi vertices are end points of Voronoi lines.
It is easy to notice that the boundary point between two
adjacent Voronoi lines is the mid-point of the generators
of those Voronoi lines. Consider the measure λ in Fig. 1,
whose support is the interval [0, 1]. Assume m = 5. Let bi

(i = 1, . . . , 4) be the position of the i-th rightmost boundary
point and gi be the position of the i-th rightmost generator
(i = 1, . . . , 5). It is easy to verify that the only admissible
configuration for the boundary points in order to obtain an
equitable Voronoi Diagram is the one depicted in Fig. 1.
Now, by the perpendicular Bisector Property, we require:{

g3 − b2 = b2 − g2

g4 − b3 = b3 − g3

Therefore, we would require g4 − g2 = 2(b3 − b2) = 1.2;
this is impossible, since g2 ∈ [0.1, 0.2] and g4 ∈ [0.8, 0.9].
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Fig. 1. Example of non-existence of an equitable Voronoi Diagram on
a line. The above tessellation is an equitable partition, but not a Voronoi
Diagram.

Thus, for non-constant λ, in general, an equitable Voronoi
Diagram fails to exist. A possible solution is to use Power
Diagrams. On the one hand, Power Diagrams are the gener-
alized Voronoi Diagrams that have the strongest similarities
to the original diagrams, on the other hand, since the bisector
line is not required to pass through the midpoint of the
line joining two neighbor generators, they are much more
flexible. Notice that, following the ideas in [11], it is possible
to compute Power Diagrams in a distributed way. The
problem of existence of equitable Power Diagrams is studied
next.

Theorem 4.2 (Existence of equitable power diagrams):
Let A ⊂ Rd be a compact, convex set, and λ a measure
on A. Then, for every m ≥ 1, there exist distinct points gi,
i ∈ Im, all in the interior of A, and weights wi, i ∈ Im,
such that the corresponding Power Diagram is equitable
with respect to λ.

Proof: Notice that the Power distance is preserved
under roto-translation. By compactness, there exist points
a, b ∈ A such that ‖b − a‖ = maxz,z′∈A ‖z − z′‖. By a
translation of coordinates, we can assume a = 0. Define
v

.= b/‖b‖; by a rotation of coordinates, we can assume,
without loss of generality, that v coincides with the first
vector of the canonical basis e1. For each s ∈ R, define the
slice As .= {x ∈ A, e1 · x = s}. Then, there exist unique
values s0 < s1 < · · · < sm such that s0 = inf{s;As 6= ∅},
sm = sup{s;As 6= ∅}, and

λ{x∈A; e1·x≤sk} =
k

m
λA, k = 1, . . . ,m− 1. (8)

Define: gi = e1(si−1 + si)/2, i ∈ Im. We want, now, to
choose the weights in such a way that sie1 ∈ b(gi, gi+1) for
i = 1, . . . ,m−1 This is, indeed, always possible. Recalling,
in fact, Eq. (6), we set

wi+1 =
1
2

(
‖gi+1‖2 − ‖gi‖2 + wi

)
− (gi+1 − gi)Tsie1.

By setting w1 = 0, the above recursive equation yields the
weights wi, ∀ i.

The last step is to show that

Ai
.= {x ∈ A; e1 · x ∈ [si−1, si]}
= {x ∈ A; dP (x, gi) ≤ dP (x, gj), ∀ j 6= i}.

(9)
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Fig. 2. Construction used for the proof of Theorem 4.2.

Together, Eq. (8) and Eq. (9) yield the desired result.
Given the weights thus computed, we have that sie1 ∈

b(gi, gi+1). As a consequence (see Fig. (2)), we have (with
obvious modifications for g1 and gm):

‖x− gi‖2 − wi ≤ ‖x− gi+1‖2 − wi+1, ∀x ∈ Ai,

‖x− gi‖2 − wi ≤ ‖x− gi−1‖2 − wi−1, ∀x ∈ Ai.
(10)

First, we want to show that

‖x− gi‖2 − wi ≤ ‖x− gi+2‖2 − wi+2, ∀x ∈ Ai.

Assume, by contradiction, that there exists x̄ ∈ Ai such that

‖x̄− gi‖2 − wi > ‖x̄− gi+2‖2 − wi+2.

We can assume, without loss of generality, that x̄ · e1 ∈
[gi · e1, si]. Define x̄b

.= x̄ + (si − x̄ · e1)e1. Clearly,
x̄b ∈ b(gi, gi+1) and it belongs to both Ai and Ai+1. Since
‖x̄ − gi‖2 ≤ ‖x̄b − gi‖2 and ‖x̄− gi+2‖2 ≥ ‖x̄b − gi+2‖2,
we get

‖x̄b−gi+2‖2−wi+2 < ‖x̄b−gi‖2−wi = ‖x̄b−gi+1‖2−wi+1.

This is a contradiction with respect to (10), since x̄b ∈ Ai+1.
Similarly, it is then easy to show that for all r ∈ N+ such

that i + r ≤ m

‖x− gi‖2 − wi ≤ ‖x− gi+r‖2 − wi+r, ∀x ∈ Ai.

By identical arguments, for all r ∈ N+ such that i− r ≥ 1

‖x− gi‖2 − wi ≤ ‖x− gi−r‖2 − wi−r, ∀x ∈ Ai.

Therefore, the set Ai is a subset of the region of dominance
of generator i. Finally, we have to show that every point not
belonging to Ai can not belong to the region of dominance
of generator i. Assume, by contradiction, that there exists
x̄ /∈ Ai such that x̄ belongs to the region of dominance of
generator i. Since the region of dominance is a convex set,
then the convex set S

.= {x ∈ A;x = agi + (1 − a)x̄, a ∈
[0, 1]} is entirely contained in the region of dominance of
generator i. Then, there exists a point in S that belongs to the
interior either of Ai−1 or of Ai+1. Therefore, because of Eq.
(10), such point can not belong to the region of dominance
of generator i, a contradiction. Hence, the second equality
in Eq. (9) holds.

V. GRADIENT DESCENT LAW FOR
EQUITABLE PARTITIONING

In this section, we design distributed policies that allow a
team of agents to achieve a convex equipartition configura-
tion.

A. Virtual Generators

The first step is to associate to each agent i a virtual power
generator (virtual generator for short) (gi, wi). We define
the region of dominance for agent i as the Power cell Vi =
Vi(GW ), where GW =

(
(g1, w1), · · · , (gm, wm)

)
. We refer

to the partition into regions of dominance induced by the
set of virtual generators GW as V (GW ). A virtual generator
(gi, wi) is simply an artificial variable locally controlled by
the i-th agent; in particular, gi is a virtual point and wi is
its weight (see Fig. (3)) .

Virtual generators allow us to decouple the problem of
achieving an equitable partition into regions of dominance
from that of positioning an agent inside its own region of
dominance. We shall assume that each vehicle has sufficient
information available to determine: (1) its Power cell, and
(2) the locations of all outstanding events in its Power
cell. A control policy that relies on information (1) and
(2), is distributed in the sense that the behavior of each
vehicle depends only on the location of the other agents with
contiguous Power cells. A spatially distributed algorithm for
the local computation and maintenance of Power cells can
be designed following the ideas in [11].

B. Locational Optimization

The key idea is to enable virtual generators to follow
a (distributed) gradient descent law such that an equitable
partition is reached. Define the set

S
.=

{
GW |GW 6= Γcoinc and λVi

> 0 ∀i ∈ Im

}
.

We introduce the locational optimization function
HV : S 7→ R>0

HV (GW ) .=
1
2

m∑
i=1

λ−1
Vi

+
1
2

m∑
i=1

dist2(gi, A). (11)

Notice that dist(gi, A) = 0 if gi ∈ A.

Agent

Generator's 

Location

Dominance

Region

Fig. 3. Agents, virtual generators and regions of dominance.

C. The gradient of HV

The gradient of HV is presented in the following theorem.
We point out that this gradient can be computed in a
distributed way, since it depends only on the location of the
other agents with contiguous Power cells. In the following,
let δij be the length of the border ∆ij , and let γij

.= ‖gj−gi‖.
Moreover, let vA,gi be the vector from the point closest to
gi on A to gi; vA,gi = 0 if gi ∈ A.



Theorem 5.1: Given a measure λ, the locational optimiza-
tion function HV is continuously differentiable on S, where
for each i ∈ {1, . . . ,m}
∂HV

∂ gi
=

∑
j∈Ni

( 1
λ2

Vj

− 1
λ2

Vi

) ∫
∆ij

(x− gi)
γij

λ(x) dx + vA,gi
,

∂HV

∂ wi
=

∑
j∈Ni

( 1
λ2

Vj

− 1
λ2

Vi

) ∫
∆ij

1
2γij

λ(x) dx,

(12)

Furthermore, the critical configurations of HV are genera-
tors’ locations and weights with the property that all power
cells have measure equal to λA/m.

Proof: We first consider the partial derivative with
respect to gi. Let gk

i be the k-th component of gi (k = 1, 2).
Similarly, let vk

A,gi
be the k-th component of vA,gi (k = 1, 2).

Since the motion of a generator gi affects only Power cell
Vi and its neighboring cells Vj for j ∈ Ni, we have

∂HV

∂gk
i

= − 1
λ2

Vi

∂λVi

∂gk
i

−
∑
j∈Ni

1
λ2

Vj

∂λVj

∂gk
i

+ vk
A,gi

. (13)

Now, the result in Eq. (1) provides the means to analyze
the variation of an integral function due to a domain change.
Since the boundary of Vi satisfies ∂Vi = ∪j∆ij ∪Bi, where
∆ij = ∆ji is the edge between Vi and Vj , and Bi is the
boundary between Vi and A (if any, otherwise Bi = ∅), we
have

∂λVi

∂gk
i

=
∑
j∈Ni

∫
∆ij

( dx

dgk
i

· nij(x)
)

λ(x) dx

+
∫

Bi

( dx

dgk
i

· nij(x)
)

λ(x) dx︸ ︷︷ ︸
=0

,
(14)

where we defined nij as the unit normal to ∆ij outward of Vi

(therefore we have nji = −nij). The second term is trivially
equal to zero if Bi = ∅; it is also equal to zero if Bi 6= ∅,
since the integrand is zero almost everywhere. Similarly,

∂λVj

∂gk
i

=
∫

∆ij

( dx

dgk
i

· nji(x)
)

λ(x) dx. (15)

To evaluate the scalar product between the boundary points
and the unit outward normal to the border in Eq. (14) and in
Eq. (15), we differentiate Eq. (6) with respect to gk

i at every
point x ∈ ∆ij ; we get

∂x

∂gk
i

· (gj − gi) = eT
k · (x− gi), (16)

where ek is the k-th vector of the canonical basis (k = 1, 2)
in R2. From Eq. (6) we have nij = (gj − gi) /‖gj − gi‖,
and the desired explicit expressions for the scalar products in
Eq. (14) and in Eq. (15) follow immediately (recalling that
nji = −nij).

Collecting the above results, we get the partial derivative
with respect to gi. The proof for the partial derivative
with respect to wi is similar and is omitted. The proof of
the characterization of the critical points is an immediate
consequence of the expression for the gradient of HV ; we
omit it in the interest of brevity.

D. Gradient Descent Law

Assume that both weights and generators’ positions obey a
first order dynamical behavior defined over the set S: ġi = ug

i

and ẇi = uw
i . Consider HV an aggregate objective function

to be minimized and impose that the weight wi and the
generators’s position gi follow the gradient descent given by
(12). In more precise terms, we set up the following control
law defined over the set S

ug
i = −∂HV

∂gi
(GW ), uw

i = −∂HV

∂wi
(GW ), (17)

where we assume that the partition V (GW ) = {V1, . . . , Vm}
is continuously updated. Let Ω ⊆ S be the set of initial con-
ditions such that generators’ positions and weights starting
at t = 0 at GW (0) ∈ Ω and evolving under (17) do not reach
Γcoinc. Clearly, Ω is non-empty. One can prove the following
result.

Theorem 5.2: Consider the gradient vector field on Ω
defined by equation (17). Then generators’ positions and
weights starting at t = 0 at GW (0) ∈ Ω, and evolving under
(17) remain in Ω and converge asymptotically to the set of
critical points of HV (i.e., to the set of vectors of generators’
positions and weights that yield an equitable Power diagram).

Proof: Consider HV as a Lyapunov function candidate.
First, we prove that set Ω is positively invariant with respect
to (17), i.e. that GW (t) 6= Γcoinc, t ≥ 0, and λVi

(t) > 0,
t ≥ 0, i ∈ Im. Indeed, by definition of Ω, we have
GW (t) 6= Γcoinc for all t ≥ 0 (therefore, the Power diagram
is always well defined). Moreover, it is straightforward to
see that ḢV ≤ 0. Therefore, it holds

λ−1
Vi

≤ HV (GW (t)) ≤ HV (GW (0)), i ∈ Im, t ≥ 0.

Since the measures of the power cells depend continuously
on generators’ positions and weights, we conclude that the
measures of all power cells will be bounded away from zero.
Thus, generators’ positions and weights will belong to Ω for
all t ≥ 0, i.e. GW (t) ∈ Ω ∀t ≥ 0.

Second, as shown before, HV : Ω 7→ R>0 is non-
increasing along system trajectories, i.e., ḢV (GW ) ≤ 0 in
Ω.

Third, all trajectories with initial conditions in Ω
are bounded. Indeed, dist2(gi(t), A) ≤ HV (GW (t)) ≤
HV (GW (0)), i ∈ Im, t ≥ 0; therefore generators’ positions
will remain within a bounded set. Moreover, it is easy to
see that the sum of the weights is invariant under control
law (17), i.e., ∂

Pm
i=1 wi

∂t = 0, thus we have
∑m

i=1 wi(t) =∑m
i=1 wi(0) .= w(0) along system trajectories. This implies

that weights remain within a bounded set: If, by contradic-
tion, a weight could become arbitrarily large, another weight
would become arbitrarily small (since the sum of weights is
constant), and the measure of at least one power cell would
vanish (since the positions of the generators remain within a
bounded set), which contradicts the fact that Ω is positively
invariant.

Finally, by Theorem 5.1, HV is continuously differentiable
in Ω. Hence, by invoking the LaSalle invariance princi-
ple, under the descent flow (17), generators’ positions and



weights will converge asymptotically to the set of critical
points of HV within Ω, which is not empty by Theorem 4.2.

As discussed before, by adopting the algorithm in [11],
each agent can compute its Power cell in a distributed way.
Moreover, the partial derivative of HV with respect to the i-th
virtual generator only depends on the virtual generators with
neighboring Power cells. Therefore, the gradient descent law
(17) is indeed a distributed control law. We mention that, in
a Power Diagram, each generator has an average number of
neighbors less then six [14]; therefore, the computation of
gradient (17) is scalable with the number of agents.

VI. LLOYD DESCENT FOR EQUITABLE PARTITIONING

The previous gradient descent law, although effective in
providing a convex equitable partition, sometimes yields
long and “skinny” subregions, whereas in some applications
“fat” subregions (i.e., with a small diameter for a given
area) are desirable. In this section, we introduce an heuris-
tic distributed algorithm that provide an equitable partition
into convex and “fat” (indeed hexagon-like) subregions. As
before, such algorithm is designed to be implemented by a
distributed network of agents.

The idea is to extend the continuous-time Lloyd algorithm
presented in [15]. As before, we associate to each agent i a
virtual generator (gi, wi). The mass and the centroid of the
Power cell Vi, i ∈ Im, is then defined as

MVi =
∫

Vi

λ(x) dx, CVi =
1

MVi

∫
Vi

xλ(x) dx.

Then, each agent i ∈ Im updates its own virtual generator
according to the following Lloyd descent

ġi = −kprop(gi − CVi
), ẇi =

1
|Ni|

( ∑
j∈Ni

λV j

)
− λVi

,

(18)

where kprop is a positive gain, and |Ni| is the number of
neighbors of virtual generator i. If all weights are initial-
ized to the same value w̄, and if ẇi is set to zero, then
the control law (18) reduces to the continuous-time Lloyd
algorithm in [15]; in particular, the generators will converge
to a centroidal Voronoi configuration, where all cells are
approximately hexagonal [16]. Simulations illustrate how
this scheme does indeed achieve “fat” equitable partitions,
even though a proof is not yet available.

VII. SIMULATION

In this section, we compare the performance of the dif-
ferent control laws proposed in the previous sections. For
short, we will refer to the Gradient Descent law (17) as
“Law 1” and to the Lloyd Descent law (18) as “Law 2”.
In all simulations we assume that 10 agents operate in the
unit square A and that the measure λ is uniform over A:
λ ≡ 1. Then, agents should converge to a configuration such
that all regions of dominance have the same measure equal
to ā = 0.1. For each law, we run 50 simulations. Agents’
initial positions are independently and uniformly distributed

TABLE I
PERFORMANCE OF CONTROL LAWS 1 AND 2.

Error ε Law 1 Law 2

E [ε] 1.0 · 10−4 8.0 · 10−5

σ2(ε) 2.7 · 10−4 9.0 · 10−5

max ε 1.7 · 10−3 4.1 · 10−4

over A; the initial position of each virtual generator coincides
with the initial position of the corresponding agent, and all
weights are initialized to zero. Time is discretized with a
step dt = 0.01, and each run consists of 800 iterations
(thus, the final time is T = 8). Define the error ε as the
difference, at T = 8, between the measure of the subregion
with maximum measure and the measure of the subregion
with minimum measure. Table I summarizes the simulation
results. Expectation, standard deviation and worst case error
are with respect to 50 runs.

Recalling that the desired measure of each subregion is
0.1, we argue that both control laws 1 and 2 are effective in
providing a convex equipartition. In particular, notice from
the third row of Table I that the maximum error (max ε), at
T = 8, is within 2% from ā. Therefore, convergence to a con-
vex equipartition seems to be robust for both policies. Figure
(4) shows how Law 2 provides “more regular” equipartitions.

(a) Typical equiparti-
tion of A with Law 1

(b) Typical equiparti-
tion of A with Law 2

Fig. 4. Comparison between the typical equipartitions achieved by using,
respectively, Law 1 and Law 2.

VIII. APPLICATIONS

In this section we discuss some applications of the control
policies proposed in the previous sections.

A. Distributed Policies for the DTRP Problem

The first application that we consider is the Dynamic
Traveling Repairman Problem (DTRP). In the DTRP, m
agents operating in a workspace A must service demands
whose time of arrival, location and on-site service are
stochastic; the objective is to find a policy to service demands
over an infinite horizon that minimizes the expected system
time (wait plus service) of the demands. There are many
practical settings in which such problem arises. Any distri-
bution system which receives orders in realtime and makes
deliveries based on these orders (e.g., courier services) is a
clear candidate. Equitable partitioning policies (with respect
to a suitable measure λ related to the probability distribution
of demand locations) are, indeed, optimal for the DTRP (see
[1], [17], [18]). Therefore, combining the optimal equitable



partitioning policies in [17] with the algorithms presented
in this paper, we immediately obtain optimal distributed
policies for the DTRP problem. Notice that, since each agent
is required to travel inside its own region of dominance, this
scheme is inherently safe against collisions.

B. Hybrid Networks

An ad-hoc network consists of a group of nodes which
communicate with each other over a wireless channel without
any centralized control; in situations where there is no fixed
infrastructure, for example, battlefields, catastrophe control,
etc., wireless ad hoc networks become valuable alternatives
to fixed infrastructure networks for nodes to communicate
with each other. To improve throughput capacity, a sparse
network of more sophisticated nodes (supernodes) is placed
within an ad hoc network. Supernodes provide long-distance
communication. Assuming that normal nodes are indepen-
dently and uniformly located in the workspace, supernodes
should divide the area according to a hexagonal tessellation
[3], where all hexagon cells have the same area. If we let
supernodes play the role of agents in our framework, and we
set λ ≡ 1, then the Lloyd Descent algorithm is a candidate
distributed control law to allow a hybrid network to reach a
near optimal configuration.

IX. CONCLUSION

We have presented distributed control policies that, un-
der a mild technical condition, allow a team of agents
to achieve, globally, a convex equipartition configuration,
using the Power Diagram partitioning policy. Our algorithms
could find applications in many problems, including dynamic
vehicle routing, and wireless networks. This paper leaves
numerous important extensions open for further research.
First, we plan to remove the technical condition for our
convergence result. Second, we would like to extend our
algorithms to guarantee control on the shape of the cells.
Third, we envision considering the setting of structured
environments (ranging from simple nonconvex polygons to
more realistic ground environments). Finally, to assess the
closed-loop robustness and the feasibility of our algorithms,
we plan to implement them on a network of unmanned aerial
vehicles.
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