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Abstract— The most widely applied resource allocation strat-
egy is to balance, or equalize, the total workload assigned to
each resource. In mobile multi-agent systems, this principle
directly leads to equitable partitioning policies in which (i)
the workspace is divided into subregions of equal measure,
(ii) there is a bijective correspondence between agents and
subregions, and (iii) each agent is responsible for service
requests originating within its own subregion. In this paper,
we provide the first distributed algorithm that provably allows
m agents to converge to an equitable partition of the workspace,
from any initial configuration, i.e., globally. Our approach
is related to the classic Lloyd algorithm, and provides novel
insights into the properties of Power Diagrams. Simulation
results are presented and discussed.

I. INTRODUCTION

The most widely applied resource allocation strategy is
to balance, or equalize, the total workload assigned to each
resource. While, in principle, several strategies are able to
guarantee workload-balancing in multi-agent systems (where
agents can be interpreted as resources to be allocated),
equitable partitioning policies are predominant [1], [2], [3],
[4]. A partitioning policy is an algorithm that, as a function
of the number m of agents and, possibly, of their position
and other information, partitions a bounded workspace A
into subregions Ai, for i ∈ {1, . . . ,m}. Then, each agent i
is assigned to subregion Ai, and each service request in Ai

receives service from the agent assigned to Ai. Accordingly,
if we model the workload for subregion S ⊆ A as λS

.=∫
S

λ(x) dx, where λ(x) is a measure over A, then the
workload for agent i is λAi . Then, load balancing calls
for equalizing the workload λAi in the m subregions or,
in equivalent words, requires an equitable partition of the
workspace A (i.e., a partition where λAi = λA/m, for all
i).

Equitable partitioning policies are predominant for three
main reasons: (i) efficiency, (ii) ease of design, (iii) ease
of analysis. Consider, for instance, the well-known dynamic
version of the classic Vehicle Routing Problem: the Dy-
namic Traveling Repairman Problem (DTRP) [1]. In the
DTRP, m agents operating in a workspace A must service
demands whose time of arrival, location and on-site service
are stochastic; the objective is to find a policy to service
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demands over an infinite horizon that minimizes the expected
system time (wait plus service) of the demands. Equitable
partitioning policies are, indeed, optimal for the DTRP when
the traffic intensity is close to one (see [1], [5], [6]).

Despite their relevance in robotic network applications,
to the best of our knowledge, the only available distributed
equitable partitioning policy is the one proposed by the
authors in [7]. However, the policy presented in [7] only
guarantees local (i.e., for a subset of initial conditions)
convergence to equitable partitions.

Building upon our previous work [7], in this paper we
design a distributed control law that allows a team of agents
to achieve globally, i.e., starting from any initial configura-
tion, a partition of the workspace into subregions of equal
measure. Our approach is related to the classic Lloyd algo-
rithm, and exploits the unique features of Power Diagrams.
We mention that our algorithms, although motivated in the
context of multi-agent systems, are a novel contribution to
the field of computational geometry; moreover, our results
provide new insights in the geometry of Power Diagrams.

II. BACKGROUND

In this section, we introduce some notation and briefly
review some concepts from geometry and degree theory, on
which we will rely extensively later in the paper.

A. Notation

Let ‖ · ‖ denote the Euclidean norm. Let A be a compact,
convex subset of Rd. We denote the boundary of A as ∂A and
the Lebesgue measure of A as |A|. We define the diameter
of A as: diameter(A) .= sup{||p − q|| | p, q ∈ A}. The
distance from a point x to a set M is defined as dist(x,M) .=
infp∈M ‖x − p‖. We define Im

.= {1, 2, · · · ,m}. Let G =
(g1, · · · , gm) ⊂ Am denote the location of m points in A.
A partition (or tessellation) of A is a collection of m closed
subsets A = {A1, · · · , Am} with disjoint interiors whose
union is A. The partition of A is convex, if each subset Ai,
i ∈ Im, is convex.

B. Voronoi Diagrams and Power Diagrams

We refer the reader to [8] and [9] for comprehensive
treatments, respectively, of Voronoi Diagrams and Power
Diagrams. Assume that G is an ordered set of distinct points.
The Voronoi Diagram V(G) = (V1(G), · · · , Vm(G)) of A
generated by points G = (g1, · · · , gm) is defined by

Vi(G) = {x ∈ A| ‖x− gi‖ ≤ ‖x− gj‖, ∀j 6= i, j ∈ Im}.
(1)

We refer to G as the set of generators of V(G), and to
Vi(G) as the Voronoi cell or region of dominance of the i-th



generator. For gi, gj ∈ G, i 6= j, we define the bisector
between gi and gj as b(gi, gj) = {x ∈ A| ‖x − gi‖ =
‖x−gj‖}. The face b(gi, gj) bisects the line segment joining
gi and gj , and this line segment is orthogonal to the face
(Perpendicular Bisector Property). It is easy to verify that
each Voronoi cell is a convex set.

Assume, now, that each generator gi ∈ G has as-
signed an individual weight wi ∈ R, i ∈ Im. We
define W = (w1, · · · , wm). We define the power dis-
tance as dP (x, gi;wi)

.= ‖x − gi‖2 − wi. We refer to
the pair (gi, wi) as a power point. We define GW =(
(g1, w1), · · · , (gm, wm)

)
∈ (A × R)m. Two power points

(gi, wi) and (gj , wj) are coincident if gi = gj and wi =
wj . Assume that GW is an ordered set of distinct power
points. Similarly as before, the Power Diagram V(GW ) =
(V1(GW ), · · · , Vm(GW )) generated by power points GW =(
(g1, w1), · · · , (gm, wm)

)
is

Vi(GW ) = {x ∈ A| ‖x− gi‖2 − wi ≤ ‖x− gj‖2 − wj ,

∀j 6= i, j ∈ Im}.
(2)

We refer to GW as the set of power generators of V(GW ),
and to Vi(GW ) as the power cell or region of dominance
of the i-th power generator; moreover we call gi and wi,
respectively, the position and the weight of power generator
(gi, wi). Notice that, when all weights are the same, the
Power Diagram coincides with the Voronoi Diagram. Each
power cell is a convex set (as it can be easily verified). Notice
that (i) a power cell might be empty, and (ii) gi might not be
in its power cell (see Fig. 1). Finally, the bisector of (gi, wi)
and (gj , wj), i 6= j, is defined as

b
(
(gi, wi), (gj , wj)

)
= {x ∈ A| (gj − gi)Tx =

1
2
(‖gj‖2 − ‖gi‖2 + wi − wj)}.

(3)

Hence, b
(
(gi, wi), (gj , wj)

)
is a face orthogonal to the line

segment gi gj . Notice that the Power Diagram of an ordered
set of possibly coincident power points is not well-defined.
We define

Γcoinc =
{

GW | gi = gj and wi = wj for some i 6= j ∈ Im

}
.

(4)

For simplicity, we will refer to Vi(G) (Vi(GW )) as Vi.
When the two Voronoi (power) cells Vi and Vj are adjacent
(i.e., they share a face), gi ((gi, wi)) is called a Voronoi
(power) neighbor of gj ((gj , wj)), and vice-versa. The set
of indices of the Voronoi (power) neighbors of gi ((gi, wi))
is denoted by Ni. We also define the (i, j)-face as ∆ij

.=
Vi ∩ Vj .

C. A Basic Result in Degree Theory

In this section, we state some results in degree theory that
will be useful in the remainder of the paper. For a thoroughly
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Fig. 1. A Power Diagram. The weights wi are all positive in this example.
Circles represent the magnitudes of weights. Power generator (g2, w2) has
an empty cell. Power generator (g5, w5) is outside its region of dominance.

introduction to the theory of degree we refer the reader to
[10].

Let us just recall the simplest definition of degree of a
map f . Let f : X → Y be a smooth map between connected
compact manifolds X and Y of the same dimension, and let
p ∈ Y a regular value for f (regular values abound due to
Sard’s lemma). Since X is compact, f−1(p) = {x1, . . . , xn}
is a finite set of points and since p is a regular value, it means
that fUi

: Ui → f(Ui) is a local diffeomorphism, where
Ui is a suitable open neighborhood of xi. Diffeomorphisms
can be either orientation preserving or orientation reversing.
Let d+ be the number of points xi in f−1(p) at which
f is orientation preserving (i.e. det(Jac(f)) > 0, where
Jac(f) is the Jacobian matrix of f ) and d− be the number
of points in f−1(p) at which f is orientation reversing (i.e.
det(Jac(f)) < 0). Since X is connected, it can be proved
that the number d+ − d− is independent on the choice of
p ∈ Y and one defines the degree deg(f) .= d+ − d−. The
degree can be also defined for a continuous map f : X → Y
among connected oriented topological manifolds of the same
dimensions. For more details see [10].

The following result will be fundamental to prove some
existence theorems and it is a direct consequence of the
theory of degree of continuous maps among spheres.

Theorem 2.1: Let f : Bn → Bn be a continuous map
from a closed n-ball to itself. Call Sn−1 the boundary of
Bn, namely the (n − 1)-sphere and assume that fSn−1 :
Sn−1 → Sn−1 is a map with degree deg(f) 6= 0. Then f is
onto Bn.
In the sequel we will need also the following:

Lemma 2.2: Let f : Sn → Sn a continuous bijective map
from the n-dimensional sphere to itself (n ≥ 1). Then the
degree is deg(f) = ±1.

III. PROBLEM FORMULATION

A total of m identical mobile agents provide service in a
compact, convex service region A ⊆ R2. Let λ be a measure



whose bounded support is A (in equivalent words, λ is not
zero only on A); for any set S, we define the workload
for region S as λS

.=
∫

S
λ(x) dx. The measure λ models

service requests, and can represent, for example, the density
of customers over A, or, in a stochastic setting, their arrival
rate. Given the measure λ, a partition {Ai}i of the workspace
A is equitable if λAi = λAj for all i, j ∈ Im.

A partitioning policy is an algorithm that, as a function of
the number m of agents and, possibly, of their position and
other information, partitions a bounded workspace A into
m subregions Ai, i ∈ Im. Then, each agent i is assigned to
subregion Ai, and each service request in Ai receives service
from the agent assigned to Ai. We refer to subregion Ai as
the region of dominance of agent i. Given a measure λ and
a partitioning policy, m agents are in a convex equipartition
configuration with respect to λ if the associated partition is
equitable and convex.

In this paper we are interested in the following problem:
find a spatially-distributed equitable partitioning policy that
allows m mobile agents to globally (i.e., from any initial
configuration) reach a convex equipartition configuration
(with respect to λ).

IV. ON THE EXISTENCE OF EQUITABLE POWER
DIAGRAMS

The key advantage of Power Diagrams is that an equitable
Power Diagram always exists for any λ. Indeed, as shown
in the next theorem, an equitable Power Diagram (with
respect to any λ) exists for any vector of distinct points
G = (g1, . . . , gm) in A.

Theorem 4.1: Let A be a bounded, connected domain in
R2, and λ be a measure on A. Let G = (g1, . . . , gm)
be the positions of m ≥ 1 distinct points in A. Then,
there exist weights wi, i ∈ Im, such that the power points(
(g1, w1), . . . , (gm, wm)

)
generate a Power Diagram that

is equitable with respect to λ. Moreover, given a vector
of weights W ∗ that yields an equitable partition, the set
of all vectors of weights yielding an equitable partition is
W .= {W ∗ + t[1, . . . , 1]}, with t ∈ R.

Proof: It is not restrictive to assume that λA = 1 (i.e.,
we normalize the measure of A), since A is bounded. The
strategy of the proof is to use a topological argument to force
existence.

First, we construct a weight space. Let D = diameter(A),
and consider the cube C := [−D,D]m. This is the weight
space and we consider weight vectors W taking value in
C. Second, consider the standard m-simplex of measures
λA1 , . . . , λAm (where A1, . . . , Am are, as usual, the regions
of dominance). This can be realized in Rm as the subset of
defined by

∑m
i=1 λAi = 1 with the condition λAi ≥ 0. Let

us call this set “the measure simplex A” (notice that it is
(m− 1)-dimensional).

There is a map f : C → A associating, according to the
power distance, a weight vector W with the corresponding
vector of measures (λA1 , . . . , λAm

). Since the points in G
are assumed to be distinct, this map is continuous.

We prove the case for m = 3 (the statement for m = 1
and m = 2 is trivially checked) while the complete proof,
that uses induction on m, can be found in [11]. When
m = 3, the weight space C is a three dimensional cube
with vertices v0 = [−D,−D,−D], v1 = [D,−D,−D],
v2 = [−D,D,−D], v3 = [−D,−D,D], v4 = [D,−D,D],
v5 = [−D,D,D], v6 = [D,D,−D] and v7 = [D,D,D].
The measure simplex A is, instead, a triangle with vertices
u1, u2, u3 that correspond to the cases λA1 = 1, λA2 =
0, λA3 = 0, λA1 = 0, λA2 = 1, λA3 = 0, and λA1 =
0, λA2 = 0, λA3 = 1, respectively. Moreover, call e1, e2 and
e3 the edges opposite to the vertices u1, u2, u3 respectively.
The edges ei are, therefore, given by the condition {λAi =
0} (see Fig. 2).

Let us return to the map f : C → A. Observe that the map
f sends v0 to the unique point p0 of A corresponding to the
measures of usual Voronoi cells (since the weights are all
equal). Observe that only the differences among the weights
change the vector (λA1 , λA2 , λA3), i.e., if all weights are
increased by the same quantity, the vector (λA1 , λA2 , λA3)
does not change. In particular, the image of the diagonal
v0v7 is exactly the point for which the measures are those
of a Voronoi partition. Now let us understand what are the
“fibers” of f , that is to say, the loci where f is constant. Since
the measures of the regions of dominance do not change if
the differences among the weights are kept constant, then
the fibers of f in the weight space C are given by the
equations w1−w2 = c1 and w2−w3 = c2. Rearranging these
equations, it is immediate to see that w1 = w3+c1+c2, w2 =
w3 + c2 and w3 = w3, therefore taking w3 as parameter we
see that the fibers of f are straight lines parallel to the main
diagonal v0v7. Therefore we can conclude that if a particular
weight vector W ∗ yields a specific area vector λ∗, then all the
weight vectors of the form W ∗+ t[1, . . . , 1], t ∈ R will give
rise to the same area vector λ∗. On the weight space C let
us define the following equivalence relation: w ≡ w′ if and
only if they are on a line parallel to the main diagonal v0v7.
Map f : C → A induces a continuous map (still called f by
abuse of notation) from C/ ≡ to A having the same image.
Let us identify C/ ≡. It is easy to see that any line in the cube
parallel to the main diagonal v0v7 is entirely determined by
its intersection with the three faces F3 = {w3 = −D} ∩ C,
F2 = {w2 = −D} ∩ C and F1 = {w1 = −D} ∩ C. Call
F the union of these faces. We therefore have a continuous
map f : F → A that has the same image of the original
f ; besides, the induced map f : F → A is injective by
construction, since each fiber intersects F in only one point.

Observe that F is homeomorphic to B2, the 2-dimensional
ball, like A itself. Up to homeomorphisms, therefore, the
map f : F → A can be viewed as a map (again called f
by abuse of notation), f : B2 → B2. Consider the closed
loop α given by v2v5, v5v3, v3v4, v4v1, v1v6, v6v2 with
this orientation (see Fig. 2). This loop is the boundary of F
and we think of it also as the boundary of B2. Taking into
account the continuity of f , it is easy to see that f maps
α onto the boundary of A. Indeed, as a point moves along
the path α one of the weights is always equal to −D and



another one is always equal to +D and therefore the area λAi

corresponding to weight wi = −D is zero, thus describing
one of the edges of the area simplex. For instance, along
the edge v3v4 on the cube we have w3 = +D identically
and w2 = −D, while on the edge v5v3 we have w1 =
−D and w3 = +D, and analogously for all the other edges
in the path α as it is easy to verify. More precisely, while
we move on the edges v2v5 and v5v3 that are characterized
by having w1 = −D the corresponding point on the area
simplex moves on the edge e1.

Moreover since f is injective by construction, the inverse
image of any point in the boundary of A is just one element
of α. Identifying the boundary of A with S1 (up to homeo-
morphisms) and the loop α with S1 (up to homeomorphisms)
we have a bijective continuous map fS1 : S1 → S1. By
Lemma (2.2) deg(f) = ±1 and therefore f is onto A, using
Theorem (2.1).
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Fig. 2. Construction used for the proof of existence of equitable Power
Diagrams.

Remark 4.2: Since all vectors of weights in W yield
exactly the same Power Diagram, we conclude that the
positions of the generators uniquely induces an equitable
Power Diagram.

V. DISTRIBUTED GRADIENT DESCENT LAW FOR
EQUITABLE PARTITIONING

In this section, we design distributed policies that allow a
team of agents to achieve a convex equipartition configura-
tion.

A. Virtual Generators and Locational Optimization

The first step is to associate to each agent i a virtual
power generator (virtual generator for short) (gi, wi). We
define the region of dominance for agent i as the power cell
Vi = Vi(GW ), where GW =

(
(g1, w1), · · · , (gm, wm)

)
(see

Fig. 3). We refer to the partition into regions of dominance
induced by the set of virtual generators GW as V(GW ).
A virtual generator (gi, wi) is simply an artificial variable
locally controlled by the i-th agent; in particular, gi is a
virtual point and wi is its weight.

Virtual generators allow us to decouple the problem of
achieving an equitable partition into regions of dominance

Agent

Generator's 
Position

Dominance
Region

Fig. 3. Agents, virtual generators and regions of dominance.

from that of positioning an agent inside its own region of
dominance.

In light of Theorem 4.1, the key idea is to enable the
weights of the virtual generators to follow a (distributed)
gradient descent law (while maintaining the positions of the
generators fixed) such that an equitable partition is reached.

Assume, henceforth, that the positions of the virtual gen-
erators are distinct, i.e. gi 6= gj for i 6= j. Define the set

S
.=

{
(w1, . . . , wm) ∈ Rm |λVi > 0 ∀i ∈ Im

}
. (5)

Set S contains all possible vectors of weights such that no
region of dominance has measure zero.

We introduce the locational optimization function HV :
S 7→ R>0:

HV (W ) .=
m∑

i=1

(∫
Vi(W )

λ(x)dx
)−1

=
m∑

i=1

λ−1
Vi(W ). (6)

B. Smoothness and Gradient of HV

We now analyze the smoothness properties of the lo-
cational optimization function HV . In the following, let
γij

.= ‖gj − gi‖.
Theorem 5.1: Assume that the positions of the virtual gen-

erators are distinct, i.e., gi 6= gj for i 6= j. Given a measure
λ, the locational optimization function HV is continuously
differentiable on S, where for each i ∈ {1, . . . ,m}

∂HV

∂ wi
=

∑
j∈Ni

1
2γij

( 1
λ2

Vj

− 1
λ2

Vi

) ∫
∆ij

λ(x) dx. (7)

Furthermore, the critical points of HV are vectors of weights
that yield an equitable Power Diagram.

Proof: The proof is almost identical to that of Theorem
5.1 in [7] and, thus, it is omitted.

Remark 5.2: The computation of the gradient in Theo-
rem 5.1 is spatially-distributed over the dual graph of the
Power Diagram, since it depends only on information from
the agents with contiguous power cells.

Example 5.3 (Gradient of HV for uniform measure):
The gradient of HV simplifies considerably when λ is
constant. In such case, it is straightforward to verify that
(assuming that λ is normalized)

∂HV

∂ wi
=

1
2|A|

∑
j∈Ni

δij

γij

( 1
|Vj |2

− 1
|Vi|2

)
, (8)

where δij is the length of the border ∆ij .



C. Spatially-Distributed Algorithm for Equitable Partition-
ing

Consider the set

U
.=

{
(w1, . . . , wm) ∈ Rm |

m∑
i=1

wi = 0
}

.

Indeed, since adding an identical value to every weight leaves
all power cells unchanged, there is no loss of generality in
restricting the weights to U ; let Ω .= S ∩ U . Assume the
generators’ weights obey a first order dynamical behavior
described by ẇi = ui. Consider HV an objective function
to be minimized and impose that the weight wi follows the
gradient descent given by (7). In more precise terms, we set
up the following control law defined over the set Ω

ui = −∂HV

∂wi
(W ), (9)

where we assume that the Power Diagram V(W ) =
{V1, . . . , Vm} is continuously updated. One can prove the
following result.

Theorem 5.4: Assume that the positions of the virtual
generators are distinct, i.e., gi 6= gj for i 6= j. Consider
the gradient vector field on Ω defined by equation (9). Then
generators’ weights starting at t = 0 at W (0) ∈ Ω, and
evolving under (9) remain in Ω and converge asymptotically
to a critical point of HV , i.e., to a vector of weights that
yields an equitable Power Diagram.

Proof: We first prove that generators’ weights evolving
under (9) remain in Ω and converge asymptotically to the set
of critical points of HV . By assumption, gi 6= gj for i 6= j,
thus the Power Diagram is well defined. First, we prove that
set Ω is positively invariant with respect to (9). Recall that
Ω = S∩U . Noticing that control law (9) is a gradient descent
law, we have

λ−1
Vi(W (t)) ≤ HV (W (t)) ≤ HV (W (0)), i ∈ Im, t ≥ 0.

Since the measures of the power cells depend continuously
on the weights, we conclude that the measures of all power
cells will be bounded away from zero; thus, the weights will
belong to S for all t ≥ 0, i.e., W (t) ∈ S ∀t ≥ 0. Moreover,
the sum of the weights is invariant under control law (9).
Indeed,

∂
∑m

i=1 wi

∂t
= −

m∑
i=1

∂HV

∂wi
=

−
m∑

i=1

∑
j∈Ni

1
2γij

( 1
λ2

Vj

− 1
λ2

Vi

) ∫
∆ij

λ(x) dx = 0,

since γij = γji, ∆ij = ∆ji, and j ∈ Ni ⇔ i ∈ Nj . Thus,
we have W (t) ∈ U ∀t ≥ 0. Since W (t) ∈ S ∀t ≥ 0 and
W (t) ∈ U ∀t ≥ 0, we conclude that W (t) ∈ S ∩ U = Ω,
∀t ≥ 0, i.e., set Ω is positively invariant.

Second, HV : Ω 7→ R>0 is clearly non-increasing along
system trajectories, i.e., ḢV (W ) ≤ 0 in Ω.

Third, all trajectories with initial conditions in Ω are
bounded. Indeed, we have already shown that

∑m
i=1 wi = 0

along system trajectories. This implies that weights remain
within a bounded set: If, by contradiction, a weight could
become arbitrarily positive large, another weight would be-
come arbitrarily negative large (since the sum of weights
is constant), and the measure of at least one power cell
would vanish, which contradicts the fact that S is positively
invariant.

Finally, by Theorem 5.1, HV is continuously differentiable
in Ω. Hence, by invoking the LaSalle invariance principle
(see, for instance, [12]), under the descent flow (9), weights
will converge asymptotically to the set of critical points of
HV , that is not empty by Theorem 4.1.

Indeed, by Theorem 4.1, we know that all vectors of
weights yielding an equitable Power Diagram differ by a
common translation. Thus, the largest invariant set of HV in
Ω contains only one point. This implies that limt→∞W (t)
exists and it is equal to a vector of weights that yields an
equitable Power Diagram.

Some remarks are in order.
Remark 5.5: By Theorem 5.4, for any set of generators’

distinct positions, convergence to an equitable power diagram
is global with respect to Ω. Indeed, there is a very natural
choice for the initial values of the weights. Assuming that at
t = 0 agents are in A and in distinct positions, each agent
initializes its weight to zero. Then, the initial partition is a
Voronoi tessellation; since λ is positive on A, each initial
cell has nonzero measure, and therefore W (0) ∈ Ω (the sum
of the initial weights is clearly zero).

Remark 5.6: As noted in Remark 5.2, the computation of
the partial derivative in Eq. (9) only requires information
form the agents with neighboring power cells. Therefore,
the gradient descent law (9) is indeed spatially-distributed
over the dual graph of the Power Diagram. We mention that,
in a Power Diagram, each power generator has an average
number of neighbors less than or equal to six [13]; therefore,
the computation of gradient (9) is scalable with the number
of agents.

Remark 5.7: The previous gradient descent law, although
effective in providing a convex and equitable partition, can
yield long and “skinny” subregions. Notice that, to obtain
an equitable Power Diagram, changing the weights, while
maintaining the generators fixed, is sufficient. Then, we
can use the degrees of freedom given by the positions of
the generators to optimize secondary objectives, e.g., to
obtain Power Diagrams similar to Voronoi Diagrams, or to
obtain cells whose shapes show circular symmetry. These
extensions are explored in-depth in [11].

VI. SIMULATION

We simulate ten agents operating in the unit square A.
Agents’ initial positions are independently and uniformly dis-
tributed over A; the initial position of each virtual generator
coincides with the initial position of the corresponding agent,
and all weights are initialized to zero. Time is discretized
with a step dt = 0.01, and each simulation run consists of
800 iterations (thus, the final time is T = 8). Define the area



TABLE I
PERFORMANCE OF CONTROL LAW (9).

λ E [ε] max ε

unif 3.8 10−4 0.016
gauss 3 10−3 5.3 10−3

error ε as the difference, at T = 8, between the measure
of the region of dominance with maximum measure and the
measure of the region of dominance with minimum measure.

First, we consider a measure λ uniform over A, in partic-
ular λ ≡ 1. Therefore, we have λA = 1 and agents should
reach a partition in which each region of dominance has
measure equal to 0.1. For this case, we run 50 simulations.

Then, we consider a measure λ that follows a gaussian dis-
tribution, namely λ(x, y) = e−5((x−0.8)2+(y−0.8)2), (x, y) ∈
A, whose peak is at the north-east corner of the unit square.
Therefore, we have λA ≈ 0.336, and agents should reach
a partition in which each region of dominance has measure
equal to 0.0336. For this case, we run 20 simulations.

Table I summarizes simulation results for the uniform λ
(λ=unif) and the gaussian λ (λ=gaussian). Expectation and
worst case value of the area error ε are with respect to 50
runs for uniform λ, and 20 runs for gaussian λ. Notice that
for both measures, after 800 iterations, the worst case area
error is within 16% from the desired measure of dominance
regions. Figure 4 shows the typical equitable partitions that
are achieved with control law (9).

(a) Typical equipartition of A
for λ(x, y) = 1.

(b) Typical equipartition
of A for λ(x, y) =

e−5((x−0.8)2+(y−0.8)2).

Fig. 4. Typical equipartitions achieved by using control law (9). The yellow
squares represent the virtual generators.

VII. CONCLUSION

We have presented provably correct, spatially-distributed
control policies that allow a team of agents to achieve
a convex and equitable partition of a convex workspace.
Our algorithms could find applications in many problems,
including dynamic vehicle routing, and wireless networks.
This paper leaves numerous important extensions open for
further research. First, it is of interest to study the speed of
convergence to an equitable partition. Second, the algorithm
that we proposed is synchronous: we plan to devise algo-
rithms that are amenable to asynchronous implementation.
Third, we envision considering the setting of structured
environments (ranging from simple nonconvex polygons to

more realistic ground environments). Finally, to assess the
closed-loop robustness and the feasibility of our algorithms,
we plan to implement them on a network of unmanned aerial
vehicles.
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