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Quantized average consensus via dynamic coding/decoding schesn
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Abstract—In the average consensus a set of linear systems neighboring sensors. They show that the node states reach
has to be driven to the same final state which corresponds to consensus to a quantized level; only in expectation do they
the average of their initial states. This contribution presents converge to the desired average.

a consensus strategy in which the systems can exchange_l_h . tributi f thi is 1o introd |
information among themselves according to a fixed connected € main contribution of this paper IS 1o introduce a nove

digital communication network. Beside the decentralized com- quantized strategy that permits both to maintain the initia
putational aspects induced by the choice of the communication average and to reach it asymptotically. More precisely we

network,_ we h_ere have also to face the qua_mtization effgcts due adapt coding/decoding strategies, that were proposed for
to the digital links. We here present and discuss two different  cangrajized control and communication problems, to the
encoding/decoding strategies with theoretical and simulation distributed bl | ticul ’ it
results on their performance. istributed consensus problem. In particular, we presea
coding/decoding strategies, one based on the exchange of
[. INTRODUCTION logarithmically quantized information, the other on a zoom

A basic aspect in the analysis and in the design of coof? - Zzoom out strategy (this latter involves the use of umifor
erative agents systems is related to the effect of the agesigantizers). We provide analytical and simulative results
information exchange on the coordination performance. Alustrating the convergence properties of these stragegi
coordination task which is widely treated in the literaturdn particular we show that the convergence factors depend
is the so called average consensus. This is the problem sinoothly on the accuracy parameter of the quantizers used
driving states of a set of dynamic systems to a final commoand that, remarkably, that the critical quantizer accuracy
state which corresponds to the average of initial stateaati e sufficient to guarantee convergence is independent from the
system. network dimension.

The way in which the information flow on the network The paper is organized as follows. Section Il briefly reviews
influences the consensus performance has been already db¢ standard average consensus algorithm. In Section I
sidered in the literature [1], [2], where the communicatiotwe present two strategies of coding/decoding of the data
cost is modeled simply by the number of active links irthroughout reliable digital channels: one based on loga-
the network which admit the transmission of real numbergithmic quantizers, the other on uniform quantizers. We
However, this model can be too rough when the networRnalyze the former from a theoretical point in Section IV and
links represent actual digital communication channels. InSection V. We provide simulations results for the latter in
deed the transmission over a finite alphabet requires tiection VI. Finally, we gather our conclusions in Sectioh VI
design of efficient ways to translates real numbers imR/IathematicaJ Preliminaries
digital information, namely smart quantization technisjue
The investigation of consensus under quantized communi-Before proceeding, we collect some definitions and nota-
cation started with [3] in which the authors study system#ons which are used through the paper.
having (and transmitting) integer-valued states and epoln this paperG = (V, E) denotes aindirected graph where
a class of gossip algorithms which preserve the average Bf = {1,..., N} is the set of vertices and is the set
states and are guaranteed to converge up to one quantizan(directed) edges, i.e., a subset Bf x V. Clearly, if
bin. In [4] the quantization error is seen as a zero-meafi,j) € E also(j,i) € E and this means thatcan transmit
additive noise and by simulations, it is shown for small information about its state tpand vice-versa. Anyi, i) € E
that, if the increasing correlation among the node states i called aself loop. A path in G consists in a sequence of
taken into account, the variance of the quantization noiséertices (i1, is, ..., i) such that(i;,i;11) € E for every
diminishes and nodes converge to a consensus. In [5] thes {1,...,7 — 1}. A graph is said to beonnected if for
authors propose a distributed algorithm that uses quahtiz&ny given pair of vertice§i, j) there exists a path connecting
values and preserves the average at each iteration. Evem if  t0 j. A matrix M is said to bestochastic if M;; > 0 for
consensus is not reached, they showed favorable convergeadl < and j and the sums along each row are equallto
properties using simulations on some static topologieg THVoreover a matrix}/ is said to bedoubly stochastic if it is
authors in [6] adopt the probabilistic quantization (PQptochastic and also the sums along each column are equal to
scheme to quantize the information before transmittingnéo t 1. Given a nonnegative matrix/ € RV*", we can define

_ o _ an induced grapb; by taking N nodes and putting an edge
T s o sk o 1t by AFOSK MUR() 1) £ 1.1, 0. Gren & raptg on V. 1 s e 0
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1L, A\ (M),...,An_1(M) are the eigenvalues dff and are agent can only send to thgth agent symbolic data in a
such that\; (M) > \o(M) > ... > Ay_1(M). We define  finite or countable alphabet; using only this data, jha
agent can build at most an estimate of thih agent’s state.
Amax(M) = A (M), Amin(M) = An—1(M). To tackle this problem we take a two step approach. First,

With the symbolsl and 0 we denote theN-dimensional W€ introduce a_lcoding/deco_d_ing schfame;_each agent uses this
vectors having respectively all the components equal to sche_me to estimate the positions of its n@ghbors. Sec_oeld, w
and equal to). Givenv = [vy,...,ox]T € RN, diag {v} consider the standard consensus algorithm where, in place
or diag{vi,...,vy} mean a diagonal matrix having the of the exact knowledge of the states of the systems, we
components of as diagonal elements. Moreovéj|| and substitute estimates calculated according to the proposed
< v > denote the Euclidean norm of and the subspace coding/decoding scheme.

generated by, respectively. Finally, forf,g : N — R, we I1l. CODER/DECODER PAIRS FOR DIGITAL CHANNELS

1 fn) _
say thatf € o(g) if limy—oo gizy = 0. In this section we discuss a general and two specific

Il. PROBLEM FORMULATION coder/decoder models for reliable digital channels; wifol
the survey [8]. We will later adopt this coder/decoder schem

_We start this section by briefly describing the standarg, yefine communication protocols in the robotic network.
discrete-time consensus algorithm. Assume that we havesg,nase a source is communicating to a receiver some time-
set of agentd” and a graphg on V' describing the feasible

A ) varying datax : N — R via repeated transmissions at
communications among the agents. For each agemtV'  ima instants inN. Each transmission takes place through
we denote byz;(t) the estimate of the average of agent

. . a digital channel, i.e., messages can only be symbols in
at time¢. Standard consensus algorithm are constructed Y ¢ite or countable set. The channel is assumed to be

. . [ .
choosing a doubly stochastic mati#x € R™*™ compatible \jiapie je., the transmitted symbol is received withewior.

with G and assuming that at every timesgent: updates a coder/decoder pair for a digital channel is given by the
its estimate according to

sets:
N (i) a setZ, serving asstate space for the coder/decoder;
zi(t+1) = Zﬂ-jx]—(t). (1) a fixed¢y € = is theinitial coder/decoder state;
j=1 (i) a finite or countable setd, serving astransmission

alphabet; elementse € A are called message;
and by the maps:
x(t +1) = Px(t), (2 () amapF : =x A — E, called thecoder/decoder

wherez(t) is the column vector entries;(¢) represent the . dynamics; _ . . .

agents states. In our treatment we will restrict to the case i (i) amapQ : ExXR — A, being thequantizer function;

which P is symmetric, i.e.P” — P. Note that a stochastic (1) @ map H : = x A — R, called thedecoder function.

symmetric matrixP is automatically doubly stochastic. The coder computes the symbols to be transmitted according
It is well known in the literature [7] that, ifP is a 0. forteN,

symmetric stochastic matrix with positive diagonal ersrie _ _

and such thagp is connected, then the algorithm (2) solves 41 = F(E(), o), alt) = QE®), z(1)).

More compactly we can write

the average consensus problem, namely Correspondingly, the decoder implements, far N,
Jim_a(t) = 2,(0)1, E(t+1) = FEW®), a(t), () = H(E1), alt)).
where z,(0) := L172(0). From now on we will assume Coder and decoder are jointly initialized &t0) = &.
the following. N Note that an equivalent representation for the codérdst
Assumption 1: P is a symmetric stochastic matrix suchl) = £(£(1), Q((1),z(1))), and a(t) = Q(£(?), z(?)). In
that P; > 0, for i € {1,..., N}, andGp is connected. summary, the coder/decoder dynamics is given by
Note that the algorithm (2) relies upon a crucial assumption E(t+1) = F(E®t), alt)),
each agent transmits to its neighboring agents the precise £ — " " 3
value of its state. This implies the exchange of perfect Of() Q). 2(1)), ®
information through the communication network. &(t) = H(E(t), a(t)).

In what follows, we consider a more realistic case, i.eln what follows we present two interesting coder/decoder
we assume that the communication network is constitutgshirs: the “zoom in - zoom out” uniform quantizer strategy
only of rate-constrained digital links. Accordingly, theain  and the logarithmic quantizer.

objectives of this paper are to understand (i) how the stahda . :
consensus algorithm may be modified to overcome the forcéod Zoom in - oom ouit uniform coder

quantization effects due to the digital channel and (ii) how In this strategy the information transmitted is quantizgd b

much does its performance degrade. a scalar uniform quantizer which can be described as follows
We note that the presence of a rate constraint prevents ther L € N, define theuniform set of quantization levels

agents from having a precise knowledge about the state of 2% —1

the other agents. In fact, through a digital channel, itiie L= { = | Le{l,.. .,L}} u{-1tu{1}



and the correspondinginiform quantizer (see Figure 1) y=lgg,()
unqy : R — Sg by

y=(1+0)x | Ly=x

20 —1

unqy (z) = -1+ —

for e {1,...,L} s.t.

y=(1-9)x
201 1<
L

and otherwiseunq;(z) = 1 if « > 1 or unq;(z) =

—1if x < —1. Note that larger values of the parameter ~

L correspond to more accurate uniform quantizernsy; . X

Moreover note that, if we define: to be the number of

quantization levels we have that = L + 2. Fig. 2. The logarithmic quantizer.
For L € N, k;y, € ]0,1[, and ko € ]1, +00], the zoom

in - zoom out uniform coder/decoder has the state space

= =R x R+, the initial stateg, = (0, 1), and the alphabet

A = S;,.. The coder/decoder state is writtenéas (¢_1, f) 14 63\¢

and the coder/decoder dynamics are lgqs(x) = (—) ,

1-96
Eoa(t+1) =24(t) + f(t)a(t),

fﬁ+U={

—1 14

forEeZs.t.%gxg%,
ki f(8), i Ja(t)] <1, (1-9) (1-9)
kout f (), if |a(t)=1. otherwiselgq;(z) = 0 if x = 0 or lggs(z) = —lgqs(—x) if
. . . x < 0.
The quantizer and decoder functions are, respectively,  Note that smaller values of the paramefecorrespond to

z(t) —2_1(t)\ . . more accurate logarithmic quantizelgg;. For 6 € ]0,1],
a(t) = unqy, (T>’ E(t) = 21(t) + fF(W)at).  the logarithmic coder/decoder is defined by the state space

o = = R, initial state{, = 0, the alphabet4 = S5, and by
The coder/decoder pair is analyzed as follows. One cafe maps

observe thatt_;(¢ + 1) = z(¢), i.e., the first component

of the coder/decoder state contains the estimate.dfhe Et+1)=£&() + alt)
transmitted messages contain a quantized version of the aft) = lgqs(z(t) — £(t))
estimate errorr — z_; scaled by factorf. Accordingly, the 2(t) = £(8) + a(t)

second component of the coder/decoder sfatereferred to
as thescaling factor: it grows when|z —z_;| > f (“zoom The coder/decoder pair is analyzed as follows. One can
out step”) and it decreases when— &_;| < f (“zoom in observe that{(t + 1) = &(¢) for ¢t € N, that is, the
step”). coder/decoder state contains the estimate of the «datde
transmitted messages contain a quantized version of the
¥ =ungy (x) estimate errorr — £. The estimatet : N — R satisfies
the recursive relation

1

3/4 j"(t'i_l) :i'(t)'i_lg(hs (J}(t-i—l)—i‘(t)),

e with initial condition #(0) = lgqs (x(0)) determined by
4 an £(0) = 0. Finally, define the functionr : R — R by
ve ot x r(y) = % for y # 0 andr(0) = 0. Some elementary
calculations show that(y)| < ¢ for all y € R. Accordingly,
-4 if we define the trajectoryw : N — [—4, +4] by w(t) =
N r(z(t+1) — 2(¢)), then we obtain that

Fig. 1. The uniform quantizem{ = 6). i(t + 1) - j(t) + (1 + w(t))(x(t + 1) - j(t)) (5)

IV. CONSENSUS ALGORITHM WITH EXCHANGE OF
B. Logarithmic coder QUANTIZED INFORMATION

This strategy is presented for example in [9]. Given an We consider now the average consensus algorithm with the
accuracy parameter § € |0, 1[, define thelogarithmic set of assumption that the agents can communicate only via digital
quantization levels channels. Here, we adopt the logarithmic coder/decoder

14608 N scheme (3) described in Section IlI-B; we analyze the zoom

Ss = {(7) } u{o}u { — (7> } , (4) in-zoom out strategy via simulations in Section VI.

1—=06/ Jeen 1=0/ Jeez Here is an informal description of our proposed scheme.
and the correspondinpgarithmic quantizer (see Figure 2) We envision that along each communication edge we imple-
lggs : R — S5 by ment a logarithmic coder/decoder; in other words, eachtagen
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transmits via a dynamic encoding scheme to all its neighboss$raightforward calculations we can rewrite the closeploo
the quantized information regarding its position. Oncéestasystem in terms of the quantitiesande, for ¢t € Z>(, as
estimates of all node’s neighbors are available, each nod
will then implement the average consensus algorithm. e{i((zj;i))} = [é Q(()t)] [PP 7 5—211} {zg))] . (10)
Next, we provide a formal description of the proposed
algorithm. LetP € RV*Y pe a stochastic symmetric matrix Initial conditions arer(0) ande(0) = —x(0). We state now
with positive diagonal elements and with connected inducetie main properties of our quantized consensus algorithm.
graphGp. Assume there are digital channels along all edges Theorem 3: AssumeP € RV*" satisfies Assumption 1
of Gp capable of carrying a countable number of symbolsand defined € R by
Pick an accuracy parameteér € ]0,1[. The consensus 5. _ _
algorithm with dynamic coder/decoder is defined as follows: 0:= 1+ Amin(P)) / (3 = Amin(P)) (1)
Processor states:For eachi € {1,...,N}, nodei has a The solutiont — (xz(t),e(t)) of the consensus algorithm
state variabler; € R and state estimates; € R of the With dynamic coder/decoder satisfies:
states of all neighbors of i in Gp. Furthermore, node (i) the state average is preserved by the algorithm, that is,

i maintains a copy of;;. LSV ait) = £ 5N 2(0) forall t € N;
Initialization: The stater(0) = [z1(0),...,zy5(0)]7 € RY (i) if 0 <6 <9, then the state variables converge to their
is given as part of the problem. All estimateg0), for average value and the estimate error vanishes, that is,

j€{l,...,N}, are initialized to0. . _ : _
State iteration: At time ¢t € N, for eachi, nodei performs tli%x(ﬁ) = 2a(0)1, tli>nol<>e<t) =0
three actions in the following order: 14T
. wherez,(0) = +1" z(0).
(1) Nodei updates its own state by 7a(0) = 172(0)

Remark 4: Consider the sequence of circulant matrices
N Py € RY*N defined by
xi(t):xi(t—1)—|—;Pij(xj(t—l)—xi(t—l)). L0 00 1
© SR B TR
(2) Nodei transmits to all its neighbors the symbol Pv=|0 3 35 3 000 (12)
a;(t) = 1gqs(zi(t) — i (t — 1)). : R
( ) gQ5( ( ) ( )) % 0 0 0o ... 0 1 %

3
For this sequence of symmetric stochastic matrices we have
) th?t Amin(Pr) = 3 - %cos_(%”lgj). Hence Amin(Py) >
—3, implying therefore that > £ for all N. This shows that
for j being equal to all neighbors @fand to: itself. 0 is uniformly bounded away from. This is a remarkable
Remark 2: Robot i and all its neighbors maintain in property of scalability on tht'e.dimension of thg netvvork.
memory an estimaté; of the stater;. We denote all these However the fact thgt 'ghe critical accuracy sufficient t'orgua.
estimates by the same symbol because they are all identicaPte€ convergence is independent on the network dimension
they are initialized in the same manner and they are updat&ymore general than what seen in the above example. Indeed,
through the same equation with the same information. On trRSSUMe that’y € RY*Y is a sequence of matrices of
other hand, it would be possible to adopt distinct quantizdpcreasing size, where eadhy satisfies Assumption 1 and
accuracies;; for each communication channgl j). In such where eachPy has all the diagonal elementls’greater than
a case then we would have to introduce variabigsthat @ Positive real numbep. Then, by Gershgorin's Theorem
nodei and j would maintain for the estimate af;. [10], we have thatmin(Py) > —1+2p and hence) > 55—
We now analyze the algorithm. First, we write the closedfor all N. 1t follows that_ the critical accuracy suff|C|en_t to
loop system in matrix form. Equation (6) is written as guarantee convergence is bounded away from zero uniformly

(3) Node: updates its estimates

Tj(t) = &;(t — 1) + oy (t),

on the dimension of the network. O
z(t+1) = a(t) + (P = Da(?). (®) V. EXPONENTIAL CONVERGENCE
The N-dimensional vector of state estimates = The objective of this section is to understand, by means
[Z1,... ,@N]T is updated according to the multiplicative- of a Lyapunov analysis, how much the quantization affects
noise model in equation (5). In other words, there exighe performance of the consensus algorithm. We start by
wj: N — [=0,+4], for j € {1,..., N}, such that introducing some definitions. A functiof : N — R
X . X converges ta) exponentially fast if there exist a constant
i (t+1) = &5(t) + (14w (1) (z;(t + 1) = 25(t)), C > 0 and another constart € [0, 1] such that|f(t)| <

. o¢t, for all ¢; the infimum among all numbers € (0,1
and, forQ(t) := diag {ws(t),..., wn (t)}, satisfying the exponential convergence property is Lahéd
T+ 1) =2(t)+ T+ Q@) (zt+1) —2(t). (9) exponential convergence factor of f. In other words, the
exponential convergence factor gfis given by
Equations (8) and (9) determine the closed-loop system. . 1
Next, we define the estimate errer= & — z € RV, By lim sup [ f(£)[*



Consider first the system (2). To quantify the speed of cort can be shown thap(P, d,~) is independent ofy and for
vergence of (2) toward consensus, we introduce the varialileés reason we denote it gg§P, o).

Z(t) := x(t) — x4 (0)1.

Clearly, lim; o x(t) z,(0)1 if and only if
lim; o Z(t) = 0. It is easy to see that the variable
satisfies the same recursive equation of the variablee.,

Z(t+ 1) = Pz(t). (13)

Moreover note that1?z(t) 0, for all ¢ > 0. We
define the exponential convergence factor adt), for a
given initial conditonz, €< 1 >+, to be p(P,zo)
limsup,_ ., ||Z(t)||7. We can get rid of the initial condi-
tion and define thesxponential convergence factor of the
system (2) as follows

p(P):

sup  p(P, To) (14)

To€ <1>+
Consider now the positive semidefinite matfix P. Notice
that

p(P, %) = limsup(z(t)T (I — P)i(t))?

t—oo

and so we can characterize the speed of convergen6e to

We characterize nows(P,d,~). To this aim, consider the
following semidefinite programming problem

B(P,5,7) = e/

RTLR —L<—pr A7)

such that
We have the following result.

Theorem 6: Consider (15) with the matrixP satisfying
Assumption 1. Lets be as in (11) and les € R be
such that0 < § < 4. Moreover lety € R be such that
v > 0, and let3(P,6,) be as in (17). Then, the function
t — (2(t)TLz(t))'/2, defined along any trajectory— z(t)
converges exponentially fast to and the factorp(P,d),
defined in equation (16), satisfies

In general, assignef and the value of the accuracy param-
eterd, one could be interested in determining the maximum
value of 3, as function ofy. Clearly, the best bound on
p(P,§) corresponds to to the maximum value @fi.e.,

ﬁ(Pa 5) < (1 _Bopt(Pa 6))

1/2

1/2

of the variablez by studying the exponential convergence

factor of the Lyapunov functior(t)T (I — P)z(t).

Theorem 5: Consider (13) withP € RY*V gatisfing
Assumption 1. Then the function— (z(t)” (I—P)z(t))"/?,
defined along any trajectory — Z(¢), converges expo-
nentially fast to0. Moreover, the factop(P), defined in
equation (14), satisfies

p(P) = max {A\max(P), —Amin(P)} .
This concludes the analysis of the algorithm (2).

sequel of this section, we provide a similar analysis of th

where Bopt( P, §) = max,~ B(P,5,7). We illustrate this
discussion in the following example.

Example 7: In this example we consider a connected
random geometric graph generated by choosWig= 30
points at random in the unit square, and then placing an
edge between each pair of pints at distance lessihaihe
matrix P is built using the Metropolis weights [11]. In Figure

In the We depict the behavior dfl — Bopt(P, 5))1/2 as a function

gf . The dotted line represents the valuep6P), that is, the

system (10). For the sake of the notational simplicity, let

2(t) = [27(t) €7(1)]" and

o4y )[ 41 #74]

0 Q)
Clearly z(0) = [2(0)" ¢(0)”]. To perform a Lyapunov
analysis of (10), it is convenient to introduce the variable

2(t) = [ I-y11" 0 }z(t).

P pP—-1
P—-1 P-2]

0 1

Clearly, condition (ii) of Theorem 3 holds true if and only if
lim;_, z(t) = 0. It is straightforward to see that satisfies
the same recursive equation =ft), i.e.,

2t +1) = A)z(t)
and that[1” OJT\JT z(t) = 0 for all t > 0. Consider now the
matrix L € R2V>*2N defined as

I-P 0 ]

L{ 0 ~vI

For eachy > 0 define p(P,d,v;zo, {A(t)},2,)
limsup, .. (2(t)TLz(t))2. We can get rid of the initial
conditionsz, and the sequencesA(t)},-, by considering

p(P,0,7) := p(P,0, 720, {A(D)};Z,)  (16)

(15)

sup
Z0,{At)}720

L
0.25

L L L
0.1 0.2 0.3

1/2

Fig. 3. Behavior of(1 — Bopt(P, 6))

convergence factor of the ideal algorithm (13). Notice that

the convergence factgil — Sopi( P, 5))1/2 depends smoothly
on the accuracy parametérand satisfies
Jim, (1 — Bopt( P, 0)) p(P).

An interesting characterization pfcan be provided when
considering a family of matrice§ Py} of increasing size
whose maximum eigenvalue converges Ito It is worth
noting that this situation is encountered in many practical
situations [12], [2], [13]. We formalize this situation as
follows.
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Assumption 8 (Vanishing spectral gap): Assume we have
a sequence of symmetric stochastic matrigs } ¢ RV*V
satisfying Assumption 1 and the following conditions
(i) Amin(Pn) > cfor somec € |—1,1[ and for allN € N;
(i) Amax(Py) = 1 — €(N) + o(e(N)) as N — oo,
wheree : N — R is a positive function such that
1imN~>oo G(N) =0.
According to Theorem 5, asv. — oo, we have that
p(Pn) =1 —¢(N)+ o(e(N)). In considering the quan-

tized version of the consensus algorithm, together with the

sequencg Py }, we have also to fix the sequengéy }. For
simplicity, in the following we will assume thafdy} is a
constant sequence, i.ely = ¢ with suitabled such that
§ < +£< which ensures the stability for alV.

Theorem 9: Let { Py} C RV*Y pe a family of matrices
of increasing size satisfying Assumptions 1 and 8.Let R
be such that < % Then, asN — oo, we have that

{— 1+c+0%(c—3)

— m=5
— m=10
— m=w

101

I
10 12
time

Fig. 4. Zoom in- zoom out strategy

that the critical quantizer accuracy sufficient to guarante
convergence is independent from the network dimension.
A field of future research will be to look for encoding
and decoding methods which are able to solve the average

p(Py,d) <1-— 10— 07) )6(N)+0(€(N)).
Notice that the coefficient in from of(V) is negative.
Indeed, it can be seen that that coefficient is negative if and
only if 62 < (3 —¢)/(1 + ¢) and this is true since we have 1
chosend < (1+¢)/(3 — ¢) and since) < 1.

VI. NUMERICAL SIMULATIONS

In this section we provide some numerical results illus-
trating the performance of the Zoom in -Zoom out strategy.[s]
We consider the same connected random geometric graph of
Example 7. We assume that the initial conditions has bee
randomly generated inside the interjal100, 100]. For all

(2]

the experiments, we set the parametess and k,,; to the  [5]
values 1/2 and 2 respectively, and initialized the scaling
factor f of each agent to the valug&). Moreover we run
simulations for two different values ofn, m = 5 and  [6]

m 10. The results obtained are reported in Figure 4.
The variable plotted is the normalized Euclidean norm of7]
the vectorz(t) := x(t) — z,(0)1, that is,

s(0) = IV

Note that, as depicted in Figure 4, also the zoom in- zoom ouiP]
uniform coder- decoder strategy seems to be very efficient in
achieving the consensus. In particular it is remarkable tha
this strategy works well even if the uniform quantizer has
few quantization levels/¢ = 5). Finally it is worth observing
that, as seen in Example 7, also in this case the performance
degrades smoothly as the quantization becomes coarser.

(8]

problem also with noisy digital channels.
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