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Glossary

Cooperative control: In recent years, the study of groups of robots and multi-
agent systems has received a lot of attention. This interest has been driven by
the envisioned applications of these systems in scientific and commercial do-
mains. From a systems and control theoretic perspective, the challenges in
cooperative control revolve around the analysis and design of distributed coor-
dination algorithms that integrate the individual capabilities of the agents to
achieve a desired coordination task.

Distributed algorithm: In a network composed of multiple agents, a coor-
dination algorithm specifies a set of instructions for each agent that prescribe
what to sense, what to communicate and to whom, how to process the informa-
tion received, and how to move and interact with the environment. In order to
be scalable, coordination algorithms need to rely as much as possible on local
interactions between neighboring agents.

Complexity measures: Coordination algorithms are designed to enable net-
works of agents achieve a desired task. Since different algorithms can be de-
signed to achieve the same task, performance metrics are necessary to classify
them. Complexity measures provide a way to characterize the properties of co-
ordination algorithms such as completion time, cost of communication, energy
consumption, and memory requirements.

Averaging algorithms: Distributed coordination algorithms that perform
weighted averages of the information received from neighboring agents are called
averaging algorithms. Under suitable connectivity assumptions on the commu-
nication topology, averaging algorithms achieve agreement, i.e., the state of all
agents approaches the same value. In certain cases, the agreement value can be
explicitly determined as a function of the initial state of all agents.

Leader election: In leader election problems, the objective of a network of
processors is to elect a leader. All processors have a variable “leader” initially
set to unknown. The leader-election task is solved when only one processor has
set the variable “leader” to true, and all other processors have set it to false.

LCR algorithm: The classic Le Lann-Chang-Roberts (LCR) algorithm solves
the leader election task on a static network with the ring communication topol-
ogy. Initially, each agent transmits its unique identifier to its neighbors. At each
communication round, each agent compares the largest identifier received from
other agents with its own identifier. If the received identifier is larger than its
own, the agent declares itself a non-leader, and transmits it in the next commu-
nication round to its neighbors. If the received identifier is smaller than its own,
the agent does nothing. Finally, if the received identifier is equal to its own, it
declares itself a leader. The LCR algorithm achieves leader election with linear
time complexity and quadratic total communication complexity, respectively.

Agree-and-pursue algorithm: Coordination algorithms for robotic networks
combine the features of distributed algorithms for networks of processors with
the sensing and control capabilities of the robots. The agree-and-pursue motion
coordination algorithm is an example of this fusion. Multiple robotic agents
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moving on a circle seek to agree on a common direction of motion while at the
same achieving an equally-spaced distribution along the circle. The agree-and-
pursue algorithm achieves both tasks combining ideas from leader election on a
changing communication topology with basic control primitives such as “follow
your closest neighbor in your direction of motion.”

1 Definition of the Subject and Its Importance

The study of distributed algorithms for robotic networks is motivated by the re-
cent emergence of low-power, highly-autonomous devices equipped with sensing,
communication, processing, and control capabilities. In the near future, coop-
erative robotic sensor networks will perform critical tasks in disaster recovery,
homeland security, and environmental monitoring. Such networks will require
efficient and robust distributed algorithms with guaranteed quality-of-service.
In order to design coordination algorithms with these desirable capabilities, it
is necessary to develop new frameworks to design and formalize the operation
of robotic networks and novel tools to analyze their behavior.

2 Introduction

Distributed algorithms are a classic subject of study for networks composed of
individual processors with communication capabilities. Within the automata-
theoretic literature, important research topics on distributed algorithms include
the introduction of mathematical models and precise specifications for their
behavior, the formal assessment of their correctness, and the characterization
of their complexity.

Robotic networks have distinctive features that make them unique when
compared with networks of static processors. These features include the op-
eration under ad-hoc dynamically changing communication topologies and the
complexity that results from the combination of continuous- and discrete-time
dynamics. The spatially-distributed character of robotic networks and their dy-
namic interaction with the environment make the classic study of distributed
algorithms, typically restricted to static networks, not directly applicable.

This chapter brings together distributed algorithms for networks of proces-
sors and for robotic networks. The first part of the chapter is devoted to a
formal discussion about distributed algorithms for a synchronous network of
processors. This treatment serves as a brief introduction to important issues
considered in the literature on distributed algorithms such as network evolution,
task completion, and complexity notions. To illustrate the ideas, we consider
the classic Le Lann-Chang-Roberts (LCR) algorithm, which solves the leader
election task on a static network with the ring communication topology. Next,
we present a class of distributed algorithms called averaging algorithms, where
each processor computes a weighted average of the messages received from its
neighbors. These algorithms can be described as linear dynamical systems, and
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their correctness and complexity analysis has nice connections with the fields of
linear algebra and Markov chains.

The second part of the chapter presents a formal model for robotic net-
works that explicitly takes into account communication, sensing, control, and
processing. The notions of time, communication, and space complexity intro-
duced here allow us to characterize the performance of coordination algorithms,
and rigorously compare the performance of one algorithm versus another. In
general, the computation of these notions is a complex problem that requires
a combination of tools from dynamical systems, control theory, linear algebra,
and distributed algorithms. We illustrate these concepts in three different sce-
narios: the agree-and-pursue algorithm for a group of robots moving on a circle,
aggregation algorithms that steer robots to a common location, and deployment
algorithms that make robots optimally cover a region of interest. In each case,
we report results on the complexity associated to the achievement of the desired
task. The chapter ends with a discussion about future research directions.

3 Distributed Algorithms on Networks of Pro-

cessors

Here we introduce a synchronous network as a group of processors with the
ability to exchange messages and perform local computations. What we present
is a basic classic model studied extensively in the distributed algorithms litera-
ture. Our treatment is directly adopted with minor variations from the texts [1]
and [2].

3.1 Physical Components and Computational Models

Loosely speaking, a synchronous network is a group of processors, or nodes,
that possess a local state, exchange messages among neighbors, and compute
an update to their local state based on the received messages. Each processor
alternates the two tasks of exchanging messages with its neighboring processors
and of performing a computation step.

Let us begin by providing some basic definitions. A directed graph [3], in
short digraph, of order n is a pair G = (V,E) where V is a set with n elements
called vertices (or sometimes nodes) and E is a set of ordered pair of vertices
called edges. In other words, E ⊆ V × V . We call V and E the vertex set and
edge set, respectively. For u, v ∈ V , the ordered pair (u, v) denotes an edge from
u to v. The vertex u is called an in-neighbor of v, and v is called an out-neighbor
of u. A directed path in a digraph is an ordered sequence of vertices such that
any two consecutive vertices in the sequence are a directed edge of the digraph.
A vertex of a digraph is globally reachable if it can be reached from any other
vertex by traversing a directed path. A digraph is strongly connected if every
vertex is globally reachable.

A cycle in a digraph is a non-trivial directed path that starts and ends at the
same vertex. A digraph is acyclic if it contains no cycles. In an acyclic graph,
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every vertex with no in-neighbors is named source, and every vertex with no out-
neighbors is named sink. A directed tree is an acyclic digraph with the following
property: there exists a vertex, called the root, such that any other vertex of
the digraph can be reached by one and only one path starting at the root. A
directed spanning tree, or simply a spanning tree, of a digraph is a subgraph that
is a directed tree and has the same vertex set as the digraph. A directed chain
is a directed tree with exactly one source and one sink. A directed ring digraph
is the cycle obtained by adding to the edge set of a chain a new edge from its
sink to its source. Figure 1 illustrates these notions.

Figure 1: From left to right, directed tree, chain, and ring digraphs.

The physical component of a synchronous network S is a digraph (I, Ecmm),
where

(i) I = {1, . . . , n} is called the set of unique identifiers (UIDs), and

(ii) Ecmm is a set of directed edges over the vertices {1, . . . , n}, called the
communication links.

The set Ecmm models the topology of the communication service among the
nodes: for i, j ∈ {1, . . . , n}, processor i can send a message to processor j
if the directed edge (i, j) is present in Ecmm. Note that, unlike the standard
treatments in [1] and [2], we do not assume the digraph to be strongly connected;
the required connectivity assumption is specified on a case by case basis.

Next, we discuss the state and the algorithms that each processor possesses
and executes, respectively. By convention, we let the superscript [i] denote any
quantity associated with the node i. A distributed algorithm DA for a network
S consists of the sets:

(i) A, a set containing the null element, called the communication alphabet ;
elements of A are called messages;

(ii) W [i], i ∈ I, called the processor state sets;

(iii) W
[i]
0 ⊆ W [i], i ∈ I, sets of allowable initial values;

and of the maps:

(i) msg[i] : W [i] × I → A, i ∈ I, called message-generation functions;
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(ii) stf[i] : W [i] × A
n → W [i], i ∈ I, called state-transition functions.

If W [i] = W , msg[i] = msg, and stf[i] = stf for all i ∈ I, then DA is said to be

uniform and is described by a tuple (A,W, {W
[i]
0 }i∈I ,msg, stf).

Now, with all elements in place, we can explain in more detail how a syn-
chronous network executes a distributed algorithm. The state of processor i is

a variable w[i] ∈ W [i], initially set equal to an allowable value in W
[i]
0 . At each

time instant ℓ ∈ Z≥0, processor i sends to each of its out-neighbors j in the com-
munication digraph (I, Ecmm) a message (possibly the null message) computed
by applying the message-generation function msg[i] to the current values of its
state w[i] and to the identity j. Subsequently, but still at time instant ℓ ∈ Z≥0,
processor i updates the value of its state w[i] by applying the state-transition
function stf[i] to the current value of its state w[i] and to the messages it receives
from its in-neighbors. Note that, at each round, the first step is transmission
and the second one is computation.

We conclude this section with two sets of remarks. We first discuss some
aspects of our communication model that have a large impact on subsequent
development. We then collect a few general comments about distributed algo-
rithms on networks.

Remarks 3.1 (Aspects of the communication model) (i) The network
S and the algorithm DA are referred to as synchronous because the com-
munications between all processors takes place at the same time for all
processors.

(ii) Communication is modeled as a so-called “point to point” service: a pro-
cessor can specify different messages for different out-neighbors and knows
the processor identity corresponding to any incoming message.

(iii) Information is exchanged between processors as messages, i.e., elements
of the alphabet A; the message null indicates no communication. Mes-
sages might encode logical expressions such as true and false, or finite-
resolution quantized representations of integer and real numbers.

(iv) In some uniform algorithms, the messages between processors are the pro-
cessors’ states. In such cases, the corresponding communication alphabet
is A = W ∪{null} and the message generation function msgstd(w, j) = w
is referred to as the standard message-generation function. •

Remarks 3.2 (Advanced topics: Control structures and failures) (i)
Processors in a network have only partial information about the network
topology. In general, each processor only knows its own UID, and the UID
of its in- and out-neighbors. Sometimes we assume that the processor
knows the network diameter. In some cases [2], actively running networks
might depend upon “control structures,” i.e., structures that are computed
at initial time and are exploited in subsequent algorithms. For example,
routing tables might be computed for routing problems, “leader” processors
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might be elected and tree structures might be computed and represented in
a distributed manner for various tasks, e.g., coloring or maximal indepen-
dent set problems. We present some sample algorithms to compute these
structures below.

(ii) A key issue in the study of distributed algorithms is the possible occur-
rence of failures. A network might experience intermittent or permanent
communication failures: along given edges a null message or an arbitrary
message might be delivered instead of the intended value. Alternatively, a
network might experience various types of processor failures: a processor
might transmit only null messages (i.e., the msg function returns null

always), a processor might quit updating its state (i.e., the stf function
neglects incoming messages and returns the current state value), or a pro-
cessor might implement arbitrarily modified msg and stf functions. The
latter situation, in which completely arbitrary and possibly malicious be-
havior is adopted by faulty nodes, is referred to as a Byzantine failure in
the distributed algorithms literature. •

3.2 Complexity Notions

Here we begin our analysis of the performance of distributed algorithms. We
introduce a notion of algorithm completion and, in turn, we introduce the classic
notions of time, space, and communication complexity.

We say that an algorithm terminates when only null messages are trans-
mitted and all processors states become constants.

Remark 3.3 (Alternative termination notions) (i) In the interest of sim-
plicity, we have defined evolutions to be unbounded in time and we do not
explicitly require algorithms to actually have termination conditions, i.e.,
to be able to detect when termination takes place.

(ii) It is also possible to define the termination time as the first instant when
a given problem or task is achieved, independently of the fact that the
algorithm might continue to transmit data subsequently. •

The notion of time complexity measures the time required by a distributed
algorithm to terminate. More specifically, the (worst-case) time complexity of a
distributed algorithm DA on a network S, denoted TC(DA,S), is the maximum
number of rounds required by the execution of DA on S among all allowable
initial states until termination.

Next, we quantify memory and communication requirements of distributed
algorithms. From an information theory viewpoint [4], the information content
of a memory variable or of a message is properly measured in bits. On the other
hand, it is convenient to use the alternative notions of “basic memory unit”
and “basic message.” It is customary [2] to assume that a “basic memory unit”
or a “basic message” contains log(n) bits so that, for example, the information
content of a robot identifier i ∈ {1, . . . , n} is log(n) bits or, equivalently, one
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“basic memory unit.” Note that elements of the processor state set W or of
the alphabet set A might amount to multiple basic memory units or basic mes-
sages; the null message has zero cost. Unless specified otherwise, the following
definitions and examples are stated in terms of basic memory unit and basic
messages.

• The (worst-case) space complexity of a distributed algorithm DA on a net-
work S, denoted by SC(DA,S), is the maximum number of basic memory
units required by a processor executing the DA on S among all processors
and among all allowable initial states until termination.

• The (worst-case) communication complexity of a distributed algorithm DA
on a network S, denoted by CC(DA,S), is the maximum number of basic
messages transmitted over the entire network during the execution of DA
among all allowable initial states until termination.

Remark 3.4 (Space complexity conventions) By convention, each proces-
sor knows its identity, i.e., it requires log(n) bits to represent its unique iden-
tifier in a set with n distinct elements. We do not count this cost in the space
complexity of an algorithm. •

We conclude this section by discussing ways of quantifying time, space, and
communication complexity. The idea, borrowed from combinatorial optimiza-
tion, is to adopt asymptotic “order of magnitude” measures. Formally, complex-
ity bounds will be expressed with respect to the Bachman-Laundau symbols O,
Ω, and Θ. Let us be more specific. In the following definitions, f denotes a
function from N to R.

(i) We say that an algorithm has time complexity of order Ω(f(n)) over some
network if, for all n, there exists a network of order n and initial processor
values such that the time complexity of the algorithm is greater than a
constant factor times f(n).

(ii) We say that an algorithm has time complexity of order O(f(n)) over
arbitrary networks if, for all n, for all networks of order n and for all
initial processor values the time complexity of the algorithm is lower than
a constant factor times f(n).

(iii) We say that an algorithm has time complexity of order Θ(f(n)) if its
time complexity is of order Ω(f(n)) over some network and O(f(n)) over
arbitrary networks at the same time.

We use similar conventions for space and communication complexity.
In many cases the complexity of an algorithm will typically depend upon

the number of nodes of the network. It is therefore useful to present a few
simple facts about these functions now. Over arbitrary digraphs S = (I, Ecmm)
of order n, we have

diam(S) ∈ Θ(n), |Ecmm(S)| ∈ Θ(n2) and radius(v,S) ∈ Θ(diam(S)),
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where v is any node of S.

Remark 3.5 Numerous variations of these definitions are possible. Even though
we will not pursue them here, let us provide some pointers.

(i) In the definition of lower bound, consider the logic quantifier describing
the role of the network. The lower bound statement is “existential” rather
than “global,” in the sense that the bound does not hold for all graphs.
As discussed in [2], it is possible to define also “global” lower bounds,
i.e., lower bounds over all graphs, or lower bounds over specified classes
of graphs.

(ii) The complexity notions introduced above focus on the worst-case situation.
It is also possible to define expected or average complexity notions, where
one might be interested in characterizing, for example, the average number
of rounds required or the average number of basic messages transmitted
over the entire network during the execution of an algorithm among all
allowable initial states until termination.

(iii) It is possible to define complexity notions for problems, rather than algo-
rithms, by considering, for example, the worst-case optimal performance
among all algorithms that solve the given problem, or over classes of al-
gorithms or classes of graphs. •

3.3 Leader Election

We formulate here a classical problem in distributed networks and summarize
its complexity measures.

Problem 3.6 (Leader election) Assume that all processors of a network have
a state variable, say leader, initially set to unknown. We say that a leader is
elected when one and only one processor has the state variable set to true and
all others have it set to false. Elect a leader. •

This is a task that is a bit more global in nature. We display here a solution
that requires individual processors to know the diameter of the network, denoted
by diam(S), or an upper bound on it.

[Informal description] At each communication round, each agent
sends to all its neighbors the maximum UID it has received up to
that time. This is repeated for diam(S) rounds. At the last round,
each agent compares the maximum received UID with its own, and
declares itself a leader if they coincide, or a non-leader otherwise.

The algorithm is called floodmax: the maximum UID in the network is trans-
mitted to other agents in an incremental fashion. At the first communication
round, agents that are neighbors of the agent with the maximum UID receive
the message from it. At the next communication round, the neighbors of these
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agents receive the message with the maximum UID. This process goes on for
diam(S) rounds to ensure that every agent receives the maximum UID. Note
that there are networks for which all agents receive the message with the max-
imum UID in fewer communication rounds than diam(S). The algorithm is
formally stated as follows.

Synchronous Network: S = ({1, . . . , n}, Ecmm)

Distributed Algorithm: floodmax

Alphabet: A = {1, . . . , n}∪{null}

Processor State: w = (my-id, max-id, leader, round), where

my-id ∈ {1, . . . , n}, initially: my-id[i] = i for all i
max-id ∈ {1, . . . , n}, initially: max-id[i] = i for all i
leader ∈ {false, true, unknown}, initially: leader[i] = unknown for all i
round ∈ {0, 1, . . . ,diam(S)}, initially: round[i] = 0 for all i

function msg(w, i)

1: if round < diam(S) then
2: return max-id

3: else
4: return null

function stf(w, y)

1: new-id:= max{max-id, largest identifier in y}
2: case
3: round < diam(S): new-lead := unknown

4: round = diam(S) AND max-id = my-id: new-lead := true

5: round = diam(S) AND max-id > my-id: new-lead :=
false

6: return (my-id, new-id, new-lead, round +1)

Figure 2 shows an execution of the floodmax algorithm.

Figure 2: Execution of the floodmax algorithm. The diameter of the network
is 4. In the leftmost frame, the agent with the maximum UID is colored in red.
After 4 communication rounds, its message has been received by all agents.

The properties of the algorithm are characterized in the following lemma.
A complete analysis of this algorithm, including modifications to improve the
communication complexity, is discussed in [1, Section 4.1].
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Lemma 3.7 (Complexity upper bounds for the floodmax algorithm) For
a network S containing a spanning tree, the floodmax algorithm has commu-
nication complexity in O(diam(S)|Ecmm|), time complexity equal to diam(S),
and space complexity in Θ(1).

A simplification of the floodmax algorithm leads to the Le Lann-Chang-
Roberts (LCR) algorithm for leader election in rings, see [1, Chapter 3.3], that
we describe next1. The LCR algorithm runs on a ring digraph and does not
require the agents to know the diameter of the network.

[Informal description] At each communication round, if the agent
receives from its in-neighbor a UID that is larger than the UIDs re-
ceived earlier, then the agent records the received UID and forwards
it to the out-neighbor during the following communication round.
(Agents do not record the number of communication rounds.) When
the agent with the maximum UID receives its own UID from a neigh-
bor, it declares itself the leader.

The algorithm is formally stated as follows.

Synchronous Network: ring digraph

Distributed Algorithm: LCR

Alphabet: A = {1, . . . , n}∪{null}

Processor State: w = (my-id, max-id, leader, snd-flag), where

my-id ∈ {1, . . . , n}, initially: my-id[i] = i for all i
max-id ∈ {1, . . . , n}, initially: max-id[i] = i for all i
leader ∈ {true, false, unknown}, initially: leader[i] = unknown for all i
snd-flag ∈ {true, false}, initially: snd-flag[i] = true for all i

function msg(w, i)

1: if snd-flag = true then
2: return max-id

3: else
4: return null

function stf(w, y)

1: case
2: (y contains only null msgs) OR (largest identifier in y < my-id):
3: new-id := max-id

4: new-lead := leader

5: new-snd-flag := false

6: (largest identifier in y = my-id):
7: new-id := max-id

1Note that the description of the LCR algorithm given here is slightly different from the
classic one as presented in [1].
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8: new-lead := true

9: new-snd-flag := false

10: (largest identifier in y > my-id):
11: new-id := largest identifier in y
12: new-lead := false

13: new-snd-flag := true

14: return (my-id, new-id, new-lead, new-snd-flag)

Figure 3 shows an execution of the LCR algorithm. The properties of the

Figure 3: Execution of the LCR algorithm. In the leftmost frame, the agent
with the maximum UID is colored in red. After 5 communication rounds, this
agent receives its own UID from its in-neighbor and declares itself the leader.

LCR algorithm can be characterized as follows [1].

Lemma 3.8 (Complexity upper bounds for the LCR algorithm) For a
ring network S of order n, the LCR algorithm has communication complexity
in Θ(n2), time complexity equal to n, and space complexity in Θ(1).

We conclude with a short remark. Strictly speaking, the LCR algorithm only
achieves partially the leader election task as defined in Problem 3.6 because the
agents other than the leader do not declare themselves as non-leaders. The
algorithm can easily be modified to achieve fully the leader election task as
follows: after the agent with the maximum UID has declared itself the leader,
it can broadcast to the other agents the information that the leader has been
elected.

3.4 Averaging Algorithms

This section provides a brief introduction to a special class of distributed algo-
rithms called averaging algorithms. The synchronous version of averaging algo-
rithms can be modeled within the framework of synchronous networks. In an
averaging algorithm, each processor updates its state by computing a weighted
linear combination of the state of its neighbors. Computing linear combinations
of the initial states of the processors is one the most basic computations that
a network can implement. Averaging algorithms find application in optimiza-
tion, distributed decision-making, e.g., collective synchronization, and have a
long and rich history, see e.g., [5, 6, 7, 8, 9, 10]. The richness comes from the
vivid analogies with physical processes of diffusion, with Markov chain models,
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and the theory of positive matrices developed by Perron and Frobenius, see
e.g., [11, 12, 13].

Averaging algorithms are defined by stochastic matrices. For completeness,
let us recall some basic linear algebra definitions. A matrix A ∈ R

n×n with
entries aij , i, j ∈ {1, . . . , n}, is

(i) nonnegative (resp., positive) if all its entries are nonnegative (resp., posi-
tive);

(ii) row-stochastic (or stochastic for brevity) if it is nonnegative and
∑n

j=1 aij =
1, for all i ∈ {1, . . . , n}; in other words, A is row-stochastic if

A1n = 1n;

where 1n = (1, . . . , 1)T ∈ R
n.

(iii) doubly stochastic if it is row-stochastic and column-stochastic, where we
say that A is column-stochastic if 1T

nA = 1T
n ;

(iv) irreducible if, for any nontrivial partition J ∪K of the index set {1, . . . , n},
there exists j ∈ J and k ∈ K such that ajk 6= 0.

We are now ready to introduce the class of averaging algorithms. The av-
eraging algorithm associated to a sequence of stochastic matrices {F (ℓ) | ℓ ∈
Z≥0} ⊂ R

n×n is the discrete-time dynamical system

w(ℓ + 1) = F (ℓ) · w(ℓ), ℓ ∈ Z≥0. (1)

In the literature, averaging algorithms are also often referred to as agreement
algorithms or as consensus algorithms.

Averaging algorithms are naturally associated with weighted digraphs, i.e.,
digraphs whose edges have weights. More precisely, a weighted digraph is a
triplet G = (V,E,A) where V = {v1, . . . , vn} and E are a digraph and where
A ∈ R

n×n
≥0 is a weighted adjacency matrix with the following properties: for

i, j ∈ {1, . . . , n}, the entry aij > 0 if (vi, vj) is an edge of G, and aij = 0
otherwise. In other words, the scalars aij , for all (vi, vj) ∈ E, are a set of weights
for the edges of G. Note that edge set is uniquely determined by the weighted
adjacency matrix and it can be therefore omitted. The weighted out-degree
matrix Dout(G) and the weighted in-degree matrix Din(G) are the diagonal
matrices defined by

Dout(G) = diag(A1n), and Din(G) = diag(AT 1n).

The weighted digraph G is weight-balanced if Dout(G) = Din(G). Given a non-
negative n×n matrix A, its associated weighted digraph is the weighted digraph
with nodes {1, . . . , n}, and weighted adjacency matrix A. The unweighted ver-
sion of this weighted digraph is called the associated digraph. The following
statements can be proven:
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(i) if A is stochastic, then its associated digraph has weighted out-degree
matrix equal to In;

(ii) if A is doubly stochastic, then its associated weighted digraph is weight-
balanced and additionally both in-degree and out-degree matrices are
equal to In;

(iii) A is irreducible if and only if its associated weighted digraph is strongly
connected.

Next, we characterize the convergence properties of averaging algorithms.
Let us introduce a useful property of collections of stochastic matrices. Given
α ∈ ]0, 1], the set of non-degenerate matrices with respect to α consists of all
stochastic matrices F with entries fij , for i, j ∈ {1, . . . , n}, satisfying

fii ∈ [α, 1], and fij ∈ {0}∪[α, 1] for j 6= i.

Additionally, the sequence of stochastic matrices {F (ℓ) | ℓ ∈ Z≥0} is non-
degenerate if these exists α ∈ ]0, 1] such that F (ℓ) is non-degenerate with respect
to α for all ℓ ∈ Z≥0.

We now state the following convergence result from [10].

Theorem 3.9 (Convergence for time-dependent stochastic matrices) Let
{F (ℓ) | ℓ ∈ Z≥0} ⊂ R

n×n be a non-degenerate sequence of stochastic matrices.
For ℓ ∈ Z≥0, let G(ℓ) be the unweighted digraph associated to F (ℓ). The follow-
ing statements are equivalent:

(i) the set diag(Rn) is uniformly globally attractive for the associated averag-
ing algorithm, that is, every evolution of the averaging algorithm at any
time ℓ0, approaches the set diag(Rn) in the following time-uniform man-
ner:

for all ℓ0 ∈ Z≥0, for all w0 ∈ R
n, and for all neighborhoods W of

diag(Rn), there exists a single τ0 ∈ Z≥0 such that the evolution
w : [ℓ0,+∞[ → R

n defined by w(ℓ0) = w0, takes value in W for
all times ℓ ≥ ℓ0 + τ0.

(ii) there exists a duration δ ∈ N such that, for all ℓ ∈ Z≥0, the digraph

G(ℓ + 1)∪ · · · ∪G(ℓ + δ)

contains a globally reachable vertex.

4 Distributed Algorithms for Robotic Networks

This section describes models and algorithms for groups of robots that process
information, sense, communicate, and move. We refer to such systems as robotic
networks. In this section we review and survey a few modeling and algorithmic
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topics in robotic coordination; earlier versions of this material were originally
presented in [14, 15, 16, 17].

The section is organized as follows. First, we present the physical compo-
nents of a network, that is, the mobile robots and the communication service
connecting them. We then present the notion of control and communication
law, and how a law is executed by a robotic network. We then discuss com-
plexity notions for robotic networks. As an example of these notions, we in-
troduce a simple law, called the agree-and-pursue law, which combines ideas
from leader election algorithms and from cyclic pursuit (i.e., a game in which
robots chase each other in a circular environment). We then consider in some
detail algorithms for two basic motion coordination tasks, namely aggregation
and deployment. We briefly formalize these problems and provide some basic
algorithms for these two tasks.

4.1 Robotic Networks and Complexity

The global behavior of a robotic network arises from the combination of the local
actions taken by its members. Each robot in the network can perform a few
basic tasks such as sensing, communicating, processing information, and moving
according to it. The many ways in which these capabilities can be integrated
make a robotic network a versatile and, at the same time, complex system. The
following robotic network model provides the framework to formalize, analyze,
and compare distinct distributed behaviors.

We consider uniform networks of robotic agents defined by a tuple S =
(I,R, Ecmm) consisting of a set of unique identifiers I = {1, . . . , n}, a collection
of control systems R = {R[i]}i∈I , with R[i] = (X,U,X0, f), and a map Ecmm

from Xn to the subsets of I × I called the communication edge map. Here,
(X,U,X0, f) is a control system with state space X ⊂ R

d, input space U , set of
allowable initial states X0 ⊂ X, and system dynamics f : X ×U → X. An edge
between two identifiers in Ecmm implies the ability of the corresponding two
robots to exchange messages. A control and communication law for S consists
of the sets:

(i) A, called the communication language, whose elements are called mes-
sages;

(ii) W , set of values of some processor variables w[i] ∈ W , i ∈ I, and W0 ⊆ W ,
subset of allowable initial values. These sets correspond to the capability of
robots to allocate additional variables and store sensor or communication
data;

and the maps:

(iii) msg : X × W × I → A, called message-generation function;

(iv) stf : X × W × A
n → W , called state-transition function;

(v) ctl : X × W × A
n → U , called control function.
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To implement a control and communication law each robot performs the
following sequence or cycle of actions. At each instant ℓ ∈ Z≥0, each robot i
communicates to each robot j such that (i, j) belongs to Ecmm(x[1], . . . , x[n]).
Each robot i sends a message computed by applying the message-generation
function to the current values of x[i] and w[i]. After a negligible period of time,
robot i resets the value of its logic variables w[i] by applying the state-transition
function to the current value of w[i], and to the messages y[i](ℓ) received at ℓ.
Between communication instants, i.e., for t ∈ [ℓ, ℓ + 1), robot i applies a control
action computed by applying the control function to its state at the last sample
time x[i](ℓ), the current value of w[i], and to the messages y[i](ℓ) received at ℓ.

Remark 4.1 (Algorithm properties and congestion models) (i) In our
present definition, all robots are identical and implement the same algo-
rithm; in this sense the control and communication law is called uniform
(or anonymous). If W = W0 = ∅, then the control and communication
law is static (or memoryless) and no state-transition function is defined.
It is also possible for a law to be time-independent if the three relevant
maps do not depend on time. Finally, let us also remark that this is a
synchronous model in which all robots share a common clock.

(ii) Communication and physical congestion affect the performance of robotic
networks. These effects can be modeled by characterizing how the net-
work parameters vary as the number of robots becomes larger. For exam-
ple, in an ad hoc networks with n uniformly randomly placed nodes, it
is known [18] that the maximum-throughput communication range r(n) of
each node decreases as the density of nodes increases; in d dimensions the
appropriate scaling law is r(n) ∈ Θ

(

(log(n)/n)1/d
)

. As a second example,
it is reasonable to assume that, as the number of robots increase, so should
the area available for their motion. An alternative convenient approach is
the one taken by [19], where robots’ safety zones decrease with decreasing
robots’ speed. This suggests that, in a fixed environment, individual nodes
of a large ensemble have to move at a speed decreasing with n, and in
particular, at a speed proportional to n−1/d. •

Next, we establish the notion of coordination task and of task achievement by
a robotic network. Let S be a robotic network and let W be a set. A coordination
task for S is a map T : Xn × Wn → {true, false}. If W is a singleton,
then the coordination task is said to be static and can be described by a map
T : Xn → {true, false}. Additionally, let CC a control and communication law
for S.

(i) The law CC is compatible with the task T : Xn ×Wn → {true, false} if
its processor state take values in W, that is, if W [i] = W, for all i ∈ I.

(ii) The law CC achieves the task T if it is compatible with it and if, for all

initial conditions x
[i]
0 ∈ X0 and w

[i]
0 ∈ W0, i ∈ I, there exists T ∈ Z≥0

such that the network evolution ℓ 7→ (x(ℓ), w(ℓ)) has the property that
T(x(ℓ), w(ℓ)) = true for all ℓ ≥ T .
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In control-theoretic terms, achieving a task means establishing a convergence
or stability result. Beside this key objective, one might be interested in efficiency
as measured by required communication service, required control energy or by
speed of completion. We focus on the latter notion.

(i) The (worst-case) time complexity to achieve T with CC from (x0, w0) ∈
Xn

0 × Wn
0 is

TC(T, CC , x0, w0) = inf {ℓ | T(x(k), w(k)) = true , for all k ≥ ℓ} ,

where ℓ 7→ (x(ℓ), w(ℓ)) is the evolution of (S, CC) from the initial condition
(x0, w0);

(ii) The (worst-case) time complexity to achieve T with CC is

TC(T, CC) = sup
{

TC(T, CC , x0, w0) | (x0, w0) ∈ Xn
0 × Wn

0

}

.

Some ideas on how to define meaningful notions of space and communication
complexity are discussed in [14]. In the following discussion, we describe three
coordination algorithms, which have been cast into this modeling framework
and whose time complexity properties have been analyzed.

4.2 Agree-and-Pursue Algorithm

We begin our list of distributed algorithms with a simple law that is related to
leader election algorithms, see Section 3.3, and to cyclic pursuit algorithms as
studied in the control literature. Despite the apparent simplicity, this exam-
ple is remarkable in that it combines a leader election task (in the processor
states) with a uniform robotic deployment task (in the physical state), arguably
two of the most basic tasks in distributed algorithms and cooperative control,
respectively.

We consider n robots {θ[1], . . . , θ[n]} in S
1, moving along on the unit circle

with angular velocity equal to the control input. Each robot is described by the
tuple (S1, [−umax, umax], S

1, (0,e)), where e is the vector field on S
1 describing

unit-speed counterclockwise rotation. We assume that each robot can sense its
own position and can communicate to any other robot within distance r along
the circle. These data define the uniform robotic network Scircle.

[Algorithm description] The processor state consists of dir (the
robot’s direction of motion) taking values in {c, cc} (meaning clock-
wise and counterclockwise) and max-id (the largest UID received by
the robot, initially set to the robot’s UID) taking values in I. At
each communication round, each robot transmits its position and
its processor state. Among the messages received from the robots
moving towards its position, each robot picks the message with the
largest value of max-id. If this value is larger than its own value,
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the agent resets its processor state with the selected message. Be-
tween communication rounds, each robot moves in the clockwise or
counterclockwise direction depending on whether its processor state
dir is c or cc. Each robot moves kprop times the distance to the im-
mediately next neighbor in the chosen direction, or, if no neighbors
are detected, kprop times the communication range r.

For this network and this law there are two tasks of interest. First, we define
the direction agreement task Tdir : (S1)n × Wn → {true, false} by

Tdir(θ, w) =

{

true, if dir[1] = · · · = dir[n],

false, otherwise,

where θ = (θ[1], . . . , θ[n]), w = (w[1], . . . , w[n]), and w[i] = (dir[i], max-id[i]), for
i ∈ I. Furthermore, for ε > 0, we define the static equidistance task Tε-eqdstnc :
(S1)n → {true, false} to be true if and only if

∣

∣ min
j 6=i

distc(θ
[i], θ[j]) − min

j 6=i
distcc(θ

[i], θ[j])
∣

∣ < ε, for all i ∈ I.

In other words, Tε-eqdstnc is true when, for every agent, the distance to the
closest clockwise neighbor and to the closest counterclockwise neighbor are ap-
proximately equal.

An implementation of this control and communication law is shown in Fig-
ure 4. As parameters we select n = 45, r = 2π/40, umax = 1/4 and kprop = 7/16.
Along the evolution, all robots agree upon a common direction of motion and,
after suitable time, they reach a uniform distribution. A careful analysis based

Figure 4: The agree & pursue law. Disks and circles correspond to robots
moving counterclockwise and clockwise, respectively. The initial positions and
the initial directions of motion are randomly generated. The five pictures depict
the network state at times 0, 9, 20, 100, and 800.

on invariance properties and Lyapunov functions allows us to establish that,
under appropriate conditions, indeed both tasks are achieved by the agree-and-
pursue law [14].

Theorem 4.2 (Time complexity of agree-and-pursue law) For kprop ∈
]0, 1

2 [, in the limit as n → +∞ and ε → 0+, the network Scircle with umax(n) ≥
kpropr(n), the law CCagree & pursue, and the tasks Tdir and Tε-eqdstnc together
satisfy:
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(i) TC(Tdir, CCagree & pursue) ∈ Θ(r(n)−1);

(ii) if δ(n) is lower bounded by a positive constant as n → +∞, then

TC(Tε-eqdstnc, CCagree & pursue) ∈ Ω(n2 log(nε)−1),

TC(Tε-eqdstnc, CCagree & pursue) ∈ O(n2 log(nε−1)).

If δ(n) is upper bounded by a negative constant, then CCagree & pursue does
not achieve Tε-eqdstnc in general.

Finally we compare these results with the complexity result known for the
leader election problem.

Remark 4.3 (Comparison with leader election) Let us compare the agree-
and-pursue control and communication law with the classical Le Lann-Chang-
Roberts (LCR) algorithm for leader election discussed in Section 3.3. The leader
election task consists of electing a unique agent among all robots in the network;
it is therefore different from, but closely related to, the coordination task Tdir.
The LCR algorithm operates on a static network with the ring communica-
tion topology, and achieves leader election with time and total communication
complexity, respectively, Θ(n) and Θ(n2). The agree-and-pursue law operates
on a robotic network with the r(n)-disk communication topology, and achieves
Tdir with time and total communication complexity, respectively, Θ(r(n)−1) and
O(n2r(n)−1). If wireless communication congestion is modeled by r(n) of order
1/n as in Remark 4.1, then the two algorithms have identical time complexity
and the LCR algorithm has better communication complexity. Note that com-
putations on a possibly disconnected, dynamic network are more complex than
on a static ring topology. •

4.3 Aggregation Algorithms

The rendezvous objective (also referred to as the gathering problem) is to achieve
agreement over the location of the robots, that is, to steer each agent to a com-
mon location. An early reference on this problem is [20]; more recent refer-
ences include [21, 22, 23, 24]. We consider two scenarios which differ in the
robots’ communication capabilities and the environment in which the robots
move. First [23], we consider the problem of rendezvous for robots equipped
with range-limited communication in obstacle-free environments. In this case,
each robot is capable of sensing its position in the Euclidean space R

d and can
communicate it to any other robot within a given distance r. This communica-
tion service is modeled by the r-disk graph, in which two robots are neighbors
if and only if their Euclidean distance is less than or equal to r. Second [25],
we consider visually-guided robots. Here the robots are assumed to move in a
nonconvex simple polygonal environment Q. Each robot can sense, within line
of sight, any other robot as well as the distance to the boundary of the environ-
ment. The relationship between the robots can be characterized by the so-called
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visibility graph: two robots are neighbors if and only if they are mutually visible
to each other.

In both scenarios, the rendezvous problem cannot be solved with distributed
information unless the robots’ initial positions form a connected communication
graph. Arguably, a good property of any rendezvous algorithm is that of main-
taining connectivity between robots. This connectivity-maintenance objective is
interesting on its own. It turns out that this objective can be achieved through
local constraints on the robots’ motion. Motion constraint sets that maintain
connectivity are designed in [20, 25] by exploiting the geometric properties of
disk and visibility graphs.

These discussions lead to the following algorithm that solves the rendezvous
problems for both communication scenarios. The robots execute what is known
as the Circumcenter Algorithm; here is an informal description. Each robot iter-
atively performs the following tasks:

1: acquire neighbors’ positions

2: compute connectivity constraint set

3: move toward the circumcenter of the point set comprised of its neighbors

and of itself, while remaining inside the connectivity constraint

set.

One can prove that, under technical conditions, the algorithm does achieve
the rendezvous task in both scenarios; see [23, 25]. Additionally, when d = 1, it
can be shown that the time complexity of this algorithm is Θ(n); see [15].

4.4 Deployment Algorithms

The problem of deploying a group of robots over a given region of interest can be
tackled with the following simple heuristic. Each robot iteratively performs the
following tasks:

1: acquire neighbors’ positions

2: compute own dominance region

3: move towards the center of own dominance region

This short description can be made accurate by specifying what notions of
dominance region and of center are to be adopted. In what follows we mention
two examples and refer to [26, 27, 28, 29] for more details.

First, we consider the area-coverage deployment problem in a convex envi-
ronment Q. The objective is to maximize the area within close range of the
mobile nodes. This models a scenario in which the nodes are equipped with
some sensors that take measurements of some physical quantity in the envi-
ronment, e.g., temperature or concentration. Assume that certain regions in
the environment are more important than others and describe this by a density
function φ. This problems leads to the coverage performance metric

Have(p1, . . . , pn) =

∫

Q

min
i∈{1,...,n}

f(‖q − pi‖)φ(q)dq =
n

∑

i=1

∫

Vi

f(‖q − pi‖)φ(q)dq.
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Here pi is the position of the ith node, f measures the performance of an in-
dividual sensor, and {V1, . . . , Vn} is the Voronoi partition of the environment
Q generated by the positions {p1, . . . , pn}. If we assume that each node obeys
a first-order dynamical behavior, then a simple gradient scheme can be easily
implemented in a spatially-distributed manner. Following the gradient of Have

corresponds, in the algorithm described above, to defining (1) the dominance
regions to be the Voronoi cells generated by the robots, and (2) the center of a
region to be the centroid of the region (if f(x) = x2). Because the closed-loop
system is a gradient flow for the cost function, performance is locally, contin-
uously optimized. As a special case, when the environment is a segment and
φ = 1, the time complexity of the algorithm can be shown to be O(n3 log(nε−1)),
where ε is an accuracy threshold below which we consider the task accomplished.

(a) (b) (c)

Figure 5: Deployment algorithm for the area-coverage problem. Each of the 20
robots moves toward the centroid of its Voronoi cell. This strategy corresponds
to the network following the gradient of Have. Areas of the polygon with greater
importance are colored darker. Figures (a) and (c) show, respectively, the ini-
tial and final locations, with the corresponding Voronoi partitions. Figure (b)
illustrates the gradient descent flow.

Second, we consider the problem of deploying to maximize the likelihood
of detecting a source. For example, consider devices equipped with acoustic
sensors attempting to detect a sound-source (or, similarly, antennas detecting
RF signals, or chemical sensors localizing a pollutant source). For a variety
of criteria, when the source emits a known signal and the noise is Gaussian,
we know that the optimal detection algorithm involves a matched filter, that
detection performance is a function of signal-to-noise-ratio, and, in turn, that
signal-to-noise ratio is inversely proportional to the sensor-source distance. In
this case, the appropriate cost function is

Hworst(p1, . . . , pn) = max
q∈Q

min
i∈{1,...,n}

f(‖q − pi‖) = max
q∈Vi

f(‖q − pi‖),

and a greedy motion coordination algorithm is for each node to move toward
the circumcenter of its Voronoi cell. A detailed analysis [28] shows that the
detection likelihood is inversely proportional to the circumradius of each node’s
Voronoi cell, and that, if the nodes follow the algorithm described above, then
the detection likelihood increases monotonically as a function of time.
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5 Bibliographical Notes

In this section we present a necessarily incomplete discussion of some relevant
literature that we have not yet mentioned in the previous sections.

First, we review some literature on emergent and self-organized swarming
behaviors in biological groups with distributed agent-to-agent interactions. In-
teresting dynamical systems arise in biological networks at multiple levels of
resolution, all the way from interactions among molecules and cells [MB01] to
the behavioral ecology of animal groups [Oku86]. Flocks of birds and schools
of fish can travel in formation and act as one unit (see [PVG02]), allowing
these animals to defend themselves against predators and protect their territo-
ries. Wildebeest and other animals exhibit complex collective behaviors when
migrating, such as obstacle avoiding, leader election, and formation keeping
(see [Sin77, GL93]). Certain foraging behaviors include individual animals par-
titioning their environment into nonoverlapping zones (see [Bar74]). Honey
bees [SB99], gorillas [SH94], and whitefaced capuchins [BC95] exhibit synchro-
nized group activities such as initiation of motion and change of travel direction.
These remarkable dynamic capabilities are achieved apparently without follow-
ing a group leader; see [Oku86, PVG02, GL93, Bar74, SB99, SH94, BC95] for
specific examples of animal species and [CKFL05, CR03] for general studies.

With regards to distributed motion coordination algorithms, much progress
has been made on pattern formation [SY99, BK04, JK04, SPL07], flocking [TJP07,
OS06], self-assembly [KGL06], swarm aggregation [GP03], gradient climbing [OFL04],
cyclic pursuit [BCE91, MBF04, SBF05], vehicle routing [LH97, SSFV05], and
connectivity maintenance problems [ZP05, SNB07].

Much research has been devoted to distributed task allocation problems. The
work in [GM04] proposes a taxonomy of task allocation problems. In papers
such as [GSH06, AH06, SCRW03, MP07], advanced heuristic methods are devel-
oped, and their effectiveness is demonstrated through simulation or real world
implementation. Distributed auction algorithms are discussed in [CW03, MP07]
building on the classic works in [BC91, BC93]. A distributed MILP solver is
proposed in [AH06]. A spatially distributed receding-horizon scheme is proposed
in [FB04, PFB07]. There has also been prior work on target assignment prob-
lems [AMS07, ZP07, SB07]. Target allocation for vehicles with nonholonomic
constraints is studied in [RSD07, SFB08, SBF07].

References with a focus on robotic networks include the survey in [CFK97],
the text [Ark98] on behavior-based robotics, and the recent special issue [APP02]
of the IEEE Transaction on Robotics and Automation. An important con-
tribution towards a network model of mobile interacting robots is introduced
in [SY99]. This model consists of a group of identical “distributed anonymous
mobile robots” characterized as follows: no explicit communication takes place
between them, and at each time instant of an “activation schedule,” each robot
senses the relative position of all other robots and moves according to a pre-
specified algorithm. Communication complexity for control and communication
algorithms A related model is presented in [24], where as few capabilities as
possible are assumed on the agents, with the objective of understanding the
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limitations of multi-agent networks. A brief survey of models, algorithms, and
the need for appropriate complexity notions is presented in [San01]. Recently, a
notion of communication complexity for control and communication algorithms
in multi-robot systems is analyzed in [Kla03], see also [KM04].

Finally, with regards to linear distributed algorithms we mention the fol-
lowing references, on top of the ones discussed in Section 3.4. Various results
are available on continuous-time consensus algorithms [OSM04, Mor04, RB05,
LFM05, LFM07, FYL06], consensus over random networks [HM05, Wu06, TSJ07],
consensus algorithms for general functions [BGP06, Cor08], connections with the
heat equation and partial difference equation [FTBG06], convergence in time-
delayed and asynchronous settings [BHOT05, AB06], quantized consensus prob-
lems [Sav04, KBS07], applications to distributed signal processing [SOSM05,
XBL05, OSFFS06], characterization of the convergence rates and time complex-
ity [LO81, OT07, CFSZ08, CMA08]. Finally, two recent surveys are [OSFM07,
RBA07].

6 Future Directions

Robotic networks incorporate numerous subsystems. Their design is challeng-
ing because they integrate heterogeneous hardware and software components.
Additionally, the operation of robotic networks is subject to computing, energy,
cost, and safety constraints. The interaction with the physical world and the
uncertain response from other members of the network are also integral parts
to consider in the management of robotic networks. Traditional centralized ap-
proaches are not valid to satisfy the scalability requirements of these systems.
Thus, in order to successfully deploy robotic and communication networks, it
is necessary to expand our present knowledge about how to integrate and ef-
ficiently control them. The present chapter has offered a glimpse into these
problems. We have presented verification and complexity tools to evaluate the
cost of cooperative strategies that achieve a variety of tasks.

Networks of robotic agents are an example of the class of complex, networked
systems which pervades our world. Understanding how to design robotic swarms
requires the development of new fundamental theories that can explain the be-
havior of general networks evolving with time. Some of the desired properties
of these systems are robustness, ease of control, predictability with time, guar-
anteed performance, and quality of service. Self-organization and distributed
management would also allow for the minimal supervision necessary for scala-
bility. However, devising systems that meet all these criteria is not an easy task.
A small deviation by an agent or a change in certain parameters may produce
a dramatic change in the overall network behavior. Relevant questions that
pertain these aspects are currently being approached from a range of disciplines
such as systems and control, operations research, random graph theory, statisti-
cal physics, and game theory over networks. Future work will undoubtedly lead
to a cross-fertilization of these and other areas that will help design efficient
robotic sensor networks.
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