
IROS 2008, To appear
Nice, France

Smooth Nearness-Diagram Navigation

Joseph W. Durham and Francesco Bullo

Abstract— This paper presents a new method for reactive
collision avoidance for mobile robots in complex and cluttered
environments. Our technique is to adapt the “divide and con-
quer” approach of the Nearness-Diagram+ Navigation (ND+)
method to generate a single motion law which applies for
all navigational situations. The resulting local path planner
considers all the visible obstacles surrounding the robot, not just
the closest two. With these changes our new navigation method
generates smoother motion while avoiding obstacles. Results
from comparisons with ND+ are presented as are experiments
using Erratic mobile robots.

I. INTRODUCTION

Safe navigation through an environment is a fundamen-
tal piece of most potential tasks for autonomous mobile
robots. Autonomous robots are being developed for search-
and-rescue [1], transportation [2], and mobility assistance
[3], among many other applications. In each circumstance,
the safety and performance of navigation in unknown and
dynamic environments with a potential high density of ob-
stacles is crucial to accomplishing the larger task.

One intriguing concept which has recently shown a lot of
potential in mobile applications isgaps: discontinuities in the
depth of obstacles around the robot which indicate potential
paths into occluded areas of the environment. Navigation and
exploration based solely on gaps, as opposed to the more
common occupancy grid maps, has been studied in [4]. [4]
introduced the Gap Navigation Tree (GNT) which contains
links of which gaps lead to which other gaps. Navigation
based on GNTs was shown to be intrinsically distance-
optimal without any need for distance measurements or
localization [5].

The Nearness-Diagram Navigation (ND) method [6] was
the first reactive navigation approach based on gaps. By
navigating based on gaps, ND avoids local trap situations
without the computational load of determining which areas
of the environment are connected. The ND method uses a
tree of conditions based on the configuration of the obstacles
closest to the robot to divide navigation behavior into five
scenarios. The subsequent ND+ method [3] adds a sixth
scenario to balance the division of motion laws and increases
the smoothness of transitions between some of the scenarios.
We describe the six ND+ scenarios in more detail after
introducing some required concepts in Section III.

This work was supported in part by NSF Awards IIS-0330008 andCMS-
0626457.

J. W. Durham and F. Bullo are with the Department
of Mechanical Engineering, University of California, Santa
Barbara, CA 93106 joey@engineering.ucsb.edu,
bullo@engineering.ucsb.edu

Planner
Local

Commands
Motor

Planner
Global

Dynamics
Vehicle

Rangefinder
Data

θgoal

θtraj

vlimit

Fig. 1. The motion control framework considered by this paper.The
proposed SND method fills the role of the local planner.

In this paper we present the Smooth Nearness-Diagram
Navigation (SND) method that is an evolution of ND+. As
compared with the ND+ navigation scheme [3], the key
difference in our approach is that a single motion law is
proposed that is applicable to all possible configurations
of surrounding obstacles. The change away from separate
motion laws for different scenarios, as we will describe in
Section III, removes abrupt transitions in behavior when the
robot navigates near obstacles. In addition, adjusting thegap
trajectory based on all nearby obstacles, not just the closest
two, leads to smoother paths as we will show in Section IV.

II. M OTION CONTROL FRAMEWORK

The focus of this paper is on the reactive collision avoid-
ance (local planner) component of the robot motion control
framework shown in Fig. 1. The distinction between the role
of the global and local planners is fundamentally important
to this motion control framework and the measurement of
success for the two planners. Similar task separation schemes
for motion control have been considered in [7], [2] among
others.

In this framework, the robot is equipped with sensors ca-
pable of producing a 2-D depth map of obstacles surrounding
the robot. The most common forms of such sensors are sonar
and laser range finders. Each sensor update passes obstacle
location information to both the global and local planners.

The global planner is responsible for keeping track of
the relative position of the robot and its goal. The global
planner must also remember which potential paths towards

the goal have been determined to be dead-ends. Using this
information, it passes a desired headingθgoal to the local
planner though it is not necessary to update this heading
at every sensor update. Examples of global planners which
could fill this role include GNTs [4] and D* [8], among
others.

The local planner considers the global goal heading and
the local obstacles visible to the robot to plot a trajectory
which will make safe progress towards the goal. This reactive
planner must be able to process and react to each sensor
update to successfully avoid obstacles. Examples of local
planners include Nearness-Diagram methods, VFH [9], and
Dynamic Window [10]. The local planner passes a trajectory
θtraj and a speed limitvlimit to the robot dynamics component
which translates the desired trajectory into commands for the
various actuators of the robot.

III. R EACTIVE COLLISION AVOIDANCE METHOD

In this section we present the Smooth Nearness-Diagram
Navigation method (SND) for collision avoidance which fills
the role of the local, reactive planner in the motion control
framework in Section II.

The SND method works as follows: first, the rangefinder
data is analyzed to determine the structure of obstacles
surrounding the robot as described in Section III-B. The best
heading which makes progress towards the goal direction
set by the global planner is then selected as presented in
Section III-D. In Section III-E we describe how the SND
method deflects this heading to avoid any nearby obstacles.
This process of determining a safe trajectory is repeated for
each sensor update.

A. Definitions

Angles and angular distances play a significant part in our
algorithm and so we will carefully define these relationships.
Let S

1 be the unit circle attached to the robot’s reference
frame. We will measure positions onS1 counterclockwise
from the positive horizontal axis (directly in front of the
robot). Positive angles less thanπ are on the left of the
robot, negative on the right.

For anglesα, β ∈ S
1, we let dist(α, β) be the geodesic

distance betweenα and β defined by dist(α, β) =
min{distc(α, β),distcc(α, β)}, wheredistc(α, β) = ((α −
β)mod 2π) anddistcc(α, β) = ((β − α)mod 2π) are the
path lengths fromα to β traveling clockwise and counter-
clockwise, respectively. Here(α mod 2π) is the remainder
of the division ofα by 2π.

Given a scalarθ, we let proj(θ) take value in[−π, π[,
where the mapproj : R → [−π, π[is defined by

proj(θ) = ((θ + π)mod 2π) − π. (1)

Given a < b, we define the saturation functionsat[a,b] :
R → [a, b] by

sat[a,b](x) =

a, if x ≤ a,

x, if a < x < b,

b, if x ≥ b.

(2)

left gap

right gap

valley

region

(b)
(a)

θgoal θrg

θog

Vbest

Fig. 2. The circular robot detects four gaps, indicated by dashed lines,
in the depth measurements around it. There are two types of gaps: (a) is
created by neighboring depth measurements differing by more than the robot
diameter while at (b) one depth measurement returns no obstaclein range.
The light solid line indicates the angle directly behind therobot. The four
gaps define regions and valleys around the robot, some of whichare labeled.
The robot chooseVbest, θrg, andθog based on the goal directionθgoal.

B. Locating Gaps and Valleys

A gap occurs at an angle where two contiguous depth
measurements are either separated by more than the robot
diameter2R or one of the measurements returns no obstacle
in range. The first type of gap occurs at (a) in Fig. 2, the
second at (b). See [6] for more on calculating the location
of gaps from rangefinder data. A“left gap” means that the
closer measured obstacle falls on the left side of the gap, as
in (a) in Fig. 2, indicating that there may be an occluded
free area on the left. The opposite holds for right gaps.

Each pair of consecutive gaps defines aregion. A valley
is a navigable region with either a left gap on its left side, a
right gap on its right side, or both. Each valley is defined by
two gaps, one of which we will call therising gapand refer
to by the angleθrg. When a valley is defined by two left or
right gaps, the gap on the appropriate side of the valley is
θrg. If the valley is defined by a left and a right gap (as is the
case in Fig. 2), then the gap closest to the heading provided
by the global plannerθgoal is selected asθrg. The other gap
of the valley is referred to asθog.

Once the list of valleys surrounding the robot is assembled,
eachθrg is compared againstθgoal. The valley which best
matches this heading,Vbest, is selected as shown in Fig. 2.
The mechanism for selecting the best valley are the same as
in the ND and ND+ methods, the differences come with the
selection of a desired heading and adjustments for nearby
obstacles.

C. ND+ Method Description

The ND+ method divides behavior into six scenarios based
on the obstacle point closest to the left and right side of the
robot [3]. The top classifier, low or high safety, depends on
whether an obstacle falls within the safety distanceDs:

1) HSGR: High safety,θgoal is in Vbest;
2) HSWR: High safety,Vbest is wide;
3) HSNR: High safety,Vbest is narrow;
4) LSGR: Low safety,θgoal is in Vbest;
5) LS1: Low safety, close obstacle on only one side;
6) LS2: Low safety, close obstacles on both sides.

The ND+ method determines the desired trajectory for the
robot by deflectingθrg based on the two closest obstacles
and the width ofVbest.

D. Determining Desired Heading

The two gaps ofVbest, θrg andθog, define thefree walking
area for the robot which makes the best progress towards the
goal. We will now define two angles based on this valley,
first the safe rising gapθsrg:

θsrg =

θrg − arcsin
(

R+Ds
Drg

)

, if θrg is a left gap,

θrg + arcsin
(

R+Ds
Drg

)

, if θrg is a right gap
(3)

where θrg and Drg are the angle of the rising gap and the
distance to the obstacle creating the gap from the center of
the robot. This adjustment toθrg will point the robot in such
a way that the obstacle creating the gap will not enterDs

as the robot moves towards the gap. WhenVbest is narrow,
it is possible thatθsrg will point too close toθog. For these
narrow valleys it is better to head towards the angle which
bisectsVbest, θmid defined by:

θmid =

{

θrg − distc(θrg, θog)/2, if θrg is a left gap,

θrg + distcc(θrg, θog)/2, if θrg is a right gap,
(4)

where the half-width ofVbest is subtracted fromθrg for left
gaps and added for right gaps.

Under most circumstances, the desired heading for the
robot θd will be whichever ofθsrg andθmid is closer toθrg:

θd =

{

θmid, if dist(θd, θmid) < dist(θd, θsrg),

θsrg, else.
(5)

Remark 1 (Comparison to ND+):Both θsrg and θmid are
all also used by some of the cases in the ND+ method.
The key difference is that our approach chooses whichever
is closer toθrg in all scenarios, removing a source of non-
smoothness in some of the transitions between the cases in
ND+ (particularly LS1 and LS2). •

It is also worth noting that if the goal of the robot is to
assume a particular position, thenθd should be set toθgoal

whenθgoal falls betweenθrg andθog. We consider this to be
a special case as moving through the environment safely is
the primary goal of the reactive planner. In addition, some
visibility-based tasks can be accomplished with distance-
optimal paths simply by chasing gaps [5].

E. Obstacle Avoidance Method

With the desired headingθd determined, the SND method
will consider deflecting this trajectory based on the config-
uration of obstacles surrounding the robot. In [3], the ND+
method separated the actions the robot would take into six
different scenarios based on the proximity of obstacles on
the left and right of the robot, the width ofVbest, andθgoal.
Our approach is to generate a single obstacle avoidance rule
which works under all scenarios and considers all of the
obstacles around the robot, not just the closest two.

The foundation of the SND method is the measurement
of the threat posed by each of theN obstacle distance
measurements from the rangefinder. An obstacle is consid-
ered a threat if it falls within the safety distanceDs of the
boundary of the robot and the threat measuresi increases as
the obstacle gets closer to the robot.

si = sat[0,1]

(

Ds + R − Di

Ds

)

(6)

whereDi is the distance to theith obstacle point measured
from the center of the robot and thesat operator capssi

at 0 when the obstacle is outsideDs and 1 if the robot is
touching the obstacle.

Using this measurement of the danger posed by each
visible obstacle we can define the deflection from the desired
heading to avoid each of these obstacles,δi.

δi = si · proj (distcc ((θi + π) , θd)) ∈ [−π, π[(7)

where θi is the angle towards theith obstacle point and
the term proj (distcc ((θi + π) , θd)) is the position ofθd

measured counter-clockwise from the angle directly away
from the obstacle. This angular distance is weighted bysi :
whensi is 0 and the obstacle is outsideDs, the deflectionδi

is also 0. When the robot is touching theith obstacle andsi

is 1, δi is at full strength and will point directly away from
the obstacle regardless of the value ofθd.

To define the relative importance of eachδi we use the
sum of the square of all thesi danger coefficients:

stotal =

N
∑

i=1

s2
i . (8)

With this we can now define the total obstacle avoidance
deflection∆avoid as the weighted sum of allδi:

∆avoid =

N
∑

i=1

s2
i

stotal
δi ∈ [−π, π[. (9)

When there is a single obstacle point insideDs, the effect of
Eq. (9) is equivalent to the obstacle avoidance deflection in
the LS1 (close obstacle on one side of the robot) condition
from [3]. However, when there are multiple obstacle points
insideDs (either from multiple obstacles or large obstacles),
Eq. (9) accounts for all of them and finds the weighted net
avoidance deflection. Terms for whichsi is larger will have
more pull in the sum, as will obstacles closer toθd because
of the differencing in Eq. (7).

The safe angular trajectory for the robot is then the
goal directed angleθd adjusted by the obstacle avoidance
deflection∆avoid:

θtraj = θd + ∆avoid. (10)

Note that sinceδi is formulated as a deflection away from
θd, if the robot is very close to an obstacle, thenθtraj may
point in nearly the opposite direction asθd. When the robot
moves away from the obstacle,∆avoid will shrink and the
robot will follow θd. There is also no hard constraint against

moving towards one obstacle (particularly one outsideDs)
in order to avoid another.

Equation (10) determines the new heading for the robot.
Our obstacle avoidance layer also specifies the speed limit
vlimit of the robot to maintain safety near obstacles.

vlimit = (1 − min{s1, ..., sN}) · vmax (11)

wherevmax is the maximum velocity of the robot. The robot
slows down based upon the closest obstacle, coming to a full
stop if it ever touches an obstacle.

Remark 2 (Smoothness Properties of SND):Throughout
Section III we have argued that by using a single motion
law in all circumstances and by taking all nearby obstacles
into account, SND produces smoother motion than ND+.
We show simulations confirming this in Section IV. Beyond
these arguments, we conjecture that the continuous version
of Eq. (10) is continuously dependent on the position of
the robot. Let us provide some arguments to support this
conjecture. For a rangefinder with infinitesimal angular
resolution, Eq. (8) becomes:

stotal(x, y) =

∮

s(α, x, y)2dα. (12)

wheres(α, x, y) is the continuous version ofsi from Eq. (6).
Since it includess is dependent linearly on the visibility
distance, Eq. (12) is reminiscent of the formula for the area
of the visibility space of the robot:

Avisible(x, y) =

∮

r(α, x, y)2dα. (13)

For a polygonal environment, possibly non-convex and with
holes, the area of the visibility space is locally Lipschitz
continuous everywhere except at the internal reflex vertices
of the environment (an impossible position for a robot of
non-zero size) [11]. In future work these observations could
potentially be extended to prove that the continuous version
of ∆avoid is continuously dependent on the position of the
robot. •

IV. SIMULATIONS

To demonstrate the differences in the execution of the
SND method and the ND+ method presented in [3], we
implemented both in version 2.0.3 of the open-source
Player/Stage robot software system [12]. One of the strengths
of Player/Stage is that the same code can run either a real or
simulated robot. We will show results from SND running on
a physical robot in Section V, but simulations allow the two
methods to be directly compared with no differences other
than their actions. For the simulations we used a raytrace
accuracy of0.02m.

Both SND and ND+ are designed to handle troublesome
scenarios with very close obstacles. For these simulationswe
created a map with many tight squeezes between obstacles
where the robot could pass with less then10cm total clear-
ance. The map can be seen in Fig. 3, where the black regions
are obstacles. Instead of using a global planner for these
simulations the robot is instructed to follow gaps towards

the top right corner of the map and then towards the top
left. The robot’s goal is to move through the environment in
this way, not to assume a particular position.

A. Robot Model

For simplicity we have used a circular, differential-drive
robot withR = 0.25m and a weight of12kg. The simulated
laser rangefinder samplesn = 1024 points over a full360◦

with a range of4m. The linear and angular velocities are
capped atvmax = 0.5m/s and ωmax = 1.0rad/s while the
safety boundary around the robot is set toDs = 1.5R =
0.375m.

A differential-drive robot in Player/Stage accepts two mo-
tion commands: rotational and linear speeds. These speeds
are calculated fromθtraj andvlimit using the following equa-
tions:

ω = sat[−1,1]

(

θtraj

π/2

)

· ωmax, (14)

v = sat[0,1]

(

π/4 − |θtraj|

π/4

)

· vlimit . (15)

If θtraj points in the opposite direction as the current robot
heading, the robot will first spin in place for3π

4 . Once its
heading is within π

4 of θtraj the robot will begin moving
forward with a velocity proportional with its alignment to
θtraj. Equations (14) and (15) are similar to the those used in
[6].

B. SND Simulation

The route chosen using the SND method is shown in
Fig. 3. The robot successfully navigates the course in135sec,
slowing down to squeeze between tight obstacles. At regular
intervals a square bounding box is left behind on the map
indicating the progress of the robot. The relative speeds for
different sections of the map can be interpreted from the
density of these gray trails. Denser sections also correspond
to the parts of the path where the robot passes close to
obstacles, sincevlimit is determined by the closest obstacle
in Eq. (11).

C. ND+ Simulation

The route chosen using the ND+ method from [3] is shown
in Fig. 4. The robot does not complete the course after
clipping the last obstacle, coming to a full stop after254sec.
Other close brushes with obstacles can be seen along the path
taken, particularly between B and C. In each case the robot
is operating in the LS2 case where there are close obstacles
on both sides of the robot.

The collision and other close brushes with obstacles using
ND+ result from the combination of two decisions in the
LS2 case handling. To provide a smoother bridge between
the HSNR (no close obstacles, butVbest is narrow) case and
LS2, ND+ always usesθmid in LS2 regardless of the width
of Vbest. In addition, the two deflection terms for the closest
obstacle on the left and right of the robot are averaged instead
of being weighted by relative proximity of the obstacles.

When the robot collided with the environment,θsrg is
located directly in front of it whileθmid is angled to the

A

C

B

Fig. 3. Simulation results showing path followed by SND methodthrough
tight obstacles.

right. Though the robot is touching the right obstacle and the
deflection angleδR points directly away from the obstacle,
its influence is divided by two when averaged with theδL.
The combined pull to the right ofθmid andδL/2 is equal to
δR/2 and the robot does not avoid the collision.

D. Comparison of Paths Generated

To demonstrate the increased smoothness of the paths
generated by SND, we recordedθtraj over the course of these
simulations. In Fig. 5,θtraj is shown for (a) SND and (b) ND+
and is plotted against the distance traveled by the robot so
that points on the graphs roughly correspond. While traveling
through the open starting area the two methods are fairly
similar but differences are clear once they enter the tight
corridor labeled A. The sharp changes inθtraj for ND+ in this
corridor are the result of considering only the closest obstacle
point on the left and right of the robot. In tight scenarios with
many obstacles points, the direction towards the closest point
will change frequently as the robot moves. These frequent
changes cause the many sharp turns in Fig 5(b) near A. By
using a weighted sum over all the obstacle points, SND
avoids these sharp changes inθtraj while still emphasizing
the closest points. Similar improvements in smoothness near
obstacles can be seen at B and C.

While leaving the A corridor, ND+ suffers from several
large spikes inθtraj. Most of these spikes are the result of gaps
merging or disappearing, smaller sharp changes can also be
seen in the SND plot. As mentioned in Subsection III-B, both
ND+ and SND use the same mechanisms for determining
which valley is the best to follow, the differences are in
picking θsrg or θmid and then adjusting due to obstacles. The
spikes are larger for ND+ because under the LS2 condition
it always choosesθmid regardless of the width ofVbest. When

A

C

B

Fig. 4. Simulation results showing path followed by ND+ methodusing
the same conditions as Fig. 3. Constraints on the selection ofθd and the
weighting of deflection angles in the LS2 case of ND+ cause therobot to
collide with the environment and get stuck.

gaps merge or split and the valley width changes suddenly,
θmid jumps as well. By selecting whichever ofθsrg or θmid

is closer toθrg, SND reduces these effects. ND+ also shows
sharp changes in behavior when transitioning between LS2
and LS1 where it switches from followingθmid to θsrg.

V. EXPERIMENTAL RESULTS

For these experiments we used the Erratic mobile robot
platform from Videre Design with an on-board computer and
a Hokuyo URG-04LX laser rangefinder. The vehicle platform
is roughly square(40cm × 37cm) with two differential
drive wheels and a single rear caster. The laser scans683
points over 240◦ at 10Hz. The on-board computer runs
the same SND code used for the simulations in Section IV
through Player/Stage. The1.8GhzCore2Duo processor runs
the reactive SND method in less than10msec and we then
wait for the10Hz updates from the laser.

Fig. 6 shows a picture of the robot navigating an obstacle
course. A video of the SND experiment is also included
in the submission of this paper. As shown in Fig. 7, the
SND method in (a) produces smoother changes in heading
while avoiding obstacles than the ND+ method shown in
(b). Increases in sharp transitions when compared to the
simulations are expected since the rangefinder has only
a 240◦ field of view. By summingδi over all obstacle
points, SND reduces the sharpness of these field of view
effects, in addition to the other improvements mentioned in
Subsection IV-D.

VI. CONCLUSIONS AND FUTURE WORKS

We have presented the Smooth Nearness-Diagram (SND)
local navigation method for reactive obstacle avoidance.

0 2 4 6 8 10 12

−1

−0.5

0

0.5

1

θ tr
aj

(r

ad
)

(a)

0 2 4 6 8 10 12

−1

−0.5

0

0.5

1

Distance Travelled (m)

θ tr
aj

(r

ad
)

(b)

B

B

A

A C

C

Fig. 5. Comparison of the angular headingθtraj output by (a) SND (b)
ND+ along the paths shown in Fig. 3 and 4 respectively.

Fig. 6. Erratic mobile robot navigating an obstacle course using SND.

SND improves the smoothness of paths generated by
Nearness-Diagram methods by creating a single motion law
for all scenarios and by taking all nearby obstacles into
account instead of just the closest two. Comparisons between
SND and ND+ in numerical simulations and in experiments
with ground robots demonstrated this improvement.

Future work will focus on two research objectives. First,
expanding upon our observations and experimental evidence,
it is of interest to prove that the SND control law depends
continuously on the position of the robot and the environ-
ment. Second, more analysis is needed to determine the
circumstances under which SND is guaranteed to find safe
paths through an environment.

REFERENCES

[1] B. A. Maxwell, W. Smart, A. Jacoff, J. Casper, B. Weiss, J. Scholtz,
H. Yanco, M. Micire, A. Stroupe, D. Stormont, and T. Lauwers, “2003

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

−2

−1

0

1

2

θ tr
aj

(r

ad
)

(a)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

−2

−1

0

1

2

Distance Travelled (m)

θ tr
aj

(r

ad
)

(b)

Fig. 7. Theta trajectory plots for the experiment using (a) SND (b) ND+.

AAAI robot competition and exhibition,”AI Magazine, vol. 25, no. 2,
pp. 68–80, 2004.

[2] S. Thrun, M. Montemerlo, H. Dahlkamp, D. Stavens, A. Aron,
J. Diebel, P. Fong, J. Gale, M. Halpenny, G. Hoffmann, K. Lau,
C. Oakley, M. Palatucci, V. Pratt, P. Stang, S. Strohband, C.Dupont,
L.-E. Jendrossek, C. Koelen, C. Markey, C. Rummel, J. van Niek-
erk, E. Jensen, P. Alessandrini, G. Bradski, B. Davies, S. Ettinger,
A. Kaehler, A. Nefian, and P. Mahoney, “Stanley: The robot that won
the DARPA Grand Challenge,”Journal of Robotic Systems, vol. 23,
no. 9, pp. 661–692, 2006.

[3] J. Minguez, J. Osuna, and L. Montano, “A ”divide and conquer”
strategy based on situations to achieve reactive collisionavoidance
in troublesome scenarios,” inIEEE Int. Conf. on Robotics and Au-
tomation, (New Orleans, LA), pp. 3855–3862, Apr. 2004.

[4] B. Tovar, L. Guilamo, and S. M. LaValle, “Gap navigation trees:
Minimal representation for visibility-based tasks,” inAlgorithmic
Foundations of Robotics VI(B. Siciliano, O. Khatib, and F. Groen,
eds.), vol. 17 ofSpringer Tracts in Advanced Robotics, pp. 425–440,
New York: Springer Verlag, 2005.

[5] B. Tovar, R. Murrieta-Cid, and S. M. LaValle, “Distance-optimal
navigation in an unknown environment without sensing distances,”
IEEE Transactions on Robotics, vol. 23, no. 3, pp. 506–518, 2007.

[6] J. Minguez and L. Montano, “Nearness diagram (ND) navigation:
Collision avoidance in troublesome scenarios,”IEEE Transactions on
Robotics and Automation, vol. 20, no. 1, pp. 45–59, 2004.

[7] L. Montesano, J. Minguez, and L. Montano, “Lessons learned in
integration for sensor-based robot navigation systems,”International
Journal of Advanced Robotic Systems, vol. 3, no. 1, pp. 85–91, 2006.

[8] S. Koenig and M. Likhachev, “Fast replanning for navigation in
unknown terrain,”IEEE Transactions on Robotics, vol. 21, pp. 354–
363, 6 2005.

[9] I. Ulrich and J. Borenstein, “VFH*: Local obstacle avoidance with
look-ahead verification,” inIEEE Int. Conf. on Robotics and Automa-
tion, (San Francisco, CA), pp. 2505–2511, Apr. 2000.

[10] D. Fox, W. Burgard, and S. Thrun, “The dynamic window approach to
collision avoidance,”IEEE Robotics and Automation Magazine, vol. 4,
no. 1, pp. 23–33, 1997.

[11] A. Ganguli, J. Cort́es, and F. Bullo, “Maximizing visibility in non-
convex polygons: Nonsmooth analysis and gradient algorithmdesign,”
SIAM Journal on Control and Optimization, vol. 45, no. 5, pp. 1657–
1679, 2006.

[12] B. Gerkey and contributors, “Player/Stage/Gazebo Project.”
http://www.sourceforge.net/playerstage, Sept.
2007. version 2.03.

