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Distributed Abstract Optimization via Constraints
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Abstract—Distributed abstract programs are a novel class
of distributed optimization problems where (i) the number of
variables is much smaller than the number of constraints and
(ii) each constraint is associated to a network node. Abstract
optimization programs are a generalization of linear programs
that captures numerous geometric optimization problems. We
propose novel constraints consensus algorithms for distributed
abstract programs with guaranteed finite-time convergence to a
global optimum. The algorithms rely upon solving local abstract
programs and exchanging the solutions among neighboring pro-
cessors. The proposed algorithms are appropriate for networks
with weak time-dependent connectivity requirements and tight
memory constraints. We show how the constraints consensus
algorithms may be applied to suitable target localization and
formation control problems.

Index Terms—Distributed optimization, linear programs, con-
sensus algorithms, target localization, formation control.

I. INTRODUCTION

Distributed optimization and computation have recently
received widespread attention in the context of distributed
estimation in sensor networks, distributed control of actuator
networks and consensus algorithms; an early reference is [4]
and some recent references includes [5], [6], [7], [8]. This
paper introduces a class of distributed optimization problems,
called distributed abstract programs, and its application to tar-
get localization and formation control. Abstract optimization
problems, sometimes referred to as abstract linear programs
or as LP-type programs, generalize linear programming and
model a variety of machine learning and geometric optimiza-
tion problems. Examples of geometric optimization problems
include the smallest enclosing ball, the smallest enclosing
stripe and the smallest enclosing annulus problems. Early
references to abstract optimization include [9], [10], [11]. This
paper focuses on abstract optimization problems where the
number of constraints n is much greater than the number of
constraints δ that identify the optimum solution (and where,
therefore, there is a large number of redundant constraints).
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For example, we are interested in linear programs where n
is much greater than the number of variables d (in linear
programs, δ = d). We consider distributed versions of abstract
optimization programs, where n is also the number of network
nodes and where each constraint is associated to a node. We
consider processor networks described by arbitrary, possibly
time-dependent communication topologies and by computing
nodes with tight memory constraints.

We organize the relevant literature in three broad areas.
First, linear programming and its generalizations, including ab-
stract optimization, have received widespread attention in the
literature. For linear programs in a fixed number of variables
subject to n linear inequalities, the earliest algorithm with time
complexity in O(n) is given in [12]. An efficient randomized
algorithm is proposed in [9]. The surveys [13], [14] discuss
randomized methods in linear programming and on abstract
optimization and the application of abstract optimization to
geometric optimization. Regarding parallel computation ap-
proaches to linear programming, linear programs with n linear
inequalities can be solved [15] by n parallel processors in
time O((log log(n))d). However, the approach in [15], see
also references therein, is limited to parallel random-access
machines, where a shared memory is readable and writable to
all processors.

A second relevant literature area is distributed training
of support vector machines (SVMs). A randomized parallel
algorithm for SVM training is proposed in [16] by using
methods from abstract optimization and by exploiting the
idea of exchanging only active constraints. Along these lines,
[17] extends the algorithm to parallel computing over strongly
connected networks, [18] contains a comprehensive discussion
of SVM training via abstract optimization, and [19] applies
similar algorithmic ideas to wireless sensor networks. The
algorithms in [16], [17], independently developed at the same
time of our works [1], [2], [3], differ from our constraint
consensus algorithm in the following ways: our algorithms
work on time-varying digraphs, required only bounded mem-
ory, features a distributed halting condition, and is applicable
to general abstract optimization problems.

As third and final set of relevant references, we include
a brief synopsis of recent progress in target localization in
sensor networks and formation control in robotic networks.
The problem of target localization has been widely investi-
gated and recent interest has focused on sensors and wireless
networks; e.g., see the recent text [20]. In this paper we take
a deterministic worst-case approach to localization, adopting
the set membership estimation technique proposed in [21]. A
related sensor selection problem for target tracking is studied
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in [22]. Regarding formation control for robotic networks,
an early reference on distributed algorithms and geometric
patterns is [23]. Regarding the rendezvous problem, i.e., the
problem of gathering the robots at a common location, an
early reference is [24]. The “circle formation control” problem,
i.e., the problem of steering the robots to a circle formation,
is discussed in [25]. The references [26], [27], [28] are
based on, respectively, control-Lyapunov functions, input-to-
state stability and cyclic pursuit.

The contributions of this paper are twofold. First, we
identify and study distributed abstract programming as a
novel class of distributed optimization problems that are
tractable and widely applicable. We propose a novel algo-
rithmic methodology, termed constraints consensus, to solve
these problems in networks with various connectivity and
memory constraints: as each node iteratively identifies locally
active constraints and exchanges them with its neighbors, the
globally active constraints determining the global optimum
are collectively identified. A constraint re-examination idea
is the distinctive detail of our algorithmic design. We propose
three algorithms, a nominal one and two variations, to solve
abstract programs depending on topology, memory and com-
putation capabilities of the processor network. We formally
establish various algorithm properties, including monotonicity,
finite-time convergence to consensus, and convergence to
the possibly-unique correct solution of the abstract program.
Moreover, we provide a distributed halting condition for the
nominal algorithm. We provide a conservative upper bound on
the completion time of the nominal algorithm and conjecture
that the completion time depends linearly on n (i.e., the
number of network nodes). Next, we evaluate the algorithm
performance via a Monte Carlo probability-estimation analysis
and we substantiate our conjecture on stochastically-generated
sample problems. Sample problems are randomly generated by
considering two classes of linear programs, taken from [29],
and three types of graphs (line-graph, Erdős-Rènyi random
graph and random geometric graph).

As a second set of contributions, we illustrate how dis-
tributed abstract programs are relevant for distributed target
localization in sensor networks and for formation control
problems, such as the rendezvous problem and the line or
circle formation problems. Specifically, for the target local-
ization problem, we design a distributed algorithm to esti-
mate a convex polytope, specifically an axis-aligned bounding
box, containing the moving target. Our proposed eight half-
planes consensus algorithm combines (i) distributed linear
programs to estimate the convex polytope at a given instant
and (ii) a set-membership recursion, consisting of prediction
and update steps, to dynamically track the region. We discuss
correctness and memory complexity of the distributed estima-
tion algorithm. Next, regarding formation control problems,
we design a joint communication and motion coordination
scheme for a robotic networks model involving range-based
communication. We consider formations characterized by the
geometric shapes of a point, a line, or a circle. We solve
these formation control problems in a time-efficient distributed
manner combining two algorithmic ideas: (i) the robots imple-
ment a constraints consensus algorithm to compute a common

shape reachable in minimum-time, and (ii) the network con-
nectivity is maintained by means of an appropriate standard
connectivity-maintenance strategy.

Paper organization: The paper is organized as follows. Sec-
tion II introduces abstract optimization problems. Section III
introduces network models. Section IV contains the definition
of distributed abstract program and the constraints consensus
algorithms. Section V contains the Monte Carlo analysis.
Sections VI and VII discuss target localization and formation
control.

Notation: Let N, Z≥0, and R>0 denote the natural num-
bers, the non-negative integer numbers, and the positive real
numbers, respectively. For r ∈ R>0 and p ∈ Rd, let B(p, r)
denote the closed ball centered at p with radius r, that is,
B(p, r) = {q ∈ Rd | ‖p − q‖2 ≤ r}. For d ∈ N, let
0d and 1d denote the vectors in Rd whose entries are all 0
and 1, respectively. For a finite set A, let card(A) denote
its cardinality. For two functions f, g : N → R>0, write
f(n) ∈ O(g) (respectively, f(n) ∈ Ω(g)) if there exist N ∈ N
and c ∈ R>0 such that f(n) ≤ cg(n) for all n ≥ N
(respectively, f(n) ≥ cg(n) for all n ≥ N ). For a set H ,
the set 2H is the set of all subsets of H . Given S ⊂ Rd and
p ∈ Rd, let dist(p, S) denote the distance from p to S, that
is, dist(p, S) = infs∈S ‖p − s‖, where ‖ · ‖ is the Euclidean
norm. For distinct p1 ∈ Rd and p2 ∈ Rd, let `(p1, p2)
be the line through p1 and p2. In what follows, a set of
distinct points {p1, . . . , pn} ⊂ Rd, n ≥ 3, is in stripe-generic
position if, given any two ordered subsets (pa, pb, pc) and
(pα, pβ , pγ), either dist(pa, `(pb, pc)) 6= dist(pα, `(pβ , pγ)) or
(pa, pb, pc) = (pα, pβ , pγ).

II. ABSTRACT OPTIMIZATION

This section presents abstract optimization problems, also
known as abstract linear programs, generalized linear pro-
grams or LP-type problems, see [14], [30].

A. Problem setup and examples

We consider optimization problems specified by a pair
(H,φ), where H is a finite set, and φ : 2H → Φ is a function
with values in a linearly ordered set (Φ,≤). The elements of
H are called constraints, and for G ⊂ H , φ(G) is called the
value of G. Intuitively, φ(G) is the smallest value attainable by
a certain objective function while satisfying the constraints of
G. An optimization problem of this sort is called an abstract
optimization program if the following two axioms are satisfied:

(i) Monotonicity: if F ⊂ G ⊂ H , then φ(F ) ≤ φ(G);
(ii) Locality: if F ⊂ G ⊂ H with φ(F ) = φ(G), then, for

all h ∈ H ,

φ(G) < φ(G ∪ {h}) =⇒ φ(F ) < φ(F ∪ {h}).

A set B ⊂ H is minimal if φ(B) > φ(B′) for all proper
subsets B′ of B. A minimal set B is a basis. Given G ⊂
H , a basis of G is a minimal subset B ⊂ G, such that
φ(B) = φ(G). A constraint h is said to be violated by G,
if φ(G) < φ(G∪{h}). A solution of an abstract optimization
program (H,φ) is a minimal set BH ⊂ H with the property
that φ(BH) = φ(H). The combinatorial dimension δ of
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(H,φ) is the maximum cardinality of any basis. Two primitive
operations are useful to solve abstract optimization problems:

(i) Violation test: given a constraint h and a basis B, it tests
whether h is violated by B; we denote this primitive by
Viol(B, h);

(ii) Basis computation: given a constraint h and a basis B,
it computes a basis of B∪{h}; we denote this primitive
by Basis(B, h).

Example II.1 (Abstract framework for LPs [13]) An LP
in x ∈ Rd is

min cT x

subject to aT
i x ≤ bi, i ∈ {1, . . . , n},

where d ∈ N is the state dimension, c ∈ Rd
>0 describes the cost

function, and ai ∈ Rd and bi ∈ R describe n ∈ N inequality
constraints. To transcribe the LP into an abstract program, we
need to specify the constraint set H and the value φ(G) for
each G ⊂ H . The constraint set H is the set of half-spaces
hi = {x ∈ Rd | aT

i x ≤ bi}, i ∈ {1, . . . , n}. Defining the
value function to satisfy the locality axiom is more delicate:
if Φ = (R,≤) and φ(G) is the minimum of cT x subject to G,
then the locality axiom does not hold (see Section 4 in [13]
for a counterexample). A correct choice is as follows. If the
LP defined by the constraint set G and the cost function cT x
is feasible and bounded, then let (Φ,≤) be the set Rd with the
lexicographical order,1 and define φ(G) := vG, where vG ∈
Rd is the unique lexicographically minimal point minimizing
cT x over G. Additionally, still assuming that the LP defined
by G is feasible and bounded, a basis of G is a minimal subset
of constraints B ⊂ G such that vB = vG. In what follows we
treat the unbounded case and the infeasible case separately.
First, if the LP defined by G is unbounded, we consider the
LP with constraint set equal to the union of G and a set H+

of half-planes h+
i = {x ∈ Rd | xi ≥ −M}, i ∈ {1, . . . , d},

where M > 0 is a sufficiently large number. For this new
bounded LP, the same lexicographic order is used to define
φ(G) := vG∪H+ . A basis of G is a minimal nonempty subset
B ⊂ G such that φ(B) = φ(G). According to this definition,
a linear program (H,φ) is unbounded if φ(H) ∈ Rd has at
least one component equal to −M . Second, if the LP defined
by G is infeasible (the intersection of the constraints in G is
empty), then vG := +∞d and a basis of G is any subset of
d + 1 constraints such that vB = +∞d, that is such that the
intersection is empty. (Here ∞d is the vector with d entries
equal to ∞.) It is known [9] that the abstract optimization
program transcription of a feasible (respectively, infeasible)
LP has combinatorial dimension d (respectively, d + 1). �

Example II.2 (Abstract problems in geometric optimiza-
tion) We present three useful geometric examples, illustrated
in Figure 1. Many other geometric optimization problems can
be cast as abstract programs; see [9], [10], [13], [14].

(i) Smallest enclosing ball: Given n distinct points in Rd,
compute the center and radius of the ball of smallest

1In the lexicographic order on R2, we have (x1, y1) ≤ (x2, y2) if and
only if x1 < x2 or (x1 = x2 and y1 ≤ y2).

volume containing all the points. This problem is [9]
an abstract optimization program with combinatorial
dimension d + 1.

(ii) Smallest enclosing stripe: Given n distinct points in R2

in stripe-generic positions, compute the center and the
width of the stripe of smallest width containing all the
points. This problem [31] is an abstract optimization
program with combinatorial dimension 5.

(iii) Smallest enclosing annulus: Given n distinct points
in R2, compute the center and the two radiuses of the
annulus of smallest area containing all the points. This
problem is [9] an abstract optimization program with
combinatorial dimension 4. �

Fig. 1. Smallest enclosing ball, stripe and annulus

We end this section with a useful lemma and a rare property.

Lemma II.3 For any F and G subsets of H , φ(F ∪ G) >
φ(F ) if and only if there exists g ∈ G such that φ(F ∪{g}) >
φ(F ).

Proof: If there exists g ∈ G such that φ(F∪{g}) > φ(F ),
then by monotonicity φ(F∪G) ≥ φ(F∪{g}) > φ(F ). For the
other implication, assume G = {g1, . . . , gk} for some k ∈ N,
and define Gi := {g1, . . . , gi} for i ∈ {1, . . . , k}. We may
rewrite the assumption φ(F ∪ G) > φ(F ) as φ(F ∪ Gk−1 ∪
{gk}) > φ(F ). If φ(F ∪ Gk−1) = φ(F ), then the locality
axiom implies φ(F ∪ {gk}) > φ(F ) and the thesis follows
with g = gk. Otherwise, the same argument may be applied
to Gk−1. The recursion stops either when φ(F ∪Gi) = φ(F )
(and the thesis follows with g = gi+1) for some i or when
φ(F ∪G1) > φ(F ) (and the thesis follows with g = g1).

Next, given an abstract optimization program (H,ω), let
BG denote a basis of a subset G ⊆ H . An element h of H is
persistent if h ∈ BG for all G ⊆ H containing h. An abstract
optimization program (H,ω) is persistent if all elements of
BH are persistent. The persistence property is useful, as we
state in the following result.

Lemma II.4 Any persistent abstract optimization program
(H,ω) can be solved in a number of time steps equal to the
dimension of H .

Proof: Let H = {h1, . . . , hn}. Set B = {h1, . . . , hδ}
and then update B = Basis(B, hk) for k = δ + 1, . . . , n.
Because of persistency, each h ∈ BH is added to B once it
is selected as hk and is not removed from B in subsequent
basis computations.
Unfortunately, the persistence property is rare. For example,
Figure 2 depicts an LP problem where the persistency property
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does not hold. It can be noticed that {h1, h2} is a basis
for {h1, h2, h3, h4} and that h2 is not persistent because the
basis of {h2, h3, h4} is {h3, h4}. The lack of persistency
complicates the design of algorithms for abstract optimiza-
tion problems. For example, in distributed settings, flooding
algorithms are not sufficient.

Fig. 2. A non-persistent LP

B. Randomized sub-exponential algorithm

In what follows we assume that each node in the network
can solve small-dimensional abstract programs. For complete-
ness’ sake, we review here the recursive randomized algorithm
proposed in [9], [13]. This algorithm has expected running
time O(d2n + eO(

√
d log d)), that is, linear in n and sub-

exponential in δ; the expectation is taken over the internal
randomizations executed by the algorithm. For the abstract
program (H,φ), given a set of constraints G and a candidate
basis C ⊂ G, the algorithm, called Subex_LP, is stated as
follows:

function Subex_LP(G, C)
1: if G = C, then return C
2: else
3: choose a random h ∈ G \ C and compute

B := Subex_LP(G \ {h}, C)
4: if Viol(B, h) (that is, h is violated by B), then
5: return Subex_LP(G,Basis(B, h))
6: else return B
7: endif
8: endif

The routine is to be initially invoked as Subex_LP(H,B),
with B being an arbitrary basis.

III. NETWORK MODELS

A. Digraphs and connectivity

Let G = ({1, . . . , n}, E) denote a digraph with node set
{1, . . . , n} and edge set E ⊂ {1, . . . , n}2. For each node i,
the number of edges going out from (resp. coming into) i
is called out-degree (resp. in-degree). A digraph is strongly
connected if there exists a directed path from every node
to every other node in the digraph. A digraph is weakly
connected if replacing all its directed edges with undirected
edges results in a connected undirected graph. In a strongly
connected digraph, the distance from node i to node j, denoted

by dist(i, j), is the length of the shortest directed path from i
to j. The maximum dist(i, j) taken over all pairs (i, j) is the
diameter and is denoted diam(G). Finally, the time-dependent
digraph t 7→ G(t) = ({1, . . . , n}, E(t)) is jointly strongly
connected if, for every t ∈ Z≥0, the digraph ∪+∞

τ=tG(τ) is
strongly connected. In a time-dependent digraph, let Nout(i, t)
(resp. Nin(i, t)) denote the set of outgoing (resp. incoming)
neighbors of node i at time t.

B. Synchronous networks and distributed algorithms

A synchronous network is a time-dependent digraph G =
({1, . . . , n}, Ecmm(t)), where {1, . . . , n} are the processors
identifiers and the edges Ecmm(t) describe communication
among processors: (i, j) ∈ Ecmm(t) if and only if processor i
can communicate to processor j at time t ∈ Z≥0.

For a synchronous network with processors {1, . . . , n}, a
distributed algorithm consists of (1) the set W , called the set
of processor states w[i], for all i ∈ {1, . . . , n}; (2) the set
A, called the message alphabet, including the null symbol;
(3) the map msg : W → A, called the message-generation
function; and (4) the map stf : W × An → W , called
the state-transition function. The execution of the distributed
algorithm begins with all processors in their start states. The
processors repeatedly perform the following two actions. First,
the ith processor sends to its outgoing neighbors in Ecmm a
message (possibly the null message) computed by applying
the message-generation function to the current value of w[i].
After a negligible period of time, the ith processor computes
the new value of its processor state w[i] by applying the state-
transition function to the current value of w[i], and to the
incoming messages. The combination of the two actions is
called a communication round or simply a round.

Algorithm halting occurs when each processor is in idle
mode. This status is used to indicate the achievement of a
prescribed task. A distributed algorithm is in halting status if,
at each node, the processor state is a fixed point for the state-
transition function (that becomes a self-loop) and no message
(or equivalently the null message) is generated.

IV. DISTRIBUTED ABSTRACT OPTIMIZATION VIA
CONSTRAINTS CONSENSUS

A. Distributed abstract programs

Informally, a distributed abstract program consists of a
network, an abstract program and a mechanism to distribute
the abstract program constraints among the processors.

Definition IV.1 A distributed abstract program is a tuple
(G, (H,φ),B) consisting of

(i) G = ({1, . . . , n}, Ecmm), a synchronous network;
(ii) (H,φ), an abstract program; and

(iii) B : H → {1, . . . , n}, a surjective map called constraint
distribution map that associates to each constraint one
network node.

If B is a bijection, we denote the distributed abstract program
with the pair (G, (H,φ)). A solution of (G, (H,φ),B) is
attained when all processors have computed a solution to
(H,φ).
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B. Constraints consensus algorithms

Here we propose three novel algorithms for distributed
abstract programs. First, we describe a distributed algorithm
well-suited for time-dependent networks whose processors
have bounded computation time, memory and in-degree.
Equivalently, the algorithm is applicable to networks with
arbitrary in-degree, but also arbitrary computation time and
memory. Second, we describe two algorithmic variations that
deal with arbitrary in-degree, short computation time and
small memory. The second algorithm is well-suited for time-
dependent networks with arbitrary in-degree and bounded
computation time, but also arbitrary memory (in the sense that
the number of stored messages may depend on the number
of processors). The third algorithm is relevant for time-
independent networks with arbitrary in-degree and bounded
computation time and memory.

All algorithms run over a synchronous network G and solve
an abstract program (H,φ) with H = {h1, · · · , hn} and with
combinatorial dimension δ. We restrict the treatment to dis-
tributed abstract program where constraints and processors are
in one-to-one relationship (i.e., B is a bijection), and we let hi

be the constraint associated with processor i. This assumption
is made only to simplify the notation. Problems with more
constraints than processors (possibly with different number of
constraints at each processor) is handled by straightforward
modifications of the proposed algorithms. Here is an informal
description of our first algorithm.

Constraints Consensus Algorithm: Beside having
access to the constraint hi, the ith processor state
contains a candidate basis B[i] consisting of δ ele-
ments of H . The processor state B[i] is initialized
to δ copies of hi. At each communication round,
the processor performs the following tasks: (i) it
transmits B[i] to its out-neighbors and acquires from
its in-neighbors their candidate bases; (ii) it solves
an abstract optimization program with constraint set
given by the union of: its constraint hi, its candidate
basis B[i] and its in-neighbors’ candidate bases; (iii)
it updates B[i] to be the solution of the abstract
program computed at step (ii).

Next, the algorithm is formally stated for the network model
in Section III-B. The Subex_LP algorithm is adopted as local
solver for abstract optimization programs.

Problem data: (G, (H,φ))
Algorithm: Constraints Consensus
Message alphabet:A = Hδ ∪ {null}
Processor state: B[i] ⊂ H with card(B[i]) = δ
Initialization: B[i] := {hi, . . . , hi}

function msg(B[i])
1: return B[i]

function stf(B[i], y)
% executed by node i, with yj := msg(B[j]) = B[j]

1: Htmp := {hi} ∪B[i] ∪
(
∪j∈Nin(i) yj

)
2: return Subex_LP(Htmp, B

[i])

Remark IV.2 (Constraint re-examination due to lack of
persistency) We show below that the algorithm correctly
solves (H,φ) precisely because each node re-examines its
associated constraint throughout algorithm execution. In other
words, step 1: of the state-transition function may not be
replaced by Htmp := B[i]∪

(
∪j∈Nin(i) yj

)
. This continuous re-

examination is required because of the lack of the persistency
property discussed after Lemma II.4. �

In the second scenario we consider a time-dependent net-
work with no bounds on the in-degree of the nodes and on the
memory size. In this setting the execution of the Subex_LP
may exceed the computation time allocated between com-
munication rounds. To deal with this problem, we introduce
an “asynchronous” version of the network model described
in Section III: we allow processors to execute message-
transmission and state-transition functions at instants that are
not necessarily synchronized. Here is an informal description
of the algorithm.

Multi-round Constraints Consensus Algorithm The
processor performs two tasks in parallel. Task #1:
at each round, the processor transmits to its out-
neighbors its candidate basis B[i] and acquires from
its in-neighbors their candidate bases. Task #2: in-
dependently of communication rounds, the processor
repeatedly solves an abstract program with constraint
set given by the union of: its constraint hi, its
candidate basis B[i] and its in-neighbors’ candidate
bases; the solution of this abstract program becomes
the new candidate basis B[i]. The abstract program
solver is invoked with the most-recently available
in-neighbors’ candidate bases.

In the third scenario we consider a time-independent net-
work with no bounds on the in-degree of the nodes. We
suppose that each processor has limited memory capacity, so
that it can store at most D constraints in H . The memory
is dimensioned so as to guarantee that the abstract program
is always solvable during two communication rounds. The
memory constraint is dealt with by processing only part of
the incoming messages at each round, and by cycling among
incoming messages in such a way as to process all the
messages in multiple rounds.

Cycling Constraints Consensus Algorithm The pro-
cessor initializes a candidate basis B[i] as in the
constraints consensus algorithm. Additionally, the
processor keeps track of communication rounds with
a counter variable. At each round, the processor
performs the following tasks: (i) it transmits B[i] to
out-neighbors and receives from in-neighbors their
candidate bases; (ii) among the incoming messages,
it chooses to store D messages according to a
scheduled protocol and the counter variable; (iii) it
solves an abstract program with constraint set given
by the union of: its constraint hi, its candidate basis
B[i] and the D candidate bases from its in-neighbors;
and (iv) it updates B[i] to be the solution computed
at step (iii).



6

C. Algorithm analysis

We are now ready to analyze the algorithms. In what
follows, we discuss correctness, halting conditions, memory
complexity and time complexity.

Theorem IV.3 (Correctness of the constraints consensus
algorithm) Let (G, (H,φ)) be a distributed abstract program
with nodes and constraints in one-to-one relationship. Assume
the time-dependent network G is jointly strongly connected.
The following statements hold:

(i) along the evolution of the constraints consensus algo-
rithm, the basis value t 7→ φ(B[i](t)) at each node
i ∈ {1, . . . , n} is monotonically non-decreasing and
converges to a constant value in finite time;

(ii) the constraints consensus algorithm solves the dis-
tributed abstract program (G, (H,φ)), that is, in finite
time the candidate basis B[i] at each node i is a solution
of (H,φ); and

(iii) if the distributed abstract program has a unique minimal
basis BH , then the final candidate basis B[i] at each
node i is equal to BH .

Proof: From the monotonicity axiom of abstract opti-
mization and from the finiteness of H , it follows that each
sequence φ(B[i](t)), t ∈ Z≥0, is monotone non-decreasing
and can assume only a finite number of values. Therefore, at
each node the processor state converges to a constant candidate
basis in a finite number of steps. This concludes the proof of
fact (i). In what follows, let B[1], . . . , B[n] denote the limiting
candidate bases at each node in the graph.

We prove fact (ii) in three steps. First, we proceed by
contradiction to prove that all the nodes converge to the same
value (but not necessarily the same basis). The following
fact is known: if a time-dependent digraph is jointly strongly
connected, then the digraph contains a time-dependent directed
path from any node to any other node beginning at any time,
that is, for each t ∈ Z≥0 and each pair (i, j), there exists a
sequence of nodes `1, . . . , `k and a sequence of time instants
t1, . . . , tk+1 ∈ Z≥0 with t ≤ t1 < · · · < tk+1, such that
the directed edges {(i, `1), (`1, `2), . . . , (`k, j)} belong to the
digraph at time instants {t1, . . . , tk+1}, respectively. The proof
by contradiction of a closely related fact is given in [32,
Theorem 9.3]. Now, suppose that at time t0 all the nodes
have converged to their limit bases and that there exist at
least two nodes, say i and j, such that φ(B[i]) 6= φ(B[j]).
For t = t0 + 1, for every k1 ∈ Nout(i, t0 + 1), no constraint
in B[i] violates B[k1], otherwise node k1 would compute a
new distinct basis with strictly larger value, thus violating
the assumption that all nodes have converged. Therefore,
φ(B[i]) ≤ φ(B[k1]). Using the same argument at t = t0 + 2,
for every k2 ∈ Nout(k1, t0 +2), no constraint in B[k1] violates
B[k2]. Therefore, φ(B[i]) ≤ φ(B[k1]) ≤ φ(B[k2]). Iterating
this argument, we can show that for every S > 0, every node
k, that is reachable from i in the time-dependent digraph with
a time-dependent directed path of length at most S, has a
basis B[k] such that φ(B[i]) ≤ φ(B[k]). However, because
the digraph is jointly strongly connected, we know that there
exists a time-dependent directed path from node i to node j

beginning at time t0, thus showing that φ(B[i]) ≤ φ(B[j]).
Repeating the same argument by starting from node j we
obtain that φ(B[j]) ≤ φ(B[i]). In summary, we showed
that φ(B[i]) = φ(B[j]), thus giving the contradiction. Note
that this argument also proves that, if (i, j) is an edge of
the digraph ∪+∞

τ=tG(τ), then no constraint in i violates B[j]

and, therefore, φ(B[i] ∪ B[j]) = φ(B[j]). Also, the equality
B[i] ∪B[j] = B[j] ∪B[i] implies that there exists φ̄ ∈ R such
that φ̄ = φ(B[i]) = φ(B[j]) = φ(B[i] ∪B[j]) = φ(B[j] ∪B[i])
for all i ∈ {1, . . . , n} and (i, j) edges of ∪+∞

τ=tG(τ).
Second, we claim that the value of the basis at each node

is equal to the value of the union of all the bases. In other
words, we claim that

φ̄ = φ(B[1] ∪ · · · ∪B[n]). (1)

We prove equation (1) by induction. First, we note that
φ̄ = φ(B[i] ∪ B[j]) for any nodes i and j such that either
(i, j) or (j, i) is a directed edge in ∪+∞

τ=tG(τ). Without loss of
generality, let us assume i = 1 and j = 2. Now assume that

φ(B[1] ∪ · · · ∪B[k]) = φ̄, (2)

for an arbitrary k-dimensional weakly-connected subgraph Gk

of ∪+∞
τ=tG(τ) and we prove such a statement for a weakly-

connected subgraph of dimension k + 1 containing Gk. By
contradiction, we assume the statement is not true for k +
1. Assuming, without loss of generality, that node k + 1 is
connected to Gk in ∪+∞

τ=tG(τ), we aim to find a contradiction
with the statement

φ(B[1] ∪ · · · ∪B[k] ∪B[k+1]) > φ̄. (3)

Plugging the induction assumption into equation (3), we have

φ(B[1] ∪ · · · ∪B[k] ∪B[k+1]) > φ(B[1] ∪ · · · ∪B[k]). (4)

From Lemma II.3 with F = B[1]∪· · ·∪B[k] and G = B[k+1]

and noting equation (4), we conclude that there exists g ∈
B[k+1] such that

φ(B[1] ∪ · · · ∪B[k] ∪ {g}) > φ(B[1] ∪ · · · ∪B[k]). (5)

Next, select a node p ∈ {1, . . . , k} such that either (p, k + 1)
or (k + 1, p) is a directed edge of ∪+∞

τ=tG(τ) and note that
B[p] ⊂ B[1]∪· · ·∪B[k] and φ(B[p]) = φ(B[1]∪· · ·∪B[k]) by
the induction assumption. From these two facts together with
equation (5), the locality property implies that

φ(B[p] ∪ {g}) > φ(B[p]). (6)

Finally, the contradiction follows by noting:

φ(B[p])
bases have converged

= φ(B[p] ∪B[k+1])
monotonicity

≥ φ(B[p] ∪ {g})
by equation (6)

> φ(B[p]).

This concludes the proof of equation (1).
Third and final, because no constraint in {h1, . . . , hn} vio-

lates the set B[1]∪· · ·∪B[n] and because B[1]∪· · ·∪B[n] ⊂ H ,
Lemma II.3 and equation (1) together imply

φ̄ = φ(B[1] ∪ · · · ∪B[n]) = φ(H).
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This equality proves that, in a finite number of rounds, the
candidate basis at each node is a solution to (H,φ), that is,
fact (ii) holds. The proof of fact (iii) is straightforward.

Theorem IV.4 (Halting condition for the constraints con-
sensus algorithm) For the same setup as in Theorem IV.3,
assume the network G is time-invariant. Each processor has
computed its final constraint basis and can halt the execution
of the constraints consensus algorithm as soon as the value of
its basis has not changed after 2 diam(G)+ 1 communication
rounds.

Proof: For all t ∈ Z≥0 and for every (i, j) edge of G,

φ(B[i](t)) ≤ φ(B[j](t + 1)), (7)

because, by construction along the constraints consensus algo-
rithm, the basis B[j](t+1) is not violated by any constraint in
the basis B[i](t). Assume that node i satisfies B[i](t) = B for
all t ∈ {t0, . . . , t0 + 2diam(G)}, and pick any other node j.
Without loss of generality, set t0 = 0. Because of equation (7),
if k1 ∈ Nout(i), then φ(B[k1](1)) ≥ φ(B) and, recursively,
if k2 ∈ Nout(k1), then φ(B[k2](2)) ≥ φ(B[k1](1)) ≥ φ(B).
Therefore, iterating this argument dist(i, j) times, the node
j satisfies φ(B[j](dist(i, j))) ≥ φ(B). Now, consider the
out-neighbors of node j. For every k3 ∈ Nout(j), it must
hold that φ(B[k3](dist(i, j) + 1)) ≥ φ(B[j](dist(i, j))). It-
erating this argument dist(j, i) times, the node i satisfies
φ(B[i](dist(i, j) + dist(j, i))) ≥ φ(B[j](dist(i, j))). In sum-
mary, because dist(i, j) + dist(j, i) ≤ 2 diam(G), we know
that φ(B[i](dist(i, j) + dist(j, i))) = φ(B) and, in turn, that

φ(B) ≥ φ(B[j](dist(i, j))) ≥ φ(B).

Thus, if basis i does not change for 2 diam(G) + 1 time
instants, then its value will never change afterwards because
all bases B[j], for j ∈ {1, . . . , n}, have cost equal to φ(B)
at least as early as time equal to diam(G) + 1. Therefore,
node i has sufficient information to stop the algorithm after a
2 diam(G) + 1 duration without value improvement.

Remarks IV.5 (i) In the constraints consensus algorithm
we are tacitly assuming that if the abstract program is
degenerate (i.e., there are multiple bases with the same
cost), then each node adopts a rule to decide a unique
basis for each local abstract program. This rule may be
for example a lexicographic order among the constraints.
The rule need not require any global information to
compute. If the rule is common to all nodes, then all
nodes will converge to a unique minimal basis.

(ii) Correctness of the other two versions of the constraints
consensus algorithm may be established along the same
lines as in Theorem IV.3. For example, it is clear that the
basis at each node reaches a constant value in finite time.
For the multi-round algorithm over a time-dependent
graph, this constant value is clearly the solution of the
abstract optimization program. For the cycling algorithm
over a time-independent graph, the cycling processing
of incoming data is equivalent to considering a time-
dependent graph whose edges change with that law.

(iii) The halting condition in Theorem IV.4 requires knowl-
edge of the graph diameter; this quantity can be either
assumed known a priori, or computed by a simple
flooding algorithm, or upper bounded by the number
of nodes in the graph.

(iv) Some simple memory complexity bounds are available
for the three algorithms. Assume that δ is the combi-
natorial dimension of the abstract program (H,φ) and
call a memory unit is the amount of memory required
to store a constraint in H . Each node i of the network
requires 1+δ(1+card(Nin(i))) ∈ O(n) memory units in
order to implement the constraints consensus algorithm
and its multi-round variation, and 1 + δ(1 + D) ∈ O(1)
in order to implement the cycling constraints consensus
algorithm. �

We conclude this section with some results about the
completion time of the constraints consensus algorithm, i.e.,
the number of communication rounds required to solve the
distributed abstract program, and about the time complexity,
i.e., the functional dependence of the completion time on
the number of agents. First, there exist distributed abstract
programs of dimension n whose time complexity is in Ω(n).
Indeed, it takes (n − 1) communication rounds to propagate
information across a path graph with n nodes. On the other
hand, an upper bound on the completion time is obtained
as follows: (i) the number of distinct bases for an abstract
program with n constraints and combinatorial dimension δ is
upper bounded by nδ , (ii) at each communication round at
least one node in the network increases its basis (unless all
the bases have the same cost, in which case the algorithm has
converged), and therefore (iii) the worst-case time complexity
is upper bounded by nδ+1. We conjecture that the average time
complexity of the constraints consensus algorithm is much
lower than what suggested by this loose upper-bound analysis.

Conjecture IV.6 (Linear average time complexity) Over
the set of time-independent strongly-connected digraphs and
distributed abstract programs, the average time complexity of
the constraints consensus algorithm belongs to O(diam(G)).�

V. MONTE CARLO ANALYSIS OF THE TIME COMPLEXITY
OF CONSTRAINTS CONSENSUS

In this section we numerically analyze the time com-
plexity of constraints consensus for stochastically-generated
sample problems. We define a numerical experiment, i.e.,
a stochastically-generated distributed abstract program, by
specifying (1) the communication graph, (2) the abstract opti-
mization problem and (3) the parameters describing a nominal
set of problems and some variations of interest. We discuss
these three degrees of freedom in the next three subsections
and perform two sets of Monte Carlo analysis in the two
subsequent subsections.

A. Communication graph models

We generate time-independent undirected communication
graphs according to one of the following three graph models.



8

The first model is the line graph, which has bounded node
degree and largest diameter. We then consider two random
graphs models, namely the well-known Erdős-Rènyi graph and
random geometric graph. First, in the Erdős-Rènyi graph, the
probability of having an edge between any two nodes is set to a
constant p and is independent. It is known [33] that the average
degree of the nodes is pn and that the resulting graph is almost
surely connected with average diameter log(n)/ log(pn) if
p = (1 + ε) log(n)/n for some ε > 0. Accordingly, we
set p := (1 + ε) log(n)/n to generate the graph. With this
choice the average node degree grows logarithmic in n and
the local computations are still tractable. Second, a random
geometric graph in a bounded region is generated by (i)
placing nodes at locations that are drawn at random uniformly
and independently on the region and (ii) connecting two
vertices if and only if the distance between them is less than
or equal to a threshold r > 0. We generate random geometric
graphs in a unit-length square of R2. To obtain a connected
graph we set the radius r to the minimum value that guarantees
connectivity.

B. Linear programs models

We generate linear programs according to standard stochas-
tic models that are surveyed in [29] and that are often used
in the performance evaluation of the simplex method. We
consider standard LPs in d-dimensions with n constraints of
the form

min cT x

subject to Ax ≤ b,

where A ∈ Rn×d, b ∈ Rn and c ∈ Rd are generated according
to the following stochastic models.

Model A. In this model the elements Aij and cj are indepen-
dently drawn from the standard Gaussian distribution. The vec-
tor b is defined by bi =

( ∑d
j=1 A2

ij

)1/2
, i ∈ {1, . . . , n}. This

corresponds to generating hyperplanes (corresponding to the
constraints) whose normal vectors are uniformly distributed on
the unit sphere and that are at unit distance from the origin.
The LP problems generated according to this model are always
feasible. This model was originally proposed by [34] and is a
special case of a class of models introduced by [35].

Model B. In this model the vector c is obtained as c = AT ĉ.
The vector (b, ĉ) ∈ R2n is uniformly randomly generated
in [0, 1]2n and A is a standard Gaussian random matrix
independent of (b, ĉ). The LP problems generated according
to this model are always feasible. This LP model, with a more
general stochastic model for (b, ĉ), was proposed by Todd
in [36] (where it is the model indicated as “Model 1” in a
collection of three).

C. Nominal problems and variations

First, our nominal set of problems is a set of distributed
abstract programs with the following characteristics: d = 4,
n ∈ {20, 40, . . . , 240}, the graphs are the line graph of
dimension n, and the linear problems are generated from
Model A. Second, as variations of the nominal set of problems,
we generate LPs of dimension d ∈ {2, 3, 4, 5} with a number

of constraints n ∈ {20, 40, . . . , 240}. For each value of d we
generate a graph according to one of the three graph models
and an LP according to one of the two LP models. For each
configuration (dimension, number of constraints, graph model,
and LP model), we generate different problems, we solve each
problem via constraints consensus, and we store worst-case
and average completion time. Results for the nominal set of
problems and for its variations are given in the next sections.

D. Time complexity results for nominal problems

For the nominal set of problems, we study the time com-
plexity via the Student t-test and via Monte Carlo probability
estimation. For each value of n, we perform a Student’s t-test
with the null hypothesis being that the average completion time
divided by the graph diameter is greater than 1.5 – against the
alternate hypothesis that the same ratio is less than or equal
to that (at the 95% confidence level). (Note that the diameter
is (n− 1).) The results for n ∈ {200, 220, 240} are shown in
Table I. The tests show that we can reject the null hypothesis.
Figure 3 shows the linear dependence of the completion time
with respect to the number of agents (and therefore with
respect to the diameter) and provides the corresponding 95%
confidence intervals.

number of
constraints

average
completion
time/diam

standard
deviation

df t-value p-value

240 1.21 0.36 99 −7.73 4.3× 10−12

220 1.16 0.31 99 −10.90 6.0× 10−19

200 1.27 0.36 99 −6.49 1.7× 10−9

TABLE I
STUDENT’S T-TEST RESULTS FOR DEMONSTRATING THE LINEAR
DEPENDENCE OF THE COMPLETION TIME WITH RESPECT TO THE

DIAMETER. PROBLEM: GRAPH = LINE GRAPH, LP MODEL = MODEL A,
d = 4, n ∈ {200, 220, 240}, Nrun = 100, NULL HYPOTHESIS: AVERAGE

COMPLETION TIME /n > 1.5.

0 50 100 150 200 250
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50

100

150
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250

300

350

Fig. 3. Average completion time for increasing number of constraints
n. Specifically: Graph = line graph, LP model = Model A, d = 4,
n ∈ {20, . . . , 240}, Nrun = 100, performance = average. The solid line
is the least-square interpolation of the average completion times.

Next, we aim to upper bound the worst-case completion
time via Monte Carlo probability estimation, as reviewed in
the following remark.

Remark V.1 (Probability estimation via Monte Carlo [37])
We aim to estimate the probability that a random variable
is no greater than a given threshold. Let ∆ be a random
variable taking values in a compact set Q. Given a threshold
γ ∈ R, define the probability p(γ) = Pr{J(∆) ≤ γ},
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where J : Q → R is a given measurable performance
function. We estimate p(γ) as follows. First, we generate
N ∈ N independent identically distributed random samples
∆(1), . . . ,∆(N). Second, we define the indicator function
IJ,γ : Q → {0, 1} by IJ,γ(∆) = 1 if J(∆) ≤ γ, and
0 otherwise. Third and final, we compute the empirical
probability as

p̂N (γ) =
1
N

N∑
i=1

IJ,γ(∆(i)).

Next, the Chernoff bound provides a bound on the number of
random samples required for a certain level of accuracy on
the probability estimate. For any accuracy ε ∈ (0, 1) and con-
fidence level 1−η ∈ (0, 1), we know that ‖p̂N (γ)−p(γ)‖ < ε
with probability greater than 1− η if

N ≥ 1
2ε2

log
2
η
. (8)

For ε = η = 0.01, the Chernoff bound (8) is satisfied by
N = 27000 samples. �

Adopting the same notation as in Remark V.1, here is
our setup. First, the random variable ∆ is a collection of
n unit-length vectors (i.e., our random variable takes values
in the compact space {x ∈ R4 | ‖x‖ = 1}n). Second,
the function J is the time required by constraints consensus
to solve a nominal problem with constraints determined by
∆. Third, we set out to estimate the probability that, for
n ∈ {40, 60, 80}, the completion time is less than or equal
to 4 times the diameter of the chain graph of dimension n.
To achieve accuracy 0.01 with confidence level 99%, we run
Nrun = 27000 experiments for each value of n and compute
the maximum completion time in each case. The experiments
show that for each n the worst-case completion time is less
than 3.4 times the graph diameter. Therefore, our simulations
establish the following statement.

With 99% confidence level, there is at least 99%
probability that a nominal problem (d = 4, graph =
line graph, LP model = Model A) with number of
constraints n ∈ {40, 60, 80} is solved via constraints
consensus in time upper bounded by 4(n− 1).

E. Time complexity results for variations of the nominal
problems

Next we perform a comparison among different graph
models, LP models and LP dimensions. To compare the
performance of different graphs we consider problems with:
Graph ∈ {line graph, Erdős-Rènyi graph, random geometric
graph}, LP model = Model A, d = 4, n ∈ {20, . . . , 240},
Nrun = 100. We compute the average completion time to
diameter ratio for increasing values of n. The results with the
95% confidence interval are shown in Figure 4. To compare the
performance for different LP models, we consider problems
with: Graph = line graph, LP model ∈ {Model A, Model B},
d = 4, n ∈ {20, . . . , 240}, Nrun = 100. The results with the
95% confidence interval are shown in Figure 5.

Next, to compare the performance for different dimensions
d, we consider problems with: Graph = line graph, LP model

0 50 100 150 200 250
0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

Fig. 4. Comparing completion time
to diameter ratio for distinct graphs
and for increasing number of con-
straints n. Specifically: Graph ∈ {line
graph (circle), Erdős-Rènyi graph
(square), random geometric graph
(diamond)}, LP model = Model A,
d = 4, n ∈ {20, . . . , 240}, Nrun =
100, performance = average.
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Fig. 5. Comparing completion time
to diameter ratio for distinct LP mod-
els and for increasing number of con-
straints n. Specifically: Graph = line
graph, LP model ∈ {Model A (cir-
cle), Model B (diamond)} d = 4,
n ∈ {20, . . . , 240}, Nrun = 100,
performance = average.

= Model A, d ∈ {2, 3, 4, 5}, n ∈ {20, . . . , 240}, Nrun = 100.
The results with the 95% confidence interval are shown in
Figure 6. The comparisons show that, the linear dependence of
the completion time with respect to the number of constraints
is not affected by the graph topology, the LP model and the
dimension d. As regards the dimension d, as expected, for
fixed n the average completion time grows with the dimension.
Also, the growth appears to be linear for d ≥ 3 (for d = 2
the algorithm seems to perform much better). In Figure 7 we
plot the least square value of the completion time to diameter
ratio over the number of agents n versus the dimension d.
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Fig. 6. Comparing completion
time to diameter ratio for distinct
problem dimensions d and for
increasing number of constraints
n. Specifically: Graph = line
graph, LP model = Model A, d ∈
{2 (square), 3 (diamond), 4 (circle),
5 (triangle)}, n ∈ {20, . . . , 240},
Nrun = 100, performance = average.
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Fig. 7. Comparing completion time
to diameter ratio (least square value
in n) for increasing problem dimen-
sions d. Specifically: Graph = line
graph, LP model = Model A, d ∈
{2, 3, 4, 5}, n ∈ {20, . . . , 240},
Nrun = 100, performance = average.

VI. APPLICATION TO TARGET LOCALIZATION IN SENSOR
NETWORKS

In this section we provide a distributed algorithm for target
localization in a sensor network by exploiting distributed
abstract programming and constraint consensus.

A. Motion and sensing models

We consider a target moving on the plane with unknown
but bounded velocity:

p(t + 1) = p(t) + v(t), (9)



10

where p(t) ∈ [xmin, xmax]× [ymin, ymax] ⊂ R2 is the target
position at time t ∈ Z≥0, and v(t) ∈ R2 is unknown but
satisfies ‖v‖ ≤ vmax for given vmax. A group of sensors
{1, . . . , n} deployed in the environment measures the target
position. We assume that the measurement noise is such
that, at each time instant, each sensor i measures a region
h[i](p(t)) ⊂ R2 containing the target. The set M(p(t)) =
∩i∈{1,...,n}h

[i](p(t)), called the measurement set, provides
therefore the best estimate of the target position based only on
instantaneous measures. An example scenario is illustrated in
Figure 8. We assume that (1) each measured region h[i](p(t))
is a possibly-unbounded convex polygon, and, for further
simplicity, that (2) each h[i](p(t)) is a half-plane so that the
measurement set M(p(t)) is a non-empty possibly-unbounded
convex polygon with up to n edges.

Fig. 8. The measurement set is the intersection of the 4 sensor measurements.

B. Set-membership localization of a moving target

Problem VI.1 (Set-membership localization) Compute the
smallest set E(t) ⊂ R2 that contains the target position p(t)
at t ∈ Z≥0 and that is consistent with the dynamic model (9)
and the sensor measurements h[i](p(s)), i ∈ {1, . . . , n},
s ∈ {0, . . . , t}. �

We adopt the set-membership approach described in [21].
For t ∈ N, define the sets E(t|t−1) and E(t|t) as the feasible
position sets containing all the target positions at time t that are
compatible with the dynamics and the available measurements
up to time t − 1 and t, respectively. With this notation, the
recursion equations are:

E(0|0) = M(p(0)), (10a)
E(t|t− 1) = E(t− 1|t− 1) + B(0, vmax), (10b)

E(t|t) = E(t|t− 1)∩M(p(t)), (10c)

where the set sum A+B is defined as {a+b | a ∈ A and b ∈
B}. Equation (10b) is justified as follows: if the target is at
position p at time t and its speed is at most vmax, then the target
must be inside B(p, vmaxτ) at time t + τ , for any positive
τ . Equation (10c) is a direct consequence of the definition
of measurement set. Equations (10a), (10b), and (10c) are
referred to as initialization, time update and measurement
update, respectively. The time and measurement updates are
akin to prediction and correction steps in Kalman filtering.

Fig. 9. Set-membership localization recursion (10): initialization, time update
and measurement update.

Running the recursion (10) is often computationally in-
tractable due to the increasing amount of data required to
describe the sets E(t|t − 1) and E(t|t). To reduce the com-
putational complexity one typically over-approximates these
sets with bounded-complexity sets. For example, a common
approximating set is the axis-aligned bounding box, i.e., the
smallest rectangle aligned with the reference axes containing
the set. If Π denotes the projection from the subsets of R2

onto the collection of approximating sets, the recursion (10)
is rewritten as

E(0|0) = Π(M(p(0))), (11a)
E(t|t− 1) = Π(E(t− 1|t− 1) + B(0, vmax)), (11b)

E(t|t) = Π(E(t|t− 1)∩M(p(t))), (11c)

where now the sets E(t|t − 1) and E(t|t) are only approxi-
mations of the feasible position sets.

C. A centralized LP-based implementation: the eight half-
planes algorithm

In this section we propose a convenient choice of approxi-
mating sets for set-membership localization and we discuss the
corresponding time and measurement updates. We begin with
some preliminary notation. We let Hk be the set containing
all possible collections of k half-planes; in other words, an
element of Hk is a collection of k half-planes. Given an angle
θ ∈ [0, 2π[ and a set of half-planes H = {h1, . . . , hk} ∈ Hk

with hi = {[x y]T ∈ R2 | aT
i [x y]T ≤ bi, ‖ai‖ = 1, bi ∈ R},

define the linear program (H, θ) by

max [cos(θ) sin(θ)] · [x y]T

subject to aT
i [x y]T ≤ bi, i ∈ {1, . . . , k},

xmin ≤ x ≤ xmax, ymin ≤ y ≤ ymax.

(12)

As in Example II.1, transcribe (H, θ) into an abstract opti-
mization program (H,φθ). The combinatorial dimension of
(H,φθ) is 2, so that the lexicographically-minimal minimum
point of (H, θ) is always a set of 2 constraints, say h

[1]
H,θ

and h
[2]
H,θ. In other words, the pair {h[1]

H,θ, h
[2]
H,θ} ∈ H2 is

computed as a function of an angle θ ∈ [0, 2π[ and of a k-tuple
H = {h1, . . . , hk} ∈ Hk.

Now, as collection of approximating sets we consider the
set H8 containing the collections of 8 half-planes. Note that
the subset of elements {h1, . . . , h8} ∈ H8 such that ∩8

j=1 hj

is bounded is in bijection with the set of convex polygons with
at most 8 edges. Additionally, for arbitrary k, we define the
projection map ΠLP : Hk → H8 as follows: given H ∈ Hk,
define ΠLP(H) ∈ H8 to be the collection of half-planes
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h
[1]
H,θ and h

[2]
H,θ, for θ ∈ {0, π/2, π, 3π/2}. Note that our

approximating set ΠLP(H) contains H and is contained in the
smallest axis-aligned bounding box containing H; additionally,
note that ΠLP(H) contains some possibly repeated half-planes
because the same half-plane could be part of the solution for
distinct values of θ. This definition of ΠLP has the following
interpretation: assuming the target is known to satisfy all half-
plane constraints in a set H , the reduced-complexity possibly-
unbounded polygon containing the target is computed by
solving four linear programs (H, θ), θ ∈ {0, π/2, π, 3π/2};
see Figure 10.

Fig. 10. The eight constraint half-planes (solid thick lines) are determined by
the projection ΠLP. The dashed rectangle is the smallest axis-aligned bounding
box containing the measurement set.

Finally, we review the approximated set-membership lo-
calization recursion (11). We assume h[i](t) = {[x y]T ∈
R2 | a[i](t)T [x y]T ≤ b[i](t), ‖ai‖ = 1} is the half-plane
containing the target measured by sensor i ∈ {1, . . . , n}
at time t ∈ Z≥0. The approximated feasible position sets,
elements of H8, are

E(t|t− 1) = {h1(t|t− 1), . . . , h8(t|t− 1)}, and
E(t|t) = {h1(t|t), . . . , h8(t|t)}.

Initialization: Equation (11a) reads

{h1(0|0), . . . , h8(0|0)} = ΠLP
(
{h[1](0), . . . , h[n](0)}

)
.

Time update: Assume

hi(t|t) = {[x y]T ∈ R2 | ai(t)T [x y]T ≤ bi(t)},

that is, hi(t|t) is characterized by the coefficients (ai(t), bi(t)).
Since the target speed satisfies ‖v‖ ≤ vmax, at instant t+τ the
target is contained in the half-planes

hi(t + τ |t) = {[x y]T ∈ R2 | ai(t)T [x y]T ≤ bi(t) + vmaxτ}.

Therefore, the time update consists in defining each hi(t+1|t)
to be (ai(t), bi(t) + vmax); we refer to this operation as to a
time-translation by an amount vmax of the half-plane hi(t|t).
This time-update operation is equivalent to equation (11b).
Measurement update: Equation (11c) reads
{h1(t|t), . . . , h8(t|t)} = ΠLP(H(t)), where the collection of
constraints at time t is

H(t) = {h1(t|t− 1), . . . , h8(t|t− 1)}∪{h[1](t), . . . , h[n](t)}.

Remark VI.2 (i) During each iteration of the localization
recursion, the time update step requires 8 sums and
the measurement update steps requires the solution of
4 linear programs in 2 variables and n + 8 constraints.

(ii) Similar localization algorithms arise by selecting ` ≥ 3
and by solving ` LP at each iteration parametrized by
θ ∈ {0, 2π/`, . . . , 2(`− 1)π/`}. Larger values of ` lead
to tighter approximating polygons. �

D. A distributed eight half-planes algorithm

We now assume that the sensors measuring the target
position have computation and communication capabilities and
form a synchronous network. Let Gsn = ({1, . . . , n}, Esn)
be the undirected communication graph among the sensors
{1, . . . , n} and assume it is connected. Assume the sensors
communicate at each time t ∈ Z≥0 and perform measurements
of the target at unspecified times in Z≥0 (communication takes
place at higher rate than sensing). For simplicity, we assume
the first measurement at each node happens at time 0.

We aim to design a distributed algorithm for the sensor
network to localize a moving target. The idea is to run
local set-membership recursions (with time and measurement
updates) at each node while exchanging constraints in order to
achieve constraints consensus on a set-membership estimate.
Distributed constraint re-examination is obtained as follows:
at each time, each node keeps in memory the last m mea-
surements it took and, after an appropriate time-update, re-
introduces them into the ΠLP computation. In what follows
we given an informal and a pseudo-code description.

Eight Half-Planes Consensus Algorithm: The pro-
cessor state at each processor i contains a set
H

[i]
optimal of 8 candidate optimal constraints and a

set H
[i]
sensed containing the last m measurements, for

some m > 0. These sets are initialized to the first
sensor measurement. At each communication round,
the processor performs the following tasks: (i) it
transmits H

[i]
optimal to its out-neighbors and acquires

from its in-neighbors their candidate constraints; (ii)
it performs a time-update, that is, a time-translation
by an amount vmax, of all candidate optimal, mea-
sured and received constraints; (iii) it updates the
set of measured constraints if a new measurement is
taken; and (iv) it updates H

[i]
optimal to be the projection

ΠLP of all candidate optimal, measured and received
constraints.

Problem data: A network Gsn of sensors that mea-
sure half-plane constraints

Algorithm: Eight Half-Planes Consensus
Message alphabet:A = H8 ∪ {null}
Processor state: H

[i]
optimal ∈ H8

H
[i]
sensed ∈ Hm for some m > 0

Initialization: H
[i]
optimal := {h[i](0), . . . , h[i](0)}

H
[i]
sensed := {h[i](0), . . . , h[i](0)}

function msg
(
(H [i]

optimal,H
[i]
sensed)

)



12

1: return H
[i]
optimal

function stf
(
(H [i]

optimal,H
[i]
sensed), y

)
% executed by node i, with yj := H

[j]
optimal

1: time-translate by an amount vmax all constraints constraints
in H

[i]
sensed, H

[i]
optimal, and ∪j∈Nin(i)yj

2: if a new measurement is taken at this time, then
3: add it to H

[i]
sensed; drop oldest measurement from H

[i]
sensed

4: end if
5: set H

[i]
optimal := ΠLP

(
H

[i]
sensed ∪H

[i]
optimal ∪j∈Nin(i) yj

)
6: return (H [i]

optimal,H
[i]
sensed)

We conclude this section with some straightforward facts
about this algorithm; we omit the proof in the interest of
brevity.

Proposition VI.3 (Properties of the eight half-planes con-
sensus algorithm) Consider a connected network Gsn of
sensors that measure half-plane constraints and implement the
eight half-plane consensus algorithm. Assume the target does
not move, that is, set vmax = 0. The following statements hold:

(i) the candidate optimal constraints at each node contain
the target at each instant of time;

(ii) the candidate optimal constraints at each node mono-
tonically improve over time; and

(iii) if each node takes a finite number of measurements,
then the candidate optimal constraints at each node
converge in finite time to the globally optimal 8 half-
plane constraints.

VII. APPLICATION TO FORMATION CONTROL FOR
ROBOTIC NETWORKS

In this section we apply constraints consensus ideas to
formation control problems for networks of mobile robots. We
focus on formations with the shapes of a point, a line, or a
circle. (Formation control to a point is usually referred to as the
rendezvous or gathering problem.) We solve these formation
control problems in a time-efficient manner via a distributed
algorithm regulating the communication among robots and the
motion of each robot.

A. Model of robotic network

We define a robotic network as follows: each robot is
equipped with a processor and robots exchange information
via a communication graph so that the group of robots has
the features of a synchronous network and can implement
distributed algorithms as defined in Section III. As compared
with a synchronous network, a robotic network has however
two distinctions: (i) robots control their motion in space, and
(ii) the communication graph among the robots depends upon
the robots positions. Specifically, the robotic network evolves
according to the following discrete-time communication, com-
putation and motion model. Each robot i ∈ {1, . . . , n} moves
between rounds according to the first order discrete-time
integrator p[i](t + 1) = p[i](t) + u[i](t), where p[i] ∈ R2

and ‖u[i]‖2 ≤ umax for some positive umax. At each discrete

time instant, robots at positions Pn communicate according
to the disk graph Gdisk(Pn) = ({1, . . . , n}, Edisk(Pn)) defined
as follows: an edge (i, j) ∈ {1, . . . , n}2, i 6= j, belongs to
Edisk(Pn) if and only if ‖p[i]−p[j]‖ ≤ rcmm for some rcmm > 0.

A distributed algorithm for a robotic network consists of
(1) a distributed algorithm for a synchronous network, i.e.,
a processor state, a message alphabet, a message-generation
and a state-transition function, as described in Section III,
and (2) an additional function, called the control function, that
determines the robot motion, with the following domain and
co-domain ctl : R2×W ×An → B(0, umax). Additionally, we
here allow the message generation and the state transition to
depend upon not only the processor state but also the robot
position.

The state of the robotic network evolves as follows. First,
at each communication round t, each processor i sends to
its outgoing neighbors a message computed by applying the
message-generation function to the current values of p[i] and
w[i]. After a negligible period of time, the ith processor resets
the value of its processor state w[i] by applying the state-
transition function to the current values of p[i] and w[i], and
to the messages received at time t. Finally, the position p[i] of
the ith robot at time t is determined by applying the control
function to the current value of p[i] and w[i], and to the
messages received at time t. In formal terms, if y[i](t) denotes
the message vector received at time t by agent i (with y

[i]
j (t)

being the message received from agent j), then the evolution
is determined by

y
[i]
j (t) = msg(p[j](t− 1), w[j](t− 1)),

w[i](t) = stf(p[i](t− 1), w[i](t− 1), y[i](t)),

p[i](t) = p[i](t− 1) + ctl(p[i](t− 1), w[i](t), y[i](t)),

assuming that msg(p[j](t− 1), w[j](t− 1)) = null if (i, j) 6∈
Edisk(p[1](t− 1), . . . , p[n](t− 1)).

B. Formation tasks and related optimization problems
Numerous definitions of robot formation are considered

in the multi-agent literature. Here we consider a somehow
specific situation. Let Spoints, Slines, and Scircles be the set of
points, lines and circles in the plane, respectively. We refer to
these three sets as the shape sets. We aim to lead all robots
in a network to a single element of one of the shape sets. If
S is a selected shape set, the formation task is achieved by
the robotic network if there exists a time T ∈ N such that
for all t ≥ T , all robots i ∈ {1, . . . , n} satisfy p[i](t) ∈ s
for some element s ∈ S. Specifically, the point-formation, or
rendezvous task requires all connected robots to be at the same
position, the line-formation task requires all connected robots
to be on the same line, and the circle-formation task requires
all connected robots to be on the same circle.

We are interested in distributed algorithms that achieve
such formation tasks optimally with respect to a suitable cost
function. For the point-formation and line-formation tasks, we
aim to minimize completion time, i.e., the time required by all
robots to reach a common shape. For the circle-formation task,
we aim to minimize the product between the time required to
reach a common circle, and the diameter of the common circle.
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Remark VII.1 (Circle formation) For the circle-formation
problem we do not select the completion time as cost function,
because of the following reasons. The centralized version
of the minimum time circle-formation problem is equivalent
to finding the minimum-width annulus containing the point-
set. For arbitrary data sets, the minimum-width annulus has
arbitrarily large minimum radius and bears similarities with
the solution to the smallest stripe problem. For some configu-
rations, all points are contained only in a small fraction of the
minimum-width annulus; this is not the solution we envision
when we consider moving robots in a circle formation. There-
fore, we consider, instead, the smallest-area annulus. This cost
function penalizes both the difference of the radiuses of the
annulus (width of the annulus) and their sum. �

The key property of the minimum-time point-formation
task, minimum-time line-formation task, and optimum circle-
formation task is that their centralized versions are equivalent
to finding the smallest ball, stripe and annulus, respectively,
enclosing the n agents’ initial positions. We state these equiv-
alences in the following lemma without proof.

Lemma VII.2 (Optimal shapes from geometric optimiza-
tion) Given a set of distinct points {p1, . . . , pn} ⊂ R2,
consider the three optimization problems:

min
p∈Spoints

max
j∈{1,...,n}

‖pj − p‖,

min
`∈Slines

max
j∈{1,...,n}

dist(pj , `),

min
c∈Scircles

max
j∈{1,...,n}

dist(pj , c) · radius(c),

where radius(c) denotes the radius of the circle c. These three
optimization problems are equivalent to the smallest enclosing
ball, the smallest enclosing stripe (for points in stripe-generic
position), and the smallest enclosing annulus problem, respec-
tively. Therefore, they are abstract optimization problems with
combinatorial dimension 3, 5 and 4, respectively.

C. Connectivity assumption, objective and strategy

We assume that the robotic network is connected at initial
time, i.e., that the graph Gdisk(Pn(0)) is connected, and we
aim to achieve the formation task while guaranteeing that
the state-dependent communication graph remains connected
during the evolution. The key idea is to restrict the allowable
motion of each robot so as to preserve the existing edges in
the communication graph; see [24], [38]. We present this idea
in three steps. First, in a network with communication edges
Edisk, if agents i and j are neighbors at time t ∈ Z≥0, then
we require that their positions at time t + 1 belong to

X (p[i](t), p[j](t)) = B
(p[i](t) + p[j](t)

2
,
1
2
rcmm

)
.

If all neighbors of agent i at time t are at locations Q[i](t) =
{q1, . . . , ql}, then the (convex) constraint set of agent i is

X (p[i](t), Q[i](t)) =
⋂

q∈{q1,...,ql}

B
(p[i](t) + q

2
,
1
2
rcmm

)
.

Second, given p and q in R2 and a convex closed set Q ⊂ R2

with p ∈ Q, we introduce the from-to-inside function, denoted
by fti that computes the point in the closed segment [p, q]
which is at the same time closest to q and inside Q. Formally,

fti(p, q,Q) =

{
q, if q ∈ Q,

[p, q]∩ ∂Q, if q /∈ Q.

Finally, we assume that if p
[i]
target(t) denote the desired target

positions of agent i at time t + 1 computed by the control
algorithm, then we allow robot i to move towards that location
only so far as the constraint set allows. This is encoded by:

p[i](t + 1) = fti(p[i](t), p[i]
target(t),X (p[i](t), Q[i](t))).

D. Move-to-consensus-shape strategy

The minimum-time point-formation, minimum-time line-
formation, and optimum circle formation tasks appear in-
tractable in their general form due to the state-dependent
communication constraints. To attack these problems, we
search for an efficient strategy that converges to the optimal
one when the upper bound on the robot speed umax goes
to zero or, in other words, when information transmission
tends to be infinitely faster than motion. Such a strategy
involves reaching consensus on the optimal shape, and then
using the solution as a reference for the agents’ motion. We
adopt an improved strategy involving concurrent execution
of constraints consensus and motion: while the constraints
consensus algorithm is running, each agent moves toward the
estimated target position while maintaining connectivity of the
communication graph.

Move-to-consensus-shape strategy: The processor
state at each robot i consists of a set B[i] of δ
candidate optimal constraints and a binary variable
halt[i] ∈ {0, 1}. The set B[i] is initialized to p[i](0)
and halt[i] is initialized to 0. At each communication
round, the processor performs the following tasks:
(i) it transmits p[i] and B[i] to its neighbors and
acquires its neighbors’ candidate constraints and
their current position; (ii) it runs an instance of the
constraints consensus algorithm for the geometric
optimization program of interest (smallest enclosing
ball, stripe or annulus); if the constraints consensus
halting condition is satisfied, it sets halt[i] to 1;
(iii) it computes a robot target position based on the
current estimate of the optimal shape; (iv) it moves
the robot towards the target position while respect
input constraint and, if halt[i] is still zero, enforcing
connectivity with its current neighbors.

Next we give a pseudo-code description. We let
target_set({p1, . . . , pn}) denote the point, the line or
the circle equidistant from the boundary of the smallest
enclosing ball, stripe or annulus, respectively, and let Pn(0) =
{p[1](0), . . . , p[n](0)}.
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Problem data: A robotic network and a shape set
Algorithm: Move-to-Consensus-Shape
Message alphabet:A = R2 ∪ (R2)δ ∪ {null}
Processor state: B[i] ⊂ Pn(0) with card(B[i]) = δ,

halt[i] ∈ {0, 1}
Physical state: p[i] ∈ R2

Initialization: B[i] := {p[i](0), . . . , p[i](0)},
halt[i] := 0

function msg
(
p[i], B[i]

)
1: return (p[i], B[i])

function stf
(
B[i],halt[i], y

)
% executed by node i, with yj = (p[j], B[j]) := msg(B[j])

1: Stmp := {p[i](0)} ∪B[i] ∪
(
∪j∈Nin(i) B[j]

)
2: B[i] := Subex_LP(Stmp, B

[i])
3: if B[i] has not changed for 2n rounds,
4: then halt[i] := 1; end if
5: return (B[i],halt[i])

function ctl
(
B[i], p[i], y

)
% executed by node i, with yj = (p[j], B[j]) := msg(B[j])

1: Strgt := target_set(B[i])
2: ptrgt := arg min

p∈Strgt

‖p[i] − p‖

3: if halt[i] = 0, then
Xcnstr :=

⋂
j∈Nin(i)

B
(

p[i]+p[j]

2 , 1
2rcmm

) ⋂
B

(
p[i], umax

)
else Xcnstr := B

(
p[i], umax

)
; end if

4: return fti(p[i], ptrgt,Xcnstr)− p[i]

In the interest of brevity, we refer the interested reader
to [1] for numerical simulation results and for the proof of
the following statement.

Proposition VII.3 (Properties of the move-to-consensus-
shape algorithm) On a robotic network with communication
graph Gdisk and bounded control inputs umax, the move-
to-consensus-shape strategy achieves the desired formation
control tasks. In the limit as umax → 0+, the move-to-
consensus-shape strategy solves the optimal formation control
tasks, i.e., the minimum-time point-formation, minimum-time
line-formation, and optimum circle formation tasks.

VIII. CONCLUSIONS

We have introduced a novel class of distributed optimization
problems and a corresponding algorithmic approach. We have
established the correctness of the proposed algorithms and
substantiated thorough Monte Carlo analysis our conjecture
about the time complexity of our algorithms. Finally, we
have discussed two applications: target tracking in sensor
networks and formation control in robotic networks. Promising
avenues for further research include proving the linear-time-
complexity conjecture, as well as applying our algorithms
to (i) optimization problems for randomly switching graphs
and gossip communication, (ii) distributed machine learning
problems [18], [17], [19], and (iii) quadratic programs [39] and
random convex programs [40]. Additionally, it is of interest
to verify the performance of our proposed target localization
and formation control algorithms in experimental setups.
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