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A pursuit game with range-only measurements

Shaunak D. Bopardikar Francesco Bullo addP. Hespanha

Abstract—We address a discrete-time, pursuit-evasion game environment while [11] deals with locating and capture in
with alternate moves played between two kinds of players: the polygonal environments.

pursuer and the evader. The pursuer wishes to capture the evau With respect to pursuit under sensing constraints, [12lsdea

while the evader’s goal is to avoid capture. By capture, we mean ith . f 's visibility limited t 3
that the distance between the players is no greater than unit. With @ version of pursuer’s visibility limited to a cone. [L

We assume simple, first-order motion kinematics for the players. considers a graph environment, with the visibility limiteal
The pursuer can move with a step size of at most unit while  adjacent nodes, while [14] and [15] propose a framework
the evader can move with a maximum step size of < 1 units. assuming probabilistic models for sensing. [16] addretises

The pursuer is able to mea}sureonly its distance from the evader, case in which the pursuer only knows an approximate location
before and after the evader’'s move. We propose a capture sttagy

and first show that for the game played inR?, if 3 < 0.5, then a of the evader. [17] and [18] present .a S(_)Iution .to the game
single pursuer captures the evader in finite time. Next, we show uUnder bounded measurement uncertainty in sensing therevade
that if the game is played inR* and if 3 < 0.5, then with a Other areas of research related to the problem we ad-
modified strategy, two identical cooperative pursuers capturéhe  dress, are target tracking and localization. Using disteordy
evader in finite time. Finally, we shed light on the performance measurements, [19] determines optimal motions for meltipl

of the capture strategy in the case of3 € [0.5,1] and the case bil ¢ inimize th in th teri .
of sensing errors via simulations. We also present a simulation mobile sensors to minimize the error in the posterior edéma

study of a version of this game with simultaneous moves. of the target position. Using the Fisher Information Matrix
[20] characterizes a condition for local system obseritgiolf
. INTRODUCTION tracking a moving target in a plane with range-only measure-

ments. [21] and [22] present an established estimation adeth

The game of pursuit can be posed as to determine a stratggyrack targets moving with bounded speeds. We refer to this
for a pursuer to capture an evader in a given environment. Byaihod as therow-Intersectalgorithm.

capture we mean that the evader and the pursuer are within a
specified distance after a finite time. The aim of the purssierB. Contributions

to capture the evader for any evader strategy. The evader win\ye address a discrete-time alternate-motion pursuiti@vas

the game if it can avoid capture indefinitely. Capture stiiate game played between two kinds of players, the pursuer and
are important in surveillance where the goal is to detect atgh evader. The pursuer wishes to capture the evader while th
capture intruders that move unpredictably. Another apibol  eyader's goal is to avoid capture. By capture, we mean that
is search-and-rescue operations where a worst-case @ap{ig distance between the pursuer and the evader is no greater
strategy guarantees a rescue, in spite of any unpredictafplgn 1 unit. The game is played ii?, i.e., the unbounded

motion of the victim. plane. We assume simple, first-order motion kinematics for
both players. The pursuer can move with a step size of at
A. Related Work most1 unit while the evader can move with a maximum step
There has been tremendous interest in pursuit-evas@@e of 3 < 1. The pursuer is able to measure its distance
games ever since their formal introduction [1]. Various-vefrom the evader before as well as after the evader's move,
sions of these games have been studied over the past fobile the evader is assumed to have complete information of
decades - for instance [2], [3] and [4] to cite a few. Recentl{he pursuer’s location. In continuous time, this is analesgo
there has been a surge of interest in the algorithmic approd@ the pursuer being equipped with a sensor that measures the
to the game in discrete-time. [5] gives sufficient condisiamd distance to the evader as well as the rate of change of this
a strategy for a single pursuer to capture an evader in a seffistance. [23] presents an example of one such sensor.
open environment. [6] and [7] analyze pursuer strategies ofln the proposed game, we present a strategy inspired by the
moving towards the current and towards the last positiohef tGrow-Intersectalgorithm for the pursuer and show that: (i)
evader respectively. [8] and [9] address visibility-bapedsuit  if the maximum evader step sizg¢ < 0.5, then the pursuer
evasion. With respect to multiple cooperative pursuer] [1captures the evader in finite time, (ii) for the game played
addresses capturing an equally fast evader in a boundarylsR?: if § < 0.5, then two identical, cooperative pursuers
capture the evader in finite time, and (iii) we provide upper
This material is based upon work supported in part by ARO MURBAI  bounds on the time taken to capture the evader in parts (i) and
WO11NF-05-1-0219, ONR Award N00014-07-1-0721 and by théitlrte for (i) Finally, we present simulation studies in the planase to
Collaborative Biotechnologies through the grant DAADI3D-0004 from . s "
the U.S. Army Research Office. address: (i) the case ¢f € [0.5, 1], (i) the effect of additive,
Shaunak D. Bopardikar, Francesco Bullo andadloP. Hespanha zero-mean Gaussian noise with variance proportional to the
are with the Center for Control, Dynamical Systems and Computaguare of the distance between the evader and the pursuer on
tion (CCDC), University of California at Santa Barbara, BarBar- . .
bara, CA 93106, USA{shaunak, bul | 0}@ngi neer i ng. ucsb. edu, the outcome of the game, and (iii) a game with simultaneous
hespanha@ce. ucsb. edu moves.



C. Organization in this formulation, we allow the evader the access to theeent
The problem formulation is described in Section II. Théistory of the pursuer's motion, while we allow the pursures t

capture strategy and main result is presented in Section AFCeSS tanly two of the most recent evader measurements.

A cooperative pursuit version of this game is presented #{'€ lack of symmetry between the number of arguments in

Section IV. The proofs of the main results in Sections Iftrategies of the evader and the pursuer is due to the akerna

and IV are presented in Section V. Simulations that addreg9tion model and due to the assumptions on the measurement

the case of evader spegtl € [0.5,1] and sensor noise areModels of the players.

presented in Section VI. A version of the present game with Since the step sizes of each player are bounded, we have

simultaneous moves and a simulation study of the applicatio

of a modified capture strategy are presented in Section VII. [uf <8, and [lu”| <1, (2)

Il. PROBLEM SET-UP where3 < 1. Capturetakes place when for sona, € Z>o,

We assume a discrete-time model with alternate motion
of the evader and the pursuer. The game is played in thée[ZTcag —p[Tcap—1][[ <1 or  |[le[Teag —p[Teagl| < 1. (3)
unbounded plane. We assume simple, first-order motion kine-
matics for both players. The pursuer can move with a stepThe problem isto determine a pursuer strategy” that
size of at mostl unit while the evader can move with a stefguarantees capture for any evader strategy
size of 3 < 1. The pursuer is equipped with a range-only
sensor that measures its _distance_ from the evader., Therey%ark II.1 (Continuous-time analogy) Such a model
is assumed to knowexactmforman_on ofthe pursuersloati 5ises \when one discretizes the continuous time pursuit-
Further, we assume that at each time instant, the playees t(,qjon game in which the pursuer is equipped with a sensor

measurements before and after the pursuers move. Thug& continuously measures the distance to the evader &s wel
sequencef the game consists of the following: (i) the evadegIS the rate of change of this distance

moves, (ii) players take measurements, (iii) the pursuereso
(iv) the players take measurements. This is shown in Figure 1
Capture is defined when the evader is not greater thanita
distance from the pursuer. In this section, we describe our capture strategy and the
corresponding main result.

IIl. THE CAPTURE STRATEGY AND MAIN RESULT

Evader moves ta|(] Pursuer moves tp|{] e .
Our capture strategy has two phases: Initialization and
Pursuit. These are described as follows.
A. Initialization phase
Attimet > 1 This phase lasts for only the first sequence. In the first
sequence,
Measure Measure .
Evadersit — 1] Evader:pll] (i) The evader moves te[1]. _
Pursuery, 1] Pursuery, ] (i) The pursuer gets the measuremegitl] and it constructs
9B,,11)(p[0]) which is a circle of radiug[1] around the
point p[0].

Fig. 1. A sequenceat each time instant € {1,2,...} in our alternate . .
motion model. The players take measurements before and aftputeeer's ~ (iii) The pursuer randomly selects a direction to move and

move. moves along it with unit step size.
(iv) The pursuer gets the measuremegyit] and it constructs

Let e[t] € R? and p[t] € R? denote the positions of the 9B,,1(p[1]) and computes the estimate

evader and the pursuer respectively, at time Z-;. The

discrete-time equations of motion are E[1]) := 0B, 1 (p[1]) N 0By, (p[0]). (4)
eft] = eft — 1] +u®(e[t — 1], {p[7]};20), (1) Since E[1] is an intersection of two non-concentric circles
plt] = p[t — 1] + P (plt — 1], ye—1[t], ve[t]), described in the right hand side of (4), we have the following
result.

where{p[r]}:_} denotes the s€ip[0], p[1], ..., p[t —1]}. For

the pursuer, at th&" time instant y,_1[t], y:[t] € Rx( are the .

distances of the evader’s position from the pursuer befode aProposition II1.1 (Initialization) E[1] = (é4[1],é[1]) €
after the evaders move respectively. Thys,[t] = |le[f] — R? x R? is an estimate oé[1].

plt — 1]|| and y[t] = |le[t] — p[t]||. The functionsu® : R? x

R%2 x .- x R? = R? andu? : RZxRxR — R? are termed as If é,[1] = &[1], then the pursuer has accurately determined
T e[1]. In general, the pursuer is unable to distinguish between
strategiesfor the evader and pursuer respectively. Notice th#tte two estimates.



1) Pursuit phase:We now present our pursuit strategy. Remark I11.5 (Other Sensor-based formulations) The

Until the evader imot captured, at time > 2, Grow-Intersect algorithm can also be adapted to design a
(i) the pursuer selects a poidit — 1] € E[t — 1] at random pursuit strategy when the evader is a transmitter device and
and moves towards it with full step size. Thus, the pursuer is equipped with a sensor that determordg

. the line that contains their positions, without the ori¢iota
e[t — 1] —p[t — 1] .

- . (5) sense. Our strategy guarantees that the pursuer simuliglgieo
left = 1] = p[t = 1]| captures the evader as well as ascertains that it is within un
(ii) The pursuer updates the estimate of the evader’s positiradius if the maximum evader spegd< 0.25.

using

plt] = plt — 1] +

IV. COOPERATIVE PURSUIT INR?
Elt] := 0By, ,iy(p[t — 1])N We now present the pursuit problemIi¥ played with two

(E[t - 1] ® 85(0)) n 53%[1&] (p[t]), (6) cooperative pursuers.

) . A. Problem statement and notation
whereBs(0) C R? denotes the closed circular region of

radius 3 around the origird € R? and the operatior
denotes the Minkowski sum in the plane.

The problem formulation is almost identical to the planar
case except that now we have two identical pursuers which
move simultaneously at their turn. The game is playefin
Akin to (1), the equations of motion are given by

elt] = e[t — 1] +u®(e[t — 1], {p[]}.2t),
pilt] = pilt — 1]+ P (pit — 1], y;_1[t], w3 (1)),

where for thei" pursuer,p;[t] € R? denotes its position at
time ¢, yi_,[t],yi[t] € R>o are the distances of the evader
from it before and after the evader’s move respectively and
uPi is its strategy. The strategies satisfy (2) and capture is
defined when for someée {1, 2}, (3) is satisfied.

The problem isto determine pursuer strategieg” that
guarantee capture for any evader strategf.

Fig. 2. An instance of the pursuit strategy. The dotted esdhave radi B. Capture strategy and Main result

equal tos and denote the region where the evader can step attimais . . .

figure illustrates the case when the pursuer moves towarfls— 1] while We presegnt Our, solution to the cooperative pursuit game
the evader was actually @[t — 1] and consequently exactly localizes theplayed inR®. Again, our capture strategy has two phases:
evader at time. Initialization and Pursuit. These are described as follows

1) Initialization phase: This phase lasts for only the first

equence. In the first sequence,

(i) The evader moves te[1].

(i) For i = {1,2}, pursuerp; gets the measuremep}[1]
and it constructs)B,; 1) (p:[0]) which is the surface of
a sphere of radiugj[1] around the poinp;[0].

(iif) Pursuer p; selects a direction to move ensuring that
p1[1] # p2[1] and moves along it with unit step size.

(iv) Each pursuerp; gets the measurement [1] and it
constructsoB,:1)(pi[1]) and computes the estimate

An instance of this strategy is shown in Figure 2. A simpl
induction argument gives the following result, the proof o
which is presented in Section V.

Lemma Ill.2 (Evader estimate) At every time instant <
VASE
(i) The evader's positior|t] € E[t], where E[t] is recur-
sively defined using4) and (6).
(i) The setE[t] contains at most two point@,[t], éy[t]) €

R? x R2. Further, ||é.[t] — p[t]|| = |lé[t] — p[t]||, for
evemt: ENi= () (0B (mil1)) 0B,y (mil0)). ()
We now present the main result of this section. ie{1,2}

For eachi € {1,2}, the term in the outer parentheses in (7)

Theorem 111.3 (Capture in R?) If 3 < 0.5, then a single is an intersection of the surfaces of two sphere®ihand
pursuer captures the evader using our capture strategy andhence is a circle. Hencedy[1] is an intersection of two non-
at most[ 1<LpLILEC20)] time steps. concentric circles and thus contains at most two points.

2) Pursuit phase:We now present our pursuit strategy.
Remark I11.4 (Single pursuer in R3) In R3, it is not clear Until the evader isot captured, at time > 2,
whether it is possible to guarantee capture with a single(i) If E[t — 1] contains only one poiné[t — 1], then the
pursuer using the proposed strategy. At each time ingtantoursuer closer to it, say; moves towards it with full step
the set of evader estimatégt] in general contains more thansize. The other pursuer, moves:
just two points. This motivates the use of another cooperati a) towardsé[t — 1] with maximum step size, if the three
pursuer inR?, which we address in the next section. pointsé[t — 1], p1[t — 1] andps[t — 1] are not collinear.



b) anywhere inside except on the axis of a cone with V. PROOFS OF THEMAIN RESULTS

half-angle equal taurcsin (5/le[t — 1] — pa[t — 1]|[), vertex | this section, we present the proofs of the main results
at po[t — 1] and with e[t — 1] — po[t — 1] as the axis, with presented in Sections 11l and IV.
maximum step size, if the poingst — 1], p; [t —1] andps [t —1]

are collinear. Refer to Figure 5 for an illustration. A. Single pursuer irR”
In case both pursuers are equidistant, then pursué the We begin by proving Lemma I11.2.
one that moves directly towards the evader. Proof of Lemma I11.2:

Otherwise, fori = {1,2}, each pursuep; is assigned a We prove parts (i) using mathematical induction. Propo-
unique points;[t — 1] in E[t — 1] and it moves towards it with sition 11l.1 serves as the base of induction. Now assume
full step size. Thus, e[t — 1] € E[t — 1]. Since the evader's step size is upper
. 1 1 bounded byj, e[t] € E[t — 1] & Bs(0). From the definition
Gilt — 1] = pift — 1] (8) of a sequence (ref. Section Ilj[t] is contained in both

piltl = pilt - 1]+

leaft = 1) = pilt = I OBy, _,11(p[t —1]) anddB,, [ (p[t]). Thus,e[t] is contained in
(i) The pursuer updates the estimate of the evader's paositithe intersection of these three quantities and part (ipfed|
using via the principle of induction.
By part (i) of this lemma, since botf3,, ) (p[t —1]) and
Elt] = (E[t —1]e Bg(O)) N (aByi[t] (p: [N 9By, (plt]) containelt], their intersection is non-empty and
ie{1,2) ¢ can contain at most two points due to the fact that they are

non-concentric circles. The final statement follows frore th
IBy: 1n(pilt — 1]))~ (9) fact that the intersection points of two circles are equiis

_ from their centers.
where B3(0) C R? denotes the closed sphere of raditis m

around the origin0 € R* and the operations denotes the  \we also have the following useful result.

Minkowski sum inR3.

Lemma V.1 For everyt € Zxs, [|é,[t] — é[t]|| < 28, where
é,[t] and é,[t] are elements of the evader estimate Béf.

Proof: At time ¢, let the pursuer choose to move towards

palt] ot =1 éq[t] While executing part (i) of the pursuit strategy. From
; ] Lemma II1.2, E[t + 1] contains at most two pointg,[t + 1]
1] andéy[t + 1] ande[t + 1] € E[t] & Bs(0), which implies that

elt + 1] € Bg(é,[t]) U Bg(ép[t]). From geometry, the points
Fig. 3. An instance of the cooperative pursuifii. The dotted circles have €a[t+1] @andéy[t+1] can be distinconly if both are contained
radii equal to3 and denote the region where the evader can step atttimeinside Bﬁ(éa [t]). Thus, the result follows. [ |

CirclesC7 and C> (shown as ellipses here) are the intersections of the two The last two lines of the proof of Lemma V.1 lead to a
spheres (not shown to preserve clarity) associated with esasurement for :

each pursuer. The lightly shaded dots is the /S&i. useful corollary.

An instance of this strategy is shown in Figure 3. AkmCorollary V:2 At the end of any sequence at time 7.,

: : if the evader estimate,[t] and &,[t] are distinct, then they
;gllla\?vrirr]garle!tﬁ in the single pursuer problem, we have thr%}ust be contained insidBs(é[t — 1]), whereélt — 1] is the

point the pursuer goes toward at the time step

Lemma IV.1 (Evader estimate) At every time instant < At each instant € Zxo, recall thaty,[t] := |le[t] — p[t]]| =
L1, lléa[t] — plt]l| = llés[t] — p[t]|l.- We have the following useful

() Using the proposed cooperative pursuit strategy, the twigsult.
pursuers are at distinct locations iR?>. _
(i) The setE[t] contains at most two point@, [t],é[t]) € Lemma V.3 If 5 < 0.5, then at every instant € Z, for
R3 x R3. Further, for eachi € {1,2}, ||e1[t] — pi[t]|| = Whichwe[t] > 1, gy [t + 1] <welt] + 5.
léslt] — pilt]], for everyr.
(iiy The evader's positior|t] € Elt], where E[t] is recur-
sively defined using7) and (9).

Proof: There are two main possibilities: eithéif¢] con-
tains only one point, i.eg(t) or E[t] = (é4[t], é&[t]). In the
first case, the pursuer moves towardi§ and on applying the
triangle inequality, we haveg, 1t + 1] < yft] — (1 = 5) <
y:[t] + 3, and the proposition is verified. In the second case,
let us assume that the pursuer moves towards. There are
two possibilities now. If the evader was @ff¢] at timet, then
the result is verified to be true since this possibility iscka
similar to the first case. But if the evader waggt] at timet,

We now present the main result of this section.

Theorem IV.2 (Capture in R3) If 3 < 0.5, then two pur-
suers capture the evader usirE%; the cooperative capturéesfya
0]—
—2

and in at most(”e[ol’pl[o“lﬂl(e1 B’;Q[O”‘”(Hw)} time steps.




then observe that sinag[t] > 1, p[t + 1] will lie somewhere Thus, the lemma holds for this case.
betweenp[t] andé,[t]. This is shown in Figure 4. By triangle  2) é,[t + 1] = é,[t + 1] = e[t + 1]: Applying Lemma V.3 at
inequality, time stept+ 1, we gety:1[t+1] < y:[t] + 5. Before its move
_ at time¢+ 2, the pursuer knows the exact locatiein+ 1]. So
yralt +1] = H(f[t +1] = plt + 1111 at the end of time step+ 2, by applying triangle inequality,
< llés[t] — plt + ][l + [left + 1] — ef]]]- akin to (10), we have,

Since 8 < 0.5 and y[t] > 1, ||ép[t] — plt + 1]|| < ||és[t] — _(1— (11—
p[t]]| =: y+[t]. Thus, the result follows sindee[t+ 1] —e[t]|| < Yraall + 2 S gl + 1] = (1 =0) <weld] = (1 =26).
. m Thus, the lemma holds for this case.
We have verified that this lemma holds for all the possibil-
s ities. n
éb[tT/ The proof of Theorem I1II.3 is almost immediate due to
‘ Lemma V.4.
; Proof of Theorem 111.31f 3 < 0.5, then Lemma V.4 states that
“x\éu,[t],,«" for every time stepg > 2 and as long ag;[t] > 1, the distance
plt+1] y:[t] strictly decreases by a positive quantity 25 after every
plt] two time steps. Thus, after a time of at m _]2’;) , We obtain
Fig. 4. lllustration of a case in Lemma V.3. The evader i dt] and the yelt] < 1, i.e., the ?Vader is captured. .
pursuer moves towards, [¢]. For the expression of the upper bound on the capture time,
we seek an upper bound gg[2]. In the initialization phase, it
We present another important result. is possible that the pursuer and evader both move in a directi
away from each other. Thusg; [1] < |le[0] — p[0]|| + (1 + 3).
Lemma V.4 For every time step € Z>o, if 5 < 0.5 and as This can also take place at time steg- 2, since Lemma V.3
long as the evader is not captured, does not hold at time step= 1. Thus,y2[2] < y1[1]+(1+05).
Thus, a conservative upper bound @12] is ||e[0] — p[0]]| +
Yeralt +2] <welt] = (1—20). 2(1 + ). The result now follows. priaLts el =]
Proof: At any time ¢t € Zso, there are two main |
possibilities: B
() éq]t] = éb[t] = elt]: In this case, the pursuer moves ) .
towardselt] at timet + 1. Thus, by the triangle inequality at e begin by proving Lemma IV.1.

. Cooperative pursuit ifR3

this step, Proof of Lemma IV.1:0Observe that for each, the set
Yrilt + 1] < yilt] — (1 — B). (10) 9By (pilt]) NOB,;  1(pi[t—1]) is a circle withp;]i] located

) on its axis i.e., the line passing through its center and
Attime ¢ + 1, there are two further cases, perpendicular to the plane containing the circle. Thusefwh

1) If &t + 1] # &t + 1], then by Lemma V.3, we have, time instantt, the points in£[t] are equidistant from both
Yeralt +2] < yep1[t + 1]+ 8. This combined with (10) gives, pursuers.

Yeralt + 2] <yt + 1]+ 8 < w[t] — (1 — 23). We prove parts (i) _and (i) by mathematical induction.
. The lemma holds at tim¢ = 1, as a consequence of the
Thus, the lemma holds for this case. Initialization phase. Now assume that at some timehe

2) If éu[t + 1] = &t + 1], then akin to (10), we have,  rgyers are at distinct locations and there are at most two
Yero[t + 2] < yega[t+1] — (1= ), poil;tsrinE[t]. Thendthere are two[ p])ossdibili[ti]es: A[ -
1) There are two distinct pointg [t] andés[t] in E[t]: If the
t] —2(1 — t| —(1—-2p). .
<ulf] =2 _ B) <welt] = ( 2 four pointsp. [t], é1[t], p2[t], é2[t] are co-planar, the, [t] and
Thus, the lemma holds for this case. é>[t] lie on opposite sides of the line joining [t] and p.|t].
(ii) éq[t] # éy[t]: Let the pursuer choose to move towardBy the pursuit strategy, since each pursuer moves towasds it
éq[t] at timet + 1. Then, there are two further possibilities. respectiveé[t], the pointsp, [t + 1] and py[t + 1] also lie on
1) éq[t + 1] # éy[t + 1]: From Corollary V.2, we know that opposite sides of the line joining; [¢] and p.[t] and thus are
éq[t+1] andéy[t+1] are contained il ;(é4[t]). So by triangle distinct. If pi[¢], é1[¢], po[t], é2[t] are not co-planar, then the
inequality, line joining p1[t] andé, [t] and the line joiningps [¢] and é|t]
te1l <l — (1= 8). 11) are skew inR3. Thus, any point on the first line is distinct
vl 1) < welt] = (1 =) A (1) from any on the second.
At time stept + 2, independent of which point i®/[t + 1] the 2) é1[t] = ésft] = elt]: If eft], pi[t] and ps[t] are not
pursuer decides to move toward, by Lemma V3.2t +2] < collinear, then by part (a) of item (i) in the pursuit strateipe
yi+1[t + 1] + 8. Combining this with (11), we get, pointsp; [t + 1] andp.[t + 1] are distinct. If they are collinear,
then the axis of the cone described in part (b) of item (i) of
< _ _
Yepalt +2] S gt +1] = (1= B) + 5, the pursuit strategy is the lifepassing throughl[t], p:[t] and
<wlt] - (1-20). p2[t]. The pursuer closer to the evader, sgymoves towards



e[t] and hence is still on the ling while p, moves to a point time stepsy; [t] + »2[t] < 2, which means eithey}[t] < 1 or
not contained i and thusp; [t + 1] andps[t + 1] are distinct. yZ[t] < 1, i.e., the evader is captured.

Thus, the pursuers are at distinct locations at tirrd . For For the expression of the upper bound on the capture time,
part (i), observe that at time instant pursuerp, does not we seek an upper bound @g[2] + y2[2]. On similar lines to
move towards; [t — 1]. This means that the axes (defined ithe proof of Theorem I11.3, we havgi[2] < ||e[0] — p;[0]]| +
the first line of this proof) of the two circla%ByZH[tH] (pilt+ 2(1+ B). Thus, the result follows.

1]) N 9B 14441 (pi[t]) are never parallel to each other. Thus, |

their intersection and hencE[t + 1] contains at most two

points. Thus, the result holds by mathematical induction.
Proof of item (iii) is on similar lines as that of item (i) of We now present simulation studies that address the case of

Lemma 111.2. B evader speed € [0.5,1] and the case of the pursuer mea-

surements being corrupted with additive, zero-mean Ganissi

noise, with variance proportional to the square of the dista

to the evader. All simulations were run using MATLAB

VI. SIMULATION STUDIES

polt +1]

po[t] ' eft + 1]

A. The case off € [0.5,1]
Fig. 5. lllustration of case 2 in Lemma IV.1. The shaded reg®the cone . . .
described in part (b) of item (i) of the Pursuit phase. We ran simulations fofle[0] — p[0]|| = 20, 30 and40 units.

An upper limit of 1000 time steps was set to decide whether
the capture strategy terminated into capture or evasion.

It is unclear as to what is the optimal evader strategy in
this problem. This is because if the evader decides to always
move directly away from the pursuer with full step (igreedy

Proof: Let the evader be located [t — 1] at timet—1. move), then it would reduce the uncertainty in its position
p1 moves towards; [t — 1] and henceggf} must be contained for the pursuer. If it does not make a greedy move, then

in <8Byg[t] (m[t) N 0B, w(mlt — 1)) N Bs(élt — 1)) C the distance from the pursuer may reduce. So we adopt the

Yi—1 : . . .
By(é1[t—1]), which is a circle. The intersection points of thisfollowmg reasonable evader strategy for simulations hl

circle with the other circle due tp,, must be contained inside\i}ﬁﬁ ,arEO\I/eeOtg ?a%?;nrfssem;egeﬂgﬂ?Iyéﬁ??'?’n'rﬂea;r{c;fjfor
Bg(é1]t — 1]) and thus the result follows. ge . : b y y

Next, we observe that Lemma V.3 holds for the cooperati\?léong the linee[¢]p[#] an.d. away from the pursuer.
The plots of probability of success of the strategy versus

pursuit strategy as well. This follows from Lemma V.5 an(iih d ted in Fi 6
the fact that only the triangle inequality was being used© €vader speed are presented in Figure 6.
in the prpc_)f of Lemma V.3. The only extra _technicality iy Noisy measurements

the possibility of occurrence of case 2 as in the proof of

Lemma IV.1 (refer Figure 5). However, a simple calculation W& now assume that the pursuer measurements are cor-
reveals that Lemma V.3 still holds due to the motion as pEfPted with zero-mean, additive Gaussian noise whose vari-
part (b) of item (i) in the Pursuit strategy. ance proportional to the square of the distance to the evader

We now present a useful result. This implies o4, [t] = v|e[t]p[tl]]| and o.[t] = vile[t]p[t]]],
wherev > 0 is the noise parameter. Thus, in the notation

Lemma V.6 For every time step € Zs,, if 3 < 0.5 and as ©Of Section I ya[t] ~ N(|le[tlp[t1][|,ont]) and y[t] ~

Lemma V.5 For everyt € Zxo, [|é1[t] — é2[t]|| < 28, where
é1[t] and é,[t] are elements of the evader estimate B&f.

long as the evader is not captured, J\/(He[t}p[t].\\,at[y'f]),.wh.ere givena,b > 0, N(a,b) denotes
the Gaussian distribution with meanand standard deviation
Yot + 1]+ yilt+ 1) < yilt] + y7[t] — (1 —28). b.

Since itis unclear as to what is the optimal evader strategy i
this problem, we adopted the evader strategy in Section VI-A
"We ran simulations fofp = 0.2, 0.3 and 0.4 units. The initial
distance was set t20 units. An upper limit 0f2000 time steps
was set to decide whether the capture strategy terminated in
yha [t + 1] = left + 1] — pa[t + 1]|| < [le[t] — p1[t]]| — (1 — B3), capture or evasion. The plots of probability of success ef th

Proof: At any instantt, by Lemma IV.1, it is clear that
the evader is inE[t], which contains at most two points
é1[t], é2[t]. Let the evader be located &tt]. Then, by triangle
inequality

1 strategy versus the noise parametare presented in Figure 7.
=y lt]—(1-0).
From Lemma V.3, we havg§+1[t + 1] < y?[t] + B. Thus, VIl. A GAME WITH SIMULTANEOUS MOVES: SIMULATION
adding the two inequalities, we get the required result.m Stupy
Proof of Theorem IV.2If 3 < 0.5 and if bothy; [t] andy;|t] We now consider a discrete-time version of the game in the

are greazter tham for ¢ € 7>, then by Lemma V.6, their sum pjane in which the pursuer and the evader move simultane-
y; [t] + i [¢t] strictly decreases by a positive quantity—25)  gysly. In this version, at each instant of time, each plaggs g

. . 1 2191
at every instant of time. Thus, after at md [2(]3/22},2)} 21 only onemeasurement of its opponent. This is equivalent to
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Fig. 6. Estimate of capture probability versus evader step [8i The vertical bars give 5% confidence interval about the probability estimadtés)
which is given by [P(ﬁ) —2,/925 p(B)42,/%25 | wheren = 100 is the number of trials [24]. For a particular evader strategy study how the
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capture strategy performs for evader step gize [0.5,1].
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Fig. 7. Estimate of capture probability versus noise parametélhe vertical bars give 5% confidence interval about the probability estimdtér)
computed as described in Figure 6. For a particular evadategir, we study how the capture strategy performs under mé&surements.
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Fig. 8. Estimate of capture probability versus evader step 8j in the game with simultaneous moves. The vertical bars gi96% confidence interval
about the probability estimat®(3), computed as described in Figure 6. For a particular evadategl, we study the performance of a modified capture
strategy presented in Section VII.

a game in which the pursuer receivasly the distance to the  (iii) The pursuer gets the measuremeifit] and the evader
evader at each instant in continuous time. Thus, (1) beconestimate is given by
eft] = elt — 1] +u(elt — 1), {p[7]}1 2,

E1] == 8B, (p[1]).
plt] = p[t — 1] + uP(p[t — 1], y[t — 1]), 1] iy (p[1])

We modify the capture strategy in Section IIl as follows. Pursuit Phase: Until the evaderrist captured, at time >
Initialization phase: The following happens simultandpus?2, .

for only the first time step: (i) If E[t — 1] is a circle, then denote any point in it as
(i) The evader moves te[1]. é[t—1]. Otherwise, denote a§t— 1] a point chosen uniformly

(i) The pursuer randomly selects a direction to move amdndomly from one of the end points of the arcsEr{t —1].
moves along it with unit step size. The pursuer moves toward$ — 1] with full step size.



(i) The pursuer updates the estimate of the evader’s positiAdditional directions would be to consider noisy situatan

using the

Elt] = (E[t 1 35(0)) N 0B, (plt)-

(1]
(2]
(3]

(4]

(5]
(6]

(7]

Fig. 9. lllustration of the pursuit strategy in the game witlhgtaneous
moves. The dotted line is the estimafét — 1]. The bean-shaped region (8]
around it is its Minkowski sum witl35(0) and the darkly shaded arc is the
estimateE|t].

The strategy is illustrated in Figure 9. Since it is uncleatlg]
as to what is the optimal evader strategy in this problem,
we adopted the same evader strategy as in Section VI-A.
ran simulations for|e[0] — p[0]|| = 20, 30 and 40 units. An
upper limit of 5000 time steps was set to decide whether thig1]
capture strategy terminated into capture or evasion. Tois pl
of probability of success of the strategy versus the evaegr |1
size g are presented in Figure 8.

VIII.

We addressed a discrete-time alternate-motion pursuit-
evasion game in the plane in which the pursuer is equipp&d!
with a range-only sensor that measures its distance from the
evader. We propose a capture strategy based on the estalbli$ts]
Grow-Intersect algorithm, and show that if the evader’'s max
imum step sizes < 0.5, then the evader is captured. We
then posed a variant of this game R® and showed that [16]
two cooperative pursuers capture the evader with a modified
capture strategy if3 < 0.5. We gave upper bounds on theg;z]
capture times in both games.

N

C ONCLUSION AND FUTURE DIRECTIONS (13]

We then presented simulation studies that addressed tee
of 8 € [0.5,1] and the case of noisy measurements in the

same.
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