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Abstract

We address a pursuit-evasion problem involving an unbounded planar environment, a single evader and multiple pursuers
moving along curves of bounded curvature. The problem amounts to a multi-agent version of the classic homicidal chauffeur
problem; we identify parameter ranges in which a single pursuer is not sufficient to guarantee evader capture. We propose a
novel multi-phase cooperative strategy in which the pursuers move in specific formations and confine the evader to a bounded
region. The proposed strategy is inspired by hunting and foraging behaviors of various fish species. We characterize the required
number of pursuers for which our strategy is guaranteed to lead to confinement.
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1 Introduction

The homicidal chauffeur game has been studied in great
detail. Proposed originally by Isaacs [1], this problem
involves a pursuer who wants to overrun an evader,
both moving with fixed speeds. The pursuer has greater
speed but has constraints on its turning radius, while
the evader can make arbitrarily sharp turns. The evader
is said to be captured when the distance between the
pursuer and evader becomes less than a specified cap-
ture radius. In this paper, we consider the multi-agent
homicidal chauffeur problem in which a single pursuer is
not sufficient to guarantee evader capture. We propose
a cooperative strategy for multiple pursuers to confine
the evader in a bounded region which the evader cannot
leave without being captured. Such strategies are im-
portant in surveillance, as well as in search-and-rescue
operations where a guarantee of rescue is desired, in
spite of any unpredictable motion of the victim.

The classic homicidal chauffeur problem was proposed
and solved by Isaacs [1]. The pursuer moves at fixed
speed along planar paths with bounded curvature. The
evader moves with a fixed speed lower than that of the
pursuer and governed by a simple first-order-integrator
dynamics. Isaacs gives a condition on the game parame-
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ters, i.e., the speed ratio between the players and the ra-
tio of the capture radius to the minimum turning radius
of the pursuer, such that the evader can evade indefi-
nitely. Numerous variations of this problem have been
studied, e.g., capture inside a cone sector [2], effects of
stochastic noise [3] and a version without a priori assign-
ment of the role of pursuer or evader [4] to cite a few.

Recent research attention has focused on cooperative
control strategies for detection of targets. McLain et
al. [5] have addressed the problem of cooperative ren-
dezvous in which multiple UAVs are to arrive simulta-
neously at their targets. Polycarpou et al. [6] have pre-
sented a cooperative target search using online learning
and computing guidance trajectories for the agents. Re-
cently, Tang et al. [7] have presented cooperative motion
planning methods for first-order mobile sensing agents to
detect a moving target that lies in a known initial region.
McGee et al. [8] have proposed guaranteed strategies to
search for mobile evaders in a plane. Recently, Kim et
al. [9] and Belkhouche et al. [10] have proposed schemes
for agents with first-order dynamics to capture a target
by arriving on a circle with specified radius around it.

Based on Isaacs’ analysis of the Homicidal Chauffeur
game, we identify regimes for the game parameters, i.e.,
the evader/pursuer speed ratio and the ratio of the cap-
ture radius to the pursuer’s minimum turning radius,
for which there exists a strategy for the evader to avoid
capture. This motivates a multiple pursuer formulation
of the game. We seek to confine the evader within a
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bounded region, for which we propose a multiple pursuer
formation and a novel multi-phase, cooperative strategy
for the pursuers. During all phases, the pursuers move
in a specific formation, whereby some pursuer plays the
role of “leader” and all other pursuers play the role of
“followers.” The strategy is partly decentralized, in the
sense that it suffices to specify only the motion of the
leader in each phase. For the followers, the only infor-
mation required is the motion of the neighboring pur-
suer and the evader position. In the initial pre-align

and align phases of the strategy, the leader pursuer
moves in such a way that the evader lies at a required
distance directly ahead of the leader pursuer, while the
followers move so as to maintain a straight line forma-
tion. In the remaining swerve, encircle and close

phases, the pursuers get into a “daisy-chain” formation
and move to approach, encircle and finally close the
chain around the evader. Independent of the evader mo-
tion, the final closed daisy-chain formation confines the
evader within a bounded region, from which there exists
no evader trajectory avoiding capture. Thus, given (i)
the evader/pursuer speed ratio which is less than unity
and (ii) the ratio of the capture radius to the pursuers’
minimum turning radius, we characterize the required
number of pursuers for which confinement is guaranteed.

The inspiration for our strategy comes from certain as-
pects of fish behavior. Gazda et al. [11] reported that in
Cedar Key, Florida, USA, individual “driver” dolphins
herd slower, more agile prey in circles as well as towards
the tightly-grouped “barrier” dolphins. Pitman et al. [12]
reported a herd of killer whales imposing confinement
on pantropical spotted dolphins. The whales cut out up
to three dolphins from a school and proceeded to take
turns chasing a single dolphin and keeping it within a
confined area.

This paper is organized as follows. The mathematical
model and assumptions are presented in Section 2. The
daisy-chain formation, the confinement strategy and the
main analysis result are presented in Section 3. Section 4
contains the proof of the main result and some interme-
diate results. Section 5 contains our concluding remarks.

2 Problem Set-up

Our cooperative homicidal chauffeur game is played in
an unbounded, planar environment between a single
evader and multiple pursuers. The pursuers have iden-
tical motion abilities and possess greater speed than
that of the evader. However, the evader can make ar-
bitrarily sharp turns, while the pursuers are Dubins
vehicles [13], i.e., fixed-speed non-holonomic vehicles
constrained to move along paths of bounded curvature.
We assume that the instantaneous position and velocity
of the evader is available to all pursuers.

Let e(t) and pk(t), for k ∈ {1, . . . , N}, denote the posi-

tions of the evader and the kth pursuer in R
2 at time t,

as shown in Figure 1. Let ve and vp denote the speeds
of the evader and of all pursuers, respectively. Given a
minimum turning radius ρ > 0, the equations of motion
are given by

ṗk,x(t) = vp cos θp,k(t), ėx(t)= ve cos θe(t),

ṗk,y(t) = vp sin θp,k(t), ėy(t) = ve sin θe(t), (1)

θ̇p,k =
vp

ρ
up,k,

where θe(t) (resp. θp,k(t)) is the angle between the
velocity vector of the evader (resp. of the kth pur-
suer) measured counterclockwise from a reference hor-
izontal axis [1]. The control input for the evader is
θe(t) : [0,∞[ → [0, 2π], which we assume is a measurable
function of time. up,k ∈ [−1, 1], is the control applied
by the kth pursuer. We define the evader/pursuer speed

c

vp

θe

pk

φk

θp,k

X

Y

ve

e

Lk

Fig. 1. Intermediate variables in the homicidal chauffeur
game: Lk is the distance between the evader and the kth

pursuer; φk ∈ [0, π] is the unsigned angle between the kth

pursuer’s velocity vector and the vector e − pk. The shaded
region around the pursuer is its capture disc.

ratio γ := ve/vp and assume γ < 1. Given a capture ra-
dius c > 0, the evader is said to be captured if, at some
time t and for some k, the evader is at a distance of at
most c units from pursuer pk. In what follows, without
loss of generality, we set the capture radius c and the
pursuers speed ve to 1. In summary, our cooperative
homicidal chauffeur game is described by the number of
pursuers N ∈ N, the minimum turning radius ρ ∈ R>0,
and the evader/pursuers speed ratio γ ∈ ]0, 1[.

In the case of a single pursuer and single evader, it can be
shown in that for ρ ≥ 5/2, there exists an evasion policy
if the evader/pursuer speed ratio satisfies γ ≥ γmin(ρ),
where γmin : [5/2,+∞[ → ]0, 1[ is the unique solution to

1

x
=

√

1 − γmin(x)2 + γmin(x) arcsin(γmin(x)) − 1,

[1]. This motivates our cooperative version of the homi-
cidal chauffeur game. The use of a game-theoretic ap-
proach to determine capture strategies involves solving
the Hamilton-Jacobi-Bellman-Isaacs equation, which is
difficult to solve in the present context. Therefore, tak-
ing motivation from biology, we introduce the notion of
evader confinement as follows.
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Definition 2.1 (Confinement) The evader is said to
be confined to a bounded region G ⊂ R

2 at time t∗

if e(t∗) ∈ G and there exist pursuer trajectories pk :
[t∗,+∞[ → R

2 solutions to equation (1) such that the
evader cannot leave G without being captured. A set of
functions {up,k}, for k ∈ {1, . . . , N}, leading to evader
confinement is termed as a confinement strategy.

In our cooperative homicidal chauffeur game with the
evader/pursuer speed ratio γ < 1, we seek determin-
istic multiple-pursuer strategies that guarantee evader
confinement given any value of the pursuer’s minimum
turning radius ρ > 0.

3 A Confinement Strategy

In this section, we design a cooperative strategy for
evader confinement and state our main analysis result.
We begin by proposing two useful pursuer formations.
We denote the velocity vector of the kth pursuer by vp,k.

Definition 3.1 (Line formation) The set
{p1, . . . , pN , vp,1, . . . , vp,N} is in a line formation if

(i) p1, . . . , pN are on a straight line with the velocity vec-
tors vp,1, . . . , vp,N parallel to one-another, and

(ii) For every k ∈ {1, . . . , N − 2},
‖pk − pk+1‖ = ‖pk+1 − pk+2‖ > 0.

Figure 2 shows an example of a line formation. In what
follows, we refer to pursuer p1 as the leader, unless spec-
ified otherwise. A line formation has the property that,

vp,5

p4p3p2 p5

vp,1 vp,2 vp,3 vp,4

p1

Fig. 2. A pursuer line formation with N = 5 pursuers.

if all pursuers start in a line formation and use identical
control inputs, then they remain in a line formation.

Definition 3.2 (Daisy-chain formation) Given
sip > 0, the set {p1, . . . , pN , vp,1, . . . , vp,N} is said to
be in a daisy-chain formation at time t if, for every
k ∈ {2, . . . , N}, pursuer pk can attain at time t+sip, the
position and orientation at time t of pursuer pk−1. For-
mally, for every k ∈ {2, . . . , N}, there exists a solution
η : [t, t + sip] → R

2 to equation (1) satisfying

η(t) = pk, η̇(t) = vp,k,

η(t + sip) = pk−1, η̇(t + sip) = vp,k−1.

The quantity sip in Definition 3.2 is also the inter-
pursuer separation distance, since the pursuers’ speed

is normalized to unity. Figure 3 shows an example of
a daisy-chain formation. A daisy-chain formation has
the property that any time instant, a path taken by
the leader pursuer can be exactly traversed by the kth

follower pursuer, for every k ∈ {2, . . . , N}, in the daisy-
chain after a time delay of (k − 1)sip.

sip

p4

vp,2

p3
vp,3

p1

vp,1

p2

Fig. 3. A daisy-chain formation with inter-pursuer separa-
tion sip. The curve between two consecutive pursuers is an
example of a solution η as described in Definition 3.2. The
discs around the pursuers represent their capture discs.

Next, we characterize a possible evader motion. For q ∈
R

2, let Br(q) ⊂ R
2 denote the closed ball of radius r

centered at q. Given {pk−1, pk, vp,k − 1, vp,k} in a daisy-
chain formation at time t with inter-pursuer separation

sip, let Ck−1,k
left (t) and Ck−1,k

right (t) be curves which are tan-

gent to Bc(η(τ)) for every t ∈ [t, t + sip]. Here, η is a
curve described in Definition 3.2. Then, the evader is

said to move between pk−1 and pk if e(t) ∈ Ck−1,k
left (t) and

e(t + τ) ∈ Ck−1,k
right (t) or if e(t) ∈ Ck−1,k

right (t) and e(t + τ) ∈
Ck−1,k
left (t), for some τ < sip. Figure 4 shows an example

of such an evader trajectory. Given the pursuers’ min-

p2p4

vp,2

p3 p1

vp,3

vp,1

C3,4
left(t)

C3,4
right(t)

Fig. 4. An example of the evader moving between pursuers p3

and p4. The dotted line between curves C
3,4

left(t) and C
3,4

right(t)
shows one possible evader trajectory.

imum turning radius ρ, for the evader/pursuers speed
ratio γ, we define the critical inter-pursuer separation as

s∗ip(γ, ρ) := max{2, ρ · Θ(γ, ρ)}, where (2)

Θ(γ, ρ) :=

√

(1 + ρ)2

γ2ρ2
− 1 − arctan

√

(1 + ρ)2

γ2ρ2
− 1

−
√

1

γ2
− 1 + arctan

√

1

γ2
− 1.

The quantity s∗ip(γ, ρ) has the following property.

Lemma 3.3 (Critical inter-pursuer separation)
Given {pk−1, pk, vp,k − 1, vp,k} in a daisy-chain forma-
tion, an inter-pursuer separation sip ≤ s∗ip(γ, ρ) ensures
that the evader cannot not move between pk−1 and pk

without being captured.
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Finally, we define two useful notions. First, a point q ∈
R

2 is said to be aligned with {pk, vp,k} if the velocity
vector vp,k is parallel to (q − pk). Second, a daisy-chain
formation with separation sip is said to be closed if there
exists some k ∈ {2, . . . , N} and a path of length no more
than sip that leads the leader pursuer to the position
and orientation of the kth pursuer. More specifically, a
daisy-chain formation with separation sip is closed if for
some k ∈ {2, . . . , N}, there exists a tk ≤ s∗ip(γ, ρ) and a

solution η : [0, tk] → R
2 to equation (1) satisfying

η(0) = p1, η̇(0) = vp,1,

η(tk) = pk, η̇(tk) = vp,k.

We now present our confinement strategy. The pur-
suers begin in a line formation such that the distance
between every two consecutive pursuers is s∗ip(γ, ρ). Pur-
suer p1 is elected as leader of the line formation. We de-
scribe the strategy in the following five phases:

[Phase 1: Pre-align] The aim of the pre-align phase is
to ensure that the evader becomes aligned with {p1, vp,1}
after some finite time, and that all the pursuers are in a
line formation with the same initial separation s∗ip(γ, ρ).
If the pursuers are already in this configuration, then
proceed to Phase 2. Otherwise, pursuer p1 performs the
following maneuver: p1 moves sufficiently far from the
evader and turns on a tightest circle until the evader gets
aligned with {p1, vp,1}. All other pursuers move using
identical control inputs to maintain the line formation.
We refer the reader to [14] for details of this maneuver.

[Phase 2: Align] The aim of the align phase is to bring
pursuer p1 within distance γρ of the evader, that is, to
achieve ‖e − p1‖ ≤ γρ, while maintaining the evader
aligned with {p1, vp,1} (this property was achieved by
the pre-align phase). During the align phase each
pursuer pk, k ∈ {1, . . . , N}, moves according to

up,k(θe, e, θp,1, p1) =
ργ

‖p1 − e‖ sin(θe − θp,1). (3)

We will show later that at the end of this phase, ‖p1 −
e‖ ≤ γρ, e is aligned with {p1, vp,1}, and all pursuers are
in a line formation, see Figure 5.

lal

p2 p3p1

e

γρvp,1

Fig. 5. End of the align phase (beginning of the swerve

phase); all pursuers are on a line formation. lal denotes the
line defining the line formation at the end of the align phase.

[Phase 3: Swerve] This phase has two aims. First, the
pursuers move into a straight-line daisy-chain formation
with separation s∗ip(γ, ρ). Second, once the daisy-chain
is formed, a new pursuer is elected as leader based on

the relative position of the evader. These two steps are
described as follows:

(i) Formdaisy-chain: Each pursuer pk, k ∈ {1, . . . , N},
moves with maximal angular velocity |up,k| = 1 until
all the pursuers are in a straight-line daisy-chain forma-
tion, as shown in Figure 6. This straight line through
the pursuer positions is denoted by lsw. The pursuers
turn counterclockwise (resp. clockwise) if all other pur-
suers are located to the right (resp. left) side of pursuer
p1 in the line formation.

lsw

p1

e

p2 p3

lal

Fig. 6. Forming a straight-line daisy-chain in the swerve

phase. Starting from the configuration in Figure 5, the pur-
suers have turned counterclockwise and are now on the line
lsw with headings along lsw.

(ii) Re-elect leader: Compute the angle φk =
φk(pk, vp,k, e), for k ∈ {1, . . . , N}, according to the defi-
nition in Figure 1. If there exists k for which |φk| ≥ π

2
(see

Figure 7), then set l := max
{

k ∈ {1, . . . , N}| |φk| ≥
π
2

}

, discard from consideration the motion of the pur-
suers p1, . . . , pl−1, and select pursuer pl as the leader
for the remaining daisy-chain formation. Otherwise, if
|φk| < π

2
for all k ∈ {1, . . . , N}, then set l = 1, retain p1

as the leader, and move pl straight until φl = π/2.

We shall show later that with a sufficiently large number
of pursuers, at the end of this step, there are more than
one pursuer in the remaining daisy-chain formation.

pl

Ll
φl

Ll sin φl

lsw

pl+2pl+1

e

Fig. 7. Election of the leader and the end of the swerve

phase (beginning of the encircle phase). All pursuers in
front of pl do not play any role in the subsequent phases.

[Phase 4: Encircle] The aim of the encircle phase is
to move to pursuers towards a closed shape and enclose
the evader inside it. This is achieved via a alternating se-
quence of turn and move straight maneuvers. The strat-
egy for the leader pl is as follows:

(i) Turn: The pursuer pl moves on a circular arc of
appropriate radius and angle if the evader is “suffi-
ciently behind” it. Specifically, if |Ll cos φl| ≥ ρ and
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φl ≥ π/2, then pl moves on the circle with radius
R := max{Ll sin φl, ρ} and with center in the half-plane
that (i) is formed by the line along vp,l, and (ii) con-
tains the evader. This maneuver lasts for a time interval
∆t := R arctan(

√

1 − γ2/γ).

(ii) Move straight: If the evader is not “sufficiently
behind” pursuer pl, then pl moves on a straight line to
ensure that the evader gets “sufficiently behind” it, i.e.,
moves with up,l = 0, until |Ll cos φl| ≥ ρ and φl ≥ π/2.

The remaining pursuers follow the path of pl, as shown
in Figure 8. The encircle phase ends when the velocity
vector vp,l has rotated by at least 3π/2 with respect to
its orientation at the start of the encircle phase.

lsw

e pl

pl+1

pl+2

Fig. 8. End of the encircle phase (beginning of the close

phase). The leader pl keeps the evader on the same side of
its velocity vector with the alternating turn-move straight
maneuvers, until its velocity vector rotates by at least 3π/2.

[Phase 5: Close] The aim of the close phase is to close
the daisy-chain around the evader in two steps:

(i) Pursuer pl moves straight until it lies on the path
between two pursuers in the daisy-chain, (cf. Figure 9).

(ii) Next, pursuer pl moves on a circle C1 of radius ρ
centered at O1, where O1 is on the same side of the
line along vp,l as the evader. Then, it determines the
location of center O2 of circle C2 of radius ρ which is
tangent to C1 and either lsw or the path followed by pl.
Of the two possible locations for O2, it selects the one
which is further away from location of pl at the end of
part (i). Pursuer pl moves along C2 after reaching the
tangency point until it closes the daisy-chain. This path
is illustrated in Figure 9.

This five-phase strategy gives us our main result.

Theorem 3.4 (Confinement) Consider a cooperative
homicidal chauffeur game with parameters N ∈ N, ρ > 0,
and γ < 1. The proposed five-phase strategy guarantees
evader confinement if the number of pursuers satisfies

N ≥ Nmin(γ, ρ) := ⌈ρ(3 + γπ)/s∗ip(γ, ρ)⌉

+
⌈2(1 + γ)ρ

s∗ip(γ, ρ)

(

Kimax

(4 + γπ

1 − γ

)

+
imax

1 − γ
+ 2π

)⌉

,

Step (i)

Step (ii)

pl+1

lsw

e

O1

O2

ρ

pl+2

pl

Fig. 9. Maneuvers in the close phase for pursuer pl. Step (i):
move straight to intersect the daisy-chain. Step (ii): moves
on the shortest path to close the daisy-chain.

where K := 1 + (1/γ)
√

(1 + γ)/(1 − γ), s∗ip(γ, ρ) is as

per equation (2) and the maximum number of turns in the

encircle phase is imax := ⌈3π/(2 arctan(
√

1 − γ2/γ))⌉.

Remark 3.5 (Asymptotic properties) In the limit
as γ → 1−, Nmin(γ, ρ) → +∞, as is expected. Moreover,
for γ very close to 1 and ρ → +∞, there exist constants
c > 0 and ρ0 > 0 such that Nmin(ρ) ≤ cρ, ∀ρ ≥ ρ0.

4 Proofs of the Main Results

In this section, we prove the main result from Section 3
along with certain intermediate results.

Proof sketch of Lemma 3.3: The encircle phase involves
motion either on circular arcs or straight lines. Hence, we
consider any two consecutive pursuers in a daisy-chain
formation placed on a circle of radius R. The goal is to
determine the angular spacing between these pursuers
Θ(γ,R), which is sufficient to prevent the evader from
moving between these two pursuers without getting cap-
tured. The main steps in this proof are: 1) Write equa-
tions of motion for the distance r and angular displace-
ment θ of the evader in the reference frame attached to
the center of rotation of the pursuers, in which the pur-
suers are stationary; 2) Determine using a result in [8]
the evader motion that maximizes θ at for each r; 3) In-
tegrate the differential equation for θ to get Θ.

The separation R · Θ ensures that the evader cannot
move between consecutive pursuers without getting cap-
tured. Also, for a given value of γ < 1, the quantity R ·Θ
decreases monotonically with increasing R. Thus, it suf-
fices to have the inter-pursuer separation equal to ρ ·Θ,
where ρ is the minimum turning radius. In other words,
for a larger minimum turning radius, the pursuers need
to be placed closer to each other.

Lemma 4.1 (Align phase) The align phase termi-
nates after a finite time with the evader aligned with
{p1, vp,1} and ‖p1 − e‖ ≤ γρ.
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Proof sketch: The central idea is that once the angle
φ1 = 0 at the end of pre-align phase, we need to ensure
that φ̇1 = 0. This is achieved using (3). Since ‖up,1‖ ≤ 1,
the evader can be kept aligned with {p1, vp,1} as long as
‖e − p1‖ ≥ γρ. Further, the time derivative of ‖e − p1‖
is upper bounded by −(1 − γ), implying that ‖e − p1‖
reduces to γρ in finite time.

Lemma 4.2 (Swerve phase) (i) A sufficient number
of pursuers which ensures that after the leader re-election
step, there are at least two pursuers in the remaining
daisy-chain formation is ⌈ρ(3 + γπ)/s∗ip(γ, ρ)⌉ and,

(ii) Let dsw denote the distance of the evader from the line
lsw joining the pursuer positions at the end of the swerve

phase, (cf. Figure 6). Then, dsw ≤ ρ(3 + γπ)/(1 − γ).

Proof: In the swerve phase, let pursuer p1 move on
the circle of radius ρ centered at O as shown in Figure 10.
The time taken for this phase is ρβ, where β ∈ [0, π] is
the angle between line lal and the vector vp,1 as shown in
Figure 10. Let dx (resp. dy) denote the magnitude of the
component of the vector pl−e along (resp. perpendicular
to) lsw after re-election of the leader. To maximize dx,
the evader must move parallel to lsw. From trigonometry,

dx = γρβ + ‖γρ cos β − ρ sin β‖ ≤ ρ(3 + γπ),

where the first term is the radius of the evader’s reach-
ability set in time ρβ and the second term in the right
hand side equality is the x-component of the distance
between e and p′1. To ensure that at least two pursuers
exist in the remaining daisy-chain, it suffices to have the
length of the original straight-line daisy-chain equal to
the upper bound on dx. This proves part (i).

On similar lines, to maximize dy, the evader must move
along the line perpendicular to lsw. Thus, we obtain

dy = γρβ + ‖ρ(1 − cos β) − γρ sin β‖ ≤ ρ(3 + γπ).

If there exists k for which |φk| ≥ π
2

(see Figure 7), then
dsw = dy and part (ii) follows. Otherwise, if |φk| < π

2
for

all k ∈ {1, . . . , N}, then pursuer p1 (who is retained as
the leader) moves straight for a time interval of at most
dx/(1−γ), which then gives, dsw ≤ dy+dxγ/(1−γ). The
result follows from the upper bounds on dx and dy.

Lemma 4.3 (Encircle and Close phases) If the
pursuers begin the encircle phase at time t∗, then in
the encircle and part (i) of the close phases, there
exists no evader trajectory such that the evader is aligned
with {pl, vp,l} at any time t ≥ t∗.

To prove Lemma 4.3, we first introduce the following
notation: let Σ(t∗) denote the local coordinate system

p1

e

ρ

γρ

lsw

e′

p′1

lal

vp,l

ρ(1 − cos β)

dx

dy

β

O

Fig. 10. Illustrating the proof of Lemma 4.2. The primed no-
tation refers to the positions of the players after the pursuers
have formed a straight line daisy-chain. The dotted circle
shows the reachability set of the evader in time interval ρβ.

with origin at pl(t
∗) and with the positive Y axis along

its heading vp,l at time t∗, as shown in Figure 11. Define

V(pl(t
∗), vp,l(t

∗)) :=
{

(xΣ, yΣ) ∈ Σ(t∗)| xΣ ≥ 0, yΣ ≤ xΣ
√

1 − γ2/γ
}

.

The set V possesses the following useful property.

Σ(t∗)

e(t∗)

X

rAp

θ

pl(t
∗)

vp,l

Y
OAp

Fig. 11. Proof of Lemma 4.4. For θ = arctan(
p

1 − γ2/γ),
the shaded region denotes the set V(pl(t

∗), vp,l(t
∗)).

Lemma 4.4 (Property of V) Given a time instant t∗,
let pursuer pl move with up,l = 0 for all subsequent time
instants. If e(t∗) ∈ V(pl(t

∗), vp,l(t
∗)), then there exists

no evader trajectory such that the evader is aligned with
{pl, vp,l} at any time t ≥ t∗.

Proof: In the coordinate system Σ(t∗), denote
the point e(t∗) by (xΣ, yΣ). Construct the Apollonius
circle [1] of the points pl(t

∗) and e(t∗), as shown in
Figure 11. This is the set of points that the evader
can reach before pursuer pl does, assuming that the
pursuer does not possess turning constraints. The cen-
ter OAp and radius rAp of the Apollonius circle are

OAp = 1
1−γ2 (xΣ, xΣ tan θ) and rAp = γxΣ sec θ

1−γ2 , respec-

tively. Now, let the pursuer pl move with up,l = 0 for
all t ≥ t∗. In the reference frame Σ(t∗), if rAp does
not exceed the X coordinate of OAp, then the pursuer
reaches any point z on the Y axis before the evader
can reach z. In other words, the evader cannot align
itself with {pl, vp,l} at any subsequent time. Thus,

rAp ≤ xΣ/(1 − γ2) implies tan θ ≤
√

1 − γ2/γ.
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Proof of Lemma 4.3: In the encircle phase, let t∗ be a
time instant at which pursuer pl is about to begin a move
straight maneuver. It suffices to show that the evader is
at a point e(t∗) contained in the set V(pl(t

∗), vp,l(t
∗)).

Two cases need to be considered:

Case 1: R := Ll sin φl. Note that the angle through
which the pursuer turns in a turn maneuver satisfies

arctan(
√

1 − γ2/γ) < π/2. Figure 12 shows the posi-
tions of pursuer pl and the evader just before a turn
maneuver (at time instant tturn) and just before the
following move straight maneuver (at time instant t∗)
in the encircle phase. As per the strategy, we have

t∗ = tturn + ∆t = tturn + R arctan(
√

1 − γ2/γ). Thus,
in the time interval ∆t, the evader’s reachability set
is the dotted circle, having radius upper bounded by

R
√

1 − γ2 as shown in Figure 12. By geometry, the pur-
suer’s center of rotation O in the time interval ∆t is pre-

cisely at a distance of R
√

1 − γ2 from the boundary L
defined in Figure 12, of the set V(pl(t

∗), vp,l(t
∗)). Since

arctan(
√

1 − γ2/γ) < π/2, it follows that the evader’s
reachability set in time ∆t and hence e(t∗) is contained
in V(pl(t

∗), vp,l(t
∗)). Lemma 4.4 completes the proof.

Case 2: R = ρ. The proof of this case is on similar lines
as that of case 1, with the additional property that one
need not consider that part of the evader’s reachability
set which lies on the opposite side of the daisy-chain.

L

e(tturn)

pl(tturn)

ρ
R

Oarctan

√
1−γ2

γ

pl(t
∗)

Y

X

Fig. 12. Case 1 in the proof of Lemma 4.3. The dotted circle

is the evader’s reachability set in time R arctan
p

1 − γ2/γ.
Pursuer pl begins the turn and move straight maneuvers of
the encircle phase at times tturn and t∗, respectively.

Proof of Theorem 3.4: It suffices to show that all five
phases terminate in finite time. This partly follows from
Lemmas 4.1 and 4.2. It remains to show that (a) the
encircle phase terminates in finite time and, (b) the
evader is confined at the end of the close phase.

To show (a), we determine an upper bound Tenc on the
time taken by the encircle phase. From Lemma 4.3,
we deduce that in the encircle phase, the evader is al-
ways the same side of the line along vp,l. Also, in each
turn maneuver, pursuer pl turns through an angle of

at least arctan(
√

1 − γ2/γ)). Thus, the turn maneuver

is made at most imax := ⌈3π/(2 arctan(
√

1 − γ2/γ))⌉
times. This justifies the expression for imax in the state-
ment of this theorem.

Let t0 be the time instant at the end of the swerve

phase and d0 := dsw, i.e., the distance of the evader
from the line lsw at the end of the swerve phase. Let
ti denote the time instant when the pursuer begins the
turn maneuver of the encircle phase for the ith time
and let di denote the distance of the evader from the line
along vp,l at the time instant ti. We first determine an
upper bound for di. Let pl begin the turn maneuver at
ti−1, as shown in Figure 13. An upper bound for ti−ti−1

vp,l(ti−1 + ∆t)

d
i−1 +

ρ
√

1−
γ 2

di−1

pl(ti−1)

pl(ti)

ρ

Evader’s reachability set in time ti − ti−1arctan

√
1−γ2

γ

e(ti−1)

Fig. 13. Determining an upper bound on the interval be-
tween two successive times in the encircle phase, when the
pursuer uses the turn maneuver.

is obtained when the evader decides to move parallel to
the line along vp,l(ti−1 + ∆t) in the interval [ti−1, ti].
Thus, ti − ti−1 is upper-bounded by

di−1 arctan

√

1 − γ2

γ
+

ρ + γdi−1 arctan

√
1−γ2

γ

1 − γ

≤ di−1

γ

√

1 + γ

1 − γ
+

ρ

1 − γ
,

where the first term in the first expression is the time for
which pl moves on a circular path and the second is an
upper bound on the time taken for the following move
straight maneuver, assuming that the evader moves par-
allel to v̄p,l(ti−1 +∆t), (cf. Fig. 13). The next inequality
follows by using the fact that arctan(x) ≤ x, and upon
simplification. An upper bound for di results when the
evader moves normal to the line along vp,l(ti−1 + ∆t) in
the time interval [ti−1, ti]. Thus,

di ≤ di−1 + ρ
√

1 − γ2 + γ(ti − ti−1)

≤ di−1

(

1 +
1

γ

√

1 + γ

1 − γ

)

+
ρ

1 − γ

≤ Kdi−1 +
ρ

1 − γ
≤ Ki

(

d0 +
ρ

1 − γ

)

,

where the second step follows from the upper bound
on ti − ti−1 and the fact that sinx ≤ 1, and K :=

1 + (1/γ)
√

(1 + γ)/(1 − γ). The last inequality follows
from K > 2. Now, for i ∈ {1, . . . , imax} where imax :=
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⌈3π/2(arctan(
√

1 − γ2/γ))⌉, the time Tenc satisfies

Tenc ≤
imax
∑

i=1

ti − ti−1 ≤
imax
∑

i=1

di−1

γ

√

1 + γ

1 − γ
+ imax

ρ

1 − γ
.

Using the upper bounds for di−1, and for d0 (cf. part (ii)
of Lemma 4.2),

Tenc ≤ Kimaxρ
(4 + γπ

1 − γ

)

+
imaxρ

1 − γ
.

Note that Tenc is also the distance covered by pursuer
pl in the encircle phase. So in part (i) of the close

phase, pl covers a distance of at most Tenc. Thus, we
have shown that the encircle phase and part (i) of the
close phase terminate in finite time.

Pursuer pl travels a distance of at most 4πρ in part (ii)
of the close phase before the daisy-chain gets closed.
Thus, the total distance traveled by pl in the encircle

and close phases is at most 2Tenc + 4πρ. In the worst-
case, to ensure closure of the daisy-chain, consider the
distance between pl(t0) and the point at which pursuer
pl intersects the daisy-chain. This distance can be at
most γ(2Tenc + 4πρ), which is the distance covered by
the evader if it moves with a fixed heading parallel to the
line lsw at the end of the swerve phase and in the direc-
tion opposite to the pursuers’ velocity vectors at time t0.
Thus, a sufficient number of pursuers that ensures con-
finement in the encircle and close phases is given by

⌈2(1 + γ)

s∗ip(γ, ρ)

(

Kimaxρ
(4 + γπ

1 − γ

)

+
ρimax

1 − γ
+ 2πρ

)⌉

.

The result now follows since an additional ⌈ρ(3 +
γπ)/s∗ip(γ, ρ)⌉ pursuers are sufficient for the leader re-

election step in the swerve phase (cf. Lemma 4.2).
The evader is confined because the pursuers have now
formed a closed daisy-chain around it.

5 Conclusions and Future Directions

We addressed a cooperative homicidal chauffeur game
in which a single pursuer is unable to capture an evader,
given an arbitrary initial condition. We proposed a
multi-phase partly-decentralized pursuer strategy that
involved role specialization in the form of leader and
followers, that guarantees confinement of an evader to a
bounded region. We characterized the required number
of pursuers for which our pursuer strategy is guaranteed
to lead to confinement.

In future, it would be of interest to investigate even more
distributed encircling and pursuit strategies in which all
pursuers play identical roles. Also of interest would be
the optimal number of pursuers for such strategies.
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[7] Z. Tang and Ü. Özgüner, “On non-escape search for a moving
target by multiple mobile sensor agents,” in Proc ACC,
Minneapolis, MN, June 2006, pp. 3525–3530.

[8] T. G. McGee and J. K. Hedrick, “Guaranteed strategies
to search for mobile evaders in the plane,” in Proc ACC,
Minneapolis, MN, June 2006, pp. 2819–2824.

[9] T. Kim and T. Sugie, “Cooperative control for target-
capturing task based on cyclic pursuit strategy,” Automatica,
vol. 43, no. 8, pp. 1426–1431, 2007.

[10] F. Belkhouche, B. Belkhouche, and P. Rastgoufard, “Multi-
robot hunting behavior,” in IEEE International Conference

on Systems, Man and Cybernetics, Waikoloa, HI, Oct. 2005,
pp. 2299–2304.

[11] S. K. Gazda, R. C. Connor, R. K. Edgar, and F. Cox,
“A division of labour with role specialization in group-
hunting bottlenose dolphins (Tursiops truncatus) off Cedar
Key, Florida,” Proceedings of the Royal Society B: Biological

Sciences, vol. 272, no. 1559, pp. 135–140, 2005.

[12] R. L. Pitman, S. O’Sullivan, and B. Mase, “Killer whales
(Ornicus orca) attack a school of pantropical spotted dolphins
(Stenella attenuata) in Gulf of Mexico,” Aquatic Mammals,
vol. 29, no. 3, pp. 321–324, 2003.

[13] L. E. Dubins, “On curves of minimal length with a constraint
on average curvature and with prescribed initial and terminal
positions and tangents,” American Journal of Mathematics,
vol. 79, pp. 497–516, 1957.

[14] S. D. Bopardikar, F. Bullo, and J. P. Hespanha, “A
cooperative Homicidal Chauffeur game,” in Proc CDC, New
Orleans, LA, Dec. 2007, pp. 4857–4862.

8


