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On visibility maintenance via controlled invariance
for leader-follower Dubins-like vehicles
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Abstract—The paper studies the visibility maintenance problems. However the VMP is not the primary concern of
problem(VMP) for a leader-follower pair of robots modelled as  these works and general conditions for its solution are not

first-order dynamic systems and proposes an original solution 1, .\/iqed. |n addition these papers do not consider any bound
based on the notion of controlled invariance. The nonlinear .
on the control inputs of the robots.

model describing the relative dynamics of the vehicles is

interpreted as linear uncertain system, with the leader robot A

acting as an external disturbance. The VMP can then be refor- B. Contributions

mulated as alinear constrained regulation problem with additive  The setup considered in this paper consists of two agents

disturbances(DLCRP). New positive D-invariance conditions with first-order dynamics: a leader (or evader) L and a

for linear uncertain systems with parametric disturbance follower (or pursuer) F. The robots can rotate, but simjtarl

matrix are introduced and used to solve the VMP when . P . : ' )

box bounds on the state, control input and disturbance are t0 Dubins’ vehicles can only move forward. The follower is

considered. The proposed design procedure can be easily equipped with a sensing device characterized lysiility

adapted to provide the control with UBB disturbances rejection  sgt S, a compact and convex polyhedral region embedding

capabilities. As an extension, the paper addresses the VMP on iy position and angle information. The leader moves along

a circle. Simulation experiments show the effectiveness of the . . . . .

proposed designs. an arbltrary tra'Jectc')ry..t.he aim of the follower. is to keep L
always inside its visibility setS, while respecting suitable

I. INTRODUCTION bounds on the control inputs.
A. Motivation and related works Inspired by [7], where the concept of cone invariance is

The last few years have seen a growing interest in c >mployed to solve the multi-agent rendezvous problem and

ordination and control of multi-agent systen, [[?], [7], y the results in [8], [9], this paper addresses the VMP

[1]. The research in this area has been stimulated by t Ing thke_notlo_n of contLolled |?var|ance.d'l'|h§ key_bl_d ca r?f
recent technological advances in wireless communicatimlllglfla \_Nord IS to _mter?r(ra]t tI € gon mt(ejarhm(f) IF escri m?. the
and processing units and by the observation that multipf&'2tVe dynamics of the leader and the follower, as a linear

agents can perform tasks more efficiently and reliably thanYStem with model parameter uncertainty, with the leader

single robot. However, multiple robots must respect Sﬂﬁtabacqu a::: an ?xte(;nalﬁdlsturbance._ de Vl\l/IP_ can trl;en be
constraints in order to accomplish a common task. Tw asily reformulated asinear constrained regulation prob-

moving agents, for instance, can communicate only if th with additive disturbances (DLCRP) [9]. New positive

first one keeps always inside a disk region (representi -invariance conditions for general linear uncertain syste
the extent of the electromagnetic field used for data e vith parametric disturbance matrix are introduced and used

change), centered on the second robot. When extended td° solve. the VMP when box bounds on t'he visibility SE_H'
robots, this problem is usually referred to as toanectivity control inputs and disturbances are considered. Analytica

maintenance problem. It received a special attention in theConditions for the solution of the VMP are obtained by

literature, where agents modelled as first or second-ord@ymboncany solving the set of linear inequalities defaihe
dynamic ,systems have been considerdd ], [3]. polytope of all the feasible state feedback matrices, utiag

If the robots are equipped with sensors (e.g., panoramIi:Courier-Motzkin elimination method. The proposed design

cameras, laser range finders, high resolution radars, etf" cedure can be readily adapted to provide the control

having limited sensing capabilities, thenvisibility main- with _UBI_B disturbances rejection cap_a_bilities. As a fin_al
tenance problem (VMP), instead of connectivity mainte- contribution, the paper presents conditions for the sofuti

nance problem, naturally arises between the robots. \itgibi of the VMP on a circle.
constraints have been introduced in several works dealigg Organization

with pursuit-evasion [4], deployment [5] and rendezvous [6 . . . .
P [4] Pioy [5] B In Sect. Il the linear constrained regulation problem is
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Il. THE LINEAR CONSTRAINED REGULATION PROBLEM By +Z§’:1 B;q(t) whereA; and By, | € {1,...,p}, are

This section presents a set of results that are instrumengQnStant matrices of appropriate dimension afd takes
to address the VMP in Sect. lll. Theorem 10, Corollary 11V&lues in a compact and convex polyhedrgh C R”.
Theorem 12 and Corollary 13 extend the results in [8], [9] t¢-€t the set/ be compact, convex and polyhedral as well.
linear uncertain systems with parametric disturbance irnatrVe consider a candidate convex and compact polyhedral set
and are original contributions of this paper. Consider the containing the origin in its interior and we search for a

following system feedback matrix/{ that assures the positive invariancesf
for the closed loop system (3). Sin¢eis polyhedral, then
$(t) = A(q(t)) s(t) + B(q(t)) u(t) , (1)  condition (4) is fulfilled ondS if and only if is fulfilled on

every vertex ofS.

Theorem®6: The setS is positive invariant for system (3)
with feedbacku = K, if and only if, for all v; € vert(S)
andw; € vert(Q):

wheres(t) € X C R™ andu(t) € U C R™ are respectively
the state and input vectorg(t) € Q C RP is the model
parameter uncertainty vector, while X', Q are assigned sets
containing the origin, witl{ andQ compact. We assume that
A(q) and B(q) are matrices of suitable dimensions whose F(w;)V; € Ts(v;), i€ {1,...,u}, j€{1,...,v}.

entries are continuous functions @f We shall assume(t) The LCRP as formulated in Problem 3 does not require the

to be a piecewise continuous f“”_Ct'O” of time. _ stability. However, a desirable property is the global anif
Definition 1 (Positive invariance): The setS C R™ is  gapjlity of the closed loop system. The relationship betwe

positively invariant for system (1), if and only if, for e¥er he stability property and the existence of positively iiwat

initial condition s(0) € S and every admissible(t) € Q. rggions is established by Theorem 5.2 in [9]. Let us now turn
the solution obtained fow(t) = 0, satisfies the condition 4, attention to systems in the form,

s(t) € S for t > 0. )

Definition 2 (Admissible region): A region S C R is §(t) = Alq(1)) s(t) + B(q(t)) u(t) + E(q(t)) 6(t) . (5)
said to beadmissible for the feedback control law = Ks,  where the unknown external disturbanii@) is constrained
if and only if, for everys € S, the conditionu € ¢/ holds. in a compact and convex polyhedral §2tc R' containing

If %4 and S are convex polyhedral sets containing thehe origin. Note that with respect to the systems considered
origin, the admissibility ofS is simply equivalent to, in [9], the structure of (5) is more general since matfix
also depends on the uncertain parameteks an immediate

Kvied, vi e ver(S), i€ {l,...,u}, ) extension of the positive invariance property introduced i
where vertS) denotes the set of vertices 6f Definition 1, we may require that the stateremains inS
We can now introduce thinear constrained regulation  despite the presence of the disturbai¢s.
problem (LCRP) [9]. Definition 7 (Positive D-invariance): The setS C R" is

Problem3 (LCRP): Given a system in the form (1), find a positively D-invariant (PDI) for system (5), if for every
linear feedback control law(t) = Ks(¢) and a setS c X initial condition s(0) € S and all admissibley(t) € Q and
such that, for every initial conditios(0) € S and every 6(t) € D, the solution obtained fou(t) = 0, satisfies the
admissible function(t) € Q, the conditionss(t) € X and conditions(t) € S for ¢ > 0.

u(t) € U are fulfilled fort > 0. We can now introduce thinear constrained regulation

Theorem4: The LCRP has a solution if and only if there Problem with additive disturbances (DLCRP).
exists a feedback matrik” and a setS C X that is positive ~ Problem8 (DLCRP): Given a system in the form (5), find

invariant and admissible for the closed loop system, a linear feedback control law(t) = Ks(t) and a seS§ C X
. such that, for every initial condition(0) € S and every
5(t) = F(q(t)) s(t) (3)  admissibleg(t) € Q and4(t) € D, the conditionss(t) € X
WherEF(q(t)) _ A(q(t)) + B(q(f))K andu(t) € U are fulfilled fort > 0.

Theorem9: The DLCRP has a solution if and only if
ere exists a feedback matrik and a setS C X
that is PDI and admissible for the closed loop system

Theorem5 (Sub-tangentiality condition): LetS C R™ be
a compact and convex set with nonempty interior. Th
positive invariance o for (1) is equivalent to the following

ition: $(t) = F(q(t)) s(t) + E(q(t)) 6(¢).
condition: for everyso € 95 andq € Q. Similarly to A(q(t)) and B(q(t)), hereafter we will sup-
A(q) so € Ts(so), (4) pose thatE(q(t)) = Ey+ Y1, Erqi(t). For the sake of

brevity, we do not report the proof of the next theorem: it is

whereTis(so) is the tangent cone (5 at so [10]. based on the same ideas as those of Theorem 4.1 in [9] and
The main difficulty in exploiting condition (4) to study Theorem 2.1 in [8].

the positive invariance of an assigned regiis that it has Theorem10: The setsS is positively D-invariant for sys-
to be checked on the boundary Sf However, if convex tem (5) with feedbacky — Ks, if and Only |f, for all
polyhedral sets are considered, only their vertices must IQ/;:- € vert(S), w; € vert(Q) andr, € ver(D),

taken into account and easy algebraic conditions can be

derived. In this respect, let us consider a system of the Flwj) Vi + E(w;) ry € Ts (Vi) ,

form (1), with A(q(t)) = Ao +>_1_; A qi(t) and B(q(t)) = ie{l,....u}, je{l,...,v}, ke{l,....,n}.



The application of Theorem 10 requires the knowledge of Yo

all conesTs(v;), i € {1,...,u}. An alternative solution is 1 L
given by the following corollary in which the Euler approx- YL o,
imating discrete-time system of (5) is involved. The proof i [ )

analogous to that of Corollary 4.1 in [9].

Corollary 11: The setS is positive D-invariant for sys-
tem (5), if and only if there exists > 0 such that, for all
v; € vert(S), w; € vert(Q) andr € vert(D), Yr

aF
Vi + 7(F(w;) Vi + E(w;) 1K) € S, WF
(6) o

ie{l,...,u}, je{l,...,v}, ke{l,...,n}.

To overcome the problem of the choicergfwe introduce >
Theorem 12 that provides a condition equivalent to (6). 20
The proof is analogous to that of Theorem 2.3 in [8]. Cet Fig. 1.
be the convex cone defined by the delimiting planes tiat
contain v : C; = {gl's < &, &, > 0, for everyg! and¢y, :

T
gp Vi =&, Vv; € vert(S)}. T . 0 0 . o .

Theorem12: The setS is positively D-invariant for sys- W€ 96t AL = Fo(0r)(pL — F) Jg IEO(QF) (R2(0) ol —
tem (5), if and only if, for allz > 0, v; € ver(S), w; € RR(0r)of ). Since R§(0F) = | _ OF}RS(QF), we can
vert(Q) andry, € vert(D): v;+7(F(w;)Vv;+E(w;)ry) € C;,  rewrite the previous expression as,

ie{l,...,u},je{l,...,v}h ke {l,...,n}. _{O

2L

Leader-follower setup.

W
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If the plane description af is available, the next corollary P =
whose proof directly follows from that of Theorem 10, holds.

Corollary 13: The setS is positively D-invariant for where 3 £ 6. — 6 is a shorthand of3f. Collecting
system (5), if and only if, for everyr > 0 and every equation (9) and the relative angular dynamics of the robots

v; € vert(S), w; € vert(Q), together, we obtain the system,

(In+T17F(w)))v; €Cr,ied{l,....u}, je{1,...,v}, =
(7) |:pL]

0

RL(B) ot

whereC? is the cone obtained by shifting the plane<pfs 3 EORE w |

follows: C = {g]'s < &, — max;p{r g} E(w;)r}, w; € (10)

ver(Q), ry € vert(D), for every g : g;Vi =&} wherepf = (pF[1], pF[2])7. For the sake of simplicity, we
Remark14: According to Theorem 9, conditions (7) will suppose that robot# and L have,

and (2) provide us with a set of inequalities in the unknowns

K defining the polytopéC of all the state feedback matrices of =(1+ve, 007, op=1+w, 07", (11)

solving the DLCRP.

where |vg(t)| < 1, v (t)| < 1, for all ¢ > 0. Substituting

[1l. THE VISIBILITY MAINTENANCE PROBLEM (11) in (10), we finally come up with the following system,
Let ¥o = {Oo;zo, yo} be the fixed reference frame [5F[1 cosB—1] [-1 pf[2] cosfB 0
in R? and 3¢ = {Or;aF, yr} and XL = {Op ;21, .} the .F . F UF . uL
I ) bl 9 2 — ) 0 . 1 0
reference frames attached tdalower robot F and deader pL.[ } sinf |+ pill ] sing w |
robot L (see Fig. 1). The robots are supposed to have sin el 0 0 -1 0 1 (12)

integrator dynamics, . .
’ g EF L with state vectos = (pf[1],p[[2], 3)T € X € R?xS!, input

PE=0F, PL=0L, ®) vectoru = (vg, we)? € U C (=1, 1) x R and disturbance
O =wr, OL=uw, vectord = (v, w )T € Dc (—1,1) x R.
In the forthcoming analysis, we will suppose that robot F
X is equipped with a sensor (e.g., a panoramic camera, a laser
F _ F F T L _ L L T . . . . .
op = (o¢[l],op2])", or = (op[l],op[2))" the linear ange finder, etc.) with limited sensing range. We will call
velocities andur, w_the angular velocities of robots F and L \igpility set of robot F any compact and convex polyhedral
in the framesr andX, , respectively. We are going to derive gt 5 ~ v containing the origin in its interior. Note that the

a dynamic model describing the relative dynamics of thgisipility set generalizes the notion sénsor footprint since
robots F and L. Referring (8) to the fram&, we obtain, it empeds not only position but also angle information.
p2=RY0p)0E, p° =RP(6.)0t, We suppose the}t robot L moves along an arl_:)itr_ary
cosbe — sing _ . trajectory and the aim of robot F is to keep L always inside
where RY(0F) = Linez COSQ:} and R2(6,) is defined ana- its visibility set S, while respecting the control bourid.

logously. The position of robot L with respect ¥ is then By referring to system (12), we can formalize this problem
given bypf = R5(0F) (p? — pR). Differentiating this equation, as follows.

wherepE = (ar, ye)T, pb = (21, y)T are the positions,



Problem 15 (Msibility maintenance problem (VMP)):

Let S be the visibility set of robot F and let0) € S. Find
a control u(¢t) such that for allj(t) € D, the conditions
s(t) € S andu(t) € U are fulfilled for¢ > 0.

If we rewrite system (12) in the linear parametric form (5),
then the VMP simply reduces to the DLCRP introduced in
Sect. Il and suitable solvability conditions can be derived
using conditions (7) and (2). After simple matrix manipula-
tions in (12), we obtain,

AR 00 === Fasf]
P2l | =]o o 8 ph2 [+ Fig. 2. The visibility set (16) and the pose of the robots L @dor
: ’ (ApE[1), P21 )T = (0,0,0)7, d > a.
B 00 0 B (13)
1 Bfl2) Jpq [eosB 0 | R -
0 —Apl] —d VF g 0 uL Since the statéAp[1],p{[2],5)" is constrained in (16),
+ pil we| T w |’ the polyhedronQ c R® of system (13) is defined by,
0 —1 L 0 1

Q€ [% - ]-7 O:Ia q2 € [cosll;—lv I_EOSb]v qs € [_av a]a

which can be written in the form (5) with, . .
©) q4 € [—a,a], q5€ [cosb—L 0}, g6 € [—sinb, sinb].

1+g5 0 (17)
[ } , We are now ready to state the main result of this section.
Theorem 17 (Solvability of the VMP): Choosel/, D and
s . 4 S as in Assumption 16 and lef > a, 0 < b < 7/2.
@w="75"Lae= 13 = Apt[1], g1 = PLP_]' The VMP for the robots F and L has a solution if the
g5 = cosff —1 andgs = sin/3. We made the following ¢q1owing conditions are satisfied
change of variables in system (13)pf[1],p[[2],3)T — ’

00 O 0 -1

00 gqo -1 q
A(q)=|0 0 14+q1|, B(¢g)=| 0 —d—g3|, E(q) =

cosff—1

(Apf[1].p{[2. 5)", Apf[1] = pf[l] —d, whered is a > (1 + b) F1-cosh+ 2 (8
strictly positive constant. There are two main reasonshHisr t d— d—a
transformation: first of all, if robot F is able to keep L alveay (1—V)sinb V[ sinb+b

inside a visibility set displaced af with respect to its center o < < Qf. (19)

d+a ’ d—a
Proof: Let us apply Corollary 13 to system (13).
Igy selectingr =1 in (7), we obtain,

(with d > max{3 [|s1 — s2||: s1, s2 € vert(S)}), then this
automatically guarantees the collision avoidance between
robots. Second, this choice simplifies the study of the VM

when multiple leaders are considered. L=k11+ qakor —ki2+ qaka2  g2— kiz+ qakos
Note thatAy, By and Ey in (14) (recall the notation used | —(d+qs)ka1  1—(d+q3)kaa 14q1—(d+q3)kes |vs € C
in Sect. IlI) correspond to the constant matrices obtain —koy — ks 1— kos
by linearizing system (12) around the equilibriusp, = (20)
(d, 0,0)7, ueg = (0, 0)7, deq = (0, 0)". Condition (20) must be evaluated only on the vertices
Assumption16: For the sake of simplicity, hereafter wey, — (4,a,0)7 vy, = (a,a,—b)T,vs = (a,—a,b)T, vy =
will suppose that, (a,—a,—b)T since the set (16) is symmetric with respect
L{:{(vp, wi) Tt Ve <o < Vi, —QF <wp < QF} 7 Fo the origin. Because of .the lgpecial structure Bfq) .
(15) in (14), we can select a simplified state feedback matrix
D={(v,w)": =V <o <V,—-U <w <O}, K = {k(l)l 1;2 kf;}, that allows us to the decouple the control

where Ve < 1, Vi < 1, Qe and © are strictly positive inputsve andwe (and visualize the polytopg c R? of all

constants. We will also restrict our attention to the foilogy  the feasible gain matrices). Rewriting (20) in a simplified
visibility set, form, the following set of linear inequalities in the varie®

klly k‘gg, ]4:23 is Obtained,
S = {(Ap[[1),pf[2], /)T —a < Apf[1] < a, b ok + b auky < b gy — U
~a <pf[2] <a, —b< B <Y, e O s

(16) —(d+q3)koz — 2 (d+q3) ko3 < =72 (1 +q1) — 572,
wherea > 0 andb > 0, (see Fig. 2). ki qak — bgukos<lgp -1,

Constraint (15). is motivated by the presence of saturatlon_(d "+ gs) ks + g (d 4 q3) oz < 3(1 Yaq) - \/innb ,
bounds on the driving motors of the robots. The set (16) has i P b <
been chosen because is computationally simple to handle and? 22 — *23 = ;T’ b 22; 23 - T
because its cross section is a coarse approximation of a diskk11 — qa k22 + ¢ qakas < —7 g2 — -,
sensor footprint (e.g., due to a omnidirectional camera or a-j,; — g koo — 2614 kog < qu -1

a °

360° laser scanner). (21)



The admissibility condition (2) leads to the additional

constraints,
0.9+

ki S YE L kgo 4 Dhoy S 9E | kgp — Lhyy > -9

ki > — % k22—2k23§%7 k22+§k232—%~ mo.s~
(22) < 07

Applying the Fourier-Motzkin elimination method [11] to 0.6

the inequalities (21)-(22) with the assumption that> a 0.5+

(in order to fix the sign of the coefficients @by and ko3 0.4

in the second and fourth expression in (21)) we obtain the
following conditions on the variables b, d, Vi, Vi, QF, QL

and uncertain parametegs, ..., qq: QL < %ﬁsinb’
QF > Ww Ve > VJH%@;’))M(%JF%)
andVe > VL (14 4500) —b(qo + “3E0), for gy > 0. Ve >
Vi+bgs, for gy = 0. Vg > VL(l— %)+b(q2+%¥1))
and Ve > Vi (1 — %20) — p(gy + “3E0)), for g, < 0, (s, 1meon) \p

An appropriate selection of the parameteys. . ., g4 on the
extremes of the intervals (17), leads us to (18) and (1®).
Note that conditions (18) and (19) are necessary and T
sufficient for the linear uncertain system (13). From (19), (b)

we see thaf)g > Q. _ ] ]
Once fixed the variables, b, d, , i, O, € according £, (@) Poiohest for o st of ghen paranetertie, wih

to (18) and (19), the polytopéC of all the feasible state a circle (top-down view): the pose of the robots L and F for

feedback matrices is simply given by (21)-(22). By evaluat¢tAp{[1], Apf[2], AB)T = (0, 0, 0)T is shown.

ing (21)-(22) on the 64 vertices of the polyhedr@nwe see

that IC is defined by a set of 392 inequalities, only a small

number of which (see for example Fig. 3(a)) is active.  The VMP for the robots F and L in the presence of the
Remark18: Since the polytopeC contains infinite gain | gg disturbanceshe, hy has a solution if the following
matrices, we may use an optimal criterion to sel&Gtsuch  ~nditions are satisfied,

as, e.g., minimizing any matrix norm. In the simulations in ) (Het Hit b)
Sect. IV, we have chosen the matdk= [*3* % Jwith V&> VL(1+ 2820y 4 1 — cosb+ “E2EED) 4 [ sind,

-~ ) 0 koo kog @ (25)
minimum 2-norm. Q < (=VOsinb—(He +H)  Visinbtbi(He+H) - ()
A. Extension: rejection of UBB disturbances L= dta ’ d=a - F'(26)
Consider the following system, Note that because of the additional terfis and H\,
AGF cos B—1 . conditions (25) and (26) are stricter than (18) and (19)
pL] 00 5 Ap[1] ; ; ; .
ppp]] —lo o sms {pF[Q] ] N an.d thep the polytopdC is smaller in this case. Thls is
L 2 t evident in Fig. 3(a), where the polytogé (blue) obtained
g 00 0 7 for a = 0.15m, b = /3 rad,d = 1.6 m, Vg = 0.95 m/s,
-1 0 P (2] UF cos —sinf 0 [vL V. = 0.1 m/s, Qg = 7/2 rad/s, Q. = =/20 rad/s and
+10 -1 —Apf[]—d| |he| + |sinB cosB 0| |hL|. Hg = 0.2 m/s, H. = 0.1 m/s is compared with the polytope
0 0 -1 wF 0 0 1 [w (green) obtained withd, = Hg = 0 m/s.

23
With respect to system (13), two new componems,én()j B. Extension: VMP on a circle
fu, are present in the vectotsando. They areunknown but Let us consider the following change of variables in
bounded (UBB) disturbances acting on the robots F and L F F T F F T
(e.g., lateral wind). Our aim here is to solve the VMP in thesystemT(12).(p,_[1kp,_ [2T}’6) - T(Ap'-[l]’ AApL [% Aﬁ) !
presence of the disturbancés, h . We can collect all the (AU'-’FWQ_ L (v, Sfr‘f':y) ’A(gF’ij o (UF’lﬂfzg 2’ ere
perturbations acting on the nominal system (ieg,, wi , he pLll] = pC[1] = =7 ApL[2] = pi[2] - =22, AG =

i an i B—7, Aw. = w. — p, Awg = wg — p. Parameters
322:(;)' in the last term of (23). Let be given in (15) and 0<vy<m/2andp > 0 define the pose of robot L with

. respect to the frame of robot F (see Fig. 3(b)). Following the
D ={(v,w, he b))’ =V <o <V, = <wi <1, same procedure detailed above, we can obtain the solyabilit

~He < hg < Hg, —H_. < h. < H_}, conditions for the VMP on a circle.
(24) Theorem20 (Solvability of the VMP on a circle):
where Hg, H, are strictly positive constants. Let (ve, Awp)T € [=Vi, VE] X [=QF, QF], (v, Aw )T €

Corollary 19 ( Solvability of the VMP with disturbances):  [-Vi, VL] x [-Qu, ], (Apf[1], Apf[2], AB)T €
Chooseld, D as in (15),(24) and letl > a, 0 < b < /2. [—a, a]®> x [-b, b] and letl —cosy > pa, 0 < b+~ < 7/2.
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Fig. 4. (a) Trajectory of robots L, F and visibility sét (top-down view); (b)Ap{[1], p[[2], B (solid) and boundsta, ta, £b (dash); (C)ug, we (solid)
and boundstVg, £QF (dash).

The VMP on a circle has a solution if the following Future research lines include the extension of our results t
conditions are satisfied, vehicles with more involved dynamics and to general robotic
si —cosy—pa tworks described by directed graphs. The integration of
Ve > W (cos(b — ) + SnbEnN0=cosy—pa)) 4 gy 4 o  NEWWOTKS - ) e
F= L( (=) sinytpa ) T our visibility conditions in the existing rendezvous, ceve

— ke (sin(b+ ) —siny + pa) —cos(b+7),  rage or deployment algorithms is also a subject of future
investigation.
QO < ((17V|_)sin(b+'y) - 1) 9
L>p sin y4pa )
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